JP4304921B2 - High thermal conductivity heat dissipation material and method for manufacturing the same - Google Patents

High thermal conductivity heat dissipation material and method for manufacturing the same Download PDF

Info

Publication number
JP4304921B2
JP4304921B2 JP2002166954A JP2002166954A JP4304921B2 JP 4304921 B2 JP4304921 B2 JP 4304921B2 JP 2002166954 A JP2002166954 A JP 2002166954A JP 2002166954 A JP2002166954 A JP 2002166954A JP 4304921 B2 JP4304921 B2 JP 4304921B2
Authority
JP
Japan
Prior art keywords
metal
thermal conductivity
high thermal
heat dissipation
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002166954A
Other languages
Japanese (ja)
Other versions
JP2004010978A (en
Inventor
千尋 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002166954A priority Critical patent/JP4304921B2/en
Publication of JP2004010978A publication Critical patent/JP2004010978A/en
Application granted granted Critical
Publication of JP4304921B2 publication Critical patent/JP4304921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Description

【0001】
【発明の属する技術分野】
本発明は、高熱伝導性放熱材料及びその製造方法に関し、詳しくは、高熱伝導率と低熱膨張係数を有し、電子部品用のヒートシンク等に用いられる高熱伝導性放熱材料を得るものである。
【0002】
【従来の技術】
従来、半導体レーザーやマイクロ波素子などの半導体素子を搭載した電子部品には、電子部品や素子から熱を吸収して外部に放熱するヒートシンクが用いられている。従来の電子部品は、その発熱量が小さかったため、ヒートシンクとしては、熱伝導率が低くても、搭載される半導体素子(Si、InP、GaAs等)との熱膨張係数が近いAl23やAlNが用いられてきた。
しかし、最近では情報量の増大に合せて半導体素子の大型化や高出力化が進み、発熱量の増大が問題となっている。従って、高熱伝導率を有するヒートシンク用材料が強く要求されている。
【0003】
ヒートシンク用材料としてAlNは熱伝導率も比較的良好であり、またSiやInP等の半導体素子との熱膨張係数が近いため、一般によく使用されているが、さらなる高出力化や、GaAs素子のように熱膨張係数の大きい素子には対応が難しくなっている。
【0004】
具体的には、半導体素子等の各種半導体材料の熱膨張係数は、Siが4.2ppm/K、InPが4.5ppm/K、GaAsが5.9ppm/K程度であるため、ヒートシンク用材料としては、これらと熱膨張係数が近いことが望ましい。さらには、ヒートシンク用材料のヤング率は小さいほど、発生する熱応力が小さくなるため望ましい。従って、ヒートシンク材料に必要な物性としては、熱伝導率がCu(395W/mK)と同等かそれ以上、熱膨張係数がCu(16.9ppm/K)以下が望まれている。
【0005】
熱伝導率が最も高い材料はダイヤモンドやc−BNであるが、熱膨張係数が小さく(ダイヤ2.3ppm/K、c−BN3.7ppm/K)、かつこれらの材料はヤング率が830〜1050GPaと非常に大きいので、ヒートシンク材と半導体素子の蝋づけ時やデバイスとしての使用時にヒートシンク材と半導体素子との大きな熱応力が発生して破壊が起こるという問題がある。
【0006】
熱膨張係数が小さく、比較的熱伝導率が高い材料として、セラミックスと金属を複合したAl-SiCをはじめとする金属基複合材料が開発されている。しかし、Alの熱伝導率(室温で約238W/mK)が低いために複合材料にした場合の熱伝導率にも上限が存在し、上記高熱伝導率の要求を満たすことができない。
また、Alの代わりに、より熱伝導率の高いCu(同395W/mK)やAg(同420W/mK)等の金属を用いることも考えられるが、複合材として用いるSiCとの濡れ性が極めて悪いためにCu、Ag等が持つ本来の高熱伝導性が生かされないという問題がある。
【0007】
よって、本出願人は、CuやAgとの濡れ性を向上させたヒートシンク材料として、特開平11−67991号で、ダイヤモンド−Ag系やダイヤモンド−Cu系複合材料を提案している。これは、ダイヤモンド粉末とAg-Cu-Ti系粉末を混合、成形後、該合金の融点以上で加熱することにより、Ti成分がダイヤモンド粒子表面に拡散、反応し、表面にTiC層が形成されるものである(焼結法)。即ち、TiCと溶融Cuまたは溶融Agの濡れ性が高いために、結果としてダイヤモンド粒子と金属の界面が密着し、高い熱伝導率を得ることができる。
【0008】
また、本出願人は、上記のような金属基複合材料からなる半導体用ヒートシンクとして、特開平10−223812号において、ダイヤモンド−Ag系やダイヤモンド−Cu系複合材料及びその製法として溶浸法なる製法を提案している。これは、ダイヤモンド粉末とAg-Cu-Ti系粉末を混合、成形後、該合金の融点以上で加熱してダイヤモンド粒子表面にTiC層を形成させた後、さらに加熱してAg、Cu成分を揮発させて多孔体とし、これに溶融Ag-Cu合金を含浸させて、焼結法よりも熱伝導率の高い相対密度と熱伝導率を持つ複合材料を得るというものである。
【0009】
さらに、ダイヤモンドの代わりに、熱伝導率の高い黒鉛粒子をAg−Cu系金属と複合させた高熱伝導複合材料も提案されている。黒鉛は、Ag-Cu-Ti系金属との濡れ性がダイヤモンドと同程度であると共に、柔らかいために、加工性に優れている。
【0010】
【発明が解決しようとする課題】
しかしながら、特開平11−67991号、特開平10−223812号の半導体用ヒートシンクは、高熱伝導率を有しているものの、ダイヤモンドの硬度が高いために、加工を行いにくく、未だ改善の余地があり、さらなる加工性の向上が望まれている。また、ダイヤモンド自体が高価である上に、成形設備にもコストがかかるために、低コスト化が望まれている。
【0011】
また、上記した黒鉛系複合材料は、黒鉛結晶の異方性のため、作製した複合材料の熱伝導率や熱膨張係数に大きな異方性が生じるという問題がある。即ち、黒鉛結晶は六方晶に属する結晶系を持ち、黒鉛結晶面と同方向の熱伝導率は1000W/mK以上と高いが、黒鉛結晶面と垂直方向のそれは高々10W/mK程度しかない。一方、黒鉛結晶面と同方向の熱膨張係数はほとんどゼロであるのに対し、黒鉛結晶面と垂直方向のそれは26ppm/Kと大きな値となっている。
【0012】
従って、黒鉛粒子を原料として複合材料を作製する場合、異方性を発現するか否かによって、その性能に非常に大きな差が生じることとなる。例えば、70vol%黒鉛と30vol%金属の複合粒子を一軸成形した場合、黒鉛粒子は黒鉛結晶面に沿って配向し、結果として、異方的な物性を有することとなる。
【0013】
この黒鉛粒子を配向させた複合材料を、黒鉛結晶面と同方向が放熱方向となるように半導体素子等に接着させて放熱材として用いる場合、黒鉛結晶面と同方向には熱伝導率が高いため効率良く放熱させることができるが、その一方、黒鉛結晶面と同方向の熱膨張係数が大きいために、熱膨張係数が小さい半導体素子との間で大きな不整合が生じ、熱サイクルにより、両者の接着がはがれたり、破壊したりすることがある。
【0014】
一方、黒鉛結晶面と垂直方向が放熱方向となるように半導体素子等に接着させて放熱材として用いる場合、上記した熱膨張係数の不整合は小さくなるものの、黒鉛結晶面と垂直方向の熱伝導率が小さいために、放熱作用が不十分になり、放熱材としての機能を有しないという問題がある。
【0015】
このような異方性の問題が生じないように、複合材料中の黒鉛に配向性を持たせないことも考えられるが、この場合は、複合材料の熱伝導率が平均化されてしまい、放熱材として必要な高熱伝導率が得られないという問題がある。
【0016】
本発明は上記した問題に鑑みてなされたものであり、熱伝導率が高い上に、熱膨張係数が低く、かつ、加工性に優れた高熱伝導性放熱材料、及びその製造方法を提供することを課題としている。
【0017】
【課題を解決するための手段】
上記課題を解決するため、本発明は、複数のカーボンナノチューブと、金属炭化物と、金属とを備えた混合材を、一軸プレス成形しており
上記金属炭化物は上記カーボンナノチューブの表面に存在すると共に、上記カーボンナノチューブは上記金属中に該カーボンナノチューブの長さ方向をプレス面と平行な二的に一定方向に配向されて存在し、該カーボンナノチューブの含有量が14体積%以上であることを特徴とする高熱伝導性放熱材料を提供している。
【0018】
このように、カーボンナノチューブが、その表面に存在する金属炭化物を介して、金属中に二次元一定方向に配向するように存在すると共に、カーボンナノチューブの体積含有量が規定されている。このため、本発明の高熱伝導性放熱材料は、各方向に対して高い熱伝導性を有し、特に、二次元的にカーボンナノチューブが配向された方向において極めて高い熱伝導性を実現することができる。また、カーボンナノチューブは、径方向の熱膨張係数も極めて低いため、上記のように一定方向に配向させることにより、高熱伝導性放熱材料のある特定の方向において、熱膨張係数を小さくすることができる。
【0019】
即ち、上記のような構成とすることにより、カーボンナノチューブの特徴である、長さ方向及び径方向共に熱伝導率が極めて高く、特に、長さ方向においてダイヤモンド同様に極めて高い熱伝導率を有すると共に、径方向の熱膨張係数も極めて低いという性質を最大限に発揮することができる。
【0020】
よって、二次元的に配向方向を定めることにより、所望の高熱伝導率、低熱膨張係数を有する放熱材料を得ることができる。さらに、加工性にも優れているため、容易に種々の形状とすることができ、半導体用のヒートシンク等として好適に用いることができる。
【0021】
上記のように放熱材の完成状態でのカーボンナノチューブ(以下、CNTとも称す)の含有量を14体積%以上としているのは、14体積%未満では、熱膨張係数を小さくすることができない上に、熱伝導率も向上させにくくなるためである。CNTの配合量を多くするにつれ、熱伝導性が向上すると共に、熱膨張係数は低下するので好ましいが、配合量が多くなりすぎると表面粗度が悪くなる場合があるので、70体積%以下が好ましい。ただし、表面粗度が悪くなる場合でも、表面にメッキ層や金属箔を貼って一体化する等により表面を平滑化することができる。また、30体積%以上60体積%以下がより好ましい。なお、より高い熱伝導率を得るには、全てのCNTの長さ方向(軸方向)が同方向に配向するように二次元的に配向させるのが良いが、CNTの長さ方向が同一平面上に配向するように一次元的に配向させても良い。押出成形、圧延、ドクターブレード法等を使い、圧力を非常に高くして成形すると一次元配向させることができる。
【0022】
上記配向方向の熱伝導率(K1)が、該配向方向に垂直な方向の熱伝導率(K2)より大きく、上記配向方向の熱膨張係数(α1)が、該配向方向に垂直な方向の熱膨張係数(α2)より小さいことが好ましい。カーボンナノチューブの配向により、高熱伝導、低熱膨張係数を維持しながら、上記性能を実現することができ、特に半導体用ヒートシンクに好適である。
【0023】
上記金属炭化物は、Ti、W、Cr、Hf、Zr、V、Nb、Ta、またはMoから選択される一種以上の金属の炭化物であることが好ましい。これらの金属は炭化物の形成が容易であると共に、カーボンナノチューブと金属との密着性を高めることができるため、高熱伝導性を得ることができる。
【0024】
上記金属は、熱伝導率の高い、Al、Mg、Au、Ag、またはCuから選択される一種以上の金属あるいはこれらの合金であることが好ましい。より高熱伝導率を得るためには熱伝導率が高く、CNT表面に形成された金属炭化物との濡れ性も良好なAg、Cuまたはこの合金が好ましい。
なお、要求性能に応じて金属種やその配合比を適宜設定することができる。
【0025】
本発明の高熱伝導性放熱材料の熱膨張係数(α2)が4ppm/K(4.0×10−6/K)〜12ppm/K(12.0×10−6/K)であると共に、室温での上記配向方向の熱伝導率(K1)が350W/mK〜1300W/mKであることが好ましい。上記範囲とすることにより、特に半導体用ヒートシンクとして好適に用いることができる。
【0026】
本発明の高熱伝導性放熱材料を半導体用ヒートシンクとして用いる場合には、放熱材料中のCNTの配向方向が放熱方向と一致するように設置するのが良い。これにより、優れた放熱作用が得られる上に、熱膨張による不具合も解消することができる。
【0027】
カーボンナノチューブは、多層カーボンナノチューブであることが好ましい。なお、単層カーボンナノチューブとすることもできる。上記金属炭化物は、カーボンナノチューブの表面と、炭化物形成用の金属との反応により形成されてなることが好ましい。
【0028】
上記カーボンナノチューブの平均外径が1nm〜200nmであることが好ましい。
上記範囲としているのは、上記範囲より小さいとCNT表面への炭化物形成制御が容易でなくなるためである。一方、上記範囲より大きくとも構わないが、直径200nmを超えるCNTを安定して得るのは容易ではないためである。
【0029】
本発明の高熱伝導性放熱材料は半導体用ヒートシンクとして好適に用いられる。また、その形状は、円板状、その他平板状、立方体、直方体、その他多面体等、製品としての使用状態や加工性、製造方法等に応じて種々の形状とすることができる。
【0030】
また、本発明は、上記した高熱伝導性放熱材料の製造方法であって、
複数のカーボンナノチューブと、炭化物形成用金属と、マトリクス用金属とを、カーボンナノチューブの含有量を14体積%以上として混合し、
上記混合材を一軸プレス成形により予備成形体を形成し、
上記予備成形体を、真空下またはHe、Ar、Hガス中、圧力無負荷または加圧下で、上記炭化物形成用金属及びマトリクス用金属の融点以上の温度で加熱して焼結することを特徴とする高熱伝導性放熱材料の製造方法を提供している。
【0031】
これにより、予備成形体中、一軸プレス成形時の圧力負荷方向とCNTの径方向が一致するようにCNTを二次元的に一定方向に配向させることができる。即ち、プレス面とCNTの長さ方向が平行となるようにCNTを配向させることができる。また、真空下またはHe、Ar、Hガス中、圧力無負荷または加圧下で、上記金属を融点以上の温度で加熱して焼結することにより、予備成形体中、炭化物形成用金属とCNTの表面とが反応し、CNTの表面に金属炭化物が形成される。さらに、この金属炭化物を介してCNTとマトリクス用金属とが密着され焼結されることにより、高熱伝導性放熱材料を得ることができる。
【0032】
上記焼結は、ホットプレス、熱間鍛造、押出、圧延等の加圧焼結法を用いており、該加圧焼結時の圧力が100MPa以上であるのが好ましい。
本発明の高熱伝導性放熱材料を緻密化させるには加圧焼結することが好ましい。加圧時の圧力は高圧であるのが良く100MPa以上が好ましい。加熱焼結方法としては、ホットプレス以外に熱間鍛造や圧延、押出などを用いることが出来る。焼結温度は、金属の融点以上で行う。融点より低いと、CNTと金属とが良好に接着せず、焼結後に壊れたり、あるいは高い熱伝導率が発現しない。焼結体作製時に加圧しない場合は、予備成形体に存在していた気孔が残存し、焼結体を多孔体とすることもできる。
【0033】
さらに、本発明は、上記した高熱伝導性放熱材料の製造方法であって、
複数のカーボンナノチューブと、炭化物形成用金属と、マトリクス用金属とを、ーボンナノチューブの含有量が14体積%以上として混合し、
上記混合材を一軸プレス成形により多孔体を形成し、
真空下、圧力無負荷または加圧下で、上記多孔体の空孔中に、溶融された炭化物形成用金属とマトリクス用金属とを溶浸させることを特徴とする高熱伝導性放熱材料の製造方法を提供している。
【0034】
このように、カーボンナノチューブを一軸成形して、一軸プレス成形時の圧力負荷方向とCNTの径方向が一致するようにCNTを二的に一定方向に配向させた多孔体を得ることができる。即ち、プレス面とCNTの長さ方向が平行となるようにCNTを配向させることができる。圧力無負荷又は加圧下で、上記金属の溶を、多孔体の空孔中に溶浸させることにより、炭化物形成用金属とCNTの表面とが反応し、CNTの表面に金属炭化物が形成される。さらに、この金属炭化物を介してCNTとマトリクス用金属とが密着され、高熱伝導性放熱材料を得ることができる。
【0035】
この場合、成形体には閉気孔が含まれないようにすることが好ましい。閉気孔が存在すると、溶融金属が溶浸できず複合材料には気孔が残存する。
また、閉気孔が含まれないようにするためには、CNTに適量のバインダーや発泡剤を添加し、成形体を大気中で焼成してこれらの成分を焼失させることで開気孔率の高い成形体にすることができる。このような開気孔には溶融金属が溶浸しやすい。
【0036】
上記カーボンナノチューブは多層カーボンナノチューブとし、該カーボンナノチューブは、放熱材料形成前の配合時の全材料の14体積%以上として用いている。これにより、効率良く、非常に高性能な高熱伝導性放熱材料を得ることができる。多層カーボンナノチューブの場合には、配合時のCNTの体積%と放熱材完成時の体積%は、ほぼ同一とみなすことができる。単層カーボンナノチューブを用いた場合には、配合時のCNT体積に対して放熱材完成時のCNT体積は減少する。
【0037】
CNTには単層と多層があるが、多層CNTを用いることが好ましい。多層CNTの場合には、表面層が炭化物に転化しても、内層のCNTは残存するので、CNTの複合効果が出て好ましい。
【0038】
単層CNTを用いる場合には、CNTの全表面を炭化させないようにする必要があり、全金属中の炭化物形成用金属の濃度を調整することにより、CNTの表面積の30%〜50%が炭化物に転化するようすれば良い。これにより、密着に必要な濡れが起こると共に、CNTの高い熱伝導率も損なわれることがない。この濃度の調整は、全金属中におけるTiをはじめとする炭化物形成用金属の濃度とCNTの表面積から決定される。
【0039】
即ち、これらの炭化物形成用金属は全てCNTと反応して炭化物となるので、基本的には、式(1)で示されるように、炭化物形成用金属量をCNTの表面積で除した値が計算上の金属炭化物層の厚みとなる。
式(1)
金属炭化物の厚さ=(添加した炭化物形成用金属が全て炭化物化したときの炭化物重量)/(炭化物密度)・(CNTの全表面積)
【0040】
凡そで言えばCNTの表面全てが炭化物層となる時の炭化物層の平均厚さは5オングストローム程度である。よって、単層CNTの表面積の30%〜50%を炭化物に転化させるということは、計算上の炭化物層厚さを、1.5〜2.5オングストローム程度に制御することになる。
【0041】
Ti等の炭化物形成用金属の添加量は、単層CNTの表面層のみが炭化物化するように配合量を決定することが最も好ましい。即ち、5オングストローム程度の厚さの金属炭化物の層が、単層CNTの表面に形成されるような配合量が最も好ましい。
【0042】
上記炭化物形成用金属はTi、W、Cr、Hf、Zr、V、Nb、Ta、またはMoから選択される一種以上の金属であり、上記マトリクス用金属はAl、Mg、Au、Ag、またはCuの少なくとも一種以上の金属であり、両金属は合金として用いられていることが好ましい。
Ti、W、Cr、Hf、Zr、V、Nb、Ta、またはMoから選択される一種以上の炭化物形成用の金属がCNTの表面と反応し、炭化物を形成する。これらの炭化物と溶融AgやCu等の上記マトリクス用金属は極めて濡れ性が高いために、炭化物生成と同時に界面が濡れ、強固な密着を得ることができる。
【0043】
上記一軸プレス成形は、100MPa以上の圧力で行われていることが好ましい。一軸プレス成形には通常の乾式プレスを使用できるが、CNTを効率よく配向させるためには100MPa以上の高い圧力が好ましい。
【0044】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照して説明する。
図1により、本発明の高熱伝導性放熱材料10を説明する。
図1(A)に示すように、高熱伝導性放熱材料10は、複数のカーボンナノチューブ11と、金属炭化物12であるTiCと、マトリクス金属13であるAgとCuとの合金とを備えている。金属炭化物12はカーボンナノチューブ11の表面に存在すると共に、カーボンナノチューブ11はマトリクス金属13中に二次元的に一定方向に配向されて存在している。高熱伝導性放熱材料10中のカーボンナノチューブ11の含有量は60体積%である。
【0045】
本発明の高熱伝導性放熱材料10は、全てのカーボンナノチューブ11の長さ方向aが同方向に配向するように二次元的に配向されている。カーボンナノチューブ11の配向方向Xの熱伝導率(K1)が1050W/mK、配向方向Xに垂直な方向Yの熱伝導率(K2)が115W/mKであり、配向方向Xの熱膨張係数(α1)が3.6ppm/K、配向方向Xに垂直な方向Yの熱膨張係数(α2)が4.7ppm/Kであり、半導体用ヒートシンクとして特に有用である。
【0046】
図1(B)に示すように、カーボンナノチューブ11は、長さ方向a及び径方向b共に熱伝導率が極めて高く、特に、長さ方向aにおいてダイヤモンド同様に極めて高い熱伝導率を有すると共に、径方向bの熱膨張係数が極めて低いという性質を有しており、上記のように配向させることにより、この特徴を最大限に発揮している。
【0047】
即ち、CNTの長さ方向aと一致しているX方向と平行に熱流速が与えられた場合には、CNTと金属の界面での熱抵抗はほとんど起こらず、熱伝導率Kは式(2)で示される理論値に近い値となり、熱伝導率の高いCNTの複合効果が大きくなる。
K=K1V1+K2V2 (2)
ここで、Kiは各相の熱伝導率、Viは各相の体積分率である。
【0048】
具体的に、本発明の高熱伝導性放熱材料10である半導体用ヒートシンクをパッケージに応用した例を図2に基づいて説明する。
パッケージ筐体21の中に半導体素子23、半導体素子23に接続されているボンディングワイヤ24およびボンディングワイヤ24に接続されるリードフレーム25が設けられている。そして、半導体素子23の土台となるヒートシンクとして高熱伝導性放熱材料10が設けられており、半導体素子23の放熱をさせたい方向と、高熱伝導性放熱材料10中のカーボンナノチューブ11の配向方向Xとが一致するように配置されている。X方向に極めて高い熱伝導率を持ち、かつ、Y方向に熱膨張係数が小さいため、半導体素子23との不整合が少なく、放熱材として最適である。
【0049】
以下、本発明の高熱伝導性放熱材料の第1実施形態の製造方法について、図3(A)(B)により説明する。
【0050】
まず、平均外径が6nm、長さが200nmである多層カーボンナノチューブ粉末と、炭化物形成用金属であるTiを2重量%含むAg(70重量%)とCu(28重量%)金属の合金粉末(平均粒径2μm)を混合する。カーボンナノチューブの含有量が60体積%となるように用いている。
【0051】
これらを混合した後、500MPaの圧力で一軸プレス成形を行い、予備成形体100を形成し、予備成形体100中、一軸プレス成形時の圧力負荷方向とカーボンナノチューブ11の径方向が一致するようにカーボンナノチューブ11を二次元的に一定方向に配向させる。即ち、カーボンナノチューブ11の長さ方向と予備成形体100のプレス面100aが平行になるようにカーボンナノチューブ11を配向させる。
【0052】
予備成形体100を、高周波誘導加熱装置を用いて、成形体を大気中、融点以上の温度である950℃まで30秒間加熱し、これを450℃に保持した金型に装着して圧力500MPaで熱間鍛造してφ35mm、厚さ12mmの焼結体を得る。
【0053】
このように、融点以上の温度で加熱して焼結することにより、炭化物形成用金属であるTiとカーボンナノチューブ11の表面とが反応し、カーボンナノチューブ11の表面に金属炭化物12としてTiCが形成されると共に、金属炭化物であるTiCを介してカーボンナノチューブ11とマトリクス金属13であるAg及びCuとが密着されている。
【0054】
ここで得られた平板状の焼結体である高熱伝導性放熱材料10をその厚み方向に平行にスライス切断等して半導体用ヒートシンクを得ている。
【0055】
以下、本発明の高熱伝導性放熱材料の第2実施形態の製造方法について、図4(A)(B)(C)により説明する。
【0056】
まず、図4(A)に示すように、平均外径が20nm、長さが260nmである多層カーボンナノチューブ粉末を圧力300MPaで一軸プレス成形を行い、φ35mm、厚さ12mm、相対密度60体積%の多孔体40を形成し、一軸プレス成形時の圧力負荷方向とカーボンナノチューブ31の径方向が一致するようにカーボンナノチューブ31を二次元的に一定方向に配向させる。即ち、カーボンナノチューブ31の長さ方向と多孔体40のプレス面40aが平行になるようにカーボンナノチューブ31を配向させる。なお、相対密度とは、(1−空孔度)、即ち、全体積中、空孔41を除いた固体部分の体積%を示す。
【0057】
次に、図4(B)(C)に示すように、炭化物形成用金属であるTiを2重量%含むAg(70重量%)とCu(28重量%)金属の合金粉末(平均粒径2μm)を圧力500MPaで成形して仮金属体42を得る。この仮金属体42を多孔体40の上に設置後、1×10−5torrの高真空下で、融点以上の温度である温度950℃で加熱して金属を溶融させ、溶融させた金属を多孔体40の空孔41中に溶浸する。
【0058】
このように、融点以上の温度で加熱して溶浸することにより、炭化物形成用金属であるTiとカーボンナノチューブ31の表面とが反応し、カーボンナノチューブ31の表面に金属炭化物32としてTiCが形成されると共に、金属炭化物32であるTiCを介してカーボンナノチューブ31とマトリクス金属33であるAg及びCuとが密着されている。これにより、本発明の高熱伝導性放熱材料30を得ることができる。
【0059】
上記実施形態では、多層CNTを用いているが、炭化物形成用金属の配合量を調整し単層CNTを用いることもできる。炭化物形成用金属はTi以外にも、W、Cr、Hf、Zr、V、Nb、Ta、Mo等を用いることができる。マトリクス用金属はAl、Mg、Au等を用いることもできる。また、上記焼結は、ホットプレス、押出、圧延等の加圧焼結法により行うこともできる。また、CNTの長さ方向が同一平面上に配向するように一次元的に配向させても良い。
【0060】
以下、本発明の実施例、比較例について詳述する。
【0061】
(実験1)
原料として、以下の粉末を用い、第1実施形態の製造方法により、高熱伝導性放熱材料を作製した。
CNT:多層CNT、平均外径6nm、長さ200nm
Ag:99.9%、平均粒径2μm
Ag蝋:70wt%Ag−28wt%Cu−2wt%Ti、平均粒径2μm
【0062】
これらを各種組成で混合し、500MPaの圧力でプレス成形した。高周波誘導加熱装置を用いて成形体を大気中、950℃まで30secで加熱し、これを450℃に保持した金型に装填して圧力500MPaで熱間鍛造して、φ35mm×12mm(厚み方向)の焼結体とした。
配合時のCNTの体積%を変更し、試料No.1〜9を得た。
【0063】
焼結体から、直径10mm×厚さ2mmの試料を切り出し、各種方向について、レーザーフラッシュ法により熱伝導率、差動トランス式熱膨張係数測定装置により室温から200℃の間の平均熱膨張係数を測定した。
【0064】
(比較実験1)
比較として、黒鉛粉末(平均粒径5μm)を用いて、黒鉛の体積%を変更し、実験1と同様に試料を作製・評価した。試料No.10〜18を得た。
【0065】
実験を行った各試料の内容を表1及び下記に詳述する。
実施例1〜7:表1の試料No.3〜9
比較例1、2:表1の試料No.1、2
比較例3〜11:表1の試料No.10〜18
各評価結果を表1に示す。
【0066】
【表1】

Figure 0004304921
【0067】
表1に示すように、実施例1〜7は、CNTが規定量含有された本発明の高熱伝導性放熱材料であり、K1が特に高い上に、α2が4〜12ppm/Kの範囲と非常に低く、半導体用ヒートシンクとして有用な緻密な複合材料が得られた。
【0068】
一方、比較例1、2はCNTが金属中に配向してはいるが、CNTの含有量が少ないために、熱伝導率が低い上に、熱膨張係数が高く、放熱材として不適であった。また、比較例3〜11は、配向されているのが黒鉛であるため、熱伝導率がそれほど高くない上に、熱膨張係数が非常に高く、放熱材として不適であった。
【0069】
(実験2)
実験1において、鍛造の代わりに成形体を1×10−5torrの真空中で温度950℃で1時間焼結した。即ち、単に焼結するのみとした。その他は実験1と同様とした。試料No.19〜36を得た。
【0070】
実験を行った各試料の内容を表2及び下記に詳述する。
実施例8〜14:表2の試料No.21〜27
比較例12、13:表2の試料No.19、20
比較例14〜22:表2の試料No.28〜36
各評価結果を表2に示す。
【0071】
【表2】
Figure 0004304921
【0072】
表2に示すように、実施例8〜14は、CNTが規定量含有された本発明の高熱伝導性放熱材料であり、K1が特に高い上に、α2が4〜12ppm/Kの範囲と非常に低く、半導体用ヒートシンクとして有用な複合材料が得られた。また、相対密度が93〜99%であり、多少の気孔を含む複合材料が得られた。
【0073】
一方、比較例12、13はCNTが金属中に配向してはいるが、CNTの含有量が少ないために、熱伝導率が低い上に、熱膨張係数が高く、放熱材として不適であった。また、比較例14〜22は、配向されているのが黒鉛であるため、熱伝導率がそれほど高くない上に、熱膨張係数が非常に高く、放熱材として不適であった。
【0074】
(実験3)
原料として、以下の粉末を用い、第2実施形態の製造方法により、高熱伝導性放熱材料を作製した。
CNT:多層CNT、平均外径20nm、長さ260nm
単層CNT、平均外径1.5nm、長さ260nm
Ag:99.9%、平均粒径2μm
Ag蝋:70wt%Ag−28wt%Cu−2wt%M(M:Ti、W、Cr、Hf、Zr、V、Nb、Ta、Mo、Ca、Al、Mg、Fe)、平均粒径2μm
【0075】
CNTを圧力300MPaで一軸成形してφ35mm×12mm厚の相対密度60vol%の多孔体を得た。Ag蝋粉末を圧力500MPaで成形して成形体とし、これを多孔体の上に設置後、1×10−5torrの高真空下で、温度950℃で加熱してAg蝋を多孔体に溶浸させた。
炭化物形成用金属の種類を変更し、試料No.37〜49を得た。
炭化物形成用金属をTiとし、単層CNTを用い、試料No.50〜53を得た。
【0076】
実験1と同様に、直径10mm×厚さ2mmの試料を切り出し、各種方向について、レーザーフラッシュ法により熱伝導率、差動トランス式熱膨張係数測定装置により室温から200℃の間の平均熱膨張係数を測定した。
【0077】
(比較実験2)
比較例として、CNT粉末を冷間等方加圧(CIP)により、圧力30MPaで成形体とし、同様に溶浸法(Ag−Cu−Ti系)により複合材料を作製、評価した。試料No.54を得た。
【0078】
実験を行った各試料の内容を表3及び下記に詳述する。
実施例15〜23:表3の試料No.37〜45
実施例24、25:表3の試料No.51、52
比較例23〜27:表3の試料No.46〜50
比較例28、29:表3の試料No.53、54
各評価結果を表3に示す。
【0079】
【表3】
Figure 0004304921
【0080】
表3に示すように、実施例15〜23は、金属と金属炭化物とCNTとを備え、CNTが規定量含有された本発明の高熱伝導性放熱材料であり、K1が特に高い上に、α2が4〜12ppm/Kの範囲と非常に低く、半導体用ヒートシンクとして有用な緻密な複合材料が得られた。
【0081】
一方、比較例23〜26は、CNTが規定量含有されているが、金属炭化物を備えていなかった。即ち、CNTの表面にCa、Al、Mg、Feの金属の炭化物が形成されておらず、複合材料中に金属炭化物が存在していない。よって、熱伝導率が低く、不適であった。
【0082】
また、単層CNTを用いた試料において、銀鑞の比率が小さすぎる場合(比較例27)は、金属炭化物がCNTの表面にほとんど形成されず、複合材中に金属炭化物が存在していなかった。大きすぎる場合(比較例28)は、CNTが炭化されすぎ、複合材中のCNT含量が規定量より少なかった。よって、比較例27や、比較例28は、熱伝導率が小さかった。銀鑞の比率が適当な場合(実施例24、25)は、金属炭化物が存在する上に、CNTも規定量含有されており、高い熱伝導率が得られた。
【0083】
比較例29は、CIP成形したため、CNTが一定方向に配向していなかった、よって、熱膨張係数が大きく、熱伝導率も小さな複合材料しか得られなかった。
【0084】
【発明の効果】
以上の説明より明らかなように、カーボンナノチューブが、その表面に存在する金属炭化物を介して、金属中に二次元的に一定方向に配向するように存在すると共に、カーボンナノチューブの体積含有量が規定されている。このため、本発明の高熱伝導性放熱材料は、各方向に対して高い熱伝導性を有し、特に、二次元的にカーボンナノチューブが配向された方向において極めて高い熱伝導性を実現することができる。また、カーボンナノチューブを一定方向に配向させることにより、高熱伝導性放熱材料のある特定の方向において、熱膨張係数を小さくすることができる。
【0085】
よって、二次元的に配向方向を定めることにより、黒鉛結晶に比べ、優れた高熱伝導率、低熱膨張係数を有する放熱材料を得ることができる。さらに、加工性にも優れているため、容易に種々の形状とすることができる。ダイヤモンド系複合材料と異なり、加工性に優れるので、低コストで放熱部材を得ることができる。
【0086】
従って、CNTの配向方向の熱伝導率がダイヤモンド並に高く、配向方向と垂直方向の熱膨張係数が半導体素子に近い半導体用ヒートシンク材が作製でき、半導体レーザーやマイクロ波デバイス、各種LSI等の性能を最大限に発揮させることができる。
【0087】
また、本発明の製造方法によれば、容易にCNTを一定方向に配向させることができ、CNT表面に金属炭化物を形成できると共に、金属炭化物を介してCNTとマトリクス金属との間において良好な密着性を得ることができる。よって、非常に高性能の高熱伝導性放熱材料を精度良く製造することができる。
【図面の簡単な説明】
【図1】 (A)は本発明の高熱伝導性放熱材料の概略構成図、(B)はカーボンナノチューブの概略図である。
【図2】 本発明の高熱伝導性放熱材料の半導体用ヒートシンクとして使用例を示す図である。
【図3】 (A)(B)は本発明の高熱伝導性放熱材料の製造方法の第1実施形態の説明図である。
【図4】 (A)(B)(C)は本発明の高熱伝導性放熱材料の製造方法の第2実施形態の説明図である。
【符号の説明】
10 高熱伝導性放熱材料
11 カーボンナノチューブ
12 金属炭化物
13 マトリクス金属
23 半導体素子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high thermal conductivity heat dissipation material and a method for manufacturing the same, and more particularly, to obtain a high thermal conductivity heat dissipation material having a high thermal conductivity and a low thermal expansion coefficient and used for a heat sink for electronic parts.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a heat sink that absorbs heat from an electronic component or element and dissipates the heat to the outside is used for an electronic component that includes a semiconductor element such as a semiconductor laser or a microwave element. Since conventional electronic components have a small calorific value, the heat sink has a thermal expansion coefficient close to that of the mounted semiconductor element (Si, InP, GaAs, etc.) even if the thermal conductivity is low.2OThreeAnd AlN have been used.
However, recently, as the amount of information increases, the size and output of semiconductor devices have increased, and an increase in heat generation has become a problem. Therefore, there is a strong demand for heat sink materials having high thermal conductivity.
[0003]
As a heat sink material, AlN has a relatively good thermal conductivity and is generally used because it has a thermal expansion coefficient close to that of semiconductor elements such as Si and InP. Thus, it is difficult to cope with an element having a large thermal expansion coefficient.
[0004]
Specifically, the thermal expansion coefficients of various semiconductor materials such as semiconductor elements are about 4.2 ppm / K for Si, 4.5 ppm / K for InP, and about 5.9 ppm / K for GaAs. It is desirable that these have a thermal expansion coefficient close to these. Furthermore, the smaller the Young's modulus of the heat sink material, the smaller the generated thermal stress, which is desirable. Therefore, as physical properties necessary for the heat sink material, it is desired that the thermal conductivity is equal to or higher than Cu (395 W / mK) and the thermal expansion coefficient is Cu (16.9 ppm / K) or lower.
[0005]
The material with the highest thermal conductivity is diamond or c-BN, but the coefficient of thermal expansion is small (diamond 2.3 ppm / K, c-BN 3.7 ppm / K), and these materials have Young's modulus of 830 to 1050 GPa. Therefore, there is a problem that a large thermal stress is generated between the heat sink material and the semiconductor element when the heat sink material and the semiconductor element are brazed or when used as a device.
[0006]
As a material having a low thermal expansion coefficient and a relatively high thermal conductivity, metal-based composite materials such as Al—SiC in which ceramic and metal are combined have been developed. However, since the thermal conductivity of Al (about 238 W / mK at room temperature) is low, there is also an upper limit in the thermal conductivity when a composite material is used, and the above high thermal conductivity requirement cannot be satisfied.
In addition, it is conceivable to use metals such as Cu (395 W / mK) and Ag (420 W / mK) having higher thermal conductivity instead of Al, but the wettability with SiC used as a composite material is extremely high. Since it is bad, there exists a problem that original high thermal conductivity which Cu, Ag, etc. have is not utilized.
[0007]
Therefore, the present applicant has proposed a diamond-Ag-based or diamond-Cu-based composite material in Japanese Patent Application Laid-Open No. 11-67991 as a heat sink material with improved wettability with Cu and Ag. This is because, after mixing and forming diamond powder and Ag-Cu-Ti powder, the Ti component diffuses and reacts on the surface of the diamond particles by heating above the melting point of the alloy, and a TiC layer is formed on the surface. (Sintering method). That is, since the wettability of TiC and molten Cu or molten Ag is high, as a result, the interface between the diamond particles and the metal adheres, and high thermal conductivity can be obtained.
[0008]
In addition, as a heat sink for a semiconductor made of the above metal matrix composite material, the applicant of the present invention disclosed in Japanese Patent Laid-Open No. 10-223812, a diamond-Ag-based or diamond-Cu-based composite material and a manufacturing method called an infiltration method as its manufacturing method. Has proposed. This is because diamond powder and Ag—Cu—Ti powder are mixed and formed, and then heated above the melting point of the alloy to form a TiC layer on the diamond particle surface, and then heated to volatilize the Ag and Cu components. And a porous material is impregnated with a molten Ag—Cu alloy to obtain a composite material having a relative density and thermal conductivity higher than those of the sintering method.
[0009]
Furthermore, a high thermal conductive composite material in which graphite particles having a high thermal conductivity are combined with an Ag-Cu-based metal instead of diamond has been proposed. Graphite has excellent workability because it has the same wettability with Ag—Cu—Ti metal as diamond and is soft.
[0010]
[Problems to be solved by the invention]
However, although the heat sinks for semiconductors disclosed in JP-A-11-67991 and JP-A-10-223812 have high thermal conductivity, the hardness of diamond is difficult to process, and there is still room for improvement. Further improvement of workability is desired. Moreover, since the diamond itself is expensive and the molding equipment is also expensive, cost reduction is desired.
[0011]
Further, the above-described graphite-based composite material has a problem that large anisotropy occurs in the thermal conductivity and thermal expansion coefficient of the produced composite material due to the anisotropy of graphite crystals. That is, the graphite crystal has a crystal system belonging to hexagonal crystal, and the thermal conductivity in the same direction as the graphite crystal plane is as high as 1000 W / mK or more, but that in the direction perpendicular to the graphite crystal plane is only about 10 W / mK. On the other hand, the coefficient of thermal expansion in the same direction as the graphite crystal plane is almost zero, while that in the direction perpendicular to the graphite crystal plane is a large value of 26 ppm / K.
[0012]
Therefore, when producing a composite material using graphite particles as a raw material, a very large difference in performance occurs depending on whether or not anisotropy is exhibited. For example, when composite particles of 70 vol% graphite and 30 vol% metal are uniaxially molded, the graphite particles are oriented along the graphite crystal plane, resulting in anisotropic physical properties.
[0013]
When this composite material with oriented graphite particles is used as a heat dissipation material by adhering it to a semiconductor element or the like so that the same direction as the graphite crystal plane is the heat dissipation direction, the thermal conductivity is high in the same direction as the graphite crystal plane. However, since the thermal expansion coefficient in the same direction as the graphite crystal plane is large, a large mismatch occurs between the semiconductor element with a small thermal expansion coefficient, and both due to the thermal cycle, May peel off or break.
[0014]
On the other hand, when it is used as a heat dissipation material by adhering to a semiconductor element or the like so that the direction perpendicular to the graphite crystal plane is the heat dissipation direction, the thermal conductivity in the direction perpendicular to the graphite crystal plane is reduced, although the mismatch in thermal expansion coefficient described above is reduced. Since the rate is small, there is a problem that the heat dissipating action becomes insufficient and the heat dissipating material does not function.
[0015]
In order to prevent such anisotropy problem, it is conceivable that the graphite in the composite material is not oriented, but in this case, the thermal conductivity of the composite material is averaged, resulting in heat dissipation. There is a problem that the high thermal conductivity required as a material cannot be obtained.
[0016]
The present invention has been made in view of the above-described problems, and provides a highly thermally conductive heat radiating material having a high thermal conductivity, a low thermal expansion coefficient and excellent workability, and a method for producing the same. Is an issue.
[0017]
[Means for Solving the Problems]
  In order to solve the above problems, the present invention comprises a plurality of carbon nanotubes, a metal carbide, and a metal.Uniaxial press molding of the mixed material,
  The metal carbide is present on the surface of the carbon nanotube, and the carbon nanotube is in the metal.The length direction of the carbon nanotube is parallel to the press surface.NextOriginalIn addition, the present invention provides a highly thermally conductive heat dissipating material characterized by being oriented in a certain direction and having a carbon nanotube content of 14% by volume or more.
[0018]
  In this way, the carbon nanotubes in the metal through the metal carbide present on the surface.SeconddimensionofIn addition to being oriented in a certain direction, the volume content of carbon nanotubes is defined. For this reason, the high thermal conductivity heat dissipation material of the present invention has high thermal conductivity in each direction,,twoExtremely high thermal conductivity can be realized in the direction in which the carbon nanotubes are dimensionally oriented. In addition, since the carbon nanotube has a very low thermal expansion coefficient in the radial direction, it is possible to reduce the thermal expansion coefficient in a specific direction of the high thermal conductive heat dissipation material by orienting in a certain direction as described above. .
[0019]
That is, by having the above-described configuration, the carbon nanotube is characterized by a very high thermal conductivity in both the length direction and the radial direction, and in particular, has a very high thermal conductivity in the length direction like diamond. Moreover, the property that the thermal expansion coefficient in the radial direction is also extremely low can be exhibited to the maximum.
[0020]
  Therefore,twoBy determining the orientation direction in a dimensional manner, a heat dissipation material having a desired high thermal conductivity and low thermal expansion coefficient can be obtained. Furthermore, since it is excellent in workability, it can be easily formed into various shapes and can be suitably used as a heat sink for semiconductors.
[0021]
As described above, the content of carbon nanotubes (hereinafter also referred to as CNT) in the completed state of the heat dissipation material is set to 14% by volume or more. If the content is less than 14% by volume, the thermal expansion coefficient cannot be reduced. This is because it is difficult to improve the thermal conductivity. As the blending amount of CNTs is increased, the thermal conductivity is improved and the thermal expansion coefficient is decreased, which is preferable. However, if the blending amount is too large, the surface roughness may be deteriorated. preferable. However, even when the surface roughness is deteriorated, the surface can be smoothed by attaching a plating layer or a metal foil to the surface and integrating them. Moreover, 30 volume% or more and 60 volume% or less are more preferable. In order to obtain higher thermal conductivity, it is better to align two-dimensionally so that the length direction (axial direction) of all CNTs is aligned in the same direction, but the length directions of CNTs are the same plane. One-dimensional orientation may be performed so as to be oriented upward. One-dimensional orientation can be achieved by molding using extrusion molding, rolling, doctor blade method, etc., with a very high pressure.
[0022]
The thermal conductivity (K1) in the orientation direction is larger than the thermal conductivity (K2) in the direction perpendicular to the orientation direction, and the thermal expansion coefficient (α1) in the orientation direction is the heat in the direction perpendicular to the orientation direction. It is preferably smaller than the expansion coefficient (α2). The above-described performance can be realized while maintaining high thermal conductivity and a low thermal expansion coefficient by the orientation of the carbon nanotubes, and is particularly suitable for a semiconductor heat sink.
[0023]
The metal carbide is preferably a carbide of one or more metals selected from Ti, W, Cr, Hf, Zr, V, Nb, Ta, or Mo. Since these metals can easily form carbides and can improve the adhesion between the carbon nanotube and the metal, high thermal conductivity can be obtained.
[0024]
The metal is preferably one or more metals selected from Al, Mg, Au, Ag, or Cu having high thermal conductivity, or alloys thereof. In order to obtain higher thermal conductivity, Ag, Cu or an alloy thereof having high thermal conductivity and good wettability with the metal carbide formed on the CNT surface is preferable.
In addition, according to required performance, a metal seed | species and its compounding ratio can be set suitably.
[0025]
The thermal expansion coefficient (α2) of the high thermal conductivity heat dissipation material of the present invention is 4 ppm / K (4.0 × 10-6/ K) to 12 ppm / K (12.0 × 10-6/ K) and the thermal conductivity (K1) in the orientation direction at room temperature is preferably 350 W / mK to 1300 W / mK. By setting it as the said range, it can use suitably as a heat sink for semiconductors especially.
[0026]
When using the highly heat-conductive heat dissipation material of the present invention as a semiconductor heat sink, it is preferable that the orientation direction of the CNTs in the heat dissipation material is aligned with the heat dissipation direction. As a result, an excellent heat dissipation effect can be obtained, and problems due to thermal expansion can be eliminated.
[0027]
The carbon nanotube is preferably a multi-walled carbon nanotube. Single-walled carbon nanotubes can also be used. The metal carbide is preferably formed by a reaction between the surface of the carbon nanotube and a metal for forming a carbide.
[0028]
The average outer diameter of the carbon nanotube is preferably 1 nm to 200 nm.
The reason for the above range is that if it is smaller than the above range, it is difficult to control the formation of carbide on the CNT surface. On the other hand, although it may be larger than the said range, it is because it is not easy to obtain stably CNT exceeding 200 nm in diameter.
[0029]
The high thermal conductivity heat dissipation material of the present invention is suitably used as a semiconductor heat sink. Moreover, the shape can be made into various shapes according to the use condition as a product, workability, a manufacturing method, etc., such as disk shape, other flat plate shape, a cube, a rectangular parallelepiped, and another polyhedron.
[0030]
  The present invention also provides:It is a manufacturing method of the above-mentioned high thermal conductivity heat dissipation material,
  A plurality of carbon nanotubes, a carbide forming metal, and a matrix metal, The content of carbon nanotubes is 14% by volume or moreMixed,
  The above mixed material is uniaxial press moldingForming a preform,
  The preform is placed under vacuum or with He, Ar, H2There is provided a method for producing a highly heat-conductive heat-dissipating material, characterized by heating and sintering at a temperature equal to or higher than the melting point of the carbide forming metal and matrix metal in a gas under no pressure or under pressure. .
[0031]
  As a result, in the preform, the CNTs are aligned so that the pressure load direction during uniaxial press molding coincides with the CNT radial direction.TwoIt can be oriented in a certain direction dimensionally. That is, the CNTs can be oriented so that the press surface and the length direction of the CNTs are parallel. Also, under vacuum or He, Ar, H2By heating and sintering the above metal at a temperature equal to or higher than the melting point in a gas, under no pressure or under pressure, the carbide forming metal and the surface of the CNT react in the preform, and the surface of the CNT is reacted. Metal carbide is formed. Furthermore, a highly heat-conductive heat dissipation material can be obtained by closely bonding and sintering the CNT and the matrix metal via the metal carbide.
[0032]
The sintering uses a pressure sintering method such as hot pressing, hot forging, extrusion, and rolling, and the pressure during the pressure sintering is preferably 100 MPa or more.
In order to densify the highly heat-conductive heat dissipation material of the present invention, pressure sintering is preferable. The pressure at the time of pressurization is preferably a high pressure and is preferably 100 MPa or more. As the heat sintering method, hot forging, rolling, extrusion, or the like can be used in addition to hot pressing. The sintering temperature is above the melting point of the metal. If it is lower than the melting point, the CNT and the metal do not adhere well, break after sintering, or do not exhibit high thermal conductivity. If no pressure is applied during the production of the sintered body, the pores that existed in the preform remain, and the sintered body can be made porous.
[0033]
  Furthermore, the present invention providesIt is a manufacturing method of the above-mentioned high thermal conductivity heat dissipation material,
  A plurality of carbon nanotubes, a carbide forming metal, and a matrix metal,Mosquito-Mix as the content of Bonn nanotube is 14 vol% or more,
  The above mixed material is uniaxial press moldingForming a porous body,
  A method for producing a highly thermally conductive heat radiation material, characterized by infiltrating molten carbide forming metal and matrix metal into the pores of the porous body under vacuum, no pressure or under pressure. providing.
[0034]
  In this way, carbon nanotubes are uniaxially molded so that the pressure load direction during uniaxial press molding matches the CNT radial direction.TwoNextOriginalThus, a porous body oriented in a certain direction can be obtained. That is, the CNTs can be oriented so that the press surface and the length direction of the CNTs are parallel. The above metals can be dissolved under no pressure or under pressure.FusionIs infiltrated into the pores of the porous body, the metal for forming carbide reacts with the surface of the CNT, and a metal carbide is formed on the surface of the CNT. Further, the CNT and the matrix metal are brought into close contact with each other through the metal carbide, whereby a highly heat conductive heat dissipation material can be obtained.
[0035]
In this case, it is preferable that the molded body does not include closed pores. When closed pores are present, the molten metal cannot be infiltrated and the pores remain in the composite material.
In addition, in order to prevent the inclusion of closed pores, molding with high open porosity is achieved by adding an appropriate amount of binder and foaming agent to CNTs and firing the molded body in the air to burn off these components. Can be in the body. Molten metal is likely to infiltrate into such open pores.
[0036]
  The carbon nanotube is a multi-walled carbon nanotube, and the carbon nanotube is used as 14% by volume or more of the total material at the time of blending before forming the heat dissipation material.TheThereby, the highly heat-conductive heat dissipation material which is efficient and has very high performance can be obtained. In the case of multi-walled carbon nanotubes, the volume% of CNTs at the time of blending and the volume% at the completion of the heat dissipation material can be regarded as substantially the same. When single-walled carbon nanotubes are used, the CNT volume at the time of completion of the heat dissipation material is reduced with respect to the CNT volume at the time of blending.
[0037]
There are single-layer and multi-layer CNTs, but multi-layer CNTs are preferably used. In the case of multi-walled CNT, even if the surface layer is converted to carbide, the CNT in the inner layer remains, which is preferable because of the combined effect of CNT.
[0038]
When single-walled CNTs are used, it is necessary not to carbonize the entire surface of the CNTs. By adjusting the concentration of the metal for forming carbides in all the metals, 30% to 50% of the surface area of the CNTs is carbide. It is sufficient to convert to As a result, wetting necessary for adhesion occurs and the high thermal conductivity of the CNT is not impaired. The adjustment of the concentration is determined from the concentration of carbide forming metals including Ti in the entire metal and the surface area of the CNT.
[0039]
That is, all of these carbide-forming metals react with CNTs to form carbides. Therefore, as shown in equation (1), the value obtained by dividing the amount of carbide-forming metal by the surface area of CNTs is basically calculated. This is the thickness of the upper metal carbide layer.
Formula (1)
Metal carbide thickness = (carbide weight when all added carbide-forming metals are carbide) / (carbide density) · (total surface area of CNT)
[0040]
Roughly speaking, the average thickness of the carbide layer when the entire surface of the CNT becomes a carbide layer is about 5 angstroms. Therefore, converting 30% to 50% of the surface area of the single-walled CNTs into carbides controls the calculated carbide layer thickness to about 1.5 to 2.5 angstroms.
[0041]
The amount of the carbide forming metal such as Ti is most preferably determined so that only the surface layer of the single-walled CNT is carbideized. That is, the blending amount is most preferable so that a metal carbide layer having a thickness of about 5 angstroms is formed on the surface of the single-walled CNT.
[0042]
The carbide forming metal is one or more metals selected from Ti, W, Cr, Hf, Zr, V, Nb, Ta, or Mo, and the matrix metal is Al, Mg, Au, Ag, or Cu. Preferably, both metals are used as an alloy.
One or more carbide forming metals selected from Ti, W, Cr, Hf, Zr, V, Nb, Ta, or Mo react with the surface of the CNTs to form carbides. Since these carbides and the above-mentioned matrix metals such as molten Ag and Cu have extremely high wettability, the interface is wetted simultaneously with the formation of carbides, and strong adhesion can be obtained.
[0043]
The uniaxial press molding is preferably performed at a pressure of 100 MPa or more. A normal dry press can be used for uniaxial press molding, but a high pressure of 100 MPa or more is preferable in order to orient CNTs efficiently.
[0044]
DETAILED DESCRIPTION OF THE INVENTION
  Embodiments of the present invention will be described below with reference to the drawings.
  With reference to FIG. 1, a highly heat-conductive heat dissipation material 10 of the present invention will be described.
  As shown in FIG. 1A, the high thermal conductivity heat dissipation material 10 includes a plurality of carbon nanotubes 11, TiC that is a metal carbide 12, and an alloy of Ag and Cu that is a matrix metal 13. The metal carbide 12 exists on the surface of the carbon nanotube 11, and the carbon nanotube 11 is in the matrix metal 13.SecondDimensionally oriented in a certain direction. The content of the carbon nanotubes 11 in the high thermal conductive heat radiation material 10 is 60% by volume.
[0045]
The highly heat-conductive heat dissipation material 10 of the present invention is two-dimensionally oriented so that the length directions a of all the carbon nanotubes 11 are oriented in the same direction. The thermal conductivity (K1) in the alignment direction X of the carbon nanotube 11 is 1050 W / mK, the thermal conductivity (K2) in the direction Y perpendicular to the alignment direction X is 115 W / mK, and the thermal expansion coefficient (α1 ) Is 3.6 ppm / K, and the thermal expansion coefficient (α2) in the direction Y perpendicular to the orientation direction X is 4.7 ppm / K, which is particularly useful as a semiconductor heat sink.
[0046]
As shown in FIG. 1B, the carbon nanotube 11 has extremely high thermal conductivity in both the length direction a and the radial direction b, and in particular, has extremely high thermal conductivity like diamond in the length direction a. It has the property that the thermal expansion coefficient in the radial direction b is extremely low, and this characteristic is exhibited to the maximum by being oriented as described above.
[0047]
That is, when a heat flow rate is applied in parallel with the X direction that coincides with the length direction a of the CNT, thermal resistance hardly occurs at the interface between the CNT and the metal, and the thermal conductivity K is expressed by the equation (2). ), And the combined effect of CNTs with high thermal conductivity increases.
K = K1V1 + K2V2 (2)
Here, Ki is the thermal conductivity of each phase, and Vi is the volume fraction of each phase.
[0048]
Specifically, an example in which a semiconductor heat sink, which is the high thermal conductive heat radiation material 10 of the present invention, is applied to a package will be described with reference to FIG.
In the package housing 21, a semiconductor element 23, a bonding wire 24 connected to the semiconductor element 23 and a lead frame 25 connected to the bonding wire 24 are provided. The high thermal conductivity heat dissipation material 10 is provided as a heat sink that serves as a base for the semiconductor element 23, and the direction in which the semiconductor element 23 is desired to release heat and the orientation direction X of the carbon nanotubes 11 in the high thermal conductivity heat dissipation material 10 Are arranged to match. Since it has an extremely high thermal conductivity in the X direction and a small thermal expansion coefficient in the Y direction, there is little mismatching with the semiconductor element 23 and it is optimal as a heat dissipation material.
[0049]
Hereinafter, the manufacturing method of 1st Embodiment of the highly heat conductive heat radiating material of this invention is demonstrated with FIG. 3 (A) (B).
[0050]
First, a multi-wall carbon nanotube powder having an average outer diameter of 6 nm and a length of 200 nm, and an alloy powder of Ag (70 wt%) and Cu (28 wt%) metal containing 2 wt% of Ti as a carbide forming metal ( (Average particle size 2 μm). It is used so that the content of the carbon nanotube is 60% by volume.
[0051]
  After mixing these, uniaxial press molding is performed at a pressure of 500 MPa to form a preform 100, and in the preform 100, the pressure load direction at the time of uniaxial press molding and the radial direction of the carbon nanotubes 11 are matched. Carbon nanotube 11TwoOrient in a certain direction dimensionally. That is, the carbon nanotubes 11 are oriented so that the length direction of the carbon nanotubes 11 and the press surface 100a of the preform 100 are parallel to each other.
[0052]
The preform 100 is heated in the atmosphere for 30 seconds to 950 ° C., which is a temperature equal to or higher than the melting point, using a high-frequency induction heating device, and this is mounted on a mold maintained at 450 ° C. and pressure is 500 MPa. Hot forging is performed to obtain a sintered body having a diameter of 35 mm and a thickness of 12 mm.
[0053]
Thus, by heating and sintering at a temperature equal to or higher than the melting point, Ti, which is a carbide forming metal, reacts with the surface of the carbon nanotube 11, and TiC is formed as a metal carbide 12 on the surface of the carbon nanotube 11. In addition, the carbon nanotubes 11 and the matrix metals 13 Ag and Cu are in close contact with each other through TiC that is a metal carbide.
[0054]
A heat sink for semiconductor is obtained by slicing the high heat conductive heat radiation material 10 which is a flat sintered body obtained here in parallel with the thickness direction.
[0055]
Hereinafter, the manufacturing method of 2nd Embodiment of the highly heat conductive heat radiating material of this invention is demonstrated with FIG. 4 (A) (B) (C).
[0056]
  First, as shown in FIG. 4 (A), uniaxial press molding of multi-walled carbon nanotube powder having an average outer diameter of 20 nm and a length of 260 nm at a pressure of 300 MPa is performed. The porous body 40 is formed, and the carbon nanotubes 31 are arranged so that the pressure load direction at the time of uniaxial press molding and the radial direction of the carbon nanotubes 31 coincide.TwoOrient in a certain direction dimensionally. That is, the carbon nanotubes 31 are oriented so that the length direction of the carbon nanotubes 31 and the press surface 40a of the porous body 40 are parallel to each other. The relative density indicates (1−porosity), that is, the volume percentage of the solid portion excluding the voids 41 in the entire volume.
[0057]
Next, as shown in FIGS. 4B and 4C, an alloy powder of Ag (70 wt%) and Cu (28 wt%) containing 2 wt% of Ti, which is a carbide forming metal (average particle diameter 2 μm). ) At a pressure of 500 MPa to obtain a temporary metal body 42. After setting the temporary metal body 42 on the porous body 40, 1 × 10-5Under a high vacuum of torr, the metal is melted by heating at a temperature equal to or higher than the melting point of 950 ° C., and the melted metal is infiltrated into the pores 41 of the porous body 40.
[0058]
Thus, by heating and infiltrating at a temperature equal to or higher than the melting point, Ti, which is a carbide forming metal, reacts with the surface of the carbon nanotube 31, and TiC is formed as a metal carbide 32 on the surface of the carbon nanotube 31. At the same time, the carbon nanotubes 31 and the matrix metals 33, Ag and Cu, are in close contact with each other through the metal carbide 32 TiC. Thereby, the high thermal conductivity heat dissipation material 30 of the present invention can be obtained.
[0059]
In the above embodiment, multi-walled CNTs are used. However, single-walled CNTs can be used by adjusting the amount of carbide forming metal. In addition to Ti, the carbide forming metal may be W, Cr, Hf, Zr, V, Nb, Ta, Mo, or the like. As the matrix metal, Al, Mg, Au, or the like can be used. The sintering can also be performed by a pressure sintering method such as hot pressing, extrusion, or rolling. Further, the CNTs may be aligned one-dimensionally so that the length direction of the CNTs is aligned on the same plane.
[0060]
Examples of the present invention and comparative examples will be described in detail below.
[0061]
(Experiment 1)
The following powder was used as a raw material, and a highly heat-conductive heat dissipation material was produced by the manufacturing method of the first embodiment.
CNT: multilayer CNT, average outer diameter 6 nm, length 200 nm
Ag: 99.9%, average particle size 2 μm
Ag wax: 70 wt% Ag-28 wt% Cu-2 wt% Ti, average particle size 2 μm
[0062]
These were mixed with various compositions and press-molded at a pressure of 500 MPa. The compact is heated to 950 ° C. in air for 30 seconds using a high-frequency induction heating device, loaded into a mold held at 450 ° C., hot forged at a pressure of 500 MPa, and φ35 mm × 12 mm (thickness direction) It was set as the sintered compact of this.
By changing the volume% of CNT at the time of blending, the sample No. 1-9 were obtained.
[0063]
A sample having a diameter of 10 mm and a thickness of 2 mm was cut out from the sintered body, and the thermal conductivity was measured by a laser flash method in various directions, and the average thermal expansion coefficient between room temperature and 200 ° C. was measured by a differential transformer type thermal expansion coefficient measuring device. It was measured.
[0064]
(Comparative Experiment 1)
For comparison, a sample was prepared and evaluated in the same manner as in Experiment 1 by using graphite powder (average particle size 5 μm) and changing the volume percentage of graphite. Sample No. 10-18 were obtained.
[0065]
The contents of each sample subjected to the experiment are described in detail in Table 1 and below.
Examples 1 to 7: Sample No. 1 in Table 1 3-9
Comparative Examples 1 and 2: Sample No. 1 in Table 1 1, 2
Comparative Examples 3 to 11: Sample No. 10-18
Each evaluation result is shown in Table 1.
[0066]
[Table 1]
Figure 0004304921
[0067]
As shown in Table 1, Examples 1 to 7 are highly heat-conductive heat-dissipating materials of the present invention containing a specified amount of CNT, and K1 is particularly high, and α2 is in the range of 4 to 12 ppm / K. Thus, a dense composite material useful as a heat sink for semiconductors was obtained.
[0068]
On the other hand, in Comparative Examples 1 and 2, although the CNTs were oriented in the metal, since the CNT content was small, the thermal conductivity was low and the thermal expansion coefficient was high, making them unsuitable as heat dissipation materials. . In Comparative Examples 3 to 11, since graphite is oriented, the thermal conductivity is not so high and the coefficient of thermal expansion is very high, which is not suitable as a heat dissipation material.
[0069]
(Experiment 2)
In Experiment 1, instead of forging, the molded body was 1 × 10-5Sintering was performed at a temperature of 950 ° C. for 1 hour in a torr vacuum. That is, it was simply sintered. Others were the same as in Experiment 1. Sample No. 19-36 were obtained.
[0070]
The contents of each sample subjected to the experiment are described in detail in Table 2 and below.
Examples 8 to 14: Sample No. in Table 2 21-27
Comparative Examples 12 and 13: Sample No. 19, 20
Comparative Examples 14 to 22: Sample No. 28-36
Each evaluation result is shown in Table 2.
[0071]
[Table 2]
Figure 0004304921
[0072]
As shown in Table 2, Examples 8 to 14 are high heat conductive heat dissipation materials according to the present invention containing a specified amount of CNT, and K1 is particularly high, and α2 is in the range of 4 to 12 ppm / K. Thus, a composite material useful as a heat sink for semiconductors was obtained. Moreover, the relative density was 93 to 99%, and a composite material containing some pores was obtained.
[0073]
On the other hand, in Comparative Examples 12 and 13, although the CNTs were oriented in the metal, since the CNT content was small, the thermal conductivity was low and the thermal expansion coefficient was high, which was not suitable as a heat dissipation material. . In Comparative Examples 14 to 22, since graphite is oriented, the thermal conductivity is not so high and the thermal expansion coefficient is very high, which is not suitable as a heat dissipation material.
[0074]
(Experiment 3)
The following powder was used as a raw material, and a highly heat-conductive heat dissipation material was produced by the production method of the second embodiment.
CNT: Multilayer CNT, average outer diameter 20 nm, length 260 nm
Single-walled CNT, average outer diameter 1.5nm, length 260nm
Ag: 99.9%, average particle size 2 μm
Ag wax: 70 wt% Ag-28 wt% Cu-2 wt% M (M: Ti, W, Cr, Hf, Zr, V, Nb, Ta, Mo, Ca, Al, Mg, Fe), average particle size 2 μm
[0075]
CNTs were uniaxially molded at a pressure of 300 MPa to obtain a porous body having a relative density of 60 vol% and a diameter of 35 mm × 12 mm. An Ag wax powder is molded at a pressure of 500 MPa to form a molded body, which is placed on the porous body and then 1 × 10-5Under high pressure of torr, Ag wax was infiltrated into the porous body by heating at a temperature of 950 ° C.
The type of carbide forming metal was changed and sample no. 37-49 were obtained.
The carbide forming metal is Ti, and single-walled CNT is used. 50-53 were obtained.
[0076]
As in Experiment 1, a sample having a diameter of 10 mm and a thickness of 2 mm was cut out, and in various directions, the thermal conductivity was measured by a laser flash method, and the average thermal expansion coefficient between room temperature and 200 ° C. was measured by a differential transformer type thermal expansion coefficient measuring device. Was measured.
[0077]
(Comparative experiment 2)
As a comparative example, a CNT powder was formed into a compact at a pressure of 30 MPa by cold isostatic pressing (CIP), and a composite material was similarly prepared and evaluated by an infiltration method (Ag—Cu—Ti system). Sample No. 54 was obtained.
[0078]
The contents of each sample subjected to the experiment are described in detail in Table 3 and below.
Examples 15 to 23: Sample No. 37-45
Examples 24 and 25: Sample No. 51, 52
Comparative Examples 23 to 27: Sample No. 46-50
Comparative Examples 28 and 29: Sample No. 53, 54
Each evaluation result is shown in Table 3.
[0079]
[Table 3]
Figure 0004304921
[0080]
As shown in Table 3, Examples 15 to 23 are high heat conductive heat dissipating materials of the present invention comprising metal, metal carbide, and CNT, and containing a specified amount of CNT. K1 is particularly high, and α2 Was as low as 4 to 12 ppm / K, and a dense composite material useful as a heat sink for semiconductors was obtained.
[0081]
On the other hand, Comparative Examples 23 to 26 contained a specified amount of CNT, but did not include metal carbide. That is, no metal carbide of Ca, Al, Mg, or Fe is formed on the surface of the CNT, and no metal carbide is present in the composite material. Therefore, the thermal conductivity was low and unsuitable.
[0082]
Moreover, in the sample using single-walled CNT, when the ratio of silver glaze was too small (Comparative Example 27), metal carbide was hardly formed on the surface of CNT, and metal carbide was not present in the composite material. . When it was too large (Comparative Example 28), the CNTs were too carbonized, and the CNT content in the composite was less than the specified amount. Therefore, Comparative Example 27 and Comparative Example 28 had low thermal conductivity. When the ratio of silver candy was appropriate (Examples 24 and 25), metal carbide was present and a specified amount of CNT was contained, and high thermal conductivity was obtained.
[0083]
In Comparative Example 29, since CIP molding was performed, the CNTs were not oriented in a certain direction. Therefore, only a composite material having a large thermal expansion coefficient and a small thermal conductivity was obtained.
[0084]
【The invention's effect】
  As is clear from the above explanation, the carbon nanotubes are in the metal via the metal carbide existing on the surface.SecondIt exists so as to be oriented in a certain direction dimensionally, and the volume content of the carbon nanotube is defined. For this reason, the high thermal conductivity heat dissipation material of the present invention has high thermal conductivity in each direction,,twoExtremely high thermal conductivity can be realized in the direction in which the carbon nanotubes are dimensionally oriented. Further, by orienting the carbon nanotubes in a certain direction, the thermal expansion coefficient can be reduced in a specific direction of the high thermal conductivity heat dissipating material.
[0085]
  Therefore,twoBy defining the orientation direction dimensionally, it is possible to obtain a heat dissipating material having an excellent high thermal conductivity and a low thermal expansion coefficient as compared with graphite crystals. Furthermore, since it is excellent in workability, it can be easily formed into various shapes. Unlike a diamond-based composite material, it has excellent processability, so that a heat dissipation member can be obtained at low cost.
[0086]
Therefore, it is possible to produce a heat sink material for semiconductors, which has a thermal conductivity in the alignment direction of CNTs that is as high as that of diamond, and whose thermal expansion coefficient in the direction perpendicular to the alignment direction is close to that of semiconductor elements. Can be maximized.
[0087]
Further, according to the production method of the present invention, CNTs can be easily oriented in a certain direction, metal carbide can be formed on the CNT surface, and good adhesion between the CNT and the matrix metal via the metal carbide. Sex can be obtained. Therefore, it is possible to manufacture a very high performance and high thermal conductivity heat dissipation material with high accuracy.
[Brief description of the drawings]
FIG. 1A is a schematic configuration diagram of a high thermal conductivity heat dissipation material of the present invention, and FIG. 1B is a schematic diagram of a carbon nanotube.
FIG. 2 is a diagram showing an example of use of the high thermal conductivity heat dissipation material of the present invention as a semiconductor heat sink.
FIGS. 3A and 3B are explanatory views of a first embodiment of a method for producing a high thermal conductivity heat dissipation material of the present invention. FIGS.
FIGS. 4A, 4B, and 4C are explanatory views of a second embodiment of the method for producing a high thermal conductivity heat dissipation material of the present invention. FIGS.
[Explanation of symbols]
10 High thermal conductivity heat dissipation material
11 Carbon nanotube
12 Metal carbide
13 Matrix metal
23 Semiconductor elements

Claims (13)

複数のカーボンナノチューブと、金属炭化物と、金属とを備えた混合材を、一軸プレス成形しており
上記金属炭化物は上記カーボンナノチューブの表面に存在すると共に、上記カーボンナノチューブは上記金属中に該カーボンナノチューブの長さ方向をプレス面と平行な二的に一定方向に配向されて存在し、該カーボンナノチューブの含有量が14体積%以上であることを特徴とする高熱伝導性放熱材料。
A uniaxial press molding of a mixed material comprising a plurality of carbon nanotubes, metal carbide, and metal,
Together with the metal carbide present on the surface of the carbon nanotube, the carbon nanotube is present is oriented to the length direction of the carbon nanotubes in the in the metal press surface parallel secondary source to a predetermined direction, said A highly thermally conductive heat radiating material characterized in that the content of carbon nanotubes is 14% by volume or more.
上記金属炭化物は、Ti、W、Cr、Hf、Zr、V、Nb、Ta、またはMoから選択される一種以上の金属の炭化物であると共に、上記金属は、Al、Mg、Au、Ag、またはCuから選択される一種以上の金属あるいはこれらの合金である請求項1に記載の高熱伝導性放熱材料。 The metal carbide is a carbide of one or more metals selected from Ti, W, Cr, Hf, Zr, V, Nb, Ta, or Mo, and the metal is Al, Mg, Au, Ag, or The high thermal conductivity heat dissipation material according to claim 1, which is one or more metals selected from Cu or an alloy thereof . 上記カーボンナノチューブが、多層カーボンナノチューブである請求項1または請求項2に記載の高熱伝導性放熱材料。 The highly heat-conductive heat dissipation material according to claim 1 , wherein the carbon nanotube is a multi-walled carbon nanotube . 上記カーボンナノチューブの平均外径が1nm〜200nmである請求項1乃至請求項3のいずれか1項に記載の高熱伝導性放熱材料。High thermal conductivity thermal interface material according to any one of the average outer diameter of Ru 1nm~200nm der claims 1 to 3 of the carbon nanotube. 上記配向方向の熱伝導率(K1)が、該配向方向に垂直な方向の熱伝導率(K2)より大きく、
上記配向方向の熱膨張係数(α1)が、該配向方向に垂直な方向の熱膨張係数(α2)より小さい請求項2乃至請求項4のいずれか1項に記載の高熱伝導性放熱材料。
The thermal conductivity (K1) in the orientation direction is larger than the thermal conductivity (K2) in the direction perpendicular to the orientation direction,
The high thermal conductivity heat radiation material according to any one of claims 2 to 4, wherein a thermal expansion coefficient (α1) in the orientation direction is smaller than a thermal expansion coefficient (α2) in a direction perpendicular to the orientation direction .
上記熱膨張係数(α2)が4ppm/K〜12ppm/Kであると共に、室温での上記配向方向の熱伝導率(K1)が350W/mK〜1300W/mKである請求項2乃至請求項5のいずれか1項に記載の高熱伝導性放熱材料。 The thermal expansion coefficient (α2) is 4 ppm / K to 12 ppm / K, and the thermal conductivity (K1) in the orientation direction at room temperature is 350 W / mK to 1300 W / mK . The high thermal conductive heat radiation material according to any one of the above. 半導体用ヒートシンクとして用いられる請求項1乃至請求項6のいずれか1項に記載の高熱伝導性放熱材料。  The high thermal conductivity heat dissipation material according to any one of claims 1 to 6, which is used as a semiconductor heat sink. 請求項1乃至請求項7のいずれか1項に記載の高熱伝導性放熱材料の製造方法であって、
複数のカーボンナノチューブと、炭化物形成用金属と、マトリクス用金属とを、カーボンナノチューブの含有量を14体積%以上として混合し、
上記混合材を一軸プレス成形により予備成形体を形成し、
上記予備成形体を、真空下またはHe、Ar、Hガス中、圧力無負荷または加圧下で、上記炭化物形成用金属及びマトリクス用金属の融点以上の温度で加熱して焼結することを特徴とする高熱伝導性放熱材料の製造方法。
It is a manufacturing method of the high thermal conductivity thermal radiation material according to any one of claims 1 to 7,
Mixing a plurality of carbon nanotubes, a carbide forming metal, and a matrix metal with a carbon nanotube content of 14% by volume or more ,
A preform is formed by uniaxial press molding of the mixed material ,
The preform is heated and sintered at a temperature equal to or higher than the melting point of the carbide forming metal and the matrix metal under vacuum or in He, Ar, H 2 gas under no pressure or under pressure. A method for producing a highly heat-conductive heat dissipation material.
上記焼結は、ホットプレス、熱間鍛造、押出、圧延等の加圧焼結法を用いており、該加圧焼結時の圧力が100MPa以上である請求項8に記載の高熱伝導性放熱材料の製造方法。  The high thermal conductivity heat dissipation according to claim 8, wherein the sintering uses a pressure sintering method such as hot pressing, hot forging, extrusion, rolling, etc., and the pressure during the pressure sintering is 100 MPa or more. Material manufacturing method. 請求項1乃至請求項7のいずれか1項に記載の高熱伝導性放熱材料の製造方法であって、
複数のカーボンナノチューブと、炭化物形成用金属と、マトリクス用金属とを、ーボンナノチューブの含有量が14体積%以上として混合し、
上記混合材を一軸プレス成形により多孔体を形成し、
真空下、圧力無負荷または加圧下で、上記多孔体の空孔中に、溶融された炭化物形成用金属とマトリクス用金属とを溶浸させることを特徴とする高熱伝導性放熱材料の製造方法。
It is a manufacturing method of the high thermal conductivity thermal radiation material according to any one of claims 1 to 7,
A plurality of carbon nanotubes, a metal-carbide forming, a metal-matrix, the content of Ca over carbon nanotubes are mixed as above 14% by volume,
A porous body is formed by uniaxial press molding of the mixed material ,
A method for producing a highly heat-conductive heat-dissipating material, characterized by infiltrating molten carbide forming metal and matrix metal into the pores of the porous body under vacuum, no pressure or under pressure.
上記カーボンナノチューブは多層カーボンナノチューブとしている請求項8乃至請求項10のいずれか1項に記載の高熱伝導性放熱材料の製造方法。  The method for producing a high thermal conductivity heat-dissipating material according to any one of claims 8 to 10, wherein the carbon nanotube is a multi-walled carbon nanotube. 上記炭化物形成用金属はTi、W、Cr、Hf、Zr、V、Nb、Ta、またはMoから選択される一種以上の金属であり、上記マトリクス用金属はAl、Mg、Au、Ag、またはCuの少なくとも一種以上の金属であり、両金属は合金として用いられている請求項8乃至請求項11のいずれか1項に記載の高熱伝導性放熱材料の製造方法。  The carbide forming metal is one or more metals selected from Ti, W, Cr, Hf, Zr, V, Nb, Ta, or Mo, and the matrix metal is Al, Mg, Au, Ag, or Cu. The method for producing a highly heat-conductive heat-dissipating material according to any one of claims 8 to 11, wherein at least one kind of metal is used and both metals are used as an alloy. 上記一軸プレス成形は、100MPa以上の圧力で行われている請求項8乃至請求項12のいずれか1項に記載の高熱伝導性放熱材料の製造方法。  The method for producing a highly heat-conductive heat dissipation material according to any one of claims 8 to 12, wherein the uniaxial press molding is performed at a pressure of 100 MPa or more.
JP2002166954A 2002-06-07 2002-06-07 High thermal conductivity heat dissipation material and method for manufacturing the same Expired - Fee Related JP4304921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002166954A JP4304921B2 (en) 2002-06-07 2002-06-07 High thermal conductivity heat dissipation material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002166954A JP4304921B2 (en) 2002-06-07 2002-06-07 High thermal conductivity heat dissipation material and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004010978A JP2004010978A (en) 2004-01-15
JP4304921B2 true JP4304921B2 (en) 2009-07-29

Family

ID=30434345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166954A Expired - Fee Related JP4304921B2 (en) 2002-06-07 2002-06-07 High thermal conductivity heat dissipation material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4304921B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100356556C (en) * 2004-03-13 2007-12-19 鸿富锦精密工业(深圳)有限公司 Thermal interfacial material and method of manufacture
JP2005277096A (en) * 2004-03-24 2005-10-06 Japan Science & Technology Agency Semiconductor interconnection constituted by use of metal film containing carbon nanotube and its manufacturing method, and method of manufacturing metal film containing carbon nanotube
US20060062985A1 (en) * 2004-04-26 2006-03-23 Karandikar Prashant G Nanotube-containing composite bodies, and methods for making same
WO2006003773A1 (en) * 2004-07-06 2006-01-12 Mitsubishi Corporation Fine carbon fiber-metal composite material and method for production thereof
JP4666203B2 (en) * 2004-09-17 2011-04-06 株式会社安川電機 Radiation fin and method of manufacturing the same
US7651766B2 (en) * 2005-05-20 2010-01-26 University Of Central Florida Research Foundation, Inc. Carbon nanotube reinforced metal composites
JP2007245327A (en) * 2006-02-15 2007-09-27 Shimane Pref Gov Cutting chip, cutting tool, and method for manufacturing cutting chip
KR100839613B1 (en) * 2006-09-11 2008-06-19 주식회사 씨앤테크 Composite Sintering Materials Using Carbon Nanotube And Manufacturing Method Thereof
WO2008032956A1 (en) * 2006-09-11 2008-03-20 C & Tech Co., Ltd. Composite sintering materials using carbon nanotube and manufacturing method thereof
JP4287461B2 (en) 2006-11-17 2009-07-01 日精樹脂工業株式会社 Method for producing carbon nanocomposite metal material and method for producing carbon nanocomposite metal molded product
JP2008145208A (en) * 2006-12-08 2008-06-26 Hitachi High-Technologies Corp Semiconductor inspection device
JP4512583B2 (en) * 2006-12-21 2010-07-28 日信工業株式会社 Method for producing carbon fiber composite metal material
JP4669014B2 (en) * 2008-02-15 2011-04-13 日信工業株式会社 Method for producing carbon fiber composite metal material
US9121085B2 (en) * 2008-09-18 2015-09-01 Nissei Plastic Insdustrial Co., Ltd. Method for manufacturing composite metal alloy and method for manufacturing article from composite metal
US8729783B2 (en) * 2010-09-24 2014-05-20 Ngk Spark Plug Co., Ltd. Spark plug electrode, method for producing same, spark plug, and method for producing spark plug
WO2012039228A1 (en) * 2010-09-24 2012-03-29 日本特殊陶業株式会社 Spark plug electrode, method for producing same, spark plug, and method for producing spark plug
US9704793B2 (en) 2011-01-04 2017-07-11 Napra Co., Ltd. Substrate for electronic device and electronic device
JP4880793B1 (en) * 2011-04-19 2012-02-22 有限会社 ナプラ Heat dissipation member and electronic device
CN107651667A (en) * 2012-07-12 2018-02-02 赛尔斯通股份有限公司 Solid carbon product comprising CNT with and forming method thereof
KR102136310B1 (en) * 2013-07-12 2020-07-22 엘지전자 주식회사 Heat dissipation structure of heat spreading device with high heat dissipating function
JP2014122154A (en) * 2013-11-15 2014-07-03 National Institute Of Advanced Industrial & Technology Composite material including carbon nanotube bulk structure
JP2017112198A (en) * 2015-12-16 2017-06-22 日本電信電話株式会社 Semiconductor laminate structure
DE102016217735A1 (en) * 2016-09-16 2018-03-22 Carl Zeiss Smt Gmbh Component for a mirror assembly for EUV lithography
CN114717443B (en) * 2022-03-25 2023-08-08 湖北中烟工业有限责任公司 Heating element material for low-temperature cigarettes and preparation method and application thereof

Also Published As

Publication number Publication date
JP2004010978A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP4304921B2 (en) High thermal conductivity heat dissipation material and method for manufacturing the same
EP1477467B1 (en) Composite material having high thermal conductivity and low thermal expansion coefficient, and heat-dissipating substrate
JP5275625B2 (en) Heat sink made of boron-containing diamond and copper composite
JP4995565B2 (en) Manufacturing method of composite material
JP4711165B2 (en) High thermal conductivity / low thermal expansion composite and method for producing the same
US6569524B2 (en) High thermal conductivity composite material, and method for producing the same
JP4862169B2 (en) Thermally conductive material
JP4344934B2 (en) High thermal conductivity / low thermal expansion composite material, heat dissipation substrate and manufacturing method thereof
JP2011524466A (en) Metal-infiltrated silicon titanium and aluminum carbide bodies
JP2004197153A (en) Diamond-metal composite material and method for manufacturing the same
JP2004076044A (en) Ceramics-metal composite material and method for producing the same
JP2004076043A (en) Ceramics-metal based composite material and method for producing the same
WO2022085134A1 (en) Diamond-based composite material, method for manufacturing same, heat dissipation member, and electronic device
JP2000007456A (en) Highly heat conductive ceramic metal composite material
JP2006232569A (en) SiC/Si COMPOSITE MATERIAL AND METHOD OF MANUFACTURING THE SAME
JP4594433B1 (en) Heat dissipation member
JP7394500B1 (en) Aluminum composite material containing metal and/or ceramics and graphite, and method for producing aluminum composite material containing metal and/or ceramics and graphite
JP2002293673A (en) Metal-ceramic composite material
JP5322199B2 (en) Ceramic substrate for electronic parts and manufacturing method thereof
JP3837474B2 (en) High thermal conductive composite material and manufacturing method thereof
JP2002097533A (en) Method for manufacturing metal based composite material
JP2005281831A (en) Composite material and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050310

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20080708

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090407

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120515

LAPS Cancellation because of no payment of annual fees