JP4303670B2 - 鋼の連続鋳造方法 - Google Patents

鋼の連続鋳造方法 Download PDF

Info

Publication number
JP4303670B2
JP4303670B2 JP2004318277A JP2004318277A JP4303670B2 JP 4303670 B2 JP4303670 B2 JP 4303670B2 JP 2004318277 A JP2004318277 A JP 2004318277A JP 2004318277 A JP2004318277 A JP 2004318277A JP 4303670 B2 JP4303670 B2 JP 4303670B2
Authority
JP
Japan
Prior art keywords
mold
molten steel
side copper
copper plate
long side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004318277A
Other languages
English (en)
Other versions
JP2006122995A (ja
Inventor
和久 田中
新一 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004318277A priority Critical patent/JP4303670B2/ja
Publication of JP2006122995A publication Critical patent/JP2006122995A/ja
Application granted granted Critical
Publication of JP4303670B2 publication Critical patent/JP4303670B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、連続鋳造用の鋳型内面における損傷発生を抑制した鋼の連続鋳造方法に関する。
従来、ニッケル又はコバルトのマトリックス中に金属炭化物や金属窒化物を分散させた複合メッキ層でモールド銅板の溶鋼との接触面側を被覆することにより、高温における硬度、耐久性、及び耐摩耗性を向上させた連続鋳造用の鋳型が提案されている(例えば、特許文献1及び2参照)。
また、モールド銅板の溶鋼との接触面側に電気ニッケルメッキ層を形成し、更に、その上にクロムメッキ層を設けることにより、鋳込み初期に発生する焼付きを防止して、連続鋳造用の鋳型の使用回数を増加させる(長寿命化させる)ことが提案されている(例えば、特許文献3参照)。
特開昭54−4236号公報 特開昭54−4237号公報 特開昭52−54622号公報
しかしながら、特許文献1及び2に記載された発明では、複合メッキ層の主成分であるニッケル又はコバルトが連続鋳造時に使用するモールドフラックス中に不可避的に含有される亜鉛と反応して複合メッキ層の表層部に低融点合金を生成し、使用中の鋳型内に発生している温度勾配により、この低融点合金を起点として複合メッキ層及びモールド銅板にヒートクラックが発生するという問題が生じる。また、特許文献3で提案された鋳型では、上層のクロムメッキ層には、使用前から亀甲状の割れが存在するという問題がある。このため、この鋳型を使用すると、亀甲状の割れに沿ってモールドフラックス中の亜鉛が浸潤し下層のニッケルメッキ層まで到達してニッケルとの間で低融点合金を生成し、この低融点合金を起点としてニッケルメッキ層及びモールド銅板にヒートクラックが発生することが容易に考えられる。
また、鋳造条件によって、例えば、浸漬ノズルから吐出する溶鋼の流れが上向きになると、あるいは、鋳造速度が速くなり浸漬ノズルから吐出する溶鋼流が増大し鋳型に激しく衝突するようになると、モールド銅板に加わる熱負荷が増大するためヒートクラックが発生し易くなると共に、発生したヒートクラックが伸展し易くなって鋳型寿命が大きく縮まるという問題がある。
本発明はかかる事情に鑑みてなされたもので、鋳型内面における損傷発生を抑制して鋳型寿命の延長、生産性の向上、製造コストの削減、及び鋳片の表面品質向上を可能にする鋼の連続鋳造方法を提供することを目的とする。
本発明に係る鋼の連続鋳造方法は、内側にニッケル及びコバルトのいずれか一方又は双方を主体とするメッキ層が形成されたモールド銅板を有する鋳型内に、浸漬ノズルを介して溶鋼を順次注湯して、前記鋳型内の溶鋼の湯面をモールドフラックスで常時覆いながら該鋳型内で溶鋼を凝固させる連続鋳造方法において、前記モールドフラックスに含有される亜鉛量を200ppm以下にし、前記浸漬ノズルに形成された溶鋼吐出孔の中心軸の傾斜角度を水平方向に対して上向き5°以下で下向き45°以下の範囲に設定すると共に、前記モールド銅板に加わる熱負荷に応じて鋳造速度を調整し、前記鋳型内の溶鋼に電磁力を付与して該鋳型内で溶鋼を旋回させ、更に前記鋳型内の溶鋼の旋回方向を所定数のキャスト毎に逆転する。
本発明に係る鋼の連続鋳造方法においては、モールドフラックスに含有される亜鉛量を200ppm以下にするので、連続鋳造中にメッキ層中のニッケル及びコバルトのいずれか一方又は双方と亜鉛との反応によりメッキ層の表層部に生成する低融点合金量を低下させることができ、更に、浸漬ノズルから吐出する溶鋼の流れ方向と鋳造速度を調整するのでモールド銅板に加わる熱負荷を低下させることができ、生成した低融点合金を起点としてメッキ層及びモールド銅板にヒートクラックが発生するのを抑制すると共にヒートクラックの成長を抑制することが可能になる。その結果、鋳型の寿命延長が可能になる。また、鋳型寿命の延長に伴い鋳型の交換頻度が減少して、鋳片の生産性の向上、製造コストの削減を行うことが可能になる。更に、ヒートクラックの発生と成長が抑制されることで鋳型表面の平滑性が保たれ、鋳片に発生する表面欠陥を低減すると共に軽微にすることができ、圧延前の鋳片の無手入れ化が達成できる。
特に、電磁力を鋳型内の溶鋼に付与して鋳型内で溶鋼を旋回させながら鋳造するので、鋳型内面に形成された凝固殻の内面側にトラップされた気泡や介在物を溶鋼の旋回流で洗浄して清浄化することができ、鋳片から表面品質に優れた薄板を製造することが可能になる。
また、電磁力で鋳型内の溶鋼を旋回させるときに溶鋼の旋回方向を所定数のキャスト毎に逆転するので、旋回流が鋳型内面に衝突する位置を変えることができ、鋳型内の特定部位に熱負荷が集中するのを防止できる。このため、ヒートクラックが発生するのを抑制すると共にヒートクラックの成長を抑制することが容易にでき、電磁撹拌を行う際の鋳型の寿命を更に延長することが可能になる。
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係る鋼の連続鋳造方法に適用した鋳型の一部省略正断面図、図2は同鋼の連続鋳造方法に適用した鋳型の一部省略側断面図、図3は同鋼の連続鋳造方法に適用した鋳型の平面図、図4(A)、(B)は鋳型内の溶鋼の旋回方向の説明図、図5は同鋼の連続鋳造方法に適用した鋳型に発生する損傷位置の説明図、図6は同鋼の連続鋳造方法に適用した鋳型の長辺側銅板の内側面における熱流束の変化を示す説明図である。
図1〜図3に示すように、本発明の一実施の形態に係る鋼の連続鋳造方法に適用した鋳型10は、隙間Tを設けて平行に対向配置されたモールド銅板の一例である長辺側銅板11、12と、隙間Tと実質的に同一の幅で長辺側銅板11、12と実質的に同一の長さを備え長辺側銅板11、12の間に隙間Tよりも大きな間隔を設けて平行に対向配置されるモールド銅板の一例である短辺側銅板13、14を備えている。ここで、長辺側銅板11、12及び短辺側銅板13、14の表面には、例えば、ニッケルを主体とするメッキ層16が形成されている。更に、長辺側銅板11、12及び短辺側銅板13、14には、それぞれ図示しない水冷部が設けられている。このような構成とすることにより、図3に示すように、長辺側銅板11、12及び短辺側銅板13、14により周囲を取り囲まれた、平面視して矩形状の空間部17が形成される。
また、図3に示すように、長辺側銅板11、12において、各短辺側銅板13、14により挟まれる領域の背面側には、電磁撹拌装置を構成する対となるコイル部18、19がそれぞれ設けられている。ここで、コイル部18は長辺側銅板11の背面側で長辺側銅板11の幅方向に並べて配置された分割コイル20、21を有し、コイル部19は長辺側銅板12の背面側で長辺側銅板12の幅方向に並べて配置された分割コイル22、23をそれぞれ有している。
このような構成とすることにより、長辺側銅板11、12及び短辺側銅板13、14の水冷部に水を流通させながら空間部17内に浸漬ノズル24を介して溶鋼を注湯することができる。更に、コイル部18、19に流れる電流方向が逆になるように各コイル部18、19に電圧を負荷することにより、空間部17内に注湯された溶鋼で長辺側銅板11近傍に存在する溶鋼を長辺側銅板11の一端側から他端側に向けて移動させることができ、長辺側銅板12近傍に存在する溶鋼を長辺側銅板12の他端側から一端側に向けて移動させることができる。このため、注湯された溶鋼内に、例えば、右まわりの旋回流を発生させることができる。
このとき、分割コイル20、23に流す電流値と分割コイル21、22に流す電流値に差を設けることにより、各長辺側銅板11、12に沿って形成する溶鋼の駆動力に変化を付けることができる。
更に、空間部17内に注湯された溶鋼の湯面上にモールドフラックス25を供給することにより、溶鋼の湯面をモールドフラックス25で常時覆い、しかも、注湯された溶鋼を旋回させた状態で徐々に凝固させることができる。
続いて、鋳型10を使用した本発明の一実施の形態に係る鋼の連続鋳造方法について説明する。
先ず、長辺側銅板11、12及び短辺側銅板13、14の各水冷部に水を流通させて鋳型10を冷却し、電磁撹拌装置のコイル部18、19に電流を流す。このとき、分割コイル20、23に流す電流値を分割コイル21、22に流す電流値より大きく設定する。そして、鋳型10の空間部17の下流側を閉じて、溶鋼を貯留している図示しないタンディッシュから浸漬ノズル24を介して空間部17に溶鋼の注湯を開始する。空間部17内に注湯された溶鋼の湯面が所定高さに到達した時点でモールドフラックス25を鋳型10内の溶鋼の上方から供給して、溶鋼の湯面をモールドフラックス25で覆う。
このとき、湯面と接触する側のモールドフラックス25は湯面からの熱を受けて溶融する。このため、図1、図2に示すように、鋳型10内の溶鋼の湯面上には溶融層26が形成され、更にその上部に未溶融のモールドフラックス25が存在する状態になる。また、長辺側銅板11、12及び短辺側銅板13、14の近傍の溶鋼は徐々に冷却されるので、長辺側銅板11、12及び短辺側銅板13、14の表面上には徐々に凝固殻27が形成される。
ここで、注湯された溶鋼には電磁撹拌装置のコイル部18、19によって電磁力が付加されるので、例えば図4(A)に示すように、鋳型10内の溶鋼には水平面内で右まわりに旋回する旋回流が形成される。このため、凝固殻27の内表面にトラップされた気泡や介在物は溶鋼の旋回流で洗浄されて離脱し、大気中に放散もしくはモールドフラックス25に吸収され、凝固殻27の清浄化が行われる。
そして、鋳型10内に一定量の溶鋼が貯留され、鋳型10内の湯鋼の下流側で所定厚さの凝固殻27が形成された時点で、下流側の凝固殻27を鋳型10内から一定の鋳造速度で引き出すと共に、鋳型10内の溶鋼レベルが一定に保たれるように、浸漬ノズル24を介してタンディッシュから溶鋼を随時鋳型10内に注湯する。更に、凝固殻27を鋳型10内から引き出す際に、溶鋼の湯面上に存在している溶融層26は、凝固殻27と長辺側銅板11、12及び短辺側銅板13、14の隙間に巻き込まれて、凝固殻27が鋳型10から引き出される際の抵抗を低下させるように作用する。
凝固殻27の引き出しと共に溶融層26は徐々に鋳型10内から排出されるので、モールドフラックス25を溶鋼の上方から供給して、溶鋼の湯面がモールドフラックス25で常時覆われるようにする。そのため、連続鋳造中では、溶鋼の湯面上には供給されたモールドフラックス25が溶融した溶融層26が常時存在し、この溶融層26は長辺側銅板11、12及び短辺側銅板13、14と常に接触した状態になっている。このため、長辺側銅板11、12及び短辺側銅板13、14の内側面で溶鋼のメニスカス位置に対応する部位の近傍には、溶融層26から亜鉛が常時供給される状態になっている。
ここで、本実施の形態の鋼の連続鋳造方法においては、モールドフラックス25に含有される亜鉛量を200ppm以下にしている。このため、長辺側銅板11、12及び短辺側銅板13、14の表面に設けられたメッキ層16と反応して生成するニッケル−亜鉛系の低融点合金の生成量が少なく、ヒートクラックの起点として作用し難くなる。これによって、長辺側銅板11、12及び短辺側銅板13、14の表面に設けられたメッキ層16と、その下部の長辺側銅板11、12及び短辺側銅板13、14にヒートクラックが発生するのを抑制できる。更に、ニッケル−亜鉛系の低融点合金の生成量が少ないため、溶鋼中にメッキ層16から溶出する低融点合金量も少なくなって、メッキ層16の表層に形成される窪み(肌荒れ)も軽微になる。なお、モールドフラックス中の亜鉛含有量が200ppmを超えると、ニッケル−亜鉛系の低融点合金の生成量が多くなって、ヒートクラックの起点として作用すると共に、溶鋼中に溶出する低融点合金量も多くなって、メッキ層16の表層に形成される窪み深さが大きくなるので好ましくない。
また、本実施の形態の鋼の連続鋳造方法においては、図2に示すように、浸漬ノズル24に形成された溶鋼吐出孔28の中心軸の傾斜角度を水平方向に対して上向き5°以下で下向き45°以下の範囲に設定する。
溶鋼吐出孔28の中心軸の傾斜角度が水平方向に対して上向き5°を超えると、浸漬ノズル24の溶鋼吐出孔28から吐出された溶鋼が鋳型10内の湯面に衝突し、長辺側銅板11、12及び短辺側銅板13、14の内側面で溶鋼のメニスカス位置に対応する部位の近傍では湯面位置が変動し、メニスカス位置に対応する部位の近傍での溶鋼から長辺側銅板11、12及び短辺側銅板13、14への熱伝達係数が上昇する。このため、溶鋼から長辺側銅板11、12及び短辺側銅板13、14へ移動する熱量が増加し、長辺側銅板11、12及び短辺側銅板13、14に加わる熱負荷が増加して好ましくない。更に、溶鋼が湯面に衝突した際に溶融層26及びモールドフラックス25を溶鋼中に巻き込んで、溶鋼を汚染するという問題も生じる。このため、溶鋼吐出孔28の中心軸の傾斜角度を水平方向に対して上向き5°以下とした。
このように、長辺側銅板11、12及び短辺側銅板13、14に加わる熱負荷を低下することにより、ニッケル−亜鉛系の低融点合金を起点としてヒートクラックが発生しても、ヒートクラックの成長を抑制することができる。
なお、溶鋼吐出孔28の中心軸の傾斜角度を水平方向に対して下向きに設定することは、メニスカス位置に対応する部位の近傍での熱負荷の低減、溶融層26及びモールドフラックス25の溶鋼中への巻き込み防止の点から好ましいが、溶鋼吐出孔28の中心軸の傾斜角度を水平方向に対して下向き45°を超えて設定すると、浸漬ノズル24から吐出された溶鋼中に混入しているガスや介在物が鋳型10の深部に達して凝固殻27にトラップされるため好ましくない。このため、溶鋼吐出孔28の中心軸の傾斜角度を水平方向に対して下向き45°以下の範囲に設定した。
ここで、鋳型10内の溶鋼には電磁撹拌装置のコイル部18、19から電磁力が付加されて水平面内で右まわりに旋回する溶鋼の旋回流が形成されているが、このとき、分割コイル20、23に流す電流値を分割コイル21、22に流す電流値より大きく設定しているので、注湯された溶鋼で長辺側銅板11近傍に存在する溶鋼を長辺側銅板11の一端側から他端側に向けて、また、長辺側銅板12近傍に存在する溶鋼は長辺側銅板12の他端側から一端側に向けて、それぞれ前半は大きな駆動力で、後半は小さな駆動力で移動させることができる。このため、鋳型10内に均一な溶鋼の旋回流を形成することができる。
しかしながら、長辺側銅板11、12に沿って移動する溶鋼の駆動力に変化を付けることにより、長辺側銅板11では空間部17を形成する面の一端側に、長辺側銅板12では空間部17を形成する面の他端側に溶鋼流が強く衝突する部位が発生する。そして、溶鋼流が強く衝突する部位の近傍では、溶鋼から各長辺側銅板11、12への熱伝達係数が上昇して、溶鋼から長辺側銅板11、12へ流入する熱量が増加し、長辺側銅板11、12に加わる熱負荷が増加する。
その結果、図5に示すように、長辺側銅板11(12)の一端側(他端側)で熱負荷が大きくなり、溶鋼のメニスカス位置に対応し溶融層26から亜鉛が常時供給される部位においてはニッケル−亜鉛系の低融点合金の生成が促進されてヒートクラックの発生及び成長と、生成した低融点合金の溶鋼中への溶出に伴うメッキ層の肌荒れが複合された損傷の発生が顕著となる。
ここで、電磁撹拌を行いながら鋳造速度を1m/分及び1.3m/分として連続鋳造を行った場合における長辺側銅板11(溶鋼に接触する部分の幅が900mm)に加わる熱負荷として、溶鋼から長辺側銅板11のメニスカス位置に流入する熱流束を測定した。そして、例えば、長辺側銅板11と短辺側銅板13(溶鋼に接触する部分の幅が250mm)との当接部を起点(0)として、長辺側銅板11の一端側から他端側に向かうメニスカス位置上での各部位における熱流束の値を図6に示す。なお、図6には、電磁撹拌を行わないで鋳造速度を1.3m/分として連続鋳造を行った場合に溶鋼から長辺側銅板のメニスカス位置に流入する熱流束も示している。
図6に示すように、電磁撹拌を行わない場合、鋳型10内の溶鋼に旋回流が形成されないため、溶鋼から長辺側銅板11への熱伝達係数は長辺側銅板11の幅方向に対して一定となる。このため、長辺側銅板11の一端側から他端側に向かうメニスカス位置上での各部位における熱流束は一定(約205kcal/m2 /hr)となる。
一方、電磁撹拌を行いながら鋳造速度を1.3m/分として連続鋳造を行った場合、鋳型10内の溶鋼に旋回流が形成され、長辺側銅板11の内側面の特定部位に旋回流が衝突するようになる。このため、特定部位においては溶鋼から長辺側銅板11への熱伝達係数が増加し、溶鋼から長辺側銅板11のメニスカス位置の特定部位に流入する熱流束は増加している。図6から推定される熱流束の最大値は約247kcal/m2 /hrで、長辺側銅板11のメニスカス位置上で短辺側銅板13から約274mmの位置となる。なお、短辺側銅板13との当接部から約274mmの位置は旋回流が強く衝突する長辺側銅板11の内側面上の特定部位にほぼ一致する。また、長辺側銅板11と短辺側銅板13、14との各当接部近傍では顕著な旋回流が形成されないため、熱流束は電磁撹拌を行わない場合の熱流束の値に近づく。
また、電磁撹拌を行いながら鋳造速度を1m/分として連続鋳造を行った場合、鋳型10内の溶鋼には鋳造速度が1.3m/分の場合と同等の速さの溶鋼の旋回流が形成されるが、鋳造速度が遅いため鋳型10内に注湯される単位時間当たりの溶鋼量が少なく、鋳型10内に供給される単位時間当たりの総熱量も低下する。
このため、図6に示すように、長辺側銅板11の内側面上の特定部位に旋回流が衝突して熱伝達係数が増加しても、溶鋼から長辺側銅板11のメニスカス位置の特定部位に流入する熱流束は大きく増加しない。従って、溶鋼から長辺側銅板に流入する熱流束が大きくなるような鋳造条件の場合では、鋳造速度を遅くすることで、長辺側銅板に流入する熱流束の増加を抑制できることが確認できた。
なお、鋳造速度を1m/分とすることで、図6から推定される熱流束の最大値は約223kcal/m2 /hrとなり、熱流束を鋳造速度を1.3m/分の場合に比較して約10%低減できた。また、熱流束が最大になる部位は、長辺側銅板11のメニスカス位置上で短辺側銅板13から約317mmの位置となる。この部位は旋回流が強く衝突する長辺側銅板11の内側面上の特定部位にほぼ一致する。
以上のことから、電磁撹拌により長辺側銅板11、12に加わる熱負荷が増大するような場合では、鋳造速度を調整することにより鋳型10内に供給される溶鋼量を調整し、鋳型10内に供給される総熱量を制限することで、長辺側銅板11、12に加わる熱負荷が上昇するのを防止する。その結果、ニッケル−亜鉛系の低融点合金を起点としてヒートクラックが発生しても、ヒートクラックの成長を抑制することができる。
ここで、鋳造速度は0.6m/分以上で2.5m/分以下、好ましくは0.6m/分以上で2.1m/分以下にするのがよい。鋳造速度が0.6m/分未満では長辺側銅板に加わる熱負荷が低下する点では好ましいが、生産性が大きく低下するので好ましくない。また、鋳造速度が2.5m/分を超えると、長辺側銅板に加わる熱負荷が大きく増加するので好ましくない。
更に、所定数のキャスト毎、例えば、取鍋からタンディッシュに溶鋼が供給される毎に、磁撹拌装置のコイル部18、19に流す電流の方向を逆にすると共に、分割コイル21、22に流す電流値を分割コイル20、23に流す電流値より大きく設定する。これによって、図4(B)に示すように、鋳型10内の水平面内で左まわりの溶鋼の旋回流を形成できる。
このとき、分割コイル21、22に流す電流値を分割コイル20、23に流す電流値より大きく設定しているので、長辺側銅板11では他端側から一端側に向けて、長辺側銅板12は一端側から他端側に向けて、前半は大きな駆動力で溶鋼を移動させ後半は小さな駆動力で溶鋼を移動させることができる。このため、鋳型10内に左まわりの均一な溶鋼の旋回流を形成することができる。このとき、長辺側銅板11では他端側に、長辺側銅板12では一端側に溶鋼流を強く衝突するようにすることができる。その結果、右まわり及び左まわりの各旋回流を形成した際に、熱負荷の高い部位の発生する位置を変えることができ、長辺側銅板11、12内の特定部位に熱負荷が集中するのを防止できる。このため、ヒートクラックの発生を抑制できると共に、ヒートクラックが発生しても、ヒートクラックの成長を抑制することができる。
次に、本発明の作用効果を確認するために行った実施例について説明する。
ここで、図7はモールドフラックス中の亜鉛含有量と長辺側銅板の寿命指数及び鋳片表面疵発生指数との関係を示す説明図、図8はモールドフラックス中の亜鉛含有量及び鋳造条件と長辺側銅板の寿命指数との関係を示す説明図、図9はモールドフラックス中の亜鉛含有量及び鋳造条件と鋳片表面疵発生指数との関係を示す説明図、図10はチャージ数で示した鋳型の使用回数と鋳型内面に発生した損傷程度の関係を示す説明図である。
[試験例1]
浸漬ノズルの溶鋼吐出孔の傾斜角度を水平方向に対して下向き15°に設定して鋳型に溶鋼を供給し、電磁撹拌を行いながら鋳造速度1.2m/分の鋳造条件下で、亜鉛の含有量が50〜300ppmのモールドフラックスを使用して連続鋳造を行ない、長辺側銅板の寿命及び得られた鋳片の表面疵発生割合を調査した。その結果を図7に示す。なお、図7では、長辺側銅板の寿命及び得られた鋳片の表面疵発生割合を、亜鉛の含有量が250ppmのモールドフラックスを使用した際に得られた長辺側銅板の寿命及び表面疵発生割合を基準にした指数で表示している。
図7に示すように、モールドフラックスの亜鉛含有量を200ppm以下にすることで、ニッケル−亜鉛系の低融点合金の生成量が少なくなり、低融点合金を起点とするヒートクラックの発生が抑制されて、長辺側銅板の寿命が大幅に延長されることが確認できた。また、低融点合金の生成量が少なくなるため、低融点合金の溶鋼中への溶出量が低下しメッキ層の肌荒れが少なくなる。その結果、ヒートクラックの発生とメッキ層の肌荒れを有する損傷が軽微となり、鋳片の表面における疵発生割合も大幅に低下し鋳片の表面品質向上が確認できた。
[試験例2]
亜鉛の含有量が50〜250ppmのモールドフラックスを使用し、浸漬ノズルの溶鋼吐出孔の傾斜角度を水平方向に対して上向き5°から下向き45°の範囲に設定して、電磁撹拌を行いながら鋳造速度0.8〜1.2m/分の鋳造条件下で連続鋳造を行った。そのとき得られた長辺側銅板の寿命及び鋳片の表面疵発生割合と、モールドフラックス中の亜鉛含有量及び鋳造条件の関係を図8及び図9に示す。
なお、図8及び図9では、長辺側銅板の寿命及び得られた鋳片の表面疵発生割合を、亜鉛の含有量が250ppmのモールドフラックスを使用し、溶鋼吐出孔の傾斜角度を水平方向に対して下向き15°、鋳造速度1.2m/分の鋳造条件の際に得られた長辺側銅板の寿命及び表面疵発生割合を基準にした指数で表示している。
モールドフラックス中の亜鉛含有量が低減するのに加えて、浸漬ノズルの溶鋼吐出孔の傾斜角度が水平方向に対して下向きになる程、更に、鋳造速度が遅くなる程、長辺側銅板の寿命が大幅に延長され、鋳片の表面における疵発生割合も大幅に低下することが確認できた。
従って、溶鋼吐出孔の中心軸の傾斜角度を水平方向に対して下向きに設定して溶鋼湯面の変動を抑制し長辺側銅板におけるメニスカス位置の近傍での熱負荷の低減を図ると共に、鋳造速度を調整することにより供給される溶鋼量を調整して鋳型内に供給される総熱量を制限することで長辺側銅板に加わる熱負荷の上昇を防止できることが判明した。
[試験例3]
ニッケルとコバルトの複合メッキ層が形成されたモールド銅板を使用した鋳型を用いて、亜鉛の含有量が150ppmのモールドフラックスを使用し、浸漬ノズルの溶鋼吐出孔の傾斜角度を水平方向に対して下向き15°に設定して、電磁撹拌を行って右まわりの旋回流を形成しながら鋳造速度1.2m/分の鋳造条件下で連続鋳造を繰り返し行った。そのとき、長辺側銅板において、溶鋼のメニスカス位置の近傍で、溶鋼の旋回流が強く衝突する部位に発生した損傷を、ヒートクラックの長さとメッキ層の肌荒れの窪み深さの総和で評価した。その結果を図10において○印で示す。なお、図10では、連続鋳造の回数を取鍋から溶鋼がタンディッシュに供給される回数(チャージ数)で示している。チャージ数の増加に伴って、ヒートクラックの長さと窪み深さの総和は増加し、500チャージで3〜5mm、650チャージで4.6〜6mmとなっている。
また、同一の鋳型、モールドフラックス、及び浸漬ノズルを使用し、電磁撹拌で形成する旋回流の方向を1チャージ毎に逆転しながら鋳造速度1.2m/分の鋳造条件下で600チャージ数の連続鋳造を繰り返し行って、ヒートクラックの長さ及び窪み深さの総和とチャージ数の関係を求めた。その結果を図10において●印で示す。
図10に示すように、電磁撹拌で形成する旋回流の方向を1チャージ毎に逆転した場合、ヒートクラックの長さと窪み深さの総和は、600チャージで平均1.7mmであるのに対して、電磁撹拌で形成する旋回流の方向を変えない場合、600チャージで4.5mm程度と推定され、電磁撹拌で形成する旋回流の方向を逆転することで、長辺側銅板に発生する損傷を小さくすることが確認できた。
従って、旋回流が長辺側銅板に衝突する位置を変えることで、長辺側銅板の特定部位に熱負荷が集中するのを防止でき、ヒートクラック及び肌荒れの成長を抑制できることが判明した。なお、鋳造速度を0.6m/分及び2.1m/分にした場合についても鋳造を行ったが、前記と同様の傾向が得られた。
以上、本発明の実施の形態を説明したが、本発明は、この実施の形態に限定されるものではなく、発明の要旨を変更しない範囲での変更は可能であり、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明の鋼の連続鋳造方法を構成する場合も本発明の権利範囲に含まれる。
例えば、本実施の形態では鋳型の内側にニッケルを主体とするメッキ層が形成されたモールド銅板を有する鋳型について説明したが、鋳型の内側にコバルトを主体とするメッキ層、あるいはニッケルとコバルトの複合メッキ層が形成されたモールド銅板を有する鋳型を使用することもできる。
更に、電磁撹拌で鋳型内に形成する旋回流の方向を1チャージの溶鋼量のキャストが終了する毎に逆転させたが、2チャージ以上の溶鋼量のキャストが終了する毎に鋳型内の旋回流の方向を逆転させるようにしてもよい。
本発明の一実施の形態に係る鋼の連続鋳造方法に適用した鋳型の一部省略正断面図である。 同鋼の連続鋳造方法に適用した鋳型の一部省略側断面図である。 同鋼の連続鋳造方法に適用した鋳型の平面図である。 (A)、(B)は鋳型内の溶鋼の旋回方向を逆転した際の説明図である。 同鋼の連続鋳造方法に適用した鋳型に発生する損傷位置の説明図である。 同鋼の連続鋳造方法に適用した鋳型の長辺側銅板の内側面における熱流束の変化を示す説明図である。 モールドフラックス中の亜鉛含有量と長辺側銅板の寿命指数及び鋳片表面疵発生指数との関係を示す説明図である。 モールドフラックス中の亜鉛含有量及び鋳造条件と長辺側銅板の寿命指数との関係を示す説明図である。 モールドフラックス中の亜鉛含有量及び鋳造条件と鋳片表面疵発生指数との変化を示す説明図である。 チャージ数で示した鋳型の使用回数と鋳型内面に発生した損傷程度の関係を示す説明図である。
符号の説明
10:鋳型、11、12:長辺側銅板、13、14:短辺側銅板、16:メッキ層、17:空間部、18、19:コイル部、20、21、22、23:分割コイル、24:浸漬ノズル、25:モールドフラックス、26:溶融層、27:凝固殻、28:溶鋼吐出孔

Claims (1)

  1. 内側にニッケル及びコバルトのいずれか一方又は双方を主体とするメッキ層が形成されたモールド銅板を有する鋳型内に、浸漬ノズルを介して溶鋼を順次注湯して、前記鋳型内の溶鋼の湯面をモールドフラックスで常時覆いながら該鋳型内で溶鋼を凝固させる連続鋳造方法において、
    前記モールドフラックスに含有される亜鉛量を200ppm以下にし、前記浸漬ノズルに形成された溶鋼吐出孔の中心軸の傾斜角度を水平方向に対して上向き5°以下で下向き45°以下の範囲に設定すると共に、前記モールド銅板に加わる熱負荷に応じて鋳造速度を調整し、前記鋳型内の溶鋼に電磁力を付与して該鋳型内で溶鋼を旋回させ、更に前記鋳型内の溶鋼の旋回方向を所定数のキャスト毎に逆転することを特徴とする鋼の連続鋳造方法。
JP2004318277A 2004-11-01 2004-11-01 鋼の連続鋳造方法 Active JP4303670B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004318277A JP4303670B2 (ja) 2004-11-01 2004-11-01 鋼の連続鋳造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004318277A JP4303670B2 (ja) 2004-11-01 2004-11-01 鋼の連続鋳造方法

Publications (2)

Publication Number Publication Date
JP2006122995A JP2006122995A (ja) 2006-05-18
JP4303670B2 true JP4303670B2 (ja) 2009-07-29

Family

ID=36718218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004318277A Active JP4303670B2 (ja) 2004-11-01 2004-11-01 鋼の連続鋳造方法

Country Status (1)

Country Link
JP (1) JP4303670B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076518B2 (ja) * 2007-01-31 2012-11-21 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法

Also Published As

Publication number Publication date
JP2006122995A (ja) 2006-05-18

Similar Documents

Publication Publication Date Title
JP5692451B2 (ja) 連続鋳造用鋳型及び鋼の連続鋳造方法
RU2677560C2 (ru) Кристаллизатор машины непрерывной разливки и способ непрерывной разливки стали
JP7284403B2 (ja) 双ロール式連続鋳造装置および双ロール式連続鋳造方法
JP6003851B2 (ja) 連続鋳造用鋳型及び鋼の連続鋳造方法
JP6003850B2 (ja) 連続鋳造用鋳型の製造方法及び鋼の連続鋳造方法
JP6044614B2 (ja) 鋼の連続鋳造方法
JP5962733B2 (ja) 鋼の連続鋳造方法
KR102245010B1 (ko) 강의 연속 주조 방법
JP6365604B2 (ja) 鋼の連続鋳造方法
JP6787359B2 (ja) 鋼の連続鋳造方法
JP4337565B2 (ja) 鋼のスラブ連続鋳造方法
JP4303670B2 (ja) 鋼の連続鋳造方法
CN109689247B (zh) 钢的连续铸造方法
KR101148631B1 (ko) 주조 롤 장치
CN109475930B (zh) 连续铸造用铸模及钢的连续铸造方法
JP6428721B2 (ja) 連続鋳造用鋳型及び鋼の連続鋳造方法
CN113015587B (zh) 钢的连续铸造用铸模和钢的连续铸造方法
CN109843473B (zh) 连续铸造用铸模以及钢的连续铸造方法
JP2010207820A (ja) スラブの連続鋳造方法
JPS609553A (ja) 絞り込み式連続鋳造機
JP2018149602A (ja) 鋼の連続鋳造方法
JP3610871B2 (ja) 鋼の連続鋳造方法
JP2018069324A (ja) 鋼の連続鋳造用鋳型装置及びそれを用いた表層改質鋳片の製造方法
EP0780176A2 (en) Apparatus for and process of continuous casting
JPH1058093A (ja) 鋼の連続鋳造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4303670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350