JP5904237B2 - Melting method of high nitrogen steel - Google Patents

Melting method of high nitrogen steel Download PDF

Info

Publication number
JP5904237B2
JP5904237B2 JP2014144684A JP2014144684A JP5904237B2 JP 5904237 B2 JP5904237 B2 JP 5904237B2 JP 2014144684 A JP2014144684 A JP 2014144684A JP 2014144684 A JP2014144684 A JP 2014144684A JP 5904237 B2 JP5904237 B2 JP 5904237B2
Authority
JP
Japan
Prior art keywords
nitrogen
gas
vacuum
molten steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014144684A
Other languages
Japanese (ja)
Other versions
JP2015042777A (en
Inventor
暢 井上
暢 井上
村井 剛
剛 村井
真吾 阿川
真吾 阿川
満園 将行
将行 満園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014144684A priority Critical patent/JP5904237B2/en
Publication of JP2015042777A publication Critical patent/JP2015042777A/en
Application granted granted Critical
Publication of JP5904237B2 publication Critical patent/JP5904237B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、転炉及びRH真空脱ガス装置を用いて清浄性の高い高窒素鋼を溶製する方法に関する。   The present invention relates to a method for melting high nitrogen steel with high cleanliness using a converter and an RH vacuum degassing apparatus.

高窒素鋼とは、窒素含有量が0.0100質量%以上の鋼であり、時効硬化などの特性を発現させるために、鋼中の窒素含有量を意図的に高めた鋼である。高窒素鋼のうちで缶用鋼板などに使用される高窒素鋼では、高い加工性も要求されるので、非金属介在物の少ない清浄度の高い鋼であることも必要とされている。従来、高窒素鋼を効率的に溶製するために、種々の提案がなされている。   High nitrogen steel is steel having a nitrogen content of 0.0100% by mass or more, and is steel in which the nitrogen content in steel is intentionally increased in order to develop properties such as age hardening. Among high nitrogen steels, high nitrogen steels used for steel plates for cans and the like are required to have high workability, and therefore, it is necessary to have high cleanliness with little non-metallic inclusions. Conventionally, various proposals have been made to efficiently melt high nitrogen steel.

例えば、特許文献1には、転炉内の溶銑に上吹きランスから酸素ガスと窒素ガスとの混合ガスを吹き付け、溶銑を加窒処理しながら脱炭精錬して高窒素鋼を溶製する方法において、前記混合ガス中の窒素ガス混合比を精錬の経過に応じて変更し、溶鋼の窒素濃度を調整する方法が提案されている。特許文献1のように、転炉での脱炭精錬中に窒素ガスを供給する方法は、大量の窒素を溶鋼に含有させることができ、効率的であるが、特許文献1では、転炉での精錬後に真空脱ガス設備における二次精錬を実施しておらず、清浄性の高い高窒素鋼を溶製することは困難である。   For example, Patent Document 1 discloses a method of producing high nitrogen steel by spraying a mixed gas of oxygen gas and nitrogen gas from a top blowing lance to hot metal in a converter and decarburizing and refining the hot metal with nitriding treatment. The method of adjusting the nitrogen concentration of molten steel by changing the nitrogen gas mixing ratio in the mixed gas according to the progress of refining has been proposed. As in Patent Document 1, the method of supplying nitrogen gas during decarburization and refining in a converter can efficiently contain a large amount of nitrogen in molten steel. However, in Patent Document 1, in a converter, Secondary refining in a vacuum degassing facility is not carried out after refining, and it is difficult to produce high nitrogen steel with high cleanliness.

清浄性の高い溶鋼を溶製するためには、一般的に、溶鋼を強攪拌することのできる真空脱ガス設備での精錬が必要であることが知られている。これは、非金属介在物の浮上・分離は、溶鋼を強攪拌することで促進されるからである。但し、高窒素鋼を真空脱ガス設備で精錬すると、溶鋼が減圧下の雰囲気に曝されることから、溶鋼中の窒素がガス化して溶鋼から除去されるので、単に、窒素濃度を所定値に調整した高窒素鋼を真空脱ガス設備で精錬するだけでは、所定量の窒素を含有し、且つ、清浄性に優れた高窒素鋼を効率的に溶製することはできない。   In order to melt molten steel with high cleanliness, it is generally known that refining in a vacuum degassing facility capable of stirring the molten steel is necessary. This is because the floating and separation of nonmetallic inclusions are promoted by vigorously stirring the molten steel. However, when high nitrogen steel is refined with vacuum degassing equipment, the molten steel is exposed to an atmosphere under reduced pressure, so the nitrogen in the molten steel is gasified and removed from the molten steel. By simply refining the adjusted high nitrogen steel with a vacuum degassing facility, a high nitrogen steel containing a predetermined amount of nitrogen and excellent in cleanliness cannot be efficiently melted.

そこで、特許文献2には、真空脱ガス設備での減圧下の精錬では窒素が除去されることを考慮し、転炉での脱炭精錬で目標値よりも高窒素含有量の溶鋼を溶製し、その後の真空脱ガス設備では、除去される窒素量を調整して高窒素鋼を溶製する方法が提案されている。しかし、この方法は、一旦、溶鋼中の窒素含有量を目標値よりも高くすることが必要であり、精錬時間の延長、それによる溶鋼温度の低下、更には、耐火物の溶損量増大などを招き、効率的な溶製方法とはいえない。   Therefore, in Patent Document 2, considering that nitrogen is removed in refining under reduced pressure in a vacuum degassing facility, molten steel having a nitrogen content higher than a target value is melted by decarburizing refining in a converter. In a subsequent vacuum degassing facility, a method of melting high nitrogen steel by adjusting the amount of nitrogen to be removed has been proposed. However, this method once requires the nitrogen content in the molten steel to be higher than the target value, extending the refining time, thereby lowering the molten steel temperature, and further increasing the amount of refractory erosion. This is not an efficient melting method.

一方、真空脱ガス設備で溶鋼を加窒処理する方法も提案されている。例えば、特許文献3には、真空脱ガス設備で、先ず、通常の脱ガス精錬を所定の時間実施し、次いで、環流用ガスまたは攪拌用ガスとして窒素ガスを使用し、雰囲気の窒素ガス分圧を目標とする溶鋼中窒素濃度と平衡する分圧まで高め、雰囲気中の窒素ガスによって溶鋼の窒素含有量を高める方法が提案されている。しかし、この方法では、窒素ガスを単体で環流用ガスまたは攪拌用ガスとするので、ガスによる溶鋼攪拌力は低下し、清浄性の高い高窒素鋼を安定して溶製することはできない。   On the other hand, a method of nitriding molten steel with vacuum degassing equipment has also been proposed. For example, Patent Document 3 discloses that in a vacuum degassing facility, first, normal degassing refining is performed for a predetermined time, and then nitrogen gas is used as a recirculation gas or a stirring gas. Has been proposed to increase the nitrogen content of the molten steel with nitrogen gas in the atmosphere. However, in this method, since the nitrogen gas is used alone as a reflux gas or a stirring gas, the stirring power of the molten steel by the gas is reduced, and high nitrogen steel having high cleanliness cannot be stably melted.

特許文献4には、RH真空脱ガス装置で処理中の溶鋼の窒素含有量予測モデルを作成し、アルゴンガスを環流用ガスとする精錬時間と、アルゴンガスと窒素ガスとの混合ガスを環流用ガスとする精錬時間とを制御して、溶鋼中の窒素含有量を調整する方法が提案されている。しかし、特許文献4の実施例では、溶鋼の窒素含有量が0.0060質量%以下の範囲で窒素濃度を調整しており、そのままでは高窒素鋼に適用することができない。また、窒素ガスを環流用ガスとして併用した場合には攪拌力が低下し、清浄性を高めるためには長時間の環流処理が必要となる。   In Patent Document 4, a model for predicting the nitrogen content of molten steel being processed by an RH vacuum degassing apparatus is created, and a refining time in which argon gas is used as a recirculation gas, and a mixed gas of argon gas and nitrogen gas are used for recirculation. A method for adjusting the nitrogen content in molten steel by controlling the refining time to be gas has been proposed. However, in the Example of patent document 4, nitrogen concentration is adjusted in the range whose nitrogen content of molten steel is 0.0060 mass% or less, and it cannot apply to high nitrogen steel as it is. In addition, when nitrogen gas is used as a recirculation gas, the stirring force is reduced, and a long recirculation treatment is required to improve cleanliness.

特許文献5には、脱ガス精錬終了時の溶鋼の目標窒素濃度及び脱ガス精錬時の雰囲気の真空度に対して、浸漬管から環流用ガスとして吹き込むアルゴンガスと窒素ガスとの混合ガスまたは窒素ガスの流量、及び、環流用ガス中の窒素ガス混合比を所定の範囲内に制御し、その状態で20分以上溶鋼を脱ガス精錬して、酸化物系介在物の少ない高窒素鋼を溶製する方法が提案されている。しかし、この方法は、20分間以上の精錬時間を必要とし、効率的な溶製方法とはいえない。   Patent Document 5 discloses a mixed gas or nitrogen of argon gas and nitrogen gas blown as a reflux gas from a dip tube with respect to the target nitrogen concentration of molten steel at the end of degassing and the vacuum of the atmosphere at the time of degassing. The flow rate of the gas and the nitrogen gas mixture ratio in the reflux gas are controlled within a predetermined range, and in that state, the molten steel is degassed and refined for 20 minutes or longer to dissolve the high nitrogen steel with less oxide inclusions. A manufacturing method has been proposed. However, this method requires a refining time of 20 minutes or more and is not an efficient melting method.

特開2009−102706号公報JP 2009-102706 A 特開2007−224367号公報JP 2007-224367 A 特開昭56−25919号公報JP-A-56-25919 特開平8−100211号公報Japanese Patent Laid-Open No. 8-110011 特開2004−76116号公報JP 2004-76116 A

上記のように、従来の高窒素鋼の溶製方法は、効率的に窒素含有量を高め且つ効率的に清浄性を高めることを同時に満足することはできず、転炉での過剰な加窒処理や、RH真空脱ガス装置の処理時間の延長を余儀なくされていた。   As described above, the conventional high nitrogen steel melting method cannot simultaneously satisfy the requirement of efficiently increasing the nitrogen content and efficiently increasing the cleanliness, and excessive nitriding in the converter. The processing and the processing time of the RH vacuum degassing apparatus had to be extended.

本発明はこのような事情に鑑みてなされたもので、その目的とするところは、窒素含有量が0.0100質量%以上の清浄性に優れた高窒素鋼を、転炉及びRH真空脱ガス装置の組み合わせによって効率的に溶製する方法を提供することである。   The present invention has been made in view of such circumstances, and its object is to convert a high nitrogen steel excellent in cleanliness with a nitrogen content of 0.0100% by mass or more into a converter and RH vacuum degassing. The object is to provide a method for efficiently melting by a combination of devices.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]転炉で溶製され、転炉から取鍋に出鋼された溶鋼を、浸漬管から環流用ガスを吹き込んで前記取鍋とRH真空脱ガス装置の真空槽との間を環流させて精錬し、窒素含有量が0.0100質量%以上の高窒素鋼を溶製する方法であって、先ず、前記環流用ガスとしてアルゴンガスを使用し、前記真空槽内の真空度を10torr(1.333kPa)以下まで低下させて精錬し、次いで、前記真空槽内の真空度を10torr(1.333kPa)を超える値に保持し、且つ、前記真空槽内に窒素ガスを吹き込んで精錬することを特徴とする、高窒素鋼の溶製方法。
[2]前記真空槽内の真空度を10torr(1.333kPa)を超える値に保持した際に、前記環流用ガスとしてアルゴンガスを使用し、前記真空槽に設けられた上吹きランスを介して真空槽内の溶鋼に窒素ガスを吹き付けることを特徴とする、上記[1]に記載の高窒素鋼の溶製方法。
[3]転炉から取鍋に出鋼された後の取鍋内の溶鋼の窒素含有量が0.0095〜0.0115質量%であり、RH真空脱ガス装置での精錬終了後の溶鋼の窒素含有量が0.0130〜0.0150質量%であることを特徴とする、上記[1]または上記[2]に記載の高窒素鋼の溶製方法。
The gist of the present invention for solving the above problems is as follows.
[1] Molten steel melted in the converter and discharged from the converter to the ladle is circulated between the ladle and the vacuum chamber of the RH vacuum degassing device by blowing a recirculation gas from the dip tube. In which high nitrogen steel having a nitrogen content of 0.0100% by mass or more is melted. First, argon gas is used as the reflux gas, and the degree of vacuum in the vacuum chamber is 10 torr ( 1. 33 kPa) or less, and then refining, and then maintaining the degree of vacuum in the vacuum chamber to a value exceeding 10 torr (1.333 kPa) and refining by blowing nitrogen gas into the vacuum chamber A method for melting high nitrogen steel.
[2] When the degree of vacuum in the vacuum chamber is maintained at a value exceeding 10 torr (1.333 kPa), argon gas is used as the recirculation gas, and through an upper blowing lance provided in the vacuum chamber. The method for melting high nitrogen steel according to the above [1], wherein nitrogen gas is blown onto the molten steel in the vacuum chamber.
[3] The nitrogen content of the molten steel in the ladle after being discharged from the converter to the ladle is 0.0095 to 0.0115 mass%, and the molten steel after refining in the RH vacuum degassing apparatus Nitrogen content is 0.0130-0.0150 mass%, The melting method of the high nitrogen steel as described in said [1] or said [2] characterized by the above-mentioned.

本発明において、「真空槽内の真空度」は「真空槽内の圧力」と同一意味であり、従って、真空槽内の真空度を10torr以下まで低下させるとは、真空槽内の圧力を10torr以下まで低下させることであり、また、真空槽内の真空度を10torrを超える値に保持するとは、真空槽内の圧力を10torrを超える値に保持することである。   In the present invention, “the degree of vacuum in the vacuum chamber” has the same meaning as “the pressure in the vacuum chamber”. Therefore, to reduce the vacuum degree in the vacuum chamber to 10 torr or less, the pressure in the vacuum chamber is reduced to 10 torr. In addition, the pressure in the vacuum chamber is maintained at a value exceeding 10 torr, and the pressure in the vacuum chamber is maintained at a value exceeding 10 torr.

本発明によれば、窒素含有量が0.0100質量%以上の高窒素鋼を溶製する際に、RH真空脱ガス装置の精錬初期には、環流用ガスとしてアルゴンガスを使用し、且つ、真空槽内の真空度を高めるので、溶鋼は十分に環流されて、溶鋼中の非金属介在物の浮上・分離が促進され、清浄度の高い溶鋼が得られる。また、RH真空脱ガス装置の精錬後半には、真空槽内の真空度を低下させ、且つ、窒素ガスを真空槽内に吹き込むので、この窒素ガスによって溶鋼は加窒され、目標とする窒素含有量の高窒素鋼を効率的に溶製することができる。   According to the present invention, when melting a high nitrogen steel having a nitrogen content of 0.0100% by mass or more, argon gas is used as a recirculation gas at the refining initial stage of the RH vacuum degassing apparatus, and Since the degree of vacuum in the vacuum chamber is increased, the molten steel is sufficiently circulated, and the floating and separation of non-metallic inclusions in the molten steel is promoted, and a molten steel having a high cleanliness is obtained. Further, in the second half of the refining of the RH vacuum degassing apparatus, the degree of vacuum in the vacuum chamber is lowered, and nitrogen gas is blown into the vacuum chamber. An amount of high nitrogen steel can be efficiently melted.

本発明を実施する際に用いるRH真空脱ガス装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the RH vacuum degassing apparatus used when implementing this invention. 本発明におけるRH脱ガス精錬での真空槽内の真空度の推移の例を示す図である。It is a figure which shows the example of transition of the vacuum degree in the vacuum chamber in the RH degassing refining in this invention. 試験番号1〜3を溶製する際のRH真空脱ガス精錬における溶鋼中窒素濃度の推移を示す図である。It is a figure which shows transition of the nitrogen concentration in molten steel in the RH vacuum degassing refining at the time of melting test numbers 1-3. 非金属介在物数の調査結果を、比較例及び従来例と対比して示す図である。It is a figure which shows the investigation result of the number of nonmetallic inclusions in contrast with a comparative example and a prior art example.

以下、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described.

本発明では、窒素含有量が0.0100質量%以上の高窒素鋼を溶製するにあたり、先ず、高炉から出銑され、必要に応じて脱燐処理及び/または脱硫処理の施された溶銑を転炉で脱炭精錬し、溶鋼を溶製する。この脱炭精錬では、特許文献1のように脱炭精錬中に窒素ガスを供給する、或いは、精錬後の溶鋼に窒化マンガンなどの合金鉄を添加するなどして、目標とする窒素含有量の60%以上、望ましくは70%以上を確保するように、溶鋼中の窒素濃度を予め高める。次工程のRH真空脱ガス装置だけでも溶鋼中の窒素濃度を目標値まで高めることはできるが、この場合には、RH真空脱ガス装置での処理時間が長くなり、生産性の観点から好ましくない。   In the present invention, when melting high nitrogen steel having a nitrogen content of 0.0100% by mass or more, first, the hot metal removed from the blast furnace and subjected to dephosphorization treatment and / or desulfurization treatment as necessary is used. Decarburizing and refining in a converter to produce molten steel. In this decarburization refining, nitrogen gas is supplied during decarburization refining as in Patent Document 1, or alloy iron such as manganese nitride is added to the molten steel after refining so that the target nitrogen content is reached. The nitrogen concentration in the molten steel is increased in advance so as to ensure 60% or more, desirably 70% or more. Although the nitrogen concentration in the molten steel can be increased to the target value only with the RH vacuum degassing apparatus in the next step, in this case, the processing time in the RH vacuum degassing apparatus becomes long, which is not preferable from the viewpoint of productivity. .

本発明は、非金属介在物の少ない高清浄度の高窒素鋼の溶製を目的としており、脱酸生成物の浮上・分離を促進させる、或いは、脱酸生成物の浮上・分離時間を確保するために、出鋼時に金属アルミニウムなどの脱酸剤を添加して溶鋼を脱酸する。また、取鍋内のスラグの酸素ポテンシャルを下げて溶鋼とスラグとの反応による非金属介在物の生成を防止するために、取鍋内のスラグに金属アルミニウム、アルミニウムドロスなどのスラグ改質剤を添加することが好ましい。   The purpose of the present invention is to melt high nitrogen steel with high cleanliness with few non-metallic inclusions, and promote the flotation / separation of deoxidation products or ensure the flotation / separation time of deoxidation products. For this purpose, a deoxidizer such as metallic aluminum is added at the time of steel output to deoxidize the molten steel. In addition, to reduce the oxygen potential of the slag in the ladle and prevent the formation of non-metallic inclusions due to the reaction between the molten steel and slag, slag modifiers such as metallic aluminum and aluminum dross are added to the slag in the ladle. It is preferable to add.

転炉から出鋼された溶鋼を収容し、必要に応じてスラグ改質剤の添加された取鍋を次工程のRH真空脱ガス装置に搬送する。   The molten steel produced from the converter is accommodated, and the ladle to which the slag modifier is added is transferred to the RH vacuum degassing apparatus in the next step as necessary.

図1に、本発明を実施する際に用いるRH真空脱ガス装置の概略縦断面図を示す。図1において、1はRH真空脱ガス装置、2は取鍋、3は溶鋼、4はスラグ、5は真空槽、6は上部槽、7は下部槽、8は上昇側浸漬管、9は下降側浸漬管、10は環流用ガス吹き込み管、11はダクト、12は原料投入口、13は上吹きランスであり、真空槽5は上部槽6と下部槽7とから構成され、また、上吹きランス13は上下移動が可能となっており、この上吹きランス13から、窒素ガスまたは窒素ガスとアルゴンガスとの混合ガスが真空槽5の内部の溶鋼3の湯面に吹き付けられるようになっている。   FIG. 1 shows a schematic longitudinal sectional view of an RH vacuum degassing apparatus used in carrying out the present invention. In FIG. 1, 1 is a RH vacuum degassing device, 2 is a ladle, 3 is molten steel, 4 is a slag, 5 is a vacuum tank, 6 is an upper tank, 7 is a lower tank, 8 is a rising side dip tube, and 9 is a lowering Side dip pipe, 10 is a reflux gas blow pipe, 11 is a duct, 12 is a raw material inlet, 13 is an upper blow lance, and the vacuum tank 5 is composed of an upper tank 6 and a lower tank 7, and an upper blow The lance 13 can move up and down, and nitrogen gas or a mixed gas of nitrogen gas and argon gas is sprayed from the upper blowing lance 13 to the molten steel surface of the molten steel 3 inside the vacuum chamber 5. Yes.

RH真空脱ガス装置1では、取鍋2を昇降装置(図示せず)にて上昇させ、上昇側浸漬管8及び下降側浸漬管9を取鍋内の溶鋼3に浸漬させる。そして、環流用ガス吹き込み管10から上昇側浸漬管8の内部に環流用ガスを吹き込むとともに、真空槽5の内部をダクト11に連結される排気装置(図示せず)にて排気して真空槽5の内部を減圧する。真空槽5の内部が減圧されると、取鍋内の溶鋼3は、環流用ガス吹き込み管10から吹き込まれる環流用ガスによるガスリフト効果によって、環流用ガスとともに上昇側浸漬管8を上昇して真空槽5の内部に流入し、その後、下降側浸漬管9を経由して取鍋2に戻る流れ、所謂、「環流」を形成してRH真空脱ガス精錬が施される。   In the RH vacuum degassing apparatus 1, the ladle 2 is raised by an elevating device (not shown), and the ascending side dip pipe 8 and the descending dip pipe 9 are immersed in the molten steel 3 in the ladle. Then, the reflux gas is blown into the rising side dip tube 8 from the reflux gas blowing tube 10, and the vacuum chamber 5 is evacuated by an exhaust device (not shown) connected to the duct 11. 5 is depressurized. When the inside of the vacuum chamber 5 is depressurized, the molten steel 3 in the ladle rises to the ascending side dip tube 8 together with the recirculation gas by the gas lift effect due to the recirculation gas blow-in tube 10 evacuated. After flowing into the tank 5 and returning to the ladle 2 via the descending side dip pipe 9, a so-called “circular flow” is formed, and RH vacuum degassing is performed.

本発明では、RH真空脱ガス装置1での脱ガス精錬において、脱ガス精錬の開始から所定時間経過するまでは、環流用ガスとしてアルゴンガスを使用し、且つ、真空槽内の真空度(圧力)を10torr(1.333kPa)以下まで低下させて溶鋼3を環流させる(「高真空処理」と呼ぶ)。この場合、非金属介在物の浮上・分離を確実に実施するために、真空槽内の真空度を10torr以下とする期間が少なくとも2.0分間以上継続するように、真空槽内の圧力を調整する。真空槽内の圧力が10torr以下となり、且つ、環流用ガスとしてアルゴンガスを使用するので、溶鋼3の環流が十分に行われ、溶鋼中の脱酸生成物などの非金属介在物の溶鋼3からの浮上・分離が促進される。   In the present invention, in the degassing refining in the RH vacuum degassing apparatus 1, argon gas is used as the reflux gas until a predetermined time has elapsed from the start of the degassing refining, and the degree of vacuum (pressure) in the vacuum chamber ) Is reduced to 10 torr (1.333 kPa) or less, and the molten steel 3 is circulated (referred to as “high vacuum treatment”). In this case, the pressure in the vacuum chamber is adjusted so that the duration in which the degree of vacuum in the vacuum chamber is 10 torr or less continues for at least 2.0 minutes in order to ensure that the nonmetallic inclusions float and separate. To do. Since the pressure in the vacuum chamber is 10 torr or less and argon gas is used as the recirculation gas, the recirculation of the molten steel 3 is sufficiently performed, and from the molten steel 3 of non-metallic inclusions such as deoxidation products in the molten steel. Is promoted.

その後、真空槽内の真空度を10torrを超える値に保持し、環流用ガスとしてアルゴンガスを使用し、上吹きランス13から、窒素ガスまたは窒素ガスとアルゴンガスとの混合ガスを真空槽内の溶鋼3に吹き付ける(「加窒処理」と呼ぶ)。溶鋼3は吹き付けられる窒素ガスによって加窒され、溶鋼中窒素濃度が上昇する。但し、真空槽内の雰囲気の窒素ガスモル分率が低いと、脱窒速度が吸窒速度を上回り、溶鋼3の窒素濃度が上昇しないので、真空槽内の雰囲気の窒素ガスモル分率を0.6以上に制御する。真空槽内雰囲気の窒素ガスモル分率は、環流用ガスであるアルゴンガスの流量と、上吹きランス13から吹き付けるガスの窒素ガス混合比及び流量とを調整することで、制御することができる。   Thereafter, the degree of vacuum in the vacuum chamber is maintained at a value exceeding 10 torr, argon gas is used as the recirculation gas, and nitrogen gas or a mixed gas of nitrogen gas and argon gas is supplied from the top blowing lance 13 into the vacuum chamber. Spray on molten steel 3 (referred to as “nitriding”). The molten steel 3 is nitrogenated by the nitrogen gas blown, and the nitrogen concentration in the molten steel increases. However, if the nitrogen gas mole fraction in the atmosphere in the vacuum chamber is low, the denitrification rate exceeds the nitrogen absorption rate, and the nitrogen concentration in the molten steel 3 does not increase, so the nitrogen gas mole fraction in the atmosphere in the vacuum chamber is 0.6. Control above. The nitrogen gas mole fraction in the atmosphere in the vacuum chamber can be controlled by adjusting the flow rate of argon gas, which is a reflux gas, and the nitrogen gas mixture ratio and flow rate of the gas blown from the top blowing lance 13.

予め、上吹きランス13からのガス流量、真空槽内雰囲気の窒素ガスモル分率などの操業条件に応じて、加窒速度を把握しておき、この加窒速度によって求められる溶鋼中窒素濃度が目標値となったなら、真空槽5の内部を大気圧に戻してRH真空脱ガス精錬を終了し、高窒素鋼を溶製する。脱ガス処理終了前、必要に応じて、炭素、アルミニウム、珪素、マンガン、ニッケル、クロム、銅、ニオブ、バナジウム、チタンなどの成分調整剤を原料投入口12から溶鋼3に投入して溶鋼3の成分を調整する。   The nitriding rate is grasped in advance according to the operating conditions such as the gas flow rate from the top blowing lance 13 and the nitrogen gas mole fraction in the atmosphere in the vacuum chamber, and the nitrogen concentration in the molten steel determined by this nitriding rate is the target. If it becomes a value, the inside of the vacuum chamber 5 is returned to atmospheric pressure, RH vacuum degassing refining is completed, and high nitrogen steel is melted. Before completion of the degassing treatment, component modifiers such as carbon, aluminum, silicon, manganese, nickel, chromium, copper, niobium, vanadium, and titanium are introduced into the molten steel 3 from the raw material inlet 12 as necessary. Adjust ingredients.

図2に、本発明におけるRH脱ガス精錬での真空槽内の真空度の推移の例を示す。図2では、処理開始からおよそ5分間までの期間が高真空処理の期間で、その後の5分間経過後からおよそ25分間までの期間が加窒処理の期間となっているが、これは単に例を示すだけであり、それぞれの期間は任意に変更することができる。   In FIG. 2, the example of transition of the vacuum degree in the vacuum chamber in the RH degassing refining in this invention is shown. In FIG. 2, the period from the start of the process to about 5 minutes is the period of high vacuum processing, and the period from the subsequent 5 minutes to about 25 minutes is the period of nitriding treatment. Each period can be arbitrarily changed.

上記説明では、上吹きランス13を介して真空槽内に窒素ガスを供給し、溶鋼3を加窒している。これに対して、上吹きランス13から窒素ガスを供給せずに、窒素ガス、または、窒素ガスとアルゴンガスとの混合ガスを、環流用ガスとして使用することでも、溶鋼3は加窒される。但し、この場合には、環流用ガスに窒素ガスが混合され、しかも、真空槽内の真空度は低下した状態(雰囲気圧力が高い状態)であるので、溶鋼3の環流量が低下し、非金属介在物の浮上・分離の効果は損なわれる。従って、本発明では、上吹きランス13を介して真空槽内に窒素ガスを供給し、加窒処理期間も環流用ガスとしてアルゴンガスを使用することが好ましい。   In the above description, nitrogen gas is supplied into the vacuum chamber via the top blowing lance 13 to nitrogen the molten steel 3. On the other hand, the molten steel 3 is also nitrided by using nitrogen gas or a mixed gas of nitrogen gas and argon gas as a recirculation gas without supplying nitrogen gas from the top blowing lance 13. . However, in this case, nitrogen gas is mixed with the recirculation gas, and the degree of vacuum in the vacuum chamber is low (atmospheric pressure is high), so that the flow rate of the molten steel 3 is reduced and non- The effect of floating and separating metal inclusions is impaired. Therefore, in the present invention, it is preferable to supply nitrogen gas into the vacuum chamber via the top blowing lance 13 and to use argon gas as the reflux gas during the nitriding treatment period.

以上説明したように、本発明によれば、窒素含有量が0.0100質量%以上の高窒素鋼を溶製する際に、RH真空脱ガス装置1の精錬初期には、環流用ガスとしてアルゴンガスを使用し、且つ、真空槽内の真空度を高めるので、溶鋼3は十分に環流されて、溶鋼中の非金属介在物の浮上・分離が促進され、清浄度の高い溶鋼3が得られる。また、RH真空脱ガス装置1の精錬後半には、真空槽内の真空度を低下させ、且つ、窒素ガスを真空槽内に吹き込むので、この窒素ガスによって溶鋼3は加窒され、目標とする窒素含有量の高窒素鋼を効率的に溶製することができる。   As described above, according to the present invention, when melting high nitrogen steel having a nitrogen content of 0.0100% by mass or more, at the initial stage of refining of the RH vacuum degassing apparatus 1, argon is used as a reflux gas. Since the gas is used and the degree of vacuum in the vacuum chamber is increased, the molten steel 3 is sufficiently circulated, and the floating and separation of non-metallic inclusions in the molten steel is promoted, and the molten steel 3 having a high cleanliness is obtained. . Further, in the second half of the refining of the RH vacuum degassing apparatus 1, the degree of vacuum in the vacuum chamber is lowered and nitrogen gas is blown into the vacuum chamber. High nitrogen steel having a nitrogen content can be efficiently melted.

化学成分として、炭素が0.03〜0.06質量%、珪素が0.10質量%以下、マンガンが0.3〜1.0質量%、燐が0.050質量%以下、硫黄が0.005質量%以下、窒素が0.0130〜0.0150質量%である高窒素鋼を、本発明を適用して溶製する試験を行った(試験番号1〜3)。   As chemical components, carbon is 0.03-0.06% by mass, silicon is 0.10% by mass or less, manganese is 0.3-1.0% by mass, phosphorus is 0.050% by mass or less, and sulfur is 0.00%. The test which melts high nitrogen steel which is 005 mass% or less and whose nitrogen is 0.0130-0.0150 mass% applying this invention was done (test number 1-3).

高炉から出銑された溶銑に対して脱硫処理及び脱燐処理の溶銑予備処理を施し、この溶銑を用いて転炉にて脱炭精錬して、溶鋼を溶製した。転炉から取鍋への出鋼時、金属アルミニウムを添加して溶鋼を脱酸するとともに、窒化マンガンを添加して出鋼後の溶鋼中窒素濃度を0.0095〜0.0115質量%の範囲に調整した。次いで、得られた溶鋼をRH真空脱ガス装置に搬送して真空脱ガス精錬を施した。   The hot metal discharged from the blast furnace was subjected to desulfurization treatment and dephosphorization hot metal pretreatment, and the hot metal was decarburized and refined in a converter to produce molten steel. When steel is discharged from the converter to the ladle, the molten steel is deoxidized by adding metallic aluminum, and the nitrogen concentration in the molten steel after adding steel by adding manganese nitride is in the range of 0.0095 to 0.0115% by mass. Adjusted. Next, the obtained molten steel was conveyed to an RH vacuum degassing apparatus and subjected to vacuum degassing refining.

RH真空脱ガス精錬は、図2に示す真空度の推移パターンと同様の推移パターンで実施したが、本実施例では、高真空処理を精錬開始から4分間経過するまでの期間とし、その後は加窒処理期間とした。高真空処理では、到達真空度を2torr(0.2666kPa)以下とし、10torr(1.333kPa)以下の期間を2分間以上確保した。一方、加窒処理は真空槽内真空度を約160torr(21.33kPa)に保持し、上吹きランスから窒素ガスを11000NL/分の流量で供給した。この場合、真空槽内雰囲気の窒素ガスモル分率は0.8であった。本実施例では、高真空処理期間及び加窒処理期間ともに、環流用ガスとしてはアルゴンガスを使用した。   RH vacuum degassing was performed with a transition pattern similar to the transition pattern of the degree of vacuum shown in FIG. 2, but in this example, the high vacuum treatment was performed for a period of 4 minutes after the start of refining. Nitrogen treatment period. In the high vacuum treatment, the ultimate vacuum was 2 torr (0.2666 kPa) or less, and a period of 10 torr (1.333 kPa) or less was secured for 2 minutes or more. On the other hand, in the nitriding treatment, the degree of vacuum in the vacuum chamber was maintained at about 160 torr (21.33 kPa), and nitrogen gas was supplied from the top blowing lance at a flow rate of 11000 NL / min. In this case, the nitrogen gas mole fraction in the atmosphere in the vacuum chamber was 0.8. In this example, argon gas was used as the reflux gas in both the high vacuum treatment period and the nitriding treatment period.

図3に、試験番号1〜3を溶製する際のRH真空脱ガス精錬における溶鋼中窒素濃度の推移を示す。図3において、符号「○」が試験番号1、符号「△」が試験番号2、符号「□」が試験番号3である。図3に示すように、RH真空脱ガス精錬開始から、19〜20分間の処理時間で、目標とする0.0130〜0.0150質量%の窒素含有量に調整することができた。尚、図3において、それぞれの試験で脱ガス処理開始直後は溶鋼中の窒素濃度が一定であるが、この理由は、処理開始直後は真空槽内の真空度が低いので脱窒反応が起こらず、且つ、加窒処理を行っていないので、加窒反応も起こらないためである。   In FIG. 3, transition of the nitrogen concentration in the molten steel in the RH vacuum degassing refining when melting the test numbers 1 to 3 is shown. In FIG. 3, the symbol “◯” is test number 1, the symbol “Δ” is test number 2, and the symbol “□” is test number 3. As shown in FIG. 3, from the start of RH vacuum degassing refining, the target nitrogen content of 0.0130 to 0.0150 mass% could be adjusted in a treatment time of 19 to 20 minutes. In FIG. 3, the nitrogen concentration in the molten steel is constant immediately after the start of the degassing treatment in each test. This is because the degree of vacuum in the vacuum chamber is low immediately after the start of the treatment so that the denitrification reaction does not occur. In addition, since no nitriding treatment is performed, no nitriding reaction occurs.

得られた高窒素鋼の溶鋼を連続鋳造機でスラブ鋳片に鋳造し、鋳造後のスラブ鋳片から試料を切り出し、超音波探傷測定によってスラブ鋳片の非金属介在物数を調査した。   The obtained molten steel of high nitrogen steel was cast into a slab slab by a continuous casting machine, a sample was cut out from the slab slab after casting, and the number of non-metallic inclusions in the slab slab was investigated by ultrasonic flaw detection.

図4に、非金属介在物数の調査結果を、比較例及び従来例と対比して示す。図4に示す比較例とは、窒素濃度が0.0030質量%以下の低窒素鋼であり、その他の成分は試験番号1〜3と同等であり、RH真空脱ガス装置では高真空処理のみを施して溶製したものである。また、図4に示す従来例とは、試験番号1〜3と同等の化学成分の高窒素鋼であり、RH真空脱ガス装置では環流用ガスとして窒素ガスとアルゴンガスとの混合ガスを使用して溶製したものである。図4は、低窒素鋼である比較例の非金属介在物密度を基準(=1.00)とする介在物密度指数で表示している。尚、本発明例は試験番号1〜3の平均値である。   FIG. 4 shows the results of investigating the number of nonmetallic inclusions in comparison with the comparative example and the conventional example. The comparative example shown in FIG. 4 is a low nitrogen steel having a nitrogen concentration of 0.0030% by mass or less, and other components are the same as those in Test Nos. 1 to 3. Applied and melted. The conventional example shown in FIG. 4 is a high nitrogen steel having the same chemical composition as in test numbers 1 to 3, and the RH vacuum degassing apparatus uses a mixed gas of nitrogen gas and argon gas as a recirculation gas. And melted. FIG. 4 shows the inclusion density index based on the non-metallic inclusion density of the comparative example, which is low-nitrogen steel (= 1.00). In addition, this invention example is an average value of the test numbers 1-3.

高窒素鋼において、従来例では、低窒素鋼の3倍の介在物密度指数であったが、本発明を適用することで、低窒素鋼と同程度の清浄度の高い高窒素鋼を得られることが確認できた。   In the high nitrogen steel, in the conventional example, the inclusion density index was three times that of the low nitrogen steel, but by applying the present invention, a high nitrogen steel having the same high cleanliness as the low nitrogen steel can be obtained. I was able to confirm.

1 RH真空脱ガス装置
2 取鍋
3 溶鋼
4 スラグ
5 真空槽
6 上部槽
7 下部槽
8 上昇側浸漬管
9 下降側浸漬管
10 環流用ガス吹き込み管
11 ダクト
12 原料投入口
13 上吹きランス
DESCRIPTION OF SYMBOLS 1 RH vacuum degassing apparatus 2 Ladle 3 Molten steel 4 Slag 5 Vacuum tank 6 Upper tank 7 Lower tank 8 Rising side immersion pipe 9 Lowering side immersion pipe 10 Recirculation gas blowing pipe 11 Duct 12 Raw material inlet 13 Upper blowing lance

Claims (2)

転炉で溶製され、転炉から取鍋に出鋼された溶鋼を、浸漬管から環流用ガスを吹き込んで前記取鍋とRH真空脱ガス装置の真空槽との間を環流させて精錬し、窒素含有量が0.0100質量%以上の高窒素鋼を溶製する方法であって、
先ず、前記環流用ガスとしてアルゴンのみからなるガスを使用し、前記真空槽内の真空度を10torr(1.333kPa)以下まで低下させて精錬し、次いで、前記真空槽内の真空度を10torr(1.333kPa)を超える値に保持し、且つ、前記環流用ガスとしてアルゴンのみからなるガスを使用し、前記真空槽に設けられた上吹きランスを介して真空槽内の溶鋼に窒素のみからなるガスを吹き付けて精錬することを特徴とする、高窒素鋼の溶製方法。
The molten steel melted in the converter and discharged from the converter to the ladle is smelted by blowing a recirculation gas from the dip tube to circulate between the ladle and the vacuum tank of the RH vacuum degasser. A method for melting high nitrogen steel having a nitrogen content of 0.0100% by mass or more,
First, a gas consisting only of argon is used as the reflux gas, the vacuum degree in the vacuum chamber is reduced to 10 torr (1.333 kPa) or less, and then the vacuum degree is reduced to 10 torr (1.3 torr). 1. A gas having a value exceeding 1.333 kPa) is used, and a gas composed only of argon is used as the reflux gas , and the molten steel in the vacuum chamber is composed only of nitrogen through an upper blowing lance provided in the vacuum chamber. characterized by refining by blowing a gas, a method of melting the high nitrogen steel.
転炉から取鍋に出鋼された後の取鍋内の溶鋼の窒素含有量が0.0095〜0.0115質量%であり、RH真空脱ガス装置での精錬終了後の溶鋼の窒素含有量が0.0130〜0.0150質量%であることを特徴とする、請求項1に記載の高窒素鋼の溶製方法。 The nitrogen content of the molten steel in the ladle after being discharged from the converter to the ladle is 0.0095 to 0.0115% by mass, and the nitrogen content of the molten steel after refining in the RH vacuum degasser 2. The method for melting high nitrogen steel according to claim 1, wherein the content is 0.0130 to 0.0150 mass%.
JP2014144684A 2013-07-22 2014-07-15 Melting method of high nitrogen steel Active JP5904237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014144684A JP5904237B2 (en) 2013-07-22 2014-07-15 Melting method of high nitrogen steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013151250 2013-07-22
JP2013151250 2013-07-22
JP2014144684A JP5904237B2 (en) 2013-07-22 2014-07-15 Melting method of high nitrogen steel

Publications (2)

Publication Number Publication Date
JP2015042777A JP2015042777A (en) 2015-03-05
JP5904237B2 true JP5904237B2 (en) 2016-04-13

Family

ID=52696410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014144684A Active JP5904237B2 (en) 2013-07-22 2014-07-15 Melting method of high nitrogen steel

Country Status (1)

Country Link
JP (1) JP5904237B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105154628A (en) * 2015-10-21 2015-12-16 广东韶钢松山股份有限公司 RH dehydrogenation and nitrogen addition process for nitrogen-containing steel
JP6838419B2 (en) * 2017-02-15 2021-03-03 日本製鉄株式会社 Melting method of high nitrogen and low oxygen steel
JP7269485B2 (en) * 2019-08-27 2023-05-09 日本製鉄株式会社 Melting method of high nitrogen stainless molten steel
CN113025780A (en) * 2021-02-24 2021-06-25 首钢京唐钢铁联合有限责任公司 Production method of ultrahigh nitrogen tin plate
CN114107608B (en) * 2021-11-02 2023-03-24 北京首钢股份有限公司 Method for controlling nitrogen content in external refining
CN116005070B (en) * 2022-12-23 2024-04-26 建龙北满特殊钢有限责任公司 Production method of non-quenched and tempered steel with nitrogen content adjusted after vacuum

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428319A (en) * 1987-07-24 1989-01-30 Nippon Kokan Kk Production of nitrogen-containing steel
JPH02225615A (en) * 1989-02-23 1990-09-07 Nkk Corp Method for refining high-nitrogen and low-oxygen steel

Also Published As

Publication number Publication date
JP2015042777A (en) 2015-03-05

Similar Documents

Publication Publication Date Title
JP5092245B2 (en) Denitrification method for molten steel
JP5904237B2 (en) Melting method of high nitrogen steel
JP6343844B2 (en) Method for refining molten steel in vacuum degassing equipment
JP2011208170A (en) Method of producing manganese-containing low carbon steel
JP6269550B2 (en) Method for melting high manganese steel
JP5601132B2 (en) Melting method of low carbon aluminum killed steel with excellent cleanability
JP6124022B2 (en) Melting method of low carbon high manganese steel
JP5509876B2 (en) Melting method of low carbon high manganese steel
JP5614306B2 (en) Method for melting manganese-containing low carbon steel
JP4207820B2 (en) How to use vacuum degassing equipment
JP5217478B2 (en) Method of melting ultra-low carbon steel
JP5831194B2 (en) Method for melting manganese-containing low carbon steel
JP4844552B2 (en) Melting method of low carbon high manganese steel
JP4687103B2 (en) Melting method of low carbon aluminum killed steel
JP6547734B2 (en) Method of manufacturing low-sulfur steel
JP2010116610A (en) Method for manufacturing low-sulfur thick steel plate excellent in haz toughness at the time of inputting large amount of heat
JP2008169407A (en) Method for desulfurizing molten steel
JP4085898B2 (en) Melting method of low carbon high manganese steel
JP2014148737A (en) Method for producing extra-low-sulfur low-nitrogen steel
JP6337681B2 (en) Vacuum refining method for molten steel
JP2013159811A (en) Method for producing ultra-low sulfur and ultra-low nitrogen steel
JP5621618B2 (en) Method for melting manganese-containing low carbon steel
WO2022259807A1 (en) Molten steel secondary refining method and steel production method
JP2009114491A (en) Method for refining molten steel by rh-vacuum degassing apparatus
JP2023003384A (en) Denitrification treatment method of molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160229

R150 Certificate of patent or registration of utility model

Ref document number: 5904237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250