JP4297533B2 - Method for producing lithium ion battery material - Google Patents

Method for producing lithium ion battery material Download PDF

Info

Publication number
JP4297533B2
JP4297533B2 JP29056998A JP29056998A JP4297533B2 JP 4297533 B2 JP4297533 B2 JP 4297533B2 JP 29056998 A JP29056998 A JP 29056998A JP 29056998 A JP29056998 A JP 29056998A JP 4297533 B2 JP4297533 B2 JP 4297533B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
graphite
negative electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29056998A
Other languages
Japanese (ja)
Other versions
JP2000123876A (en
Inventor
久登 永徳
賢治 竹林
一樹 須原
豊和 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Micron Corp
Original Assignee
Hosokawa Micron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Micron Corp filed Critical Hosokawa Micron Corp
Priority to JP29056998A priority Critical patent/JP4297533B2/en
Publication of JP2000123876A publication Critical patent/JP2000123876A/en
Application granted granted Critical
Publication of JP4297533B2 publication Critical patent/JP4297533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン電池材料の製造方法に関する。
【0002】
【従来の技術】
従来、この種のリチウムイオン電池材料の製造は以下のごとく行っていた。
例えば、リチウムイオン電池の正極を形成するための正極材料は、コバルト酸リチウム(LiCoO2)等の正極活物質と、カーボン等の導電剤、ポリフッ化ビニリデン等の結着剤、さらには、これらの材料をスラリー状にするための1−メチル−2−ピロリドン等の溶剤とを混練して製造していた。このうちコバルト酸リチウムは半導体であり、それ自身でもある程度の導電性を有しているが、電極の導電性をより向上させるために前記カーボン等を添加している。
一方、リチウムイオン電池の負極を形成するための負極材料は、カーボン等からなる負極活物質、および、ポリフッ化ビニリデン等の結着剤、溶剤を混練してやはりスラリー状のものとしていた。
このようにして得たスラリーのうち、正極材料はアルミニウム箔の両面に塗付し、負極材料は銅箔の両面に塗付して、正極と負極とを製造していた。
【0003】
【発明が解決しようとする課題】
しかし、上記従来のリチウムイオン電池の製造方法による場合には以下のような不都合が生じていた。
例えば正極材料を製造する場合には、前記正極活物質と、導電剤、結着剤、溶剤とを混ぜ合わせて粘土状としたものを、所定の時間に亘って混練するのであるが、その際には、それぞれの原料が部分的に凝集して、原料の混合が充分に行われない場合があった。このように原料に未混合の部分が残存し、正極活物質と導電剤とが適切に混合されていないと電極の導電性が高まらず、それだけ電池性能を損なうこととなる。
一方、上記従来の方法で負極材料を製造する場合には、充填率が一定以上に高まらないという不都合が生じていた。即ち、一般に負極材料を構成するカーボン等は表面に多数の孔部を有していたり、全体の形状が角張っていたりするため、所定の体積中に充填し得るカーボン量が制限され、電池容量を高めるにも一定の限界があった。
【0004】
また、正極材料および負極材料を製造する際の共通点として、原料が凝集していると混合物の見掛け密度が低いものとなるが、その場合には電極の内部に多くの隙間が残存し、吸水性が高まるという不都合があった。即ち、リチウムイオン電池では、電解液として LiPF6 や LiBF4 を用いることが多く、その場合には、水と電解質とが反応してフッ化水素酸(HF)が遊離し、このフッ化水素酸がリチウムや正極活物質と反応して電池容量を低下させたり、サイクル劣化を生じさせたりするのである。
【0005】
本発明の目的は、上記従来の問題点を解消し、電池性能を向上し得るリチウムイオン電池材料の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
〔手段1〕
本発明に係るリチウムイオン電池材料の製造方法は、請求項1に示すごとく、コバルト酸リチウム、および、マンガン酸リチウム、ニッケル酸リチウムの各粉体のうち何れか一種からなる正極活物質と、アセチレンブラックおよびカーボン、グラファイトの各粉体のうち少なくとも一種からなる導電剤と、ポリフッ化ビニリデンの粉体からなる結着剤とを混ぜ合わせながら、押圧力およびせん断力を加えて前記正極活物質の表面に前記導電剤と前記結着剤とを付着させて複合化処理した後、溶剤を投入し、混練することで正極材料を得る点に特徴を有する。
〔作用効果〕
本発明のごとく正極活物質と導電剤、結着剤とに押圧力およびせん断力を加えて正極活物質の表面に導電剤と結着剤とを融合させ、複合粒子を形成することができる。ここで、複合化処理とは、複数の原料を混ぜ合わせたものに押圧力およびせん断力を加えて特定の原料の表面に他の原料を融合し、一体化する処理をいう。
これにより、夫々の材料の分布が均質なものとなって材料の歩留まりが向上する上に、処理品の見掛け密度が高まり、容積密度・体積エネルギー密度も高まる。
また、処理品の見掛け密度が高まると、これら正極材料および負極材料のBET比表面積が低下し、後に得られる正極板あるいは負極板の吸水性を小さくすることができるため、上記従来のような電解液の分解を抑制することができる。
尚、ここでBET比表面積とは、吸着法の一種であるBET法によって測定した試料の比表面積をいう。即ち、試料粉体の表面に吸着占有面積が既知である分子を吸着させ、その吸着量から試料の比表面積を求めるものである。
【0007】
〔手段2〕
本発明に係るリチウムイオン電池材料の製造方法においては、請求項2に示すごとく、酸化コバルト、あるいは、酸化マンガン、酸化ニッケルの各粉体のうち何れか一種からなる第1原料と、炭酸リチウムの粉体からなる第2原料とを混ぜ合わせながら、押圧力およびせん断力を加えて、前記第1原料と前記第2原料とを精密混合することで前記正極活物質を製造することができる。
〔作用効果〕
本発明のごとく、第1原料と第2原料とを混合して押圧力およびせん断力を加えることで、両者を精密混合することもできる。ここで精密混合とは、異種の原料を単一粒子レベルで均一に分散させた状態に混合することをいう。
例えば、リチウムイオン電池を製造する場合には、第1原料である酸化コバルトと第2原料である炭酸リチウムとを混合した後、これを焼成して正極活物質であるコバルト酸リチウムを生成するのであるが、上記のごとく精密混合が可能であれば、均一な焼成が行われ、電池材料の機能を向上させることができる。
【0008】
〔手段3〕
本発明に係るリチウムイオン電池材料の製造方法は、請求項3に示すごとく、カーボン、および、グラファイト、ポリアセン系高分子材料の各粉体のうち少なくとも一種からなる負極活物質と、ポリフッ化ビニリデンの粉体からなる結着剤とを混ぜ合わせながら、押圧力およびせん断力を加えて前記負極活物質の表面に前記結着剤を付着させて複合化処理した後、溶剤を投入し、混練することで負極材料を得る点に特徴を有する。
〔作用効果〕
本発明のごとく、負極活物質である粉体および結着剤である粉体に押圧力およびせん断力を加えて前記負極活物質の表面に前記結着剤を融合し、所謂、複合化処理を行うことにより、上記手段1で説明したのと同様に、これら混合物のBET比表面積が低下し、見掛け密度を高めることができる。この結果、負極材料の成形時の歩留まりがよくなり、容積密度・体積エネルギー密度が高まるうえに、負極材料の吸湿性を小さくして電解液の分解を抑制することができる。
【0009】
〔手段4〕
本発明に係るリチウムイオン電池材料の製造方法においては、請求項4に示すごとく、黒鉛単体、あるいは、黒鉛にピッチを混入したものに押圧力およびせん断力を加えて、前記黒鉛の表面を滑らかにすると共に当該黒鉛の形状を球状化することで前記負極活物質を製造することができる。
〔作用効果〕
本発明においても、負極活物質として黒鉛を用いる。ただし、黒鉛は、その層状構造のため偏平状であることが多く、充填性に劣っている。よって、黒鉛原料をそのまま負極材料として用いたのでは、形成された負極の内部に多くの空隙が残存することとなり、電池の体積エネルギー密度が小さくなるばかりでなく、当該空隙のために吸水性が増大して前述のごとく電解液が分解され易くなってしまう。
そこで、本発明のごとく、黒鉛単体、あるいは、黒鉛にピッチを混入したものに押圧力およびせん断力を加え、前記黒鉛の表面を滑らかにすると共に前記黒鉛の形状を球状化することで充填性が改善され、見掛け密度が高まって、負極活物質を充填する際の容積密度あるいは体積エネルギー密度が高まる。よって、体積が小さくても大容量の電池を製造することができる。
尚、ここで球状化とは、複数の原料に押圧力あるいはせん断力を作用させて、球状を有しない特定の原料の表面に他の原料を付着させ、当該特定の原料を球状に整形することをいう他、球状を有しない原料に押圧力等を作用させてその一部を破砕する等により当該原料を球状に整形することをいう。
また、前記球状化を行うことで、手段1の効果等で説明したのと同様に黒鉛のBET比表面積が低下して電解液の分解を抑制するという効果を得ることもできる。
【0010】
尚、上述のように、図面との対照を便利にするために符号を記したが、該記入により本発明は添付図面の構成に限定されるものではない。
【0011】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。尚、図面において従来例と同一の符号で表示した部分は、同一又は相当の部分を示している。
本発明に係るリチウムイオン電池材料の製造方法は、特に、正極材料あるいは負極材料を製造する際に用いる所定の原料どうしを複合化したり混合したりするのに分子レベルでこれらの作業を行う点に特徴を有する。
本発明の方法においては、上記複合化あるいは混合等を行うのに、例えば以下に示す粉体処理装置を用いる。
【0012】
(粉体処理装置)
本発明に用いる粉体処理装置の概略を図1に示す。
当該装置は、主に、基台1に設置した略円筒形状のケーシング2、および、当該ケーシング2の内部に設けた同じく略円筒形状の筒状回転体3、当該筒状回転体3との間に押圧力を発生させて被処理物4を処理すべく前記筒状回転体3の内部に配設したインナーピース5とからなる。
前記筒状回転体3を回転させることで、当該筒状回転体3の内周面に形成した受け面6と前記インナーピース5とを相対回転させ、前記受け面6と前記インナーピース5との間の空間7に存する被処理物4に押圧力およびせん断力を付与して、前述のごとく原料どうしの複合化・混合・球状化等を行うのである。尚、本発明においては、これらの処理を総称してメカノフュージョン処理という。
前記インナーピース5によって押圧力等を付与された前記被処理物4は、主に前記筒状回転体3の周壁8に設けた孔部9を介して外方に排出され、前記周壁8の外周部に形成した羽根部材10によって再び前記筒状回転体3の内部に循環させる。本構成にすることで、インナーピース5と受け面6との間に挟まれた被処理物4を積極的に流動・循環させ、前記受け面6に対する被処理物4の付着量を少なくすることができる。
尚、電池材料の種類によっては、過大な押圧力あるいはせん断力を加えると物性を損ねたりする場合がある。しかし、当該粉体処理装置のごとく、孔部9を介して被処理物4を循環させる構成の装置を用いることとすれば、被処理物4に作用させる押圧力等を適宜加減することができる。
例えば、前記孔部9の開口面積を広く設定しておけば、被処理物4は筒状回転体3の外部に容易に排出されるから、被処理物4に対するインナーピース5の作用時間が短かくなり、被処理物4に作用する押圧力が結果的に弱まることとなる。逆に、前記孔部9の開口面積を狭く設定しておけば、被処理物4に対するインナーピース5の作用時間が長くなり、前記押圧力は強まることとなる。
このように、本構成の粉体処理装置を用いる場合には、被処理物4に作用させる押圧力等を任意に変更して最適な粉体処理条件を得ることが可能であり、優れた品質の製品を得ることができる。
【0013】
処理する電池材料によっては、粉体処理装置の内部を減圧したり所定のガス雰囲気にする場合がある。そのため、本発明に係る粉体処理装置では、例えば、ケーシング2と筒状回転体3の軸体3aとの間、あるいは、ケーシング2とインナーピース5の支持杆5aとの間にシール部材11a,11bを設けてある。
【0014】
本発明の製造方法においては、上記粉体処理装置を、例えば次の工程において使用する。即ち、前記正極材料を構成する正極活物質を製造する工程、および、当該正極活物資等によって正極材料を製造する工程、前記負極材料を構成する負極活物質を製造する工程、当該負極活物資等によって負極材料を製造する工程である。
【0015】
(正極活物質の製造)
リチウムイオン電池では、電池の充放電時にリチウムイオンが正極と負極との間を行き来して電力を発生させる。つまり、リチウムを含む化合物を用いて正極を構成し、当該正極のリチウムが充電に伴って正極から抜け出し(以下、「脱ドープする」と称する)、放電の際には再び正極に入り込む(以下、「ドープする」と称する)ことができるようにするのである。そのためには、前述したごとく、コバルト酸リチウム、あるいは、マンガン酸リチウム、ニッケル酸リチウム等の材料が正極を構成するのに好適である。このような材料を正極活物質と称する。
【0016】
これらの正極活物質を得るには、表1に示すごとく、酸化コバルト、あるいは、酸化マンガン、酸化ニッケルの各粉体のうち何れか一種からなる第1原料と、炭酸リチウムの粉体からなる第2原料とを混ぜ合わせながら、押圧力およびせん断力を加えて、前記第1原料と前記第2原料とを精密混合する。当該精密混合を行うに際して前記粉体処理装置を用いる。
当該精密混合が終了した混合物を焼成してコバルト酸リチウム等を生成し、当該生成物を粉砕・整粒して前記正極活物質としての製品を得る。
本方法のごとく、前記第1原料と前記第2原料とを精密混合すれば、原料の凝集が発生せず、混合物の見掛け密度を向上させることができる。その結果、体積エネルギー密度が高い等優れた性能を有するリチウムイオン電池を得ることができる。
【0017】
【表1】

Figure 0004297533
【0018】
(正極材料の製造)
リチウムイオン電池を製造するには、上記のごとく得られた正極活物質を用いて正極を形成する。
リチウムイオン電池の正極材料としては、例えば、図2に示すごとく、前記正極活物質と導電剤、結着剤、溶剤とを混合してスラリーとしたものを用いる。このスラリーをアルミニウム箔に塗布し、乾燥させて正極板を形成する。そして、当該正極板を巻き回して電池の正極とするのである。
【0019】
本発明においては、上記工程のうち正極活物質と導電剤、結着剤との混合を、前記粉体処理装置を用いて行う。ここで用いる正極活物質は前述したごとく例えばコバルト酸リチウム、あるいは、マンガン酸リチウム、ニッケル酸リチウムのうちの一つである。前記導電剤は、アセチレンブラックおよびカーボン、グラファイトの各粉体のうち少なくとも一種で構成する。前記結着剤は、ポリフッ化ビニリデン(PVDF)等の粉体で構成する。
前記粉体処理装置を用いてこれらの粉体を処理することで、それぞれの粉体に押圧力およびせん断力を加えて前記正極活物質の表面に前記導電剤と前記結着剤とを融合させて、所謂、複合化処理を行う。
当該処理を行うことにより、これら混合物のBET比表面積が低下し、見掛け密度が高まる。この結果、正極材料の容積密度・体積エネルギー密度が高まるうえに、正極材料の吸湿性を小さくして電解液の分解を抑制することができる。
【0020】
以上のごとく複合化処理が終了した混合物に対して溶剤を混合してスラリーとし、アルミニウム箔に塗布する。当該溶剤としては、例えば、1−メチル−2−ピロリドンを用いる。
【0021】
(負極活物質の製造)
リチウムイオン電池では、充電時にリチウムイオンが負極にドープするのであるが、リチウムイオンがドープし易い材料として黒鉛が良く用いられる。黒鉛は微視的に見て層状構造を有しており、リチウムイオンが、この層状構造の内部に対してドープ・脱ドープするのである。
本発明においても、負極活物質として黒鉛を用いる。ただし、黒鉛は、その層状構造のため偏平状であることが多く、充填性に劣っている。よって、黒鉛原料をそのまま負極材料として用いたのでは、形成された負極の内部に多くの空隙が残存することとなり、電池の体積エネルギー密度が小さくなるばかりでなく、当該空隙のために吸水性が増大して前述のごとく電解液が分解され易くなってしまう。
そこで、本発明においては、粉体処理装置を用いて前記黒鉛に押圧力およびせん断力を加え、前記黒鉛の表面を滑らかにすると共に前記黒鉛の形状を球状化する。
【0022】
尚、負極活物質を製造する際には、黒鉛単体を処理しても良いが、黒鉛にピッチを混入しつつ上記処理を行うと、前記ピッチが黒鉛の凹凸部に充填されて黒鉛の球状化およびBET比表面積の減少が促進される。
【0023】
(負極材料の製造)
リチウムイオン電池の負極材料としては、例えば、図2に示すごとく、前記負極活物質と結着剤、溶剤とを混合したスラリーを用いる。このスラリーを銅箔に塗布し、乾燥させて負極板を形成する。そして、当該負極板を巻き回して電池の負極とするのである。
本発明においては、上記工程のうち負極活物質と結着剤との混合を、前記粉体処理装置を用いて行う。ここで用いる負極活物質は、前述したごとく、例えばカーボン、および、グラファイト、ポリアセン系高分子材料の各粉体のうち少なくとも一種で構成する。前記結着剤は、ポリフッ化ビニリデン(PVDF)等の粉体で構成する。
前記粉体処理装置を用いてこれらの粉体を処理することで、それぞれの粉体に押圧力およびせん断力を加えて前記負極活物質の表面に前記結着剤を融合させて、所謂、複合化処理を行う。
当該処理を行うことにより、これら混合物のBET比表面積が低下し、見掛け密度を高めることができる。この結果、負極材料の容積密度・体積エネルギー密度が高まるうえに、負極材料の吸湿性を小さくして電解液の分解を抑制することができる。
【0024】
(効果)
本発明のごとく、リチウムイオン電池を製造するために、中間生成物である正極活物質および負極活物質、正極材料、負極材料を、粉体処理装置を用いて製造することで、それぞれの材料を構成する物質どうしを複合化・精密混合・球状化するいわゆるメカノフュージョン処理することができる。
その結果、処理品の固め見掛け密度が高まり、容積密度・体積エネルギー密度を向上させることができる。また、夫々の材料を構成する成分の分布が均質化されて製品の品質が向上する上に、材料の歩留まりも向上する。
さらには、それぞれの材料を構成する成分粒子どうしが確実に複合化されるため製品のBET比表面積が低下するが、このことは、当該製品を用いて電極を構成した場合に、微視的に見て前記製品粒子は高密度に充填された状態で電極を構成することとなる。この結果、電極の吸水性を低下させることができ、リチウムイオン電池を構成する電解液が水分によって分解されるのを抑制して、電池性能を向上させることができる。
【0025】
【実施例】
(正極材料の製造)
本発明の製造方法によって前記正極材料を製造した場合の一例を示す。
本実施例では、表2に示すごとく、主剤として前記正極活物質であるコバルト酸リチウムを用い、添加剤として前記導電剤であるカーボングラファイトあるいは黒鉛化カーボンブラックを用いた例を示す。主剤と添加剤とは重量比で97:3に配合したものを用いた。
表3には粉体処理装置の運転条件を、および、図3には、本実施例における処理結果を示す。この結果は、電池材料のスラリー生成に先立って行う、乾燥状態にある原料の混合処理の結果であり、このような乾燥原料の混合処理を行っていなかった従来技術と比較するものではない。
従来においては、原料粉体や結着剤あるいは溶剤などの個々の電池材料を例えば真空ミキサーに投入し、混合・混練してスラリーを生成するのであるが、これら電池材料を均一かつ十分に混合するためには複雑な投入・混練操作が必要とされ、粉体処理の効率向上が望まれていた。
その点、本方法による場合は、スラリーを生成する前に、乾燥状態にある電池材料について前記粉体処理装置を用いた混合処理等を行うので、これら電池材料を複雑な方法で投入することなく混合処理を行うことができる。このように前記混合処理が確実になされる結果、その後の溶剤を加えた混練作業も極めて単純なものとなる。
【0026】
【表2】
Figure 0004297533
【0027】
【表3】
Figure 0004297533
【0028】
(負極材料の製造)
本発明の製造方法によって前記負極材料を製造した場合の一例を示す。
本実施例では、表4に示す黒鉛を用いて、当該黒鉛の球形化処理を行った。
また、表5には粉体処理装置の運転条件を示す。
本実施例の結果を、図4に示す。図4は、黒鉛の単位質量あたりの融合エネルギーとかさ密度との関係を示している。ここでは、かさ密度が約30%増加していることがわかる。
【0029】
【表4】
Figure 0004297533
【0030】
【表5】
Figure 0004297533
【0031】
(別実施形態)
上記実施形態では、ケーシング2の内部に略円筒形状の筒状回転体3を設けた粉体処理装置を用いてリチウムイオン電池材料を製造する方法を示した。しかし、リチウムイオン電池材料の製造に際しては、前記ケーシング2を有さず、主に筒状回転体3とインナーピース5とからなる粉体処理装置を用いることも可能である。
その場合には、前述したような被処理物4の循環が行われないので、筒状回転体3の受け面6に付着する被処理物4の量が増加して、材料の歩留まり等がやや低下するものと考えられる。しかし、インナーピース5と受け面6とによって被処理物4に押圧力およびせん断力を付与できるから、原料どうしの複合化・混合・球状化等を行うことは十分に可能である。
【図面の簡単な説明】
【図1】本発明の実施に用いる粉体処理装置の概要を示す説明図
【図2】正極板および負極板の形成工程を示すフローチャート
【図3】正極材料の粉体処理の結果を示す説明図
【図4】負極材料の粉体処理の結果を示す説明図
【符号の説明】
1 基台
2 ケーシング
3 筒状回転体
4 被処理物
5 インナーピース
6 受け面
7 空間
8 筒状回転体の周壁
9 孔部
10 羽根部材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a lithium ion battery material.
[0002]
[Prior art]
Conventionally, this type of lithium ion battery material has been manufactured as follows.
For example, a positive electrode material for forming a positive electrode of a lithium ion battery includes a positive electrode active material such as lithium cobaltate (LiCoO 2 ), a conductive agent such as carbon, a binder such as polyvinylidene fluoride, and these It was manufactured by kneading with a solvent such as 1-methyl-2-pyrrolidone for making the material into a slurry. Among these, lithium cobaltate is a semiconductor and has a certain degree of conductivity by itself, but the carbon or the like is added to further improve the conductivity of the electrode.
On the other hand, the negative electrode material for forming the negative electrode of the lithium ion battery was kneaded with a negative electrode active material made of carbon or the like, a binder such as polyvinylidene fluoride, and a solvent, and was also made into a slurry.
In the slurry thus obtained, the positive electrode material was applied to both sides of the aluminum foil, and the negative electrode material was applied to both sides of the copper foil to produce a positive electrode and a negative electrode.
[0003]
[Problems to be solved by the invention]
However, in the case of the above conventional method of manufacturing a lithium ion battery, the following inconvenience has occurred.
For example, when producing a positive electrode material, a mixture of the positive electrode active material, a conductive agent, a binder, and a solvent to form a clay is kneaded for a predetermined time. In some cases, the raw materials partially aggregated and the raw materials are not sufficiently mixed. In this way, an unmixed portion remains in the raw material, and unless the positive electrode active material and the conductive agent are appropriately mixed, the conductivity of the electrode does not increase, and the battery performance is impaired accordingly.
On the other hand, when the negative electrode material is produced by the above-described conventional method, there is a disadvantage that the filling rate does not increase beyond a certain level. In other words, carbon or the like constituting the negative electrode material generally has a large number of pores on the surface or the entire shape is angular, so the amount of carbon that can be filled in a predetermined volume is limited, and the battery capacity is reduced. There was a certain limit to the increase.
[0004]
In addition, as a common point in manufacturing the positive electrode material and the negative electrode material, when the raw materials are aggregated, the apparent density of the mixture is low. In that case, many gaps remain inside the electrode, and water absorption There was an inconvenience that the property increased. That is, LiPF 6 or LiBF 4 is often used as an electrolytic solution in lithium ion batteries. In this case, hydrofluoric acid (HF) is liberated by the reaction of water and the electrolyte, and this hydrofluoric acid. However, it reacts with lithium or the positive electrode active material to reduce the battery capacity or cause cycle deterioration.
[0005]
An object of the present invention is to provide a method for producing a lithium ion battery material that can solve the above-mentioned conventional problems and improve battery performance.
[0006]
[Means for Solving the Problems]
[Means 1]
The method for producing a lithium ion battery material according to the present invention includes a positive electrode active material comprising any one of lithium cobaltate, lithium manganate, and lithium nickelate powder, and acetylene. The surface of the positive electrode active material by applying a pressing force and a shearing force while mixing a conductive agent made of at least one of black, carbon and graphite powders with a binder made of polyvinylidene fluoride powder. The conductive agent and the binder are attached to each other and combined, and then a solvent is added and kneaded to obtain a positive electrode material.
[Function and effect]
As in the present invention, it is possible to form a composite particle by applying a pressing force and a shearing force to the positive electrode active material, the conductive agent, and the binder to fuse the conductive agent and the binder to the surface of the positive electrode active material. Here, the compounding process refers to a process in which a pressing force and a shearing force are applied to a mixture of a plurality of raw materials to fuse and integrate other raw materials on the surface of a specific raw material.
As a result, the distribution of each material becomes uniform, the yield of the material is improved, and the apparent density of the processed product is increased, and the volume density and the volume energy density are also increased.
Further, when the apparent density of the processed product is increased, the BET specific surface area of these positive electrode material and negative electrode material is decreased, and the water absorption of the positive electrode plate or negative electrode plate obtained later can be reduced. The decomposition of the liquid can be suppressed.
Here, the BET specific surface area refers to the specific surface area of the sample measured by the BET method, which is a kind of adsorption method. That is, molecules having a known adsorption occupation area are adsorbed on the surface of the sample powder, and the specific surface area of the sample is obtained from the adsorption amount.
[0007]
[Means 2]
In the method for producing a lithium ion battery material according to the present invention, as shown in claim 2, a first raw material composed of any one of cobalt oxide, manganese oxide, and nickel oxide powders, and lithium carbonate The positive electrode active material can be produced by applying a pressing force and a shearing force while mixing the second raw material made of powder and precisely mixing the first raw material and the second raw material.
[Function and effect]
As in the present invention, by mixing the first raw material and the second raw material and applying a pressing force and a shearing force, both can be precisely mixed. Here, the precision mixing means mixing different kinds of raw materials in a state of being uniformly dispersed at a single particle level.
For example, when a lithium ion battery is manufactured, since cobalt oxide as a first raw material and lithium carbonate as a second raw material are mixed, this is baked to produce lithium cobalt oxide as a positive electrode active material. However, if precise mixing is possible as described above, uniform firing is performed, and the function of the battery material can be improved.
[0008]
[Means 3]
According to a third aspect of the present invention, there is provided a method for producing a lithium ion battery material comprising: a negative electrode active material comprising at least one of carbon, graphite, and polyacene polymer material; and polyvinylidene fluoride. While mixing with a binder made of powder, applying a pressing force and a shearing force to attach the binder to the surface of the negative electrode active material and then performing a composite treatment, and then adding a solvent and kneading. It is characterized in that a negative electrode material is obtained.
[Function and effect]
As in the present invention, the negative electrode active material powder and the binder powder are applied with a pressing force and a shearing force to fuse the binder to the surface of the negative electrode active material, so-called composite treatment. By doing so, the BET specific surface area of these mixtures can be lowered and the apparent density can be increased as described in the above means 1. As a result, the yield at the time of molding the negative electrode material is improved, the volume density and the volume energy density are increased, and the hygroscopicity of the negative electrode material can be reduced to suppress the decomposition of the electrolytic solution.
[0009]
[Means 4]
In the method for producing a lithium ion battery material according to the present invention, as shown in claim 4, the surface of the graphite is smoothened by applying a pressing force and a shearing force to graphite alone or graphite mixed with pitch. In addition, the negative electrode active material can be manufactured by spheroidizing the shape of the graphite.
[Function and effect]
Also in the present invention, graphite is used as the negative electrode active material. However, graphite is often flat because of its layered structure, and is inferior in fillability. Therefore, if the graphite raw material is used as the negative electrode material as it is, many voids remain inside the formed negative electrode, and not only the volume energy density of the battery is reduced, but also the water absorption due to the voids. As described above, the electrolyte is liable to be decomposed.
Therefore, as in the present invention, the filling property is improved by applying a pressing force and a shearing force to graphite alone or a mixture of graphite and pitch, smoothing the surface of the graphite and making the shape of the graphite spherical. The apparent density is improved, and the volume density or the volume energy density when filling the negative electrode active material is increased. Therefore, a large capacity battery can be manufactured even if the volume is small.
Here, the spheroidization means that a pressing force or a shearing force is applied to a plurality of raw materials to attach other raw materials to the surface of a specific raw material that does not have a spherical shape, and the specific raw material is shaped into a spherical shape. In addition, it means that the raw material is shaped into a spherical shape by, for example, crushing a part thereof by applying a pressing force or the like to the raw material having no spherical shape.
Further, by performing the spheroidization, it is possible to obtain the effect of suppressing the decomposition of the electrolytic solution by reducing the BET specific surface area of the graphite as described in the effect of the means 1 and the like.
[0010]
In addition, as mentioned above, although the code | symbol was written in order to make contrast with drawing convenient, this invention is not limited to the structure of an accompanying drawing by this entry.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the parts indicated by the same reference numerals as those in the conventional example indicate the same or corresponding parts.
The method for producing a lithium ion battery material according to the present invention is that, in particular, these operations are performed at a molecular level to combine or mix predetermined raw materials used in producing a positive electrode material or a negative electrode material. Has characteristics.
In the method of the present invention, for example, the following powder processing apparatus is used to perform the above-mentioned compounding or mixing.
[0012]
(Powder processing equipment)
An outline of the powder processing apparatus used in the present invention is shown in FIG.
The apparatus mainly includes a substantially cylindrical casing 2 installed on a base 1, a cylindrical rotating body 3 having a substantially cylindrical shape provided inside the casing 2, and the cylindrical rotating body 3. And an inner piece 5 disposed inside the cylindrical rotating body 3 for processing the workpiece 4 by generating a pressing force.
By rotating the cylindrical rotating body 3, the receiving surface 6 formed on the inner peripheral surface of the cylindrical rotating body 3 and the inner piece 5 are relatively rotated, and the receiving surface 6 and the inner piece 5 are A pressing force and a shearing force are applied to the workpiece 4 existing in the space 7 between them, and as described above, the raw materials are combined, mixed, spheroidized, and the like. In the present invention, these processes are collectively called mechanofusion processes.
The workpiece 4 to which a pressing force or the like is applied by the inner piece 5 is discharged to the outside mainly through a hole 9 provided in the peripheral wall 8 of the cylindrical rotating body 3, and the outer periphery of the peripheral wall 8. It is made to circulate again inside the cylindrical rotating body 3 by the blade member 10 formed in the part. By adopting this configuration, the workpiece 4 sandwiched between the inner piece 5 and the receiving surface 6 is actively flowed and circulated, and the amount of the workpiece 4 attached to the receiving surface 6 is reduced. Can do.
Depending on the type of battery material, applying excessive pressing force or shearing force may impair physical properties. However, if a device configured to circulate the workpiece 4 through the hole 9 as in the powder processing device is used, the pressing force applied to the workpiece 4 can be appropriately adjusted. .
For example, if the opening area of the hole 9 is set wide, the workpiece 4 is easily discharged to the outside of the cylindrical rotating body 3, so that the operation time of the inner piece 5 on the workpiece 4 is short. As a result, the pressing force acting on the workpiece 4 is reduced as a result. On the contrary, if the opening area of the hole 9 is set to be narrow, the action time of the inner piece 5 with respect to the workpiece 4 becomes longer, and the pressing force becomes stronger.
Thus, when using the powder processing apparatus of this configuration, it is possible to arbitrarily change the pressing force or the like that acts on the workpiece 4 to obtain optimum powder processing conditions, and to achieve excellent quality. You can get a product.
[0013]
Depending on the battery material to be processed, the inside of the powder processing apparatus may be depressurized or may be in a predetermined gas atmosphere. Therefore, in the powder processing apparatus according to the present invention, for example, the seal member 11a, between the casing 2 and the shaft body 3a of the cylindrical rotating body 3 or between the casing 2 and the support rod 5a of the inner piece 5 is provided. 11b is provided.
[0014]
In the production method of the present invention, the powder processing apparatus is used, for example, in the next step. That is, a step of producing a positive electrode active material constituting the positive electrode material, a step of producing a positive electrode material using the positive electrode active material, etc., a step of producing a negative electrode active material constituting the negative electrode material, the negative electrode active material, etc. Is a step of producing a negative electrode material.
[0015]
(Manufacture of positive electrode active material)
In a lithium ion battery, lithium ions travel between the positive electrode and the negative electrode during charge / discharge of the battery to generate electric power. That is, a positive electrode is formed using a compound containing lithium, and lithium of the positive electrode comes out of the positive electrode with charging (hereinafter referred to as “de-doping”), and enters the positive electrode again during discharge (hereinafter, referred to as “de-doped”). (Referred to as “doping”). For this purpose, as described above, materials such as lithium cobaltate, lithium manganate, and lithium nickelate are suitable for constituting the positive electrode. Such a material is referred to as a positive electrode active material.
[0016]
In order to obtain these positive electrode active materials, as shown in Table 1, a first raw material made of any one of cobalt oxide, manganese oxide, and nickel oxide powders, and lithium carbonate powder made of While mixing the two raw materials, a pressing force and a shearing force are applied to precisely mix the first raw material and the second raw material. The powder processing apparatus is used for the precision mixing.
The mixture after the precise mixing is baked to produce lithium cobaltate and the like, and the product is pulverized and sized to obtain the product as the positive electrode active material.
If the first raw material and the second raw material are precisely mixed as in the present method, the raw materials do not aggregate and the apparent density of the mixture can be improved. As a result, a lithium ion battery having excellent performance such as high volume energy density can be obtained.
[0017]
[Table 1]
Figure 0004297533
[0018]
(Manufacture of positive electrode materials)
In order to manufacture a lithium ion battery, a positive electrode is formed using the positive electrode active material obtained as described above.
As the positive electrode material of the lithium ion battery, for example, as shown in FIG. 2, a material obtained by mixing the positive electrode active material, a conductive agent, a binder, and a solvent into a slurry is used. This slurry is applied to an aluminum foil and dried to form a positive electrode plate. And the said positive electrode plate is wound up and it is set as the positive electrode of a battery.
[0019]
In the present invention, the positive electrode active material, the conductive agent, and the binder are mixed in the above steps using the powder processing apparatus. As described above, the positive electrode active material used here is, for example, lithium cobaltate, lithium manganate, or lithium nickelate. The conductive agent is composed of at least one of acetylene black, carbon, and graphite powders. The binder is composed of a powder such as polyvinylidene fluoride (PVDF).
By processing these powders using the powder processing apparatus, a pressing force and a shearing force are applied to each powder to fuse the conductive agent and the binder onto the surface of the positive electrode active material. Thus, so-called composite processing is performed.
By performing the said process, the BET specific surface area of these mixtures falls and an apparent density increases. As a result, the volume density and volume energy density of the positive electrode material can be increased, and the hygroscopicity of the positive electrode material can be reduced to suppress decomposition of the electrolytic solution.
[0020]
A solvent is mixed with the mixture that has been subjected to the composite treatment as described above to form a slurry, which is applied to an aluminum foil. As the solvent, for example, 1-methyl-2-pyrrolidone is used.
[0021]
(Manufacture of negative electrode active material)
In lithium ion batteries, lithium ions are doped into the negative electrode during charging, but graphite is often used as a material that is easily doped with lithium ions. Graphite has a layered structure when viewed microscopically, and lithium ions dope and dedope the inside of the layered structure.
Also in the present invention, graphite is used as the negative electrode active material. However, graphite is often flat because of its layered structure, and is inferior in fillability. Therefore, if the graphite raw material is used as the negative electrode material as it is, many voids remain inside the formed negative electrode, and not only the volume energy density of the battery is reduced, but also the water absorption due to the voids. As described above, the electrolyte is liable to be decomposed.
Therefore, in the present invention, a pressing force and a shearing force are applied to the graphite using a powder processing apparatus to smooth the surface of the graphite and spheroidize the shape of the graphite.
[0022]
Incidentally, when producing the negative electrode active material, the graphite alone may be treated, but if the above treatment is performed while mixing the pitch into the graphite, the pitch is filled in the concavo-convex portions of the graphite and the graphite is spheroidized. And the reduction of the BET specific surface area is promoted.
[0023]
(Manufacture of negative electrode materials)
As a negative electrode material of the lithium ion battery, for example, as shown in FIG. 2, a slurry in which the negative electrode active material, a binder, and a solvent are mixed is used. This slurry is applied to a copper foil and dried to form a negative electrode plate. And the said negative electrode plate is wound up and it is set as the negative electrode of a battery.
In the present invention, the negative electrode active material and the binder are mixed in the above steps using the powder processing apparatus. As described above, the negative electrode active material used here is composed of, for example, at least one of carbon, graphite, and polyacene polymer material powders. The binder is composed of a powder such as polyvinylidene fluoride (PVDF).
By processing these powders using the powder processing apparatus, a pressing force and a shearing force are applied to each powder to fuse the binder to the surface of the negative electrode active material, so-called composite Process.
By performing the treatment, the BET specific surface area of these mixtures is reduced, and the apparent density can be increased. As a result, the volume density and volume energy density of the negative electrode material can be increased, and the hygroscopicity of the negative electrode material can be reduced to suppress decomposition of the electrolytic solution.
[0024]
(effect)
In order to manufacture a lithium ion battery as in the present invention, a positive electrode active material and a negative electrode active material, a positive electrode material, and a negative electrode material, which are intermediate products, are manufactured using a powder processing apparatus. So-called mechano-fusion treatment can be performed in which the constituent materials are compounded, precisely mixed, and spheroidized.
As a result, the apparent density of the processed product is increased, and the volume density and the volume energy density can be improved. In addition, the distribution of the components constituting each material is homogenized to improve the quality of the product, and the yield of the material is also improved.
Furthermore, since the component particles constituting each material are reliably combined with each other, the BET specific surface area of the product is reduced. This is a microscopic effect when an electrode is configured using the product. As seen, the product particles are packed in a high density to constitute the electrode. As a result, the water absorption of the electrode can be reduced, the electrolytic solution constituting the lithium ion battery can be prevented from being decomposed by moisture, and the battery performance can be improved.
[0025]
【Example】
(Manufacture of positive electrode materials)
An example at the time of manufacturing the said positive electrode material with the manufacturing method of this invention is shown.
In this example, as shown in Table 2, an example is shown in which lithium cobaltate, which is the positive electrode active material, is used as a main agent, and carbon graphite or graphitized carbon black, which is the conductive agent, is used as an additive. The main agent and additive used were blended at a weight ratio of 97: 3.
Table 3 shows the operating conditions of the powder processing apparatus, and FIG. 3 shows the processing results in this example. This result is a result of the mixing process of the raw material in a dry state performed prior to the generation of the slurry of the battery material, and is not compared with the conventional technique in which such a mixing process of the dry raw material has not been performed.
Conventionally, individual battery materials such as raw material powders, binders or solvents are put into a vacuum mixer, for example, and mixed and kneaded to produce a slurry. These battery materials are mixed uniformly and sufficiently. Therefore, complicated charging and kneading operations are required, and improvement in the efficiency of powder processing has been desired.
In that respect, in the case of this method, since the battery material in a dry state is subjected to mixing treatment using the powder processing apparatus before the slurry is generated, the battery material is not introduced in a complicated manner. Mixing can be performed. As a result of the reliable mixing process, the subsequent kneading operation with the addition of a solvent becomes extremely simple.
[0026]
[Table 2]
Figure 0004297533
[0027]
[Table 3]
Figure 0004297533
[0028]
(Manufacture of negative electrode materials)
An example at the time of manufacturing the said negative electrode material by the manufacturing method of this invention is shown.
In this example, the graphite shown in Table 4 was used to spheroidize the graphite.
Table 5 shows the operating conditions of the powder processing apparatus.
The results of this example are shown in FIG. FIG. 4 shows the relationship between fusion energy per unit mass of graphite and bulk density. Here, it can be seen that the bulk density is increased by about 30%.
[0029]
[Table 4]
Figure 0004297533
[0030]
[Table 5]
Figure 0004297533
[0031]
(Another embodiment)
In the said embodiment, the method of manufacturing lithium ion battery material using the powder processing apparatus which provided the cylindrical rotating body 3 of the substantially cylindrical shape inside the casing 2 was shown. However, when manufacturing the lithium ion battery material, it is also possible to use a powder processing apparatus mainly including the cylindrical rotating body 3 and the inner piece 5 without the casing 2.
In this case, since the workpiece 4 is not circulated as described above, the amount of the workpiece 4 adhering to the receiving surface 6 of the cylindrical rotating body 3 is increased, and the yield of the material is slightly increased. It is thought to decrease. However, since the pressing force and shearing force can be applied to the workpiece 4 by the inner piece 5 and the receiving surface 6, it is possible to combine, mix and spheroidize raw materials.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an outline of a powder processing apparatus used in the practice of the present invention. FIG. 2 is a flowchart showing a process for forming a positive electrode plate and a negative electrode plate. [Fig. 4] Explanatory drawing showing the result of powder treatment of negative electrode material [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Base 2 Casing 3 Cylindrical rotary body 4 To-be-processed object 5 Inner piece 6 Receiving surface 7 Space 8 Perimeter wall 9 of cylindrical rotary body Hole 10 Blade member

Claims (4)

コバルト酸リチウム、および、マンガン酸リチウム、ニッケル酸リチウムの各粉体のうち何れか一種からなる正極活物質と、
アセチレンブラックおよびカーボン、グラファイトの各粉体のうち少なくとも一種からなる導電剤と、
ポリフッ化ビニリデンの粉体からなる結着剤とを混ぜ合わせながら、押圧力およびせん断力を加えて前記正極活物質の表面に前記導電剤と前記結着剤とを付着させて複合化処理した後、
溶剤を投入し、混練することで正極材料を得るリチウムイオン電池材料の製造方法。
A positive electrode active material made of any one of lithium cobaltate, lithium manganate, and lithium nickelate powders;
A conductive agent comprising at least one of acetylene black, carbon, and graphite powders;
After mixing with a binder made of polyvinylidene fluoride powder, applying a pressing force and a shearing force to adhere the conductive agent and the binder to the surface of the positive electrode active material, and performing a composite treatment ,
A method for producing a lithium ion battery material in which a positive electrode material is obtained by adding a solvent and kneading.
前記正極活物質の製造を、
酸化コバルト、あるいは、酸化マンガン、酸化ニッケルの各粉体のうち何れか一種からなる第1原料と、炭酸リチウムの粉体からなる第2原料とを混ぜ合わせながら、押圧力およびせん断力を加えて、前記第1原料と前記第2原料とを精密混合することで行う請求項1に記載のリチウムイオン電池材料の製造方法。
Manufacturing the positive electrode active material,
While mixing the first raw material composed of any one of the powders of cobalt oxide, manganese oxide, and nickel oxide with the second raw material composed of the lithium carbonate powder, a pressing force and a shearing force are applied. The method for producing a lithium ion battery material according to claim 1, wherein the first raw material and the second raw material are precisely mixed.
カーボン、および、グラファイト、ポリアセン系高分子材料の各粉体のうち少なくとも一種からなる負極活物質と、
ポリフッ化ビニリデンの粉体からなる結着剤とを混ぜ合わせながら、押圧力およびせん断力を加えて前記負極活物質の表面に前記結着剤を付着させて複合化処理した後、
溶剤を投入し、混練することで負極材料を得るリチウムイオン電池材料の製造方法。
A negative electrode active material composed of at least one of powders of carbon, graphite, and polyacene polymer material;
After mixing with a binder made of polyvinylidene fluoride powder, applying a pressing force and a shearing force to attach the binder to the surface of the negative electrode active material, a composite treatment,
A method for producing a lithium ion battery material in which a negative electrode material is obtained by adding a solvent and kneading.
前記負極活物質の製造を、
黒鉛単体、あるいは、黒鉛にピッチを混入したものに押圧力およびせん断力を加えて、前記黒鉛の表面を滑らかにすると共に当該黒鉛の形状を球状化することで行う請求項3に記載のリチウムイオン電池材料の製造方法。
Production of the negative electrode active material,
The lithium ion according to claim 3, which is performed by applying a pressing force and a shearing force to graphite alone or a mixture of graphite and pitch to smooth the surface of the graphite and to make the shape of the graphite spherical. Manufacturing method of battery material.
JP29056998A 1998-10-13 1998-10-13 Method for producing lithium ion battery material Expired - Fee Related JP4297533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29056998A JP4297533B2 (en) 1998-10-13 1998-10-13 Method for producing lithium ion battery material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29056998A JP4297533B2 (en) 1998-10-13 1998-10-13 Method for producing lithium ion battery material

Publications (2)

Publication Number Publication Date
JP2000123876A JP2000123876A (en) 2000-04-28
JP4297533B2 true JP4297533B2 (en) 2009-07-15

Family

ID=17757730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29056998A Expired - Fee Related JP4297533B2 (en) 1998-10-13 1998-10-13 Method for producing lithium ion battery material

Country Status (1)

Country Link
JP (1) JP4297533B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100417251B1 (en) 1999-12-15 2004-02-05 주식회사 엘지화학 Method for preparing lithium manganese spinel oxide having improved electrochemical performance
JP4712158B2 (en) * 2000-05-09 2011-06-29 パナソニック株式会社 Production method of active material powder for lithium ion battery and electrode for lithium ion battery
JP4892137B2 (en) * 2001-02-01 2012-03-07 パナソニック株式会社 Method for producing lithium ion secondary battery
KR20030008514A (en) * 2001-07-18 2003-01-29 성남전자공업주식회사 Method for manufacturing lithium polymer battery
JP4561041B2 (en) * 2002-03-28 2010-10-13 Tdk株式会社 Lithium secondary battery
JP4077432B2 (en) * 2003-07-07 2008-04-16 Tdk株式会社 Electrochemical element
US7754382B2 (en) 2003-07-30 2010-07-13 Tdk Corporation Electrochemical capacitor having at least one electrode including composite particles
JP2007160151A (en) * 2005-12-09 2007-06-28 K & W Ltd Reaction method, metal oxide nanoparticle or metal oxide nanoparticle-deposited carbon obtained thereby, electrode containing the carbon and electrochemical element using the electrode
JP5180643B2 (en) * 2007-03-28 2013-04-10 日本ケミコン株式会社 Reaction method and metal oxide nanoparticles obtained by the method, or carbon carrying the metal oxide nanoparticles, an electrode containing the carbon, and an electrochemical device using the electrode
JP5624788B2 (en) * 2010-03-31 2014-11-12 日本ケミコン株式会社 Carbon with metal oxide nanoparticles dispersed and supported
JP5725566B2 (en) * 2012-10-29 2015-05-27 日本ケミコン株式会社 Reaction method
JP6288700B2 (en) * 2014-01-27 2018-03-07 Necエナジーデバイス株式会社 Method for producing electrode slurry
JP6167127B2 (en) * 2015-03-31 2017-07-19 日本ケミコン株式会社 Electrode and electrochemical element
JP7293901B2 (en) * 2019-06-20 2023-06-20 株式会社豊田中央研究所 Granule, water-repellent layer and method for producing the same

Also Published As

Publication number Publication date
JP2000123876A (en) 2000-04-28

Similar Documents

Publication Publication Date Title
CN112573923A (en) High-rate lithium ion battery artificial graphite negative electrode material and preparation method thereof
KR102344143B1 (en) Predoping method for lithium, lithium­predoped electrode, and electricity storage device
JP4297533B2 (en) Method for producing lithium ion battery material
EP3035418B1 (en) Composite active material for lithium secondary batteries and method for producing same
JP5478693B2 (en) Positive electrode active material for secondary battery and method for producing the same
Muruganantham et al. Synthesis and electrochemical characterization of olivine-type lithium iron phosphate cathode materials via different techniques
JP5061718B2 (en) Carbon material powder and method for producing the same
CN1714464A (en) Production methods for positive electrode active matter and non-aqueous electrolytic battery
KR101426195B1 (en) Method for preparing spherical carbons and spherical carbons prepared thereby
EP4333116A1 (en) Method for manufacturing carbon-silicon composite powder, carbon-silicon composite powder manufactured thereby, and lithium secondary battery comprising same
KR102433366B1 (en) Negative electrode material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP7273263B2 (en) Coated positive electrode active material for lithium ion secondary battery, method for producing the same, and evaluation method for the coated positive electrode active material
KR101679135B1 (en) Method for producing non-graphitizable carbon material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
KR102176590B1 (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
JP2001126718A (en) Method for manufacturing electrode for nonaqueous electrolytic cell and the nonaqueous electrolytic cell
CN101369650A (en) Production method for lithium ion battery material
JP2015176744A (en) Method of manufacturing secondary battery
JP2000123879A (en) Manufacture of positive mix and lithium ion secondary battery
JP2018073562A (en) Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
JP4277367B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2004014519A (en) Positive active material for secondary battery using nonaqueous solution as electrolyte, method of manufacturing positive electrode, and secondaey battery
KR101976252B1 (en) Manufacturing method of graphites for lithium-ion battery anode materials and Manufacturing Method lithium-ion battery electrode using graphites manufactured by the method
KR20200072862A (en) Method for manufacturing negative electrode active material for rechargeable lithium battery, and rechargeable lithium battery including the same
JP2014103107A (en) Positive electrode for nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery using the same
JP2016009578A (en) Method for manufacturing composite lithium titanate powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090402

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees