JP4277741B2 - Method for melting nitrogen-containing steel - Google Patents

Method for melting nitrogen-containing steel Download PDF

Info

Publication number
JP4277741B2
JP4277741B2 JP2004172206A JP2004172206A JP4277741B2 JP 4277741 B2 JP4277741 B2 JP 4277741B2 JP 2004172206 A JP2004172206 A JP 2004172206A JP 2004172206 A JP2004172206 A JP 2004172206A JP 4277741 B2 JP4277741 B2 JP 4277741B2
Authority
JP
Japan
Prior art keywords
vacuum degassing
mass
nitrogen
molten steel
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004172206A
Other languages
Japanese (ja)
Other versions
JP2005350718A (en
Inventor
健夫 後藤
祐樹 鍋島
英樹 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004172206A priority Critical patent/JP4277741B2/en
Publication of JP2005350718A publication Critical patent/JP2005350718A/en
Application granted granted Critical
Publication of JP4277741B2 publication Critical patent/JP4277741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、鋼材の機械的性質を向上するためにNを添加した鋼(以下、含窒素鋼という)を溶製するにあたって、S含有量を所定の範囲に精度良く調整して、含窒素鋼を安定して溶製する方法に関するものである。   In the present invention, when melting steel added with N in order to improve the mechanical properties of steel (hereinafter referred to as nitrogen-containing steel), the S content is precisely adjusted within a predetermined range, and nitrogen-containing steel is obtained. It relates to a method for stably melting.

一般に鋼の溶製工程では、Nは、溶鋼に不可避的に混入する不純物として可能な限り除去するための処理が施される。   In general, in the steel melting process, N is subjected to a treatment for removing it as much as possible as an impurity inevitably mixed in the molten steel.

しかし、靭性等の機械的性質を向上して特定の用途に用いる鋼材は、溶製工程でNを添加する処理が施される。このような含窒素鋼は、転炉で脱炭処理を行ないながら溶鋼に窒素を添加し、次いで真空脱ガス処理を行なうことによって溶製される。   However, the steel material used for a specific application with improved mechanical properties such as toughness is subjected to a process of adding N in the melting process. Such a nitrogen-containing steel is melted by adding nitrogen to the molten steel while performing a decarburization process in a converter and then performing a vacuum degassing process.

含窒素鋼を溶製するにあたって、まず転炉で溶鋼に酸素を供給して脱炭処理(いわゆる1次精錬)を行なう。使用する転炉は、酸素の供給方法に応じて下記の (a)〜(c) の3種類に大別される。
(a) 上吹き転炉:転炉内の溶鋼にランスを介して上方から酸素ガスを吹付ける。
(b) 底吹き転炉:転炉の底部に設けた底吹き羽口を介して下方から溶鋼に酸素ガスを供給する。
(c) 上底吹き転炉:転炉内の溶鋼にランスおよび底吹き羽口を介して上下両方から酸素を供給する。
In melting nitrogen-containing steel, first, oxygen is supplied to the molten steel in a converter and decarburization treatment (so-called primary refining) is performed. The converters to be used are roughly divided into the following three types (a) to (c) according to the oxygen supply method.
(a) Top-blown converter: Oxygen gas is blown from above through molten steel in the converter.
(b) Bottom-blown converter: Oxygen gas is supplied to the molten steel from below through a bottom-blown tuyere provided at the bottom of the converter.
(c) Top-bottom blowing converter: Oxygen is supplied to the molten steel in the converter from both the top and bottom via the lance and bottom blowing tuyere.

なお (a)上吹き転炉と (c)上底吹き転炉で使用するランスを、後述する真空脱ガス処理のランスと区別するために、以下では転炉ランスと記す。   In order to distinguish the lance used in the (a) top blowing converter and (c) the top bottom blowing converter from the vacuum degassing lance described later, it will be referred to as a converter lance.

脱炭処理は、溶鋼中のCと転炉ランスや底吹き羽口を介して供給されたOとを反応させてCOあるいはCO2 として排出するものである。脱炭処理を行ないながら溶鋼に窒素を添加するために、転炉ランスや底吹き羽口を介してOのみならずNを溶鋼に供給する。 In the decarburization treatment, C in the molten steel reacts with O supplied through a converter lance or a bottom blowing tuyere and discharged as CO or CO 2 . In order to add nitrogen to the molten steel while decarburizing, not only O but also N is supplied to the molten steel through a converter lance and bottom blowing tuyere.

転炉で脱炭処理とN添加を終了した後、溶鋼の真空脱ガス処理を行なう。真空脱ガス処理は、溶鋼中のガス成分を除去する技術であり、溶鋼を真空槽内へ吸上,排出を繰り返すDH法と溶鋼を取鍋と真空槽との間で連続的に循環して処理するRH法に大別される。ただし含窒素鋼の溶製では、溶鋼にNを容易に添加できるRH法が広く採用されている。ここでは真空脱ガス処理の例としてRH法について説明する。   After completing the decarburization process and N addition in the converter, vacuum degassing of the molten steel is performed. Vacuum degassing is a technology that removes gas components in molten steel, and continuously circulates the molten steel between the ladle and the vacuum tank by the DH method, which repeatedly sucks and discharges the molten steel into the vacuum tank. Roughly divided into RH methods to be processed. However, in the melting of nitrogen-containing steel, the RH method that can easily add N to the molten steel is widely adopted. Here, the RH method will be described as an example of the vacuum degassing process.

図1は、RH法で真空脱ガス処理を行なう際の溶鋼と真空槽の配置の例を模式的に示す断面図である。   FIG. 1 is a cross-sectional view schematically showing an example of arrangement of molten steel and a vacuum chamber when performing vacuum degassing treatment by the RH method.

RH法で使用する真空槽3の下部には、2本の浸漬管が配設されており、その上昇浸漬管5aと下降浸漬管5bを取鍋1内の溶鋼2に浸漬する。次いで、真空槽3の上部に設けられる排気ダクト4から真空槽3内のガスを吸引して、真空槽3内を減圧する。   Two dip tubes are provided at the lower part of the vacuum chamber 3 used in the RH method, and the ascending dip tube 5a and the descending dip tube 5b are immersed in the molten steel 2 in the pan 1. Next, the gas in the vacuum chamber 3 is sucked from the exhaust duct 4 provided in the upper part of the vacuum chamber 3 to reduce the pressure in the vacuum chamber 3.

真空槽3内が減圧されることによって、取鍋1内の溶鋼2が真空槽3内に吸い上げられる。上昇浸漬管5aには環流ガス6の吹込みノズルが設けられており、上昇浸漬管5a内の溶鋼2に環流ガス6が吹込まれる。環流ガス6は気泡となって溶鋼2内を浮上する。その結果、上昇浸漬管5a内の溶鋼2の比重が相対的に減少し、下降浸漬管5b内の溶鋼2の比重は上昇浸漬管5a側に比べて大きくなる。   By reducing the pressure in the vacuum chamber 3, the molten steel 2 in the ladle 1 is sucked into the vacuum chamber 3. The ascending dip tube 5a is provided with a nozzle for blowing the reflux gas 6, and the reflux gas 6 is blown into the molten steel 2 in the ascending dip tube 5a. The reflux gas 6 becomes bubbles and floats in the molten steel 2. As a result, the specific gravity of the molten steel 2 in the ascending dip tube 5a is relatively reduced, and the specific gravity of the molten steel 2 in the descending dip tube 5b is larger than that on the ascending dip tube 5a side.

溶鋼2に比重差を付与することによって、取鍋1内の溶鋼2が上昇浸漬管5aを通って真空槽3内に上昇し、さらに真空槽3内の溶鋼2は下降浸漬管5bを通って取鍋1に下降する。このようにして溶鋼2が取鍋1から真空槽3を経て再び取鍋1へ環流する間に、真空槽3内で溶鋼2の真空脱ガス処理を行なう。   By giving a difference in specific gravity to the molten steel 2, the molten steel 2 in the ladle 1 rises into the vacuum chamber 3 through the rising dip tube 5a, and further the molten steel 2 in the vacuum vessel 3 passes through the descending dip tube 5b. Lower to ladle 1. In this way, the molten steel 2 is vacuum degassed in the vacuum chamber 3 while the molten steel 2 flows back from the ladle 1 through the vacuum chamber 3 to the ladle 1 again.

RH法で溶鋼2の真空脱ガス処理を行なうとともに窒素を添加する場合は、環流ガス6に窒素を混合する。あるいは図1に示すように、ランス7を介して上方から窒素ガス8を吹付ける。真空脱ガス処理で使用するランスを、転炉ランスと区別するために、以下では真空槽ランスと記す。   When performing vacuum degassing of the molten steel 2 by the RH method and adding nitrogen, nitrogen is mixed with the reflux gas 6. Alternatively, as shown in FIG. 1, nitrogen gas 8 is blown from above through a lance 7. In order to distinguish the lance used in the vacuum degassing process from the converter lance, the lance is hereinafter referred to as a vacuum tank lance.

また、窒素を混合した環流ガス6と真空槽ランス7からの窒素ガス8とを併用することも可能である。   Moreover, it is also possible to use the reflux gas 6 mixed with nitrogen and the nitrogen gas 8 from the vacuum chamber lance 7 in combination.

このようにして含窒素鋼を溶製することができる。しかし、この技術では、Sのような界面活性元素を添加する必要のある鋼については含窒素鋼中のS含有量を所定の範囲に調整した上で含窒素鋼を溶製するのは困難であった。   In this way, nitrogen-containing steel can be melted. However, with this technique, it is difficult to melt the nitrogen-containing steel after adjusting the S content in the nitrogen-containing steel to a predetermined range for the steel to which a surface active element such as S needs to be added. there were.

さらに、脱炭処理と真空脱ガス処理を組合わせた含窒素鋼の溶製技術は、上記した技術の他に種々検討されている。   Furthermore, various techniques for melting nitrogen-containing steel by combining decarburization and vacuum degassing have been studied in addition to the techniques described above.

たとえば特許文献1には、転炉で脱炭処理を施し、さらに窒素ガスを吹込んだ後、真空槽で真空脱ガス処理を行なう技術が開示されている。特許文献2には、転炉で脱炭処理を施した後、真空槽でN含有量を目標範囲の下限値以下まで低減し、さらに窒素含有合金を添加する技術が開示されている。特許文献3には、転炉で脱炭処理を施した後、真空槽で還流ガスとして窒素ガスを用いて真空脱ガス処理を行なう技術が開示されている。特許文献4には、転炉で脱炭処理を施した後、真空槽で真空脱ガス処理を行ないながら窒素ガスを吹込む技術が開示されている。   For example, Patent Document 1 discloses a technique in which decarburization processing is performed in a converter, nitrogen gas is blown, and then vacuum degassing processing is performed in a vacuum chamber. Patent Document 2 discloses a technique in which after decarburization processing is performed in a converter, the N content is reduced to a lower limit value or less of a target range in a vacuum tank, and further a nitrogen-containing alloy is added. Patent Document 3 discloses a technique of performing a vacuum degassing process using nitrogen gas as a reflux gas in a vacuum tank after performing a decarburization process in a converter. Patent Document 4 discloses a technique in which nitrogen gas is blown while vacuum degassing is performed in a vacuum tank after decarburization is performed in a converter.

これらの技術は、いずれも含窒素鋼中のS含有量を所定の範囲に調整した上で含窒素鋼を溶製するのは困難であった。
特開2002-12908号公報 特開平7-242927号公報 特開平2-225615号公報 特開昭61-264122 号公報
In any of these techniques, it is difficult to melt the nitrogen-containing steel after adjusting the S content in the nitrogen-containing steel to a predetermined range.
JP 2002-12908 JP JP 7-242927 A Japanese Patent Laid-Open No.2-225615 JP 61-264122 A

本発明は上記のような問題を解消し、含窒素鋼を溶製するにあたって、N含有量のみならずS含有量も所定の範囲に精度良く調整して、含窒素鋼を安定して溶製する方法を提供することを目的とする。   The present invention solves the above-mentioned problems, and when melting nitrogen-containing steel, not only the N content but also the S content is accurately adjusted within a predetermined range, and the nitrogen-containing steel is stably melted. It aims to provide a way to do.

本発明は、転炉で溶鋼の脱炭処理を行なうとともに窒素を添加し、次いで真空脱ガス処理を行なう含窒素鋼の溶製方法において、転炉から出鋼した溶鋼のN含有量[N](質量%)を測定し、[N]が目標範囲の上限値[Nmax ](質量%)を超える場合は、下記の (1)式および (2)式から脱[N]時間T1 (分)を算出して、真空脱ガス処理の開始からT1 の間はNの除去を行ない、T 1 が経過した後に硫黄もしくは硫黄を含む合金を投入し、[N]が目標範囲内を満足する場合は、真空脱ガス処理の環流開始と同時に硫黄もしくは硫黄を含む合金を投入し、[N]が目標範囲の下限値[Nmin ](質量%)未満の場合は、下記の (3)式および (4)式から吸[N]時間T2 (分)を算出して、真空脱ガス処理の開始からT2 の間はNの添加を行ない、T 2 が経過した後に硫黄もしくは硫黄を含む合金を投入する含窒素鋼の溶製方法である。
The present invention relates to a nitrogen-containing steel melting method in which molten steel is decarburized in a converter and nitrogen is added, followed by vacuum degassing, and the N content [N] of the molten steel discharged from the converter (% By mass) is measured, and when [N] exceeds the upper limit [N max ] (% by mass) of the target range, the [N] time T 1 ( Min), N is removed during T 1 from the start of the vacuum degassing treatment, and after T 1 , sulfur or an alloy containing sulfur is introduced, and [N] satisfies the target range. When the reflux of the vacuum degassing process is started, sulfur or an alloy containing sulfur is added. When [N] is less than the lower limit [N min ] (mass%) of the target range, the following (3) calculates the intake [N] time T 2 (min) from the formula and (4), between T 2 from the start of the vacuum degassing process performs addition of N A melting method of a nitrogen Motoko to inject alloy containing sulfur or sulfur after T 2 has elapsed.

1 =ΔN1 /VEX ・・・ (1)
ΔN1 =[N]−[Nmax ] ・・・ (2)
2 =ΔN2 /VIN ・・・ (3)
ΔN2 =[N]−[Nmin ] ・・・ (4)
[N] :脱炭処理終了後のN含有量(質量%)
[Nmax ]:真空脱ガス処理終了後の目標範囲の上限値(質量%)
[Nmin ]:真空脱ガス処理終了後の目標範囲の下限値(質量%)
EX :真空脱ガス処理における脱[N]速度(質量%/分)
IN :真空脱ガス処理における吸[N]速度(質量%/分)
1 :[N]が過多である場合の脱[N]時間(分)
2 :[N]が過少である場合の吸[N]時間(分)
本発明の含窒素鋼の溶製方法では、真空脱ガス処理で環流ガスとしてArを使用することが好ましい。
T 1 = ΔN 1 / V EX (1)
ΔN 1 = [N] − [N max ] (2)
T 2 = ΔN 2 / V IN (3)
ΔN 2 = [N] − [N min ] (4)
[N]: N content (mass%) after completion of decarburization treatment
[N max ]: Upper limit value (mass%) of the target range after completion of the vacuum degassing process
[N min ]: Lower limit of target range (mass%) after completion of vacuum degassing process
V EX : Desorption [N] rate (% by mass / min) in vacuum degassing treatment
V IN : Suction [N] rate (% by mass / min) in vacuum degassing
T 1 : [N] time (minutes) when [N] is excessive
T 2 : Absorption [N] time (min) when [N] is too small
In the method for melting nitrogen-containing steel of the present invention, it is preferable to use Ar as a reflux gas in vacuum degassing treatment.

本発明によれば、S含有量に関わらずN含有量を所定の範囲に精度良く調整して、含窒素鋼を安定して溶製することができる。   According to the present invention, the nitrogen-containing steel can be stably melted by accurately adjusting the N content within a predetermined range regardless of the S content.

本発明を適用して含窒素鋼を溶製するにあたって、転炉で溶鋼に酸素を供給して脱炭処理を行なう。転炉は従来から (a)上吹き転炉, (b)底吹き転炉, (c)上底吹き転炉が知られており、いずれの型式の転炉も使用できる。脱炭処理は一般に1次精錬と呼ばれており、転炉の型式や溶鋼の成分等に応じて、従来から知られている技術を適宜選択して使用する。   When melting the nitrogen-containing steel by applying the present invention, oxygen is supplied to the molten steel in a converter to perform a decarburization process. Conventionally known converters are (a) top blow converter, (b) bottom blow converter, and (c) top bottom converter, and any type of converter can be used. The decarburization process is generally called primary refining, and a conventionally known technique is appropriately selected and used according to the converter type, molten steel components, and the like.

転炉で脱炭処理を行なうと同時に、溶鋼にNを添加する。Nの供給は、転炉ランスや底吹き羽口から窒素ガスを供給する方法,あるいはコークスを投入する方法等で行なう。コークスは多孔質であるから、コークスの内部に空気が浸入しており、コークスを溶鋼に投入することによってNを添加することが可能である。   N is added to the molten steel at the same time as decarburization treatment is performed in the converter. N is supplied by a method of supplying nitrogen gas from a converter lance or bottom blowing tuyere, or a method of charging coke. Since coke is porous, air has entered the coke, and N can be added by putting coke into molten steel.

脱炭処理とN添加を終了した後、溶鋼を取鍋に出鋼してN含有量を測定する。脱炭処理を行なった後の溶鋼のN含有量(質量%)(以下、[N]という)の測定は、従来から知られている測定技術(たとえば燃焼法等)を使用する。   After finishing the decarburization process and N addition, the molten steel is put into a ladle and the N content is measured. Measurement of the N content (mass%) (hereinafter referred to as [N]) of the molten steel after the decarburization treatment uses a conventionally known measurement technique (for example, a combustion method).

脱炭処理が終了した後で測定した[N]と、後述する真空脱ガス処理が終了した後のN含有量の目標範囲とを比較し、N含有量の目標範囲の上限値[Nmax ](質量%),下限値[Nmin ](質量%)と[N]との関係に応じて下記の (A)〜(C) の3種類に分類する。なお、真空脱ガス処理が終了した後のN含有量の[Nmax ],[Nmin ]は、製品の規格で規定されるN含有量の許容範囲の上限値,下限値と同一の値を設定しても良いし、あるいは設備の特性や溶鋼の成分に応じて個別に設定しても良い。
(A) [N]が[Nmax ]を超える場合 :[Nmax ]<[N]
(B) [N]が目標範囲内を満足する場合:[Nmin ]≦[N]≦[Nmax
(C) [N]が[Nmin ]未満の場合 :[N]<[Nmin
一方、取鍋に出鋼した溶鋼を真空脱ガス設備に搬送して、RH法で真空脱ガス処理を行なう。真空脱ガス処理は2次精錬と呼ばれており、溶鋼中のガス成分を除去する処理である。本発明では、ガス成分を除去するとともに、N含有量が所定の目標範囲内を満足するように調整する。溶鋼中のN含有量[N]が目標範囲の上限値[Nmax ]を超える場合はNを除去し、目標範囲の下限値[Nmin ]に満たない場合はNを添加する。Nの除去は、真空脱ガス処理と同様に行なう。Nの添加は、環流ガスとして窒素ガスを用いる方法や真空槽ランスから窒素ガスを吹付ける方法,石灰窒素や窒化マンガンを添加する方法等で行なう。
The [N] measured after the decarburization process is compared with the target range of the N content after the vacuum degassing process described later is completed, and the upper limit [N max ] of the target range of the N content (Mass%), the lower limit [ Nmin ] (mass%) and [N] are classified into the following three types (A) to (C) according to the relationship between [N] Note that the N content [N max ] and [N min ] after the vacuum degassing process are the same as the upper and lower limits of the allowable range of N content defined in the product specifications. You may set, or you may set separately according to the characteristic of an installation, and the component of molten steel.
(A) When [N] exceeds the [N max]: [N max ] <[N]
(B) When [N] satisfies the target range: [N min ] ≦ [N] ≦ [N max ]
(C) When [N] is less than [N min ]: [N] <[N min ]
On the other hand, the molten steel delivered to the ladle is transported to a vacuum degassing facility, and vacuum degassing is performed by the RH method. The vacuum degassing process is called secondary refining, and is a process for removing gas components in molten steel. In this invention, while removing a gas component, it adjusts so that N content may satisfy the predetermined target range. N is removed when the N content [N] in the molten steel exceeds the upper limit [N max ] of the target range, and N is added when the lower limit [N min ] of the target range is not reached. N is removed in the same manner as the vacuum degassing process. N is added by a method using nitrogen gas as a reflux gas, a method of blowing nitrogen gas from a vacuum lance, a method of adding lime nitrogen or manganese nitride, or the like.

ただし真空脱ガス処理が終了した後のN含有量を所定の目標範囲内に精度良く調整するためには、環流ガスとしてArを使用するのが好ましい。その場合は、真空槽ランスから窒素ガスを吹付ける方法あるいは石灰窒素や窒化マンガンを添加する方法で溶鋼にNを添加する。   However, in order to accurately adjust the N content after the vacuum degassing process within a predetermined target range, it is preferable to use Ar as the reflux gas. In that case, N is added to the molten steel by a method of blowing nitrogen gas from a vacuum tank lance or a method of adding lime nitrogen or manganese nitride.

次いで、真空脱ガス処理を行ないながら、溶鋼に硫黄もしくは硫黄を含む合金(たとえばFeS合金)を合金添加口から投入する方法が簡便で効果的である。ただしSを溶鋼に投入する時期は、上記した (A)〜(C) の分類に応じて異なる。
(A) [N]が[Nmax ]を超える場合
[Nmax ]<[N]の場合は、真空槽内を減圧(すなわち真空脱ガス処理を開始)して脱[N]時間T1 (分)が経過した後、硫黄もしくは硫黄含有合金を投入する。脱[N]時間T1 は下記の (1)式および (2)式から算出される値である。なお (1)式中のVEX値は、予め実験を行なって設定しても良いし、あるいは操業データを解析して設定しても良い。
Next, a method in which sulfur or an alloy containing sulfur (for example, FeS alloy) is introduced into the molten steel from the alloy addition port while performing vacuum degassing treatment is simple and effective. However, the time when S is added to the molten steel varies depending on the classifications (A) to (C) described above.
(A) When [N] exceeds the [N max] [N max] < For [N], pressure of the vacuum vessel (or starting the vacuum degassing treatment) to de [N] Time T 1 ( Minutes), sulfur or a sulfur-containing alloy is charged. [N] time T 1 is a value calculated from the following equations (1) and (2). The V EX value in the equation (1) may be set by conducting an experiment in advance, or may be set by analyzing operation data.

1 =ΔN1 /VEX ・・・ (1)
ΔN1 =[N]−[Nmax ] ・・・ (2)
[N] :脱炭処理終了後のN含有量(質量%)
[Nmax ]:真空脱ガス処理終了後の目標範囲の上限値(質量%)
EX :真空脱ガス処理における脱[N]速度(質量%/分)
1 :[N]が過多である場合の脱[N]時間(分)
(B) [N]が目標範囲内を満足する場合
[Nmin ]≦[N]≦[Nmax ]の場合は、真空槽内を減圧し、さらに上昇浸漬管に環流ガスを吹込んで、環流を開始すると同時に硫黄もしくは硫黄含有合金を投入する。
(C) [N]が[Nmin ]未満の場合
[N]<[Nmin ]の場合は、真空槽内を減圧(すなわち真空脱ガス処理を開始)して吸[N]時間T2 (分)が経過した後、硫黄もしくは硫黄含有合金を投入する。吸[N]時間T2 は下記の (3)式および (4)式から算出される値である。なお (3)式中のVIN値は、予め実験を行なって設定しても良いし、あるいは操業データを解析して設定しても良い。
T 1 = ΔN 1 / V EX (1)
ΔN 1 = [N] − [N max ] (2)
[N]: N content (mass%) after completion of decarburization treatment
[N max ]: Upper limit value (mass%) of the target range after completion of the vacuum degassing process
V EX : Desorption [N] rate (% by mass / min) in vacuum degassing treatment
T 1 : [N] time (minutes) when [N] is excessive
(B) When [N] satisfies the target range When [N min ] ≦ [N] ≦ [N max ], the inside of the vacuum chamber is depressurized, and the reflux gas is blown into the ascending dip tube, At the same time, sulfur or a sulfur-containing alloy is introduced.
(C) When [N] is less than [N min ] When [N] <[N min ], the inside of the vacuum chamber is depressurized (that is, the vacuum degassing process is started), and the suction [N] time T 2 ( Minutes), sulfur or a sulfur-containing alloy is charged. The absorption [N] time T 2 is a value calculated from the following equations (3) and (4). The V IN value in the expression (3) may be set by conducting an experiment in advance, or may be set by analyzing operation data.

2 =ΔN2 /VIN ・・・ (3)
ΔN2 =[N]−[Nmin ] ・・・ (4)
[N] :脱炭処理終了後のN含有量(質量%)
[Nmin ]:真空脱ガス処理終了後の目標範囲の下限値(質量%)
IN :真空脱ガス処理における吸[N]速度(質量%/分)
2 :[N]が過少である場合の吸[N]時間(分)
硫黄もしくは硫黄含有合金の投入量は、 (A)〜(C) のいずれの場合も、真空脱ガス処理後のS含有量の目標値に応じて設定する。
T 2 = ΔN 2 / V IN (3)
ΔN 2 = [N] − [N min ] (4)
[N]: N content (mass%) after completion of decarburization treatment
[N min ]: Lower limit of target range (mass%) after completion of vacuum degassing process
V IN : Suction [N] rate (% by mass / min) in vacuum degassing
T 2 : Absorption [N] time (min) when [N] is too small
The input amount of sulfur or a sulfur-containing alloy is set according to the target value of the S content after the vacuum degassing process in any of the cases (A) to (C).

上吹き転炉を用いて溶鋼の脱炭処理を行ない、コークスを投入して溶鋼にNを添加した。次いで、転炉から出鋼した溶鋼(脱炭処理終了後の溶鋼)のN含有量(質量%),S含有量(質量%)を測定した。次いで、図1に示す装置を用いてRH法で真空脱ガス処理を行なった。このようにして含窒素鋼の溶製を8チャージ行なった。真空脱ガス処理では、環流ガス6として窒素ガス,アルゴンガス,窒素とアルゴンの混合ガスを使用し、環流時間はいずれも25分とした。各チャージの脱炭処理終了後のN含有量,S含有量および環流ガス6の種類は表1に示す通りである。表1中では、真空脱ガス処理を簡略化して脱ガスと記す。   The molten steel was decarburized using a top blow converter, coke was added, and N was added to the molten steel. Subsequently, N content (mass%) and S content (mass%) of the molten steel (melted steel after completion | finish of decarburization processing) which came out from the converter were measured. Next, vacuum degassing was performed by the RH method using the apparatus shown in FIG. In this way, the melting of the nitrogen-containing steel was performed 8 times. In the vacuum degassing treatment, nitrogen gas, argon gas, or a mixed gas of nitrogen and argon was used as the reflux gas 6, and the reflux time was 25 minutes. Table 1 shows the N content, the S content, and the type of the reflux gas 6 after completion of the decarburization treatment for each charge. In Table 1, the vacuum degassing process is simplified and described as degassing.

Figure 0004277741
Figure 0004277741

また、真空脱ガス処理でSを投入する時期も表1に示す。なお鋼中[S]の調整は、FeS合金を合金投入口から添加する方法で行なった。   Table 1 also shows the timing of introducing S in the vacuum degassing process. [S] in the steel was adjusted by a method of adding an FeS alloy from the alloy inlet.

Sを投入する時期は、表1に示すように、脱炭処理終了後のN含有量[N]とその真空脱ガス終了後の目標範囲との関係に応じて (A)〜(C) の3種類に分けて設定した。すなわち、
(A) [Nmax ]<[N]の場合は脱[N]時間T1 (分)を算出し、真空脱ガス処理の開始からT1 が経過した後、FeS合金を投入した。
(B) [Nmin ]≦[N]≦[Nmax ]の場合は環流開始と同時にFeS合金を投入した。
(C) [N]<[Nmin ]の場合は吸[N]時間T2 (分)を算出し、真空脱ガス処理の開始からT2 が経過した後、FeS合金を投入した。
As shown in Table 1, the timing of introducing S depends on the relationship between the N content [N] after completion of the decarburization treatment and the target range after the completion of the vacuum degassing, as shown in (A) to (C). Three types were set. That is,
(A) In the case of [N max ] <[N], the de [N] time T 1 (minute) was calculated, and after T 1 elapsed from the start of the vacuum degassing treatment, the FeS alloy was charged.
(B) In the case of [N min ] ≦ [N] ≦ [N max ], the FeS alloy was charged simultaneously with the start of the reflux.
(C) When [N] <[N min ], the suction [N] time T 2 (minute) was calculated, and after T 2 had elapsed from the start of the vacuum degassing treatment, the FeS alloy was charged.

なお (A)における[Nmax ]および (C)における[Nmin ]は、製品の規格で機械される許容範囲の上限値および下限値とした。 Note that [N max ] in (A) and [N min ] in (C) are the upper limit value and lower limit value of the allowable range machined by the product standards.

また、T1 ,T2 の算出に必要なVEX ,VINは,図2のデータを使用した。すなわち図2は、操業データを解析して求めた脱炭処理終了後のS含有量とVEX,VINとの関係を示すグラフであり、S含有量の測定値からVEX ,VINを読み取ることができる。このようにして (A),(C) で算出したT1 ,T2 は表1に示す通りである。これを発明例とする。 The data shown in FIG. 2 was used for V EX and V IN necessary for calculating T 1 and T 2 . That is, FIG. 2, S content of decarburization after the end determined by analyzing the operational data and V EX, a graph showing the relationship between V IN, V EX from the measured values of S content, the V IN Can be read. Thus, T 1 and T 2 calculated in (A) and (C) are as shown in Table 1. This is an invention example.

一方、比較例として、上吹き転炉を用いて溶鋼の脱炭処理を行ない、コークスを投入して溶鋼にNを添加した。次いで、転炉から出鋼した溶鋼(脱炭処理終了後の溶鋼)のN含有量(質量%),S含有量(質量%)を測定した。次いで、図1に示す装置を用いてRH法で真空脱ガス処理を行なった。このようにして含窒素鋼の溶製を5チャージ行なった。真空脱ガス処理では、環流ガス6として窒素ガス,アルゴンガスを使用し、環流時間はいずれも25分とした。各チャージの脱炭処理終了後のN含有量,S含有量および環流ガス6の種類は表1に示す通りである。鋼中[S]の調整は、いずれも環流開始と同時にFeS合金の粉末を合金投入口から添加する方法で行なった。   On the other hand, as a comparative example, decarburization treatment of the molten steel was performed using an upper blow converter, and coke was added to add N to the molten steel. Subsequently, N content (mass%) and S content (mass%) of the molten steel (melted steel after completion | finish of decarburization processing) which came out from the converter were measured. Next, vacuum degassing was performed by the RH method using the apparatus shown in FIG. In this way, the melting of the nitrogen-containing steel was performed for 5 charges. In the vacuum degassing treatment, nitrogen gas and argon gas were used as the reflux gas 6, and the reflux time was 25 minutes for both. Table 1 shows the N content, the S content, and the type of the reflux gas 6 after completion of the decarburization treatment for each charge. The adjustment of [S] in the steel was performed by adding FeS alloy powder from the alloy inlet simultaneously with the start of the reflux.

真空脱ガス処理が終了した後、各チャージの溶鋼のN含有量を測定した。その結果は表1に示す通りである。発明例では、真空脱ガス処理終了後のN含有量が76〜96質量ppm であったが、比較例では71〜99質量ppm であった。つまり発明例の方が、真空脱ガス処理終了後のN含有量のばらつきが小さかった。   After the vacuum degassing treatment was completed, the N content of the molten steel for each charge was measured. The results are as shown in Table 1. In the inventive examples, the N content after the vacuum degassing treatment was 76 to 96 mass ppm, whereas in the comparative examples, it was 71 to 99 mass ppm. That is, the variation in N content after the vacuum degassing process was smaller in the inventive example.

RH法の溶鋼と真空槽の配置の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of arrangement | positioning of the molten steel and vacuum chamber of RH method. 脱炭処理終了後のS含有量とVEX ,VINとの関係を示すグラフである。It is a graph which shows the relationship between S content after completion | finish of a decarburization process, and VEX , VIN .

符号の説明Explanation of symbols

1 取鍋
2 溶鋼
3 真空槽
4 排気ダクト
5a 上昇浸漬管
5b 下降浸漬管
6 環流ガス
7 真空槽ランス
8 窒素ガス
1 Ladle 2 Molten steel 3 Vacuum tank 4 Exhaust duct
5a Ascending dip tube
5b dip tube 6 recirculating gas 7 vacuum chamber lance 8 nitrogen gas

Claims (2)

転炉で溶鋼の脱炭処理を行なうとともに窒素を添加し、次いで真空脱ガス処理を行なう含窒素鋼の溶製方法において、前記転炉から出鋼した溶鋼のN含有量[N](質量%)を測定し、[N]が目標範囲の上限値[Nmax ](質量%)を超える場合は、下記の (1)式および (2)式から脱[N]時間T1 (分)を算出して、前記真空脱ガス処理の開始からT1 の間はNの除去を行ない、T 1 が経過した後に硫黄もしくは硫黄を含む合金を投入し、[N]が目標範囲内を満足する場合は、前記真空脱ガス処理の環流開始と同時に硫黄もしくは硫黄を含む合金を投入し、[N]が目標範囲の下限値[Nmin ](質量%)未満の場合は、下記の (3)式および (4)式から吸[N]時間T2 (分)を算出して、前記真空脱ガス処理の開始からT2 の間はNの添加を行ない、T 2 が経過した後に硫黄もしくは硫黄を含む合金を投入することを特徴とする含窒素鋼の溶製方法。
1 =ΔN1 /VEX ・・・ (1)
ΔN1 =[N]−[Nmax ] ・・・ (2)
2 =ΔN2 /VIN ・・・ (3)
ΔN2 =[N]−[Nmin ] ・・・ (4)
[N] :脱炭処理終了後のN含有量(質量%)
[Nmax ]:真空脱ガス処理終了後の目標範囲の上限値(質量%)
[Nmin ]:真空脱ガス処理終了後の目標範囲の下限値(質量%)
EX :真空脱ガス処理における脱[N]速度(質量%/分)
IN :真空脱ガス処理における吸[N]速度(質量%/分)
1 :[N]が過多である場合の脱[N]時間(分)
2 :[N]が過少である場合の吸[N]時間(分)
In a method for melting nitrogen-containing steel in which molten steel is decarburized in a converter and nitrogen is added, followed by vacuum degassing, the N content [N] (% by mass) of the molten steel discharged from the converter ) And [N] exceeds the upper limit [N max ] (mass%) of the target range, the [N] time T 1 (min) from the following formulas (1) and (2) When N is removed during the period T 1 from the start of the vacuum degassing process and sulfur or an alloy containing sulfur is introduced after T 1 has elapsed, and [N] satisfies the target range Is charged with sulfur or an alloy containing sulfur simultaneously with the start of the reflux of the vacuum degassing treatment, and when [N] is less than the lower limit [N min ] (mass%) of the target range, the following formula (3) and (4) to calculate the absorption [N] time T 2 (min) from the equation, the addition of between the start of the vacuum degassing treatment of T 2 are N No method melting nitrogen Motoko, which comprises introducing an alloy containing sulfur or sulfur after T 2 has elapsed.
T 1 = ΔN 1 / V EX (1)
ΔN 1 = [N] − [N max ] (2)
T 2 = ΔN 2 / V IN (3)
ΔN 2 = [N] − [N min ] (4)
[N]: N content (mass%) after completion of decarburization treatment
[N max ]: Upper limit value (mass%) of the target range after completion of the vacuum degassing process
[N min ]: Lower limit of target range (mass%) after completion of vacuum degassing process
V EX : Desorption [N] rate (% by mass / min) in vacuum degassing treatment
V IN : Suction [N] rate (% by mass / min) in vacuum degassing
T 1 : [N] time (minutes) when [N] is excessive
T 2 : Absorption [N] time (min) when [N] is too small
前記真空脱ガス処理で環流ガスとしてArを使用することを特徴とする請求項1に記載の含窒素鋼の溶製方法。   The method for melting nitrogen-containing steel according to claim 1, wherein Ar is used as a reflux gas in the vacuum degassing treatment.
JP2004172206A 2004-06-10 2004-06-10 Method for melting nitrogen-containing steel Expired - Lifetime JP4277741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004172206A JP4277741B2 (en) 2004-06-10 2004-06-10 Method for melting nitrogen-containing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004172206A JP4277741B2 (en) 2004-06-10 2004-06-10 Method for melting nitrogen-containing steel

Publications (2)

Publication Number Publication Date
JP2005350718A JP2005350718A (en) 2005-12-22
JP4277741B2 true JP4277741B2 (en) 2009-06-10

Family

ID=35585440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004172206A Expired - Lifetime JP4277741B2 (en) 2004-06-10 2004-06-10 Method for melting nitrogen-containing steel

Country Status (1)

Country Link
JP (1) JP4277741B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224367A (en) * 2006-02-23 2007-09-06 Jfe Steel Kk Method for producing high-nitrogen steel
KR101796089B1 (en) * 2016-09-06 2017-11-10 주식회사 포스코 Method for manufacturing steel

Also Published As

Publication number Publication date
JP2005350718A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
KR101701658B1 (en) Method for pretreating molten iron
JP5904237B2 (en) Melting method of high nitrogen steel
JP6838419B2 (en) Melting method of high nitrogen and low oxygen steel
EP0347884A2 (en) Process for vacuum degassing and decarbonization with temperature drop compensating feature
KR101484947B1 (en) Method for manufacturing carbon steel
JP4277741B2 (en) Method for melting nitrogen-containing steel
JP4463701B2 (en) Decarburization method for molten stainless steel and method for producing ultra-low carbon stainless steel
JP5614306B2 (en) Method for melting manganese-containing low carbon steel
JP4687103B2 (en) Melting method of low carbon aluminum killed steel
JP4686917B2 (en) Melting method of molten steel in vacuum degassing equipment
JP4844552B2 (en) Melting method of low carbon high manganese steel
CN114085956A (en) RH top gun powder injection desulfurization process for non-oriented silicon steel
JP6806288B2 (en) Steel manufacturing method
JP6330559B2 (en) Denitrification refining method
JP4085898B2 (en) Melting method of low carbon high manganese steel
JP4534734B2 (en) Melting method of low carbon high manganese steel
RU2754337C1 (en) Method for production of nitrogen-doped steel in bucket
JPH0770630A (en) Smelting method for low-nitrogen steel by using electric furnace molten steel
JPH11293329A (en) Production of extra-low carbon silicon-killed steel excellent in cleaning property
JP3994641B2 (en) Manufacturing method of high clean ultra low carbon steel
JP2021031744A (en) Smelting process of high nitrogen stainless steel
JP2002180122A (en) Method for producing high cleanliness steel
JP2000239733A (en) Production of high cleanliness steel
JP4826307B2 (en) Melting method of high phosphorus steel
CN115335537A (en) Decarburization refining method of molten steel under reduced pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4277741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250