JP4274487B2 - Pipe seismic structure and pipe seismic reinforcement method - Google Patents

Pipe seismic structure and pipe seismic reinforcement method Download PDF

Info

Publication number
JP4274487B2
JP4274487B2 JP2006154363A JP2006154363A JP4274487B2 JP 4274487 B2 JP4274487 B2 JP 4274487B2 JP 2006154363 A JP2006154363 A JP 2006154363A JP 2006154363 A JP2006154363 A JP 2006154363A JP 4274487 B2 JP4274487 B2 JP 4274487B2
Authority
JP
Japan
Prior art keywords
pipe
earthquake
pipes
tightening
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006154363A
Other languages
Japanese (ja)
Other versions
JP2007321486A (en
Inventor
充 恒藤
Original Assignee
充 恒藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 充 恒藤 filed Critical 充 恒藤
Priority to JP2006154363A priority Critical patent/JP4274487B2/en
Publication of JP2007321486A publication Critical patent/JP2007321486A/en
Application granted granted Critical
Publication of JP4274487B2 publication Critical patent/JP4274487B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)
  • Retaining Walls (AREA)
  • Bridges Or Land Bridges (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

本発明は、耐震補強のため内部に充填材を充填した複数のパイプを構造物の周辺に配置し、連結帯で連結し、構造物に作用した地震の荷重を複数のパイプ間に分散して、構造物の耐震性を向上させるパイプ耐震構造体及びパイプ耐震補強方法に関する。 The present invention arranges a plurality of pipes filled with a filler for seismic reinforcement around the structure and connects them with a connecting band to distribute the seismic load acting on the structure between the plurality of pipes. The present invention relates to a pipe earthquake-proof structure and a pipe earthquake-proof reinforcement method for improving the earthquake resistance of a structure.

近年、各地で巨大地震が頻発している。阪神淡路大震災の記憶も新しいが、最近では中越地震、福岡西方沖地震等が発生し、高速道路や鉄道の橋脚を破壊し、建造物を崩壊させて、各地に大きな被害をもたらした。 In recent years, huge earthquakes have frequently occurred in various places. Although new also memories of the Great Hanshin-Awaji Earthquake, recently in the Chuetsu earthquake, Fukuoka West Off earthquake or the like occurs, destroying the highway and railway bridge piers, by the collapse of the building, it brought great damage to the country.

これらの地震で報告された橋脚の被害は、地震の水平力が作用したときの柱下部におけるせん断力不足による脆性破壊が最も多かった。この被害に続いて、柱中央部または柱下部から長手方向に高さの1/3付近、さらに柱上部の順で破壊が起こっている。ラーメン構造の構造物の場合、多くは中央部が破壊されており、梁に関しては梁の中央部と端部で破壊されたことが報告されている。PC(プレストレストコンクリート)桁は左右に間隔があるラーメン構造のように中央部が破壊され、端部の破壊は桁が左右に動くことで脆性破壊が発生している The damage to the piers reported in these earthquakes was the most due to brittle fracture due to insufficient shear force at the bottom of the column when the horizontal force of the earthquake was applied. Following this damage, destruction occurred in the order of about 1/3 of the height in the longitudinal direction from the center of the column or the bottom of the column, and further to the top of the column. In the case of structures with a ramen structure, in many cases, the central part is destroyed, and it has been reported that the beam was destroyed at the central part and the end part of the beam. PC (prestressed concrete) girders are broken at the center, like a ramen structure with a gap between the left and right sides, and brittle fracture occurs when the girders move from side to side .

こうした地震被害の教訓は今後の新規の構造物の設計に活かされると思われるが、既に建設が終わった建造物、あるいは建設中の建造物でも十分な耐震強度を備えていない場合、今後大きな地震に見舞われたとき倒壊する可能性がある。そこで、既設の建造物に対してどのような補強を行えばよいのか、が問題となる。   These lessons learned from earthquake damage are expected to be used in the design of new structures in the future. However, if a building that has already been constructed or is under construction does not have sufficient seismic strength, it will be a major earthquake in the future. There is a possibility of collapse when hit by. Then, what kind of reinforcement should be performed with respect to the existing building becomes a problem.

現在、耐震改修には次の3つの方法がある。1つ目は耐震補強、2つ目は制震補強、3つ目は免震補強である。1つめの耐震補強は建造物の地震耐力を高めるか、靭性(変形性能)の向上を図るものである。このうちの前者は耐震壁、ブレースなどを新設することなどが該当し、後者は柱や梁を補強することなどが該当する。2つ目の制震補強は、高層建築物などで制震ダンパを設けて地震エネルギを吸収することで建造物の損傷軽減を図るものである。そして、3つ目の免震補強は、免震構造を基礎下や中間階に設けて、地盤から伝わる地震力を大幅に低減させることで建造物の損傷軽減を図るものである。   Currently, there are three methods for seismic retrofit. The first is seismic reinforcement, the second is seismic reinforcement, and the third is seismic isolation. The first seismic reinforcement is intended to increase the earthquake resistance of the building or to improve toughness (deformation performance). Of these, the former corresponds to the installation of seismic walls and braces, and the latter corresponds to the reinforcement of columns and beams. The second type of seismic retrofit is to reduce damage to buildings by installing seismic dampers in high-rise buildings to absorb seismic energy. The third seismic isolation reinforcement is intended to reduce damage to buildings by providing seismic isolation structures under the foundation and intermediate floors to greatly reduce the seismic force transmitted from the ground.

さて、この免震構造として、従来、パイプから構成されたものが提案されている(特許文献1参照)。この免震構造は、複数個の細長くて比較的柔軟でコンクリートを充填したパイプからなり、このパイプは構造物としっかり連結して下の基礎の方へ延長し、少なくともいくつかのパイプは、構造物が転倒しないように基礎と連結するものである。主荷重支承支柱は基礎に載置されてパイプ列を受け、支柱の上端部と構造物との間に支承装置を挿入してそれら相互間の横方向運動を可能ならしめる。また、支柱の荷重支承力から横方向剛性を吸収することによって、地面の加速力を保護構造物に移行させないようにするものである。この構成によって、地震時に建造物や他の構造物を保護することができる。   Now, as this seismic isolation structure, what was conventionally comprised from the pipe is proposed (refer patent document 1). The seismic isolation structure consists of a plurality of elongated, relatively flexible and concrete-filled pipes that are connected to the structure and extend towards the underlying foundation, at least some of which are structural It connects with the foundation so that things do not fall. The main load bearing column is placed on the foundation to receive the pipe row and a bearing device is inserted between the upper end of the column and the structure to allow lateral movement between them. Further, by absorbing the lateral rigidity from the load bearing force of the support column, the ground acceleration force is prevented from being transferred to the protective structure. With this configuration, buildings and other structures can be protected during an earthquake.

しかし、特許文献1の免震構造は、基礎工事が必要で、短い工期、低コストで既設の建造物を補強するには馴染まないものであった。また、従来の制震補強は高層建築物を補強するものがほとんどで、建造物がどのような建造物であっても常に補強が可能な方法とは言えない。例えば、制震補強で擁壁や梁などを補強することは構造上難しい。しかも、免震構造と同様に、短い工期、低コストで補強するのは困難である。   However, the seismic isolation structure of Patent Document 1 requires foundation work, and is unacceptable for reinforcing existing buildings with a short construction period and low cost. In addition, most conventional seismic retrofits reinforce high-rise buildings, and it cannot be said that reinforcement is always possible regardless of the type of building. For example, it is structurally difficult to reinforce retaining walls or beams with seismic reinforcement. Moreover, as with the seismic isolation structure, it is difficult to reinforce with a short construction period and low cost.

こうした難点に対しては耐震補強が有力で、次のような耐震補強方法が提案されている(特許文献2参照)。すなわち、特許文献2の耐震補強方法は、コンクリート柱状体の周面に樹脂を含浸させた補強繊維シートを貼着してこの柱を補強する方法であって、貼着される補強繊維シートの複数枚を重層してその中間部に樹脂を含浸硬化させた板状部と残余の未含浸部とを有する甲殻シートを形成しておき、この甲殻シートの板状部を柱の周面にスペーサーを介して当接させたのち各未含浸部に樹脂を含浸させて互いに重ね合わせて柱の周面に貼着し、このスペーサーによって形成される板状部と周面との隙間に樹脂モルタル等の充填材を注入するものである。   Seismic reinforcement is effective against these difficulties, and the following seismic reinforcement methods have been proposed (see Patent Document 2). That is, the seismic reinforcement method of Patent Document 2 is a method of sticking a reinforcing fiber sheet impregnated with a resin to the peripheral surface of a concrete columnar body to reinforce the pillar, and a plurality of reinforcing fiber sheets to be attached. A shell sheet having a plate-like portion obtained by impregnating and hardening a resin in the middle portion and a remaining non-impregnated portion and a remaining unimpregnated portion is formed, and a spacer is provided on the peripheral surface of the column. And then impregnating each unimpregnated portion with resin and sticking them to the peripheral surface of the column, and in the gap between the plate-like portion formed by this spacer and the peripheral surface, resin mortar etc. Filler is injected.

この構成によって、コンクリート柱状体に補強繊維シートを多層に巻き付ける補強作業を狭い場所で短時間に完了できる。また、この方法に好適な補強材を提供することが可能になる。しかし、特許文献2の耐震補強方法は、本来、塗装や耐火被覆等の仕上げを行う方法であり、地震の水平力による柱の曲げや直下型の巨大な引張/圧縮力に対しては、巻き付けられた補強繊維シート間の樹脂の強度が弱く、補強シート間の樹脂含浸が不十分で、補強シート同士が外力で引き裂かれる可能性があり、また、本来補強繊維シートは、一方向性の引張り力には、耐力を発揮するが、圧縮力には補強作用を奏さず、十分な補強方法と言えなかった。   With this configuration, the reinforcing work of winding the reinforcing fiber sheets around the concrete columnar body in multiple layers can be completed in a short time in a narrow place. In addition, a reinforcing material suitable for this method can be provided. However, the seismic reinforcement method of Patent Document 2 is originally a method of finishing such as painting or fireproof coating, and it is wrapped around the column bending due to the horizontal force of the earthquake or the enormous tension / compression force of the direct type. The strength of the resin between the reinforcing fiber sheets is weak, the resin impregnation between the reinforcing sheets is insufficient, the reinforcing sheets may be torn apart by external force, and originally the reinforcing fiber sheet is a unidirectional tensile The force exerts proof strength, but the compressive force does not have a reinforcing action, and cannot be said to be a sufficient reinforcing method.

また、地震の破壊力から橋脚の倒壊を防ぐため、鋼板をコンクリート製の脚の外部に取り付け、脚と鋼板の間にセメントを充填する方法や、エポキシ樹脂によってコンクリートと鋼板を接着する鋼板巻きたて工法(鋼板接着工法)が行われている。この鋼板巻きたて工法は、鋼板の材料特性値にばらつきが少なく、また弾性係数も大きいので、補強効果が大きい。また、エポキシ樹脂が硬化収縮しない性質があるため、流動性、接着性、高強度、耐久性に優れており、橋脚と鋼板とを十分に接着させることができ、橋脚と鋼板とを一体化して応力の伝達ができるので、既設橋脚の耐力を向上することができるものであった。   In addition, in order to prevent the collapse of the bridge pier from the destructive force of the earthquake, a steel plate was attached to the outside of the concrete leg and cement was filled between the leg and the steel plate, or the steel plate was wound with epoxy resin to bond the concrete and the steel plate The construction method (steel plate bonding method) is performed. This steel sheet winding method has a large reinforcing effect because there is little variation in the material characteristic values of the steel sheet and the elastic modulus is large. In addition, since epoxy resin has the property that it does not cure and shrink, it is excellent in fluidity, adhesiveness, high strength, and durability, and can sufficiently bond the pier and the steel plate. Since stress can be transmitted, the strength of existing piers can be improved.

特開平6−81514号公報JP-A-6-81514 特開平11−343744号公報JP 11-343744 A

以上説明した特許文献1の免震構造は、地震が作用すると、まずパイプ内部の充填物が塑性変形することで地震の水平力を吸収し、地震に対処するものである。そして、この免震構造は、基礎として建築物を直列に支えるもので、概ね建築物を建築する段階で基礎部分に組み込んで設置する必要があり、既設の建造物を短工期、低コストで補強するのは困難であった。また、基礎部分に配設される免震構造であるが故に、充填物が一回の地震で使用不可状態になる可能性が高く、改修には費用がかかり、繰り返して地震力を吸収するためには、制震のためのダンパを別に設置する必要性もあり、高コスト化は免れない。   The seismic isolation structure described in Patent Document 1 described above copes with an earthquake by absorbing the horizontal force of the earthquake by first causing plastic deformation of the filler inside the pipe when an earthquake acts. And this seismic isolation structure supports the building in series as the foundation, and it is necessary to install it in the foundation part at the stage of building the building, and to reinforce the existing building with short construction period and low cost. It was difficult to do. In addition, because it is a seismic isolation structure installed in the foundation part, it is highly likely that the filling will be unusable after a single earthquake, and repair will be costly and will absorb seismic forces repeatedly. However, there is a need to install a damper for seismic control.

また、特許文献2の耐震補強方法は、補強作業を狭い場所で短時間に完了でき、安価に補強することが可能になるが、塗装や耐火被覆等の仕上げが必要で、想定外の力で発生する地震の破壊力に十分対処するものにはなりえなかった。補強繊維シートは、一方向性の引張り力には、耐力を発揮するが、圧縮力には補強作用を奏さない。しかも、補強繊維シート間の樹脂含浸の確認は経験的になされており、個人差が大きく、樹脂含浸の確認を容易にするため透明部分が形成された特殊なシートが必要な場合も生じた。また、紫外線や火災、車輌の衝突等により補強繊維シートが傷んで、繊維が切断されると所定強度を発揮できないため、モルタル等で保護しなければならないという問題を有していた。   Moreover, although the earthquake-proof reinforcement method of patent document 2 can complete reinforcement work in a short place in a short time and it becomes possible to reinforce at low cost, finishing such as painting and fireproof coating is necessary, and an unexpected force is required. It could not cope with the destructive power of the earthquake that occurred. The reinforcing fiber sheet exhibits a proof strength against a unidirectional tensile force, but does not exert a reinforcing action on a compressive force. In addition, the resin impregnation between the reinforcing fiber sheets has been confirmed empirically, and there are cases where a special sheet with a transparent portion formed is necessary in order to facilitate confirmation of resin impregnation because of large individual differences. In addition, the reinforcing fiber sheet is damaged due to ultraviolet rays, fire, vehicle collisions, and the like, and when the fiber is cut, the predetermined strength cannot be exerted, and thus there is a problem that it must be protected with mortar or the like.

そして、直下型の地震の場合には特許文献1,2のような補強方法はいずれもコンクリートの柱に地震力が直接作用し、一挙に破壊してしまう。さらに、水平方向の地震力は構造物特性によりねじりや曲げモーメント、せん断力となって建造物に加わるが、特許文献2の補強方法はこれらに対して十分な補強となっていなかった。この点、鋼板巻きたて工法は、高強度で耐久性に優れており、建造物と鋼板とが一体化して応力の伝達ができるので、地震に対する既設建造物の耐力を大幅に向上させることができる。しかし、使用する鋼板が重く人力のみによる施工は困難であり、鋼板の量が膨大で、簡易、短工期、且つ低コストで補強するのは難しい工法であった。重量が嵩むため、補強のための重量で本体に過剰な荷重がかかるような場合は無理であり、その性質上レンガ積み構造、石積み構造で使用するのは困難である。 In the case of a direct type earthquake, the reinforcing methods such as Patent Documents 1 and 2 cause the earthquake force to directly act on the concrete pillars, and they are destroyed at once. Furthermore, the horizontal seismic force is applied to the building as a torsion, bending moment, and shearing force due to the characteristics of the structure, but the reinforcement method of Patent Document 2 is not sufficient for these. In this respect, the steel sheet winding method has high strength and excellent durability, and the building and the steel plate can be integrated to transmit stress, so that the strength of existing buildings against earthquakes can be greatly improved. it can. However, the steel plates used are heavy and difficult to construct by human power alone, and the amount of steel plates is enormous, making it difficult to reinforce at a simple, short construction period and low cost. Because weight increase, when an excessive load on the body weight for the reinforcement such as is impossible, by their nature, it is difficult to use brick structure, in masonry structures.

さらに、建造物には時間の経過に伴って環境変化、劣化等があり、また法令による耐震基準や設計方法の変更等で、更なる補強が必要になる場合がある。しかし、特許文献1,2の免震構造は、一度行った補強の程度を変更したり、力のかかる度合いに応じた補強をきめ細かく簡単に調整したりすることができないものであった。そして、耐震改修は、橋脚、橋桁、柱、梁、擁壁や、その他のコンクリート建造物だけでなく、レンガ積み構造、石積み構造にも適用可能な方法が望まれる。   In addition, buildings have environmental changes and deterioration over time, and further reinforcement may be required due to changes in seismic standards and design methods according to laws and regulations. However, the seismic isolation structures disclosed in Patent Documents 1 and 2 cannot change the degree of reinforcement once performed or finely and easily adjust the reinforcement according to the degree of application of force. In addition, the earthquake-resistant repair is desired to be applicable not only to bridge piers, bridge girders, columns, beams, retaining walls, and other concrete structures, but also to brick masonry structures and masonry structures.

さらに、補強のための部材は建造物と比べて場所をとらず、軽量であることが望ましく、施工に当っては大型の機械を必要としないことが望ましい。また、上述したとおり各地を巨大地震が襲っており、今後既存の建造物を低コスト、短工期で改修することが緊急の課題となっている。   Furthermore, it is desirable that the member for reinforcement does not take a place compared with a building, is lightweight, and does not require a large-sized machine for construction. In addition, as described above, huge earthquakes have hit the various places, and it is an urgent issue to repair existing buildings at a low cost and in a short construction period.

そこで、このような課題を解決するために本発明は、予想外の地震に対応することが容易で、補強材が軽量であり、安価且つ簡単、短期間に施工でき、負荷の程度に応じたきめ細やかな調整が行え、施工後の補強の変更が容易に行えるパイプ耐震構造体及びパイプ耐震補強方法を提供することを目的とする。 Therefore, in order to solve such a problem, the present invention is easy to cope with an unexpected earthquake, the reinforcing material is lightweight, inexpensive and simple, can be constructed in a short time, and according to the degree of load An object of the present invention is to provide a pipe seismic structure and a pipe seismic reinforcement method that can be finely adjusted and that can be easily changed after reinforcement.

本発明のパイプ耐震構造体は、長尺状で圧縮強度を向上させるための充填材が内部に充填されると共に構造物の側面に接触して立設されかつその端部がフーチング又は柱に当接して配置される複数のパイプと、地震による負荷が所定以上の応力となって作用する構造物の部位の周囲で巻回され複数のパイプを締付けにより構造物の側面に圧接させる連結帯とを備え、複数のパイプがこの連結帯の締付けによって地震時の構造物の動きと連動できる緊締力と緊締幅で緊締された直下型の地震の上下動に対応できるパイプ耐震構造体であって、構造物がインパルス状の地震の衝撃を地盤から受けたとき、連結帯によって緊締された複数のパイプが、その端部によるフーチング又は柱との当接、構造物の動きとの連動に基づいて構造物と一体となった運動により抵抗し、パイプに加わる塑性変形を起こす圧縮力については充填材によって引き受け、パイプが座屈したときには座屈したパイプの補修が行える構成を有することを主要な特徴とする。 The pipe earthquake-resistant structure of the present invention is long and is filled with a filler for improving the compressive strength, and is erected in contact with the side surface of the structure, and its end abuts against a footing or a pillar. A plurality of pipes arranged in contact with each other, and a connecting band wound around a portion of a structure where a load caused by an earthquake acts as a stress exceeding a predetermined value and presses the plurality of pipes against the side surface of the structure by tightening A pipe seismic structure that can cope with the vertical movement of a direct type earthquake that is tightened with a tightening force and tightening width that can be linked with the movement of the structure at the time of earthquake by tightening this connecting band When an object receives an impulse earthquake shock from the ground, a plurality of pipes tightened by a connecting band are in contact with a footing or a pillar by its end, or in conjunction with the movement of the structure. United with Motion by resisting, the compressive force causing plastic deformation applied to the pipe assumed by the filler, when the pipe buckles is mainly characterized in that it has a configuration capable of performing repairs of pipe buckled.

本発明のパイプ耐震構造体及びパイプ耐震補強方法によれば、予想外の地震に対応することが容易で、補強材が軽量であり、大型の機械を必要とせず、安価且つ簡単、短期間に施工でき、負荷の程度に応じたきめ細やかな調整が行え、施工後の補強の変更が容易に行える。 According to the pipe earthquake-proof structure and the pipe earthquake-proof reinforcement method of the present invention, it is easy to cope with an unexpected earthquake, the reinforcing material is lightweight, no large machine is required, inexpensive and simple, and in a short period of time. It can be constructed and finely adjusted according to the degree of load, making it easy to change the reinforcement after construction.

本発明の第1の形態は、長尺状で圧縮強度を向上させるための充填材が内部に充填されると共に構造物の側面に接触して立設されかつその端部がフーチング又は柱に当接して配置される複数のパイプと、地震による負荷が所定以上の応力となって作用する構造物の部位の周囲で巻回され複数のパイプを締付けにより構造物の側面に圧接させる連結帯とを備え、複数のパイプがこの連結帯の締付けによって地震時の構造物の動きと連動できる緊締力と緊締幅で緊締された直下型の地震の上下動に対応できるパイプ耐震構造体であって、構造物がインパルス状の地震の衝撃を地盤から受けたとき、連結帯によって緊締された複数のパイプが、その端部によるフーチング又は柱との当接、構造物の動きとの連動に基づいて構造物と一体となった運動により抵抗し、パイプに加わる塑性変形を起こす圧縮力については充填材によって引き受け、パイプが座屈したときには座屈したパイプの補修が行える構成を有することを特徴とするパイプ耐震構造体であり、予想外の地震に対応することが容易で、補強材が軽量であり、大型の機械を必要とせず、安価且つ簡単、短期間に施工でき、負荷の程度に応じたきめ細やかな調整が行え、施工後の補強の変更が容易に行える。 The first aspect of the present invention is a long, filled material for improving compressive strength, and is erected in contact with the side surface of the structure and its end abuts against a footing or a pillar. A plurality of pipes arranged in contact with each other, and a connecting band wound around a portion of a structure where a load caused by an earthquake acts as a stress exceeding a predetermined value and presses the plurality of pipes against the side surface of the structure by tightening A pipe seismic structure that can cope with the vertical movement of a direct type earthquake that is tightened with a tightening force and tightening width that can be linked with the movement of the structure at the time of earthquake by tightening this connecting band When an object receives an impulse earthquake shock from the ground, a plurality of pipes tightened by a connecting band are in contact with a footing or a pillar by its end, or in conjunction with the movement of the structure. And united exercise It is a pipe seismic structure characterized by having a structure that can withstand the compressive force that resists more and causes plastic deformation applied to the pipe by the filler, and can repair the buckled pipe when the pipe buckles. Easy to respond to external earthquakes, lightweight reinforcement, no need for large machines, low cost and simple construction, can be done in a short time, and can be finely adjusted according to the degree of load Later reinforcement changes can be made easily.

本発明の第2の形態は、第1の形態に従属する形態であって、構造物が橋脚の場合、連結帯が脚下部、脚上部、脚中央部、脚高さの1/3の高さ付近のうち少なくとも1部位以上の緊締位置で緊締されたことを特徴とするパイプ耐震構造体であり、第1の形態の作用に加えて、橋脚を安価且つ簡単、短期間に耐震補強でき、負荷の程度に応じたきめ細やかな調整が行え、施工後の補強の変更が容易に行える。 A second form of the present invention is a form subordinate to the first form, and when the structure is a bridge pier, the connection band is a lower leg part, an upper leg part, a middle leg part, and a height that is 1/3 of the leg height. It is a pipe earthquake-resistant structure characterized by being tightened at at least one tightening position in the vicinity, and in addition to the action of the first form, the bridge pier can be seismically reinforced in a short time, inexpensively, Fine adjustments can be made according to the degree of load, and reinforcement after construction can be easily changed.

本発明の第3の形態は、第1の形態に従属する形態であって、構造物が梁、桁を有する構造物またはプレストレストコンクリート構造物の場合、連結帯が構造物の中央部、両端部のうち端部の一方を含む少なくとも2部位以上の緊締位置で緊締されたことを特徴とするパイプ耐震構造体であり、第1の形態の作用に加えて、梁、桁またはプレストレストコンクリート構造物を安価且つ簡単、短期間に耐震補強でき、負荷の程度に応じたきめ細やかな調整が行え、施工後の補強の変更が容易に行える。 A third form of the present invention is a form subordinate to the first form, and when the structure is a beam, a structure having girders or a prestressed concrete structure, the connecting band is the center part of the structure, both end parts. A pipe earthquake-resistant structure characterized in that it is tightened at at least two or more tightening positions including one of its ends, in addition to the action of the first embodiment, a beam, a girder or a prestressed concrete structure Inexpensive and simple, can be seismically reinforced in a short time, can be finely adjusted according to the degree of load, and can easily change the reinforcement after construction.

本発明の第の形態は、第1または第2の形態に従属する形態であって、構造物が橋脚の場合、複数のパイプが橋脚の周囲のフーチング若しくはフーチングに設けられた基礎または支持地盤で支持され、垂直方向に向けて立設されたことを特徴とするパイプ耐震構造体であり、第1または第2の形態の作用に加えて、橋脚を一様に耐震補強でき、負荷の程度に応じたきめ細やかな調整が行え、施工後の補強の変更が容易に行える。 A fourth form of the present invention is a form subordinate to the first or second form, and when the structure is a pier, a foundation or supporting ground provided with a plurality of pipes in a footing or footing around the pier. This is a pipe earthquake-resistant structure characterized in that it is supported in the vertical direction and is erected in the vertical direction. In addition to the action of the first or second form, the pier can be uniformly earthquake-proofed and the degree of load Fine adjustments can be made according to the design, and reinforcement after construction can be easily changed.

本発明の第の形態は、第1〜第の形態に従属する形態であって、充填材が、砂,スラグ,モルタル,コンクリート,樹脂の1種または2種以上から構成されたことを特徴とするパイプ耐震構造体であり、第1〜第5の形態の作用に加えて、充填材がパイプの圧縮強度を向上させることができ、安価且つ簡単、短期間に施工でき、負荷の程度に応じたきめ細やかな調整が行え、施工後の補強の変更が容易に行える。 5th form of this invention is a form subordinate to 1st- 4th form, Comprising: The filler was comprised from 1 type, or 2 or more types of sand, slag, mortar, concrete, resin. It is a pipe seismic structure that is characterized, and in addition to the effects of the first to fifth embodiments, the filler can improve the compressive strength of the pipe , can be constructed inexpensively and easily, in a short period of time, and the degree of load Fine adjustments can be made according to the design, and reinforcement after construction can be easily changed.

本発明の第6の形態は、長尺状で圧縮強度を向上させるための充填材が充填された複数のパイプを構造物の側面に接触して並んで配置すると共に、各端部をフーチング又は柱に当接させ、地震による負荷が所定以上の応力となって作用する構造物の部位において複数のパイプの周囲に連結帯を巻回し、充填材が内部に充填された複数のパイプを締付けにより地震時の構造物の動きと連動できる緊締力と緊締幅で緊締して、該複数のパイプを締付けによる圧接で地震の動きと連動させる直下型の地震の上下動に対応できるパイプ耐震補強方法であって、構造物がインパルス状の地震の衝撃を地盤から受けたとき、連結帯によって緊締された複数のパイプの端部によるフーチング又は柱との当接とこの複数のパイプによる構造物の動きとの連動に基づいて構造物と一体となった運動により抵抗し、パイプに加わる塑性変形を起こす圧縮力については充填材によって引き受け、パイプが座屈したときには座屈したパイプの補修を行うことを特徴とするパイプ耐震補強方法であり、予想外の地震に対応することが容易で、補強材が軽量であり、大型の機械を必要とせず、安価且つ簡単、短期間に施工でき、負荷の程度に応じたきめ細やかな調整が行え、施工後の補強の変更が容易に行える。 In the sixth aspect of the present invention, a plurality of long pipes filled with a filler for improving compressive strength are arranged in contact with the side surface of the structure, and each end is footed or placed. Attach a pillar, wind a connecting band around a plurality of pipes at a part of the structure where the earthquake load acts as a predetermined stress, and tighten a plurality of pipes filled with filler A pipe seismic reinforcement method that can respond to the vertical movement of a direct type earthquake by tightening with the tightening force and tightening width that can be linked with the movement of the structure at the time of earthquake, and interlocking with the movement of the earthquake by pressing the multiple pipes When the structure receives an impact of an impulse-like earthquake from the ground, the contact between the ends of the plurality of pipes tightened by the connecting band or the pillar and the movement of the structure by the plurality of pipes In conjunction with Therefore, the pipe is characterized in that it compresses the compressive force that resists the movement integrated with the structure and causes plastic deformation applied to the pipe by the filler, and repairs the buckled pipe when the pipe buckles. It is a seismic reinforcement method, it is easy to cope with unexpected earthquakes, the reinforcing material is lightweight, it does not require a large machine, it can be constructed inexpensively and easily in a short period of time, and it is determined according to the degree of load Fine adjustments can be made, and the reinforcement after construction can be changed easily.

(実施例1)
本発明の実施例1における構造物として橋脚の場合のパイプ耐震構造体及びパイプ耐震補強方法について図面に基づいて説明する。図1は本発明の実施例1における構造物に対するパイプ耐震構造体の全体図、図2は図1の構造物のX−X断面図、図3(a)は本発明の実施例1における構造物を補強するパイプを固定する方法の説明図、図3(b)は本発明の実施例1における構造物を補強するパイプをフーチングに固定する説明図、図4は本発明の実施例1における構造物に対するパイプ耐震構造体の直下型地震による応答の説明図である。
(Example 1)
A pipe earthquake-resistant structure and a pipe earthquake-proof reinforcement method in the case of a bridge pier as a structure in Embodiment 1 of the present invention will be described with reference to the drawings. 1 is an overall view of a pipe earthquake-resistant structure for a structure in Embodiment 1 of the present invention, FIG. 2 is an XX cross-sectional view of the structure in FIG. 1, and FIG. 3A is a structure in Embodiment 1 of the present invention. FIG. 3B is an explanatory diagram of a method for fixing a pipe for reinforcing an object, FIG. 3B is an explanatory diagram for fixing a pipe for reinforcing a structure to a footing in Embodiment 1 of the present invention, and FIG. 4 is an embodiment in Embodiment 1 of the present invention. It is explanatory drawing of the response by the direct type earthquake of the pipe earthquake-resistant structure with respect to a structure.

図1〜図3(a)(b)において、1はコンクリート製または鉄筋コンクリート製の構造物であり、実施例1の構造物1は鉄筋コンクリート製の橋脚である。しかし、構造物1は橋脚には限られず、少なくとも柱部分(本発明の脚)を備えた構造のものが含まれる。2は充填材3(後述)が充填され耐震補強を行うため構造物1の周りに多数に配置された鉄等の金属あるいはFRP,グラスファイバー等の繊維質補強合成樹脂等のパイプ、3はパイプ2の中に充填される砂、モルタル、コンクリート、樹脂等の充填材(図2参照)である。充填材2はパイプ2の圧縮強度を増す材料であればよい。 1 to 3 (a) and 3 (b), 1 is a structure made of concrete or reinforced concrete, and the structure 1 of Example 1 is a pier made of reinforced concrete. However, the structure 1 is not limited to a bridge pier, and includes a structure having at least a pillar portion (a leg of the present invention). 2 filler 3 such as (described later) are arranged in a number around the structure 1 for performing seismic reinforcement are filled ferrous metal or FRP, glass fiber or the like fibrous reinforcing synthetic resin pipes, 3 is a pipe 2 is a filler (see FIG. 2) such as sand, mortar, concrete, resin, and the like filled in the inside. The filler 2 may be any material that increases the compressive strength of the pipe 2.

なお、パイプ材質は強度、汎用性、コストの面から鋼鉄であることが望ましいが、強度的に十分であれば他の金属、繊維質補強合成樹脂等でもかまわない。風雨に曝されても赤錆などが発生するなど、腐食が進行しないように表面を樹脂コーティングなどしておくのもよい。そして、小径のパイプや、とくに樹脂類パイプを使用した場合、非常に軽量になり、人力あるいは小型機械による施工が可能であり、狭隘な場所での補強作業に有効である。 The material of the pipe 2 is preferably steel from the viewpoint of strength, versatility, and cost, but other metals, fiber-reinforced synthetic resins, and the like may be used as long as the strength is sufficient. The surface may be coated with a resin so that corrosion does not proceed, such as red rust generated even when exposed to wind and rain. When a small-diameter pipe, particularly a resin pipe, is used, it is very lightweight and can be constructed by human power or a small machine, and is effective for reinforcement work in a narrow place.

パイプ2の断面形状は円形パイプが汎用され、入手容易で望ましいが、円形に限らずあらゆるパイプ、例えば4角形、6角形等の多角形(筒状)のパイプ等でよく、肉厚を有し、少なくとも内部に中空部分が形成されたパイプであればよい。組み合わせによりパイプ構造となるものでも所要の組み合わせ強度を有するものは使用可能である。なお、多角形のパイプは構造物1に圧接したとき摩擦力が大きくなり有効である。また、パイプの外形、中空部分の形状が長手方向の途中で変化するものであってもよい。すなわち、長手方向に一様な断面形状のパイプも素材として適当であるが、竹のように途中で節(凸凹)が形成されたパイプ、あるいは長手方向に巻き付けなどがなされたパイプ、例えば螺旋状に断面が変化する断面形状をもつパイプなども好適である。これによりコンクリートとの付着力(摩擦、圧接、食い込みによる力)を増大させることが可能となる。巻き付けなどは、鋼管に合成樹脂を巻き付けて節(凸凹)を設けるような2種類以上の材料を使ったものでもよい。 A circular pipe is generally used as the cross-sectional shape of the pipe 2, and it is easy to obtain and is desirable. Any pipe that has at least a hollow portion formed therein may be used. A pipe structure that has a required combination strength can be used even if it has a pipe structure. The polygonal pipe is effective because the frictional force is increased when it is pressed against the structure 1. Moreover, the external shape of a pipe and the shape of a hollow part may change in the middle of a longitudinal direction. That is, a pipe having a uniform cross-sectional shape in the longitudinal direction is also suitable as a material, but a pipe in which nodes (irregularities) are formed in the middle like bamboo, or a pipe wound in the longitudinal direction, for example, a spiral shape A pipe having a cross-sectional shape whose cross section changes is also suitable. Thereby, it becomes possible to increase the adhesive force (friction, pressure welding, force by biting) with concrete. Winding or the like may be performed using two or more kinds of materials in which a synthetic resin is wound around a steel pipe to provide a node (unevenness).

このようなパイプ2は、直下型地震のように構造物1に上下方向にインパルス状の地震の入力があったときなどにも、この付着力の作用によって衝撃を緩和することができる。また、上述したような巻き付けや、螺旋形状などにすることにより、パイプ2は断面二次モーメントを大きくすることができ、構造物1に地震による曲げモーメントが加わったときにも、構造物1に作用するせん断力を軽減することができる。なお、パイプ2は構造物1の補強をするための従たる構成にすぎないから、場所をあまり占有しない長尺状のパイプが望ましい。すなわち、断面形状において直交2方向の代表2辺の平均値より長手方向の長さが長いパイプが望ましい。 Such a pipe 2 can relieve an impact by the action of this adhesive force even when an impulse-like earthquake is input to the structure 1 in the vertical direction like a direct earthquake. In addition, the pipe 2 can have a large secondary moment by wrapping as described above, a spiral shape, or the like, and even when a bending moment due to an earthquake is applied to the structure 1, The acting shear force can be reduced. Since the pipe 2 is merely a subordinate structure for reinforcing the structure 1, a long pipe that does not occupy much space is desirable. That is, a pipe having a longer length in the longitudinal direction than the average value of two representative sides in two orthogonal directions in the cross-sectional shape is desirable.

次に、パイプ2の中空部分に充填する充填材3としては、外部からの圧縮に対して耐力が大きな材料を充填する。一般的に耐力は鋼材>モルタル・コンクリートであり、樹脂には様々のものがあるから、パイプ2の材料に何を使うかにより充填材3を選択する。但し、高価な材料では充填材3を充填する意味がないから、砂、セメント水和物反応を利用するモルタルやコンクリート、樹脂等のように安価な材料が望ましい。丸棒のような一体物は一般的にコストが高くなり、重量がかさばるため運搬等の課題が残り、コンクリート製パイプの中に低強度コンクリートを満たしたようなパイプ2は、強度の面で課題が残る。 Next, as the filler 3 that fills the hollow portion of the pipe 2, a material having a high proof strength against external compression is filled. Generally, the proof stress is steel> mortar / concrete, and there are various types of resins. Therefore, the filler 3 is selected depending on what is used for the material of the pipe 2. However, since an expensive material does not make sense to fill the filler 3, an inexpensive material such as sand, mortar using a cement hydrate reaction, concrete, or resin is desirable. In general, an integrated object such as a round bar is expensive, and its weight is bulky, so the problem of transportation remains, and the pipe 2 that is filled with low-strength concrete in the concrete pipe has a problem in terms of strength. Remains.

パイプ2は、骨格部分(パイプ)が充填材3の外周に形成されているため、圧縮等の塑性変形を起こすような力に対しては、内部の充填材3がこの外力を引き受けて変形を回避し、引張などは骨格部分のパイプが外力を引き受けて支持する。これにより、パイプに外力が加わったとき、パイプ形状が変形するのを充填材が抑制し、2つの材料が機能を分担することで外力に対して大きな耐力を持った構造となる。パイプと充填材3が物理的な強度の弱点をカバーし合い、全体として中実の棒材と同等かこれに近い強度を示すものとなる。 Since the skeleton part (pipe) of the pipe 2 is formed on the outer periphery of the filler 3, the inner filler 3 takes on this external force and deforms against a force that causes plastic deformation such as compression. To avoid and pull, the pipe of the frame part takes over and supports the external force. As a result, when an external force is applied to the pipe, the filler suppresses the deformation of the pipe shape, and the two materials share the function, thereby providing a structure having a large proof strength against the external force. The pipe and the filler 3 cover the weak points of physical strength, and as a whole, the strength is equal to or close to that of a solid bar.

これは身近な次のような事例からも理解することができる。人間やほ乳類、鳥類等の骨格構造は、骨の周りに筋肉が形成された構造となっている。しかし、昆虫類は外側に甲殻を持ち、内部に筋肉を有する構造を有している。スケール換算すると人間の数倍から数十倍の強度を持つ昆虫類の秘密は、この甲殻構造にある。通常の鉄筋コンクリート構造においてはコンクリートが筋肉に相当し、鉄筋が骨格に相当するが、実施例1のパイプ2は外側が鋼鉄等のパイプで、内部がコンクリートやモルタル等の甲殻構造となっており、外力に対して鉄筋コンクリートより強靱な構造となっている。 This can be understood from the following familiar cases. Skeletal structures such as humans, mammals and birds have a structure in which muscles are formed around bones. However, insects have a structure with a shell on the outside and a muscle on the inside. The secret of insects, which are several to tens of times stronger than humans when converted to scale, lies in this shell structure. In a normal reinforced concrete structure, the concrete corresponds to muscles, and the reinforcing bars correspond to skeletons. However, the pipe 2 of Example 1 is a pipe such as steel on the outside, and the inside is a shell structure such as concrete or mortar, The structure is stronger than reinforced concrete against external forces.

従って、地震のような想定外の力が急激に加わって、ねじりや過度の繰り返し力が作用するとき、パイプ2は鉄筋コンクリート構造より高い耐震性を示す。すなわち、構造物1の靭性(変形性能)を向上させることが可能となる。なお、パイプ2は、パイプに後から充填材3を流入させることによって製造するのが容易であるが、長尺状の充填材3を製造し、その後に外側に肉厚部分(パイプ部分)を巻き付けること等で製造するのでもよい。例えば、充填材3としての鉄棒を製造し、これに高強度鋼板を巻いたパイプであっても、リサイクル樹脂の充填材3にカーボンファイバー等の補強繊維シートを巻き付けたパイプもでもよい。 Accordingly, when an unexpected force such as an earthquake is suddenly applied and a torsion or excessive repetitive force is applied, the pipe 2 exhibits higher earthquake resistance than the reinforced concrete structure. That is, the toughness (deformation performance) of the structure 1 can be improved. In addition, although it is easy to manufacture the pipe 2 by pouring the filler 3 into the pipe later, the elongated filler 3 is manufactured, and then a thick portion (pipe portion) is formed outside. You may manufacture by winding etc. For example, a pipe in which a steel rod as the filler 3 is manufactured and a high-strength steel plate is wound around the steel rod or a reinforcing fiber sheet such as carbon fiber around the filler 3 made of recycled resin may be used.

また、耐震補強といっても、既設の建造物に対して事後的に耐震補強するだけでなく、新規建築において柱等の構造物1に実施例1のパイプ構造体を設置して、構造物1の鉄骨、鉄筋の負担を軽減する代替材料とすることもでき、この場合工期を短縮でき、安価且つ容易に耐震補強構造物をつくることができる。 In addition, seismic reinforcement is not only retroactively retrofitted to an existing building, but the pipe structure of Example 1 is installed in a structure 1 such as a pillar in a new building. It can also be used as an alternative material that reduces the burden on the steel frame and the reinforcing bar. In this case, the construction period can be shortened, and a seismic reinforcement structure can be easily produced at low cost.

さて、図1,2において、4a,4b,4cは構造物1の周囲に密着して立設された複数のパイプ2の更にその周囲を巻回され、複数のパイプ2を緊締して構造物1のパイプ2の動きを一体化(連動)させる連結である。連結帯4a,4b,4cの両端は、一重または多重で巻回された後、接着、溶接、ボルト締め、クリップ、ロープ結びなどで固定される。 In FIGS. 1 and 2, 4a, 4b, and 4c are wound around a plurality of pipes 2 installed in close contact with the periphery of the structure 1, and the plurality of pipes 2 are tightened to tighten the structures. This is a connecting band that integrates (interlocks) the movement of one pipe 2. Both ends of the connecting bands 4a, 4b, 4c are wound in a single or multiple manner, and then fixed by adhesion, welding, bolting, clips, rope knots, or the like.

実施例1の構造物1は橋脚であるが、地震の水平力が作用したとき脆性破壊が最も頻繁に発生する橋脚の柱下部(本発明の脚下部)に連結帯4aが設けられ、これによってパイプ2を構造物1に緊締している。また、次の頻度で破壊が起こる柱中央部(本発明の脚中央部)または脚高さの1/3の高さ付近には結帯4bが設けられてパイプ2を構造物1に緊締し、さらに柱上部(本発明の脚上部)には連結帯4が設けられてパイプ2を構造物1に緊締している。そして、これらの緊締位置は地震時に作用する応力が許容値を越えると予測される位置である。 Although the structure 1 of Example 1 is a pier, the connection belt | band | zone 4a is provided in the pillar lower part (lower leg of this invention) of a bridge pier in which a brittle fracture occurs most frequently when the horizontal force of an earthquake acts, and thereby The pipe 2 is fastened to the structure 1. Further, tightening the column center portion destruction in the next frequency occurs consolidated zone 4b is provided in the vicinity of the height of one third or Ashidaka of (leg center portion of the present invention) the pipe 2 to the structure 1 Further, a connecting band 4 c is provided on the upper part of the column (the upper part of the leg of the present invention) to fasten the pipe 2 to the structure 1. These tightening positions are positions where the stress acting during an earthquake is predicted to exceed an allowable value.

ところで、地震の力が加わるとき、構造物1の構造特性によって破壊される位置は異なる。橋脚と同様に柱部分を備えた構造物1の場合、質量の大きな部分に水平力が作用すると、慣性力で柱下部に最も大きな曲げモーメントが加わって柱下部から破壊される。柱下部に向って徐徐に増加する分布荷重が作用するような構造物1の場合は、柱下部から1/3程度の高さの位置に最大の曲げモーメントが加わって破壊される。また、上下動の力が作用する場合は、柱中央部、次に柱下部、柱上部に大きな応力が加わることが多い。   By the way, when an earthquake force is applied, the position where the structure 1 is broken differs depending on the structural characteristics of the structure 1. In the case of the structure 1 having the column portion as in the case of the pier, when a horizontal force acts on a portion having a large mass, the inertial force causes the largest bending moment to be applied to the column lower portion and the column 1 is destroyed from the column lower portion. In the case of the structure 1 in which a distributed load that gradually increases toward the lower part of the column acts, the structure 1 is destroyed by applying a maximum bending moment to a position about 1/3 of the height from the lower part of the column. In addition, when a vertical movement force is applied, a large stress is often applied to the central portion of the column, then the lower portion of the column, and the upper portion of the column.

しかし、実施例1のパイプ耐震構造体は、連結帯4a,4b,4cの緊締力(締め付け力)と、連結帯4a,4b,4cを設置する緊締位置及び緊締幅を構造物1の特性に応じて調整することが可能であり、その構造物1にとって最大の応力が加わる部分を中心に、所定の応力以上の部位(幅)を連結帯4a,4b,4cで締め付けるから、構造物1の構造特性に従って補強の程度を簡単に調整することができる。 However, the seismic structure of the pipe according to the first embodiment uses the tightening force (tightening force) of the connection bands 4a, 4b, 4c, the tightening position and the tightening width where the connection bands 4a, 4b, 4c are installed as the characteristics of the structure 1. It is possible to adjust according to this, and since the portion (width) equal to or greater than the predetermined stress is tightened by the connecting bands 4a, 4b, 4c around the portion where the maximum stress is applied to the structure 1, the structure 1 The degree of reinforcement can be easily adjusted according to the structural characteristics.

このように、実施例1においては連結帯4a,4b,4cが3箇所の緊締位置に所定幅、所定の緊締力で設けたが、柱下部、柱上部、柱中央部、脚高さの1/3の高さ付近のうち少なくとも1部位以上の緊締位置で緊締すればよい。設置箇所をさらに増加してもよいし、構造によっては最も負荷のかかる柱下部の連結帯4aだけとするのでも、あるいは柱下部、柱中央部の連結帯4a,4bだけを緊締するのでもよい。また、連結帯4a,4b,4cをパイプ2と同様の構成のパイプを使って構成することも可能である。 As described above, in the first embodiment, the connecting bands 4a, 4b, and 4c are provided at the three tightening positions with the predetermined width and the predetermined tightening force, but the column lower part, the column upper part, the column central part, and the leg height 1 The tightening may be performed at the tightening position of at least one part in the vicinity of the height of / 3. The number of installation locations may be further increased, or depending on the structure, only the connection band 4a at the lower part of the column, which is the most loaded, or only the connection bands 4a and 4b at the lower part of the column and the center of the column may be tightened. . Further, the connection bands 4a, 4b, and 4c can be configured using pipes having the same configuration as the pipe 2.

連結帯4a,4b,4cはワイヤー(金属あるいは繊維質補強樹脂を主材料としたもの)、カーボン板等の繊維質補強樹脂を主材料としたクロス、鉄板ボルト締めによる帯鉄、ロープなどが好適で、連結帯4a,4b,4cによる構造物1と複数のパイプ2の緊締力は、地震時にパイプ2が構造物1を拘束し(摩擦、圧接、食い込みによって抵抗力となる)、両者が一体となった運動ができればよい。実施例1においては、連結帯4aはワイヤー巻、連結帯4bはクロス巻、連結帯4cは帯鉄巻にしている。勿論これに限られるものではない。連結帯4a,4b,4cの横幅は構造物1と連動できるだけの十分な付着力(摩擦、圧接、食い込みによる力)が得られればよく、図1に示す柱下部、柱中央部に設けられる連結帯4a,4bは柱上部より幅広になっている。 The connecting bands 4a, 4b, and 4c are preferably wires (made of metal or fiber reinforced resin as a main material), cloths made of fiber reinforced resin such as carbon plate as a main material, band iron by tightening iron plate bolts, ropes, etc. Thus, the tightening force of the structure 1 and the plurality of pipes 2 by the connecting bands 4a, 4b, and 4c is that the pipe 2 restrains the structure 1 at the time of an earthquake (the resistance force is generated by friction, pressure welding, and biting), and both are integrated. I just want to do the exercise that became. In the first embodiment, the connection band 4a is wire wound, the connection band 4b is cross-winding, and the connection band 4c is band-wound. Of course, it is not limited to this. The connection bands 4a, 4b, and 4c need only have a sufficient adhesive force (friction, pressure contact, and force due to biting) that can be interlocked with the structure 1, and are provided at the lower part of the column and the central part of the column shown in FIG. The bands 4a and 4b are wider than the column top.

パイプ2の長さは、実施例1の橋脚の場合、脚部分の高さ分だけあるのが望ましいが、構造物1の状況で、例えば柱中央部までの高さでも、場合によっては柱下部だけの高さでもよい。ただこの場合、地震の水平力が作用したとき橋脚の重量で脚部分が揺れ、パイプ2を座屈させる可能性が生じるので、できれば橋脚の脚半分以上の高さにするのが好適である。 In the case of the pier of Example 1, it is desirable that the length of the pipe 2 is equal to the height of the leg portion. However, in the situation of the structure 1, for example, even the height up to the center of the column may be lower than the column. It may be just the height. However, in this case, when the horizontal force of the earthquake acts, the leg portion may be shaken by the weight of the pier, and the pipe 2 may be buckled. Therefore, it is preferable that the height of the pier is half or more if possible.

次に、図1,図3(a)(b)に示すように、5は構造物1のフーチングであり、6は地表面である。さらに、図3(a)において、7は構造物1の周囲でフーチング5上に複数のパイプ2を並べてその脚元の型枠にコンクリートを打設して形成した支持部であり、また、図3(b)に示す8はフーチング5上に形成された複数の挿入孔である。挿入孔8にはパイプ2の下端がそれぞれ差し込まれるなどして、この場合複数のパイプ2が、構造物1のフーチング若しくはフーチングに設けられた基礎または支持地盤で支持されることになる。 Next, as shown in FIGS. 1, 3 (a) and 3 (b), 5 is a footing of the structure 1, and 6 is the ground surface. Further, in FIG. 3 (a), reference numeral 7 denotes a support portion formed by arranging a plurality of pipes 2 on the footing 5 around the structure 1 and placing concrete in the form of the legs. Reference numeral 8 shown in 3 (b) denotes a plurality of insertion holes formed on the footing 5. Inserted into the holes 8 and Runado inserted the lower end of the pipe 2, respectively, in this case a plurality of pipes 2 will be supported by the foundation or supporting ground provided footing or footings of the structure 1.

ここで、実施例1のパイプ耐震構造体の作用についてさらに詳しく説明する。図2に示すように、構造物1の脚の周囲に複数のパイプ2が接触して立設され、連結帯4a,4b,4cで連結されている。まず、水平力の地震力が作用した場合について説明する。 Here, the effect | action of the pipe earthquake-proof structure of Example 1 is demonstrated in detail. As shown in FIG. 2, a plurality of pipes 2 are erected around the legs of the structure 1 and connected by connecting bands 4 a, 4 b, 4 c. First, a case where horizontal seismic force is applied will be described.

構造物1の重量の大きな部分には、地盤が地震で水平に動くと慣性力が働き、脚部分は大きく撓む。図2のように脚部分が幅b、高さhの矩形状の断面を有する場合、幅bの面に対してこの慣性力、すなわちせん断力Fが作用したとすると、脚とパイプ2は組み合わせ梁のように撓むことになる。 When the ground moves horizontally due to an earthquake, an inertial force acts on the heavy portion of the structure 1 and the leg portion is greatly bent. When the leg portion has a rectangular cross section with a width b and a height h as shown in FIG. 2, if the inertial force, that is, the shearing force F acts on the surface with the width b, the leg and the pipe 2 are combined. It will bend like a beam.

ここで、パイプ2の縦弾性係数をEp、橋脚の縦弾性係数をEcとし、パイプ2の断面二次モーメントをIp、橋脚の脚の断面二次モーメントをIc、さらにパイプ2の本数をn本、パイプ2一本の断面積Apとすると、橋脚の脚に作用する最大せん断応力τは柱下部の中央付近で生じ、組み合わせ梁で近似できると考えた場合、おおよそ(F/b)(Ec・b・h/8+Ep・n・Ap・h/2・h/(b+h))/(Ec・Ic+n・Ep・Ip)程度になる。曲げに伴う歪みは中立軸からの距離に比例し、全断面に作用する圧縮応力と引張応力の総和を0、せん断応力τは幅b方向にほぼ一様に分布しているものとする。橋脚の縦弾性係数Ecは鉄筋コンクリートとしたときの見掛けの値である。そして、せん断力Fの方向と平行な方向に並んだパイプ2はn本のうちh・n/(b+h)本であり、残りのb・n/(b+h)本が橋脚の曲げに対して主たる抵抗を示すものとする。 Here, the longitudinal elastic modulus of the pipe 2 is Ep, the longitudinal elastic modulus of the pier is Ec, the secondary moment of section of the pipe 2 is Ip, the secondary moment of inertia of the pier leg is Ic, and the number of pipes 2 is n. When the cross-sectional area Ap of one pipe 2 is assumed, the maximum shear stress τ acting on the pier leg is generated near the center of the lower part of the column, and when it can be approximated by a combined beam, approximately (F / b) (Ec · b · h 2/8 + Ep · n · Ap · h / 2 · h / (b + h)) / (Ec · Ic + n · Ep · Ip) become degree. The strain accompanying bending is proportional to the distance from the neutral axis, the sum of the compressive stress and tensile stress acting on the entire cross section is 0, and the shear stress τ is distributed almost uniformly in the width b direction. The longitudinal elastic modulus Ec of the pier is an apparent value when reinforced concrete is used. The number of pipes 2 arranged in a direction parallel to the direction of the shearing force F is h · n / (b + h) out of n, and the remaining b · n / (b + h) is the main for bending of the pier. It shall indicate resistance.

これに対して、補強がない場合の最大せん断応力τcは概ねF・h/8・Icであるから、τ=τc・(1+α・4n・γ・h/(b+h))/(1+α・β・n)となる。ここで、α=Ep/Ec、β=Ip/Ic、γ=Ap/Ac、Ac=b・hであり、通常αはα=15程度、βはパイプ2と建造物の形状と大きさによる。 In contrast, since the maximum shear stress .tau.c when no reinforcement is approximately F · h 2/8 · Ic , τ = τc · (1 + α · 4n · γ · h / (b + h)) / (1 + α · β N) Here, α = Ep / Ec, β = Ip / Ic, γ = Ap / Ac, Ac = b · h, where α is usually about α = 15 and β depends on the shape and size of the pipe 2 and the building .

パイプ2は充填材3の作用で直径dの丸棒に近似できる断面二次モーメントを有しているとすると、最大せん断応力τをτ<τcにするには4γ・h/(b+h)<β程度にすればよい。例えば、上記橋脚の場合、h/32(b+h)<dであればよい。橋脚の脚がb=hの形状で正方形の場合には、上記目安値はd>h/8程度となる。しかし、この値は、本発明が新たな補強方法のため、従来の繊維シートや炭素繊維などの補強方法、鋼板まきたて工法のように補強設計の方法が確立されておらず、近似に基づく目安にすぎない。 Assuming that the pipe 2 has a secondary moment of inertia that can be approximated to a round bar having a diameter d by the action of the filler 3, in order to set the maximum shear stress τ to τ <τc, 4γ · h / (b + h) <β It should be about. For example, in the case of the pier, h 3/32 (b + h) < may be a d 2. When the pier leg is a square with b = h, the reference value is about d> h / 8. However, this value is based on an approximation because the present invention is a new reinforcing method, and a reinforcing method such as a conventional fiber sheet or carbon fiber, or a reinforcing steel design method is not established as in the steel sheet turning method. It is only a guide.

実際には精度の高い計算は複雑で、連結帯4a,4b,4cの締め付け程度でパイプ2の橋脚への付着力が異なるし、上記計算では無視したせん断力Fと平行な面方向に配置されたh・n/(b+h)本のパイプ2が抵抗として機能し、これらが橋脚に作用するせん断力F、曲げモーメントを分担するから、また、パイプの形状と材質、充填材3の材料の選択によってこれらの値は変化し、個々の場合で異なった値となる。従って、実際には高さh若しくは幅bの1/30〜1/15以上、本体強度に余裕が見込まれる場合は1/40以上の大きさにすればτ<τcを十分実現することができる。 Actually, the calculation with high accuracy is complicated, and the adhesion force to the pier of the pipe 2 differs depending on the tightening of the connecting bands 4a, 4b, 4c, and is arranged in a plane direction parallel to the shearing force F ignored in the above calculation. Since h · n / (b + h) pipes 2 function as resistances and share the shearing force F and bending moment acting on the piers, the pipe shape and material, and the material for the filler 3 can be selected. Depending on the value, these values change and become different values in each case. Therefore, in practice, τ <τc can be sufficiently realized by setting the height h or width b to 1/30 to 1/15 or more, and if the body strength is expected to be 1/40 or more. .

続いて、直下型の地震で橋脚に上下方向のインパルス状の振動が入力されたときの説明を行う。橋脚の質量をM、パイプの付着力(パイプが連結帯4a,4b,4cが締め付けられたことによる摩擦、圧接、食い込みによる力)による減衰係数をc、橋脚のバネ係数をkとすると、地震による入力があったときの橋脚の応答は(1/Mq)・e−ξωtなる振幅を有するsin(qt)の振動と考えることができる。ここに、ω=(k/M)1/2、ξ=c/2・(Mk)1/2、q=ω(1−ξ1/2である。図4において、Mω・h(t)が橋脚の上下方向の変化量を示す。パイプ2が橋脚へ強く密着し、食い込むと、ξ、すなわち減衰係数cが大きくなり、図4に示すように過渡的な応答の振幅が小さくなって抵抗が大きくなる。 Next, an explanation will be given of when an impulse-like vibration in the vertical direction is input to the pier in a direct earthquake. The mass of the pier M, adhesion of the pipe the damping coefficient by (pipe connecting band 4a, 4b, friction due to 4c is tightened, pressure, force by biting) c, when the spring coefficient of the piers and k, earthquakes The response of the pier when there is an input by can be considered as a vibration of sin (qt) having an amplitude of (1 / Mq) · e− ξωt . Here, ω = (k / M) 1/2 , ξ = c / 2 · (Mk) 1/2 , and q = ω (1-ξ 2 ) 1/2 . In FIG. 4, Mω · h (t) indicates the amount of change in the vertical direction of the pier. When the pipe 2 is in close contact with the pier and bites in, the ξ, that is, the damping coefficient c increases, and the amplitude of the transient response decreases and the resistance increases as shown in FIG.

すなわち、地震の上下動が入力され、橋脚が慣性で遅れて運動しようとすると、パイプ2が付着力でこの運動に抵抗する。このときパイプ2は橋脚から大きな圧縮力を受けるが、連結帯4a,4b,4cでパイプ2全体に力を均等に分散する。パイプには充填材3が充填されているから、単純なパイプより圧縮に耐え、座屈を回避することができる。また、仮に座屈が起きても、橋脚自体の破壊が免れれば、パイプ耐震構造体は役目を十分に果たしたことになるし、パイプ耐震構造体を補修するのは橋脚本体が損壊した場合に比べてきわめて容易であり、無視できる程度に安価である。 That is, when the vertical movement of the earthquake is input and the pier tries to move with inertia, the pipe 2 resists this movement with an adhesive force. At this time, the pipe 2 receives a large compressive force from the pier, but the force is evenly distributed throughout the pipe 2 by the connecting bands 4a, 4b and 4c. Since the pipe is filled with the filler 3, it can withstand compression and avoid buckling than a simple pipe. Even if buckling occurs, if the pier itself is not destroyed, the seismic structure of the pipe has fully fulfilled its role, and repairing the seismic structure of the pipe is when the pier body is damaged. Compared to, it is very easy and cheap enough to be ignored.

実際の地震は、上述したインパルス状の地盤の上下動による力だけが作用する場合は稀であり、上下方向と水平方向の力が前後して作用する場合、若しくは主として水平方向の力が作用する場合か、のどちらかになることが多いが、実施例1のパイプ耐震構造体は、上述したような2方向の作用を奏することにより、橋脚の破壊を免れさせることができる。 An actual earthquake is rare when only the force due to the vertical movement of the impulse-shaped ground described above is applied, and when the vertical and horizontal forces are applied back and forth, or mainly the horizontal force is applied. In many cases, the pipe earthquake-resistant structure of Example 1 can avoid the destruction of the pier by exerting the action in the two directions as described above.

このように実施例1のパイプ耐震構造体及びパイプ耐震補強方法は、予想外の地震に対応することが容易で、補強材が軽量であり、大型の機械を必要とせず、安価且つ簡単、短期間に施工でき、負荷の程度に応じたきめ細やかな調整が行え、施工後の補強の変更、短工期の耐震改修が容易に行える。ねじりや過度の繰り返し力に対して従来の鉄筋コンクリート構造より対応できる幅が大きくなる。そして、橋脚のようなコンクリート構造だけでなく、レンガ積み構造、石積み構造にも適用可能である。 As described above, the pipe earthquake-resistant structure and the pipe earthquake-proof reinforcement method of Example 1 are easy to cope with unexpected earthquakes, the reinforcing material is lightweight, does not require a large machine, and is inexpensive and simple, short-term. It can be installed in between, making fine adjustments according to the degree of load, making it easy to change the reinforcement after construction and make earthquake-resistant repairs in the short construction period. The width which can respond to torsion and excessive repetitive force than the conventional reinforced concrete structure becomes large. And it is applicable not only to a concrete structure like a pier but also to a brick structure and a masonry structure.

そして、橋脚の場合、連結帯が柱下部、柱上部、柱中央部、脚高さの1/3の高さ付近のうち少なくとも1部位以上の緊締位置で緊締されるため、橋脚を安価且つ簡単、短期間に耐震補強でき、負荷の程度に応じたきめ細やかな調整が行え、施工後の補強の変更が容易に行える。   And in the case of a pier, the connection ties are tightened at a tightening position of at least one part among the column lower part, the column upper part, the column central part, and the vicinity of the height of 1/3 of the leg height. Can be seismically reinforced in a short period of time, can be finely adjusted according to the degree of load, and can easily change the reinforcement after construction.

(実施例2)
本発明の実施例2における構造物は梁、桁、プレストレストコンクリート構造体等であり、これらの耐震補強を行うパイプ耐震構造体及びパイプ耐震補強方法である。図5は本発明の実施例2における構造物に対するパイプ耐震構造体の全体斜視図、図6はプレストレストコンクリート構造物の一部破断した構成図である。実施例1と実施例2とで、同一符号は同様の構成を示すものであり、説明は省略する。
(Example 2)
The structure in Example 2 of this invention is a beam, a girder, a prestressed concrete structure, etc., and is the pipe earthquake-resistant structure and the pipe earthquake-proof reinforcement method which performs these earthquake-proof reinforcement. FIG. 5 is an overall perspective view of a pipe earthquake-resistant structure for a structure in Embodiment 2 of the present invention, and FIG. 6 is a partially broken structural view of a prestressed concrete structure. In the first embodiment and the second embodiment, the same reference numerals indicate the same configuration and the description thereof is omitted.

図5において、4d,4e,4fはパイプ2を緊締するための連結、10はコンクリート建築物の柱、11はそのコンクリート建築物の梁である。図5は梁11の場合を示しているが、橋桁等の桁においても同様である。なお、パイプ2は実施例1と同様に、鉄等の金属あるいはFRP,グラスファイバー等の繊維質補強合成樹脂等から構成される。 In FIG. 5, 4d, 4e, and 4f are connecting bands for tightening the pipe 2, 10 is a pillar of the concrete building, and 11 is a beam of the concrete building. Although FIG. 5 shows the case of the beam 11, the same applies to a girder such as a bridge girder. As in the first embodiment, the pipe 2 is made of a metal such as iron or a fiber-reinforced synthetic resin such as FRP or glass fiber.

実施例2においては、コンクリート建築物の梁11を耐震補強するために、連結帯4d,4e,4fが梁11の両端部と中央の3箇所で梁11に巻き付けられ、樹脂接着されて、梁11の下面に配設された複数のパイプ2を固定されている。両端部と中央の3箇所で固定した理由は、梁11にほぼ一様な分布荷重がかかっている場合には、梁11の中央に最大の曲げモーメントが作用しており、地震発生時にはこれに地震によるモーメントが加わるからである。そして、柱10と接合されている両端部も、梁11が左右に動くことにより、大きなせん断力を受けて破壊されるため、実施例2においては梁11の両端部を連結帯4d,4fで補強している。なお、梁11の中央部、両端部のうち端部の一方を含む少なくとも2部位以上の緊締位置で緊締すれば最小限の作用を奏す。 In Example 2, in order to seismically reinforce the beam 11 of the concrete building, the connecting bands 4d, 4e, and 4f are wound around the beam 11 at the three ends of the beam 11 and the center, and are bonded with resin. A plurality of pipes 2 disposed on the lower surface of 11 are fixed. The reason for fixing at both ends and the center is that when the beam 11 is almost uniformly distributed, the maximum bending moment acts on the center of the beam 11, and this is the case when an earthquake occurs. This is because a moment from an earthquake is added. Also, both ends joined to the column 10 are also broken by receiving a large shearing force when the beam 11 moves left and right, so in the second embodiment, both ends of the beam 11 are connected by the connection bands 4d and 4f. It is reinforced. In addition, if it tightens in the tightening position of the at least 2 site | part or more including one of the center part of the beam 11 and both ends, there exists a minimum effect | action.

実施例2の梁11は、梁11にかかるモーメントの大きさを反映して、中央の連結帯4eは最も緊締力のあるクロス二重張りとし、両端部の連結帯4d,4fにはクロス一重張りを採用している。これらの緊締幅は所定の応力以上になる範囲を緊締すればよい。なお、パイプ2は、長手方向の長さが梁11の長さと同一程度であればよく、梁11の下面に沿って配置され、連結帯4d,4e,4fにより梁11に緊締されていればよい。そして、パイプ2の両端は柱10に当接させるのが好適であるが、座屈等を考慮して両端に若干の間隙を設けて配置するのでもよい。 The beam 11 of the second embodiment reflects the magnitude of the moment applied to the beam 11, and the central connecting band 4e is cross-stretched with the most tightening force, and the connecting bands 4d and 4f at both ends have a single cross. Adopts tension. These tightening widths may be tightened within a range that is equal to or greater than a predetermined stress. The pipe 2 only needs to have a length in the longitudinal direction that is substantially the same as the length of the beam 11, and is disposed along the lower surface of the beam 11 and fastened to the beam 11 by the connection bands 4 d, 4 e, 4 f. Good. It is preferable that both ends of the pipe 2 are brought into contact with the column 10, but it may be arranged with a slight gap at both ends in consideration of buckling or the like.

続いて、図6はプレストレストコンクリート(ポストテンション方式)構造体(以下、PC構造体)に対するパイプ耐震構造体及びパイプ耐震補強方法を示している。4g,4h,4iはワイヤー、カーボン板等の繊維質補強樹脂を主材料としたクロス、鉄板ボルト締めによる帯鉄、ロープなどの連結帯、13はPC構造体、14はPC構造体13に設けられたシース、15は緊張鋼材、16は圧力を受ける支持板、17はグリップ、18はキャップ、19はコンクリート支持体である。PC構造体13は、シース14が埋め込まれた型枠を準備し、シース14の周囲に生コンクリートを供給し、これが硬化した後に型枠を取り除く。その後、シース14に緊張鋼材15を挿入し、ジャッキ等で引張応力を与え、この状態で緊張鋼材15の端部を支持板16、グリップ17で固定し、シース14と緊張鋼材15との間に固定剤を充填して硬化させたものである。 FIG. 6 shows a pipe earthquake-resistant structure and a pipe earthquake-proof reinforcement method for a prestressed concrete (post-tension method) structure (hereinafter referred to as a PC structure). 4g, 4h, and 4i are crosses made of fiber reinforced resin such as wires and carbon plates, main bands by iron plate bolting, connecting bands such as ropes, 13 is a PC structure, and 14 is provided in the PC structure 13. 15 is a tension steel material, 16 is a support plate that receives pressure, 17 is a grip, 18 is a cap, and 19 is a concrete support. The PC structure 13 prepares a mold in which the sheath 14 is embedded, supplies ready concrete around the sheath 14, and removes the mold after it is cured. Thereafter, the tension steel material 15 is inserted into the sheath 14 and a tensile stress is applied with a jack or the like. In this state, the end of the tension steel material 15 is fixed with the support plate 16 and the grip 17, and the sheath 14 and the tension steel material 15 are interposed. It is one that is filled with a fixing agent and cured.

さて、PC構造体13に対する実施例2の耐震補強は、PC構造体13の底面に、上記梁11の場合と同様、金属あるいはFRP,グラスファイバー等の繊維質補強合成樹脂等からなるパイプ2を配置し、連結帯4g,4h,4iによってPC構造体13とパイプ2を周囲から緊締して構成する。地震時にはPC構造体13の両端部と中央部で曲げが抑えられ、パイプ2と連結帯4g,4h,4iが一体となって補強するものである。 As for the seismic reinforcement of Example 2 for the PC structure 13, the pipe 2 made of metal, fiber reinforced synthetic resin such as FRP, glass fiber or the like is provided on the bottom surface of the PC structure 13 as in the case of the beam 11. The PC structure 13 and the pipe 2 are tightened from the surroundings by the connecting bands 4g, 4h, and 4i. During an earthquake, bending is suppressed at both ends and the center of the PC structure 13, and the pipe 2 and the connection bands 4g, 4h, 4i are integrally reinforced.

上述の梁11で説明したとおり、連結帯4hは最も緊締力を増すためクロス二重張りとして樹脂接着し、両端部の連結帯4g,4iにはクロス一重張りとして樹脂接着する。パイプ2の長手方向の長さはPC構造体13の長さと同一でよく、PC構造体13の底面に沿って連結帯連結帯4g,4h,4iが張り付き、支持するものであればよい。また、パイプ2の両端は柱10に当接させるのが好適であるが、両端に間隙を設けて配置するのでもよい。なお、連結帯4g,4h,4iはクロス巻のほか、ワイヤー巻、帯鉄巻などでもよい。 As described above with reference to the beam 11, the connection band 4h is resin-bonded as a cross double tension to increase the tightening force most, and the connection bands 4g and 4i at both ends are resin-bonded as a cross single tension. The length of the pipe 2 in the longitudinal direction may be the same as the length of the PC structure 13 as long as the connection band connecting bands 4g, 4h, 4i stick to and support the bottom surface of the PC structure 13. Moreover, although it is suitable for the both ends of the pipe 2 to contact | abut to the pillar 10, you may arrange | position with a gap | interval provided in both ends. The connecting bands 4g, 4h, 4i may be wire winding, band iron winding, etc. in addition to cross winding.

このように実施例2のパイプ耐震構造体及びパイプ耐震補強方法は、梁、桁やPC構造物などを耐震補強することが容易で、補強材が軽量であり、大型の機械を必要とせず、安価且つ簡単、短期間に施工できる。構造物に対する負荷に応じたきめ細やかな調整が行え、施工後の補強の変更、短工期の耐震改修が容易に行える。 Thus, the pipe seismic structure and the pipe seismic reinforcement method of Example 2 are easy to seismically reinforce beams, girders, PC structures, etc., the reinforcing material is lightweight, and does not require a large machine, Inexpensive and simple, can be constructed in a short time. Fine adjustments can be made according to the load on the structure, making it possible to easily change the reinforcement after construction and make earthquake-resistant repairs in a short construction period.

そして、梁、桁またはPC構造物において、連結帯が構造物の中央部、両端部のうち端部の一方を含む少なくとも2部位以上の緊締位置で緊締されるため、梁、桁またはPC構造物を安価且つ簡単、短期間に耐震補強でき、負荷の程度に応じたきめ細やかな調整が行え、施工後の補強の変更が容易に行える。   In the beam, girder, or PC structure, the connecting band is tightened at a tightening position of at least two sites including one of the end portions of the center portion and both ends of the structure. Can be easily seismically reinforced in a short period of time, and can be finely adjusted according to the degree of load, making it easy to change the reinforcement after construction.

本発明は、構造物の耐震性を向上させるパイプ耐震構造体とパイプ耐震補強方法に適用することができる。 INDUSTRIAL APPLICABILITY The present invention can be applied to a pipe earthquake-resistant structure that improves the earthquake resistance of a structure and a pipe earthquake-proof reinforcement method.

本発明の実施例1における構造物に対するパイプ耐震構造体の全体図Overall view of a pipe earthquake-resistant structure for a structure in Example 1 of the present invention 図1の構造物のX−X断面図XX sectional view of the structure of FIG. (a)本発明の実施例1における構造物を補強するパイプを固定する方法の説明図、(b)本発明の実施例1における構造物を補強するパイプをフーチングに固定する説明図(A) illustrates a method of fixing a pipe to reinforce the structure of the first embodiment of the present invention, (b) diagram for fixing the pipe to reinforce the footing structures in the first embodiment of the present invention 本発明の実施例1における構造物に対するパイプ耐震構造体の直下型地震による応答の説明図Explanatory drawing of the response by the direct type earthquake of the pipe earthquake-resistant structure with respect to the structure in Example 1 of this invention 本発明の実施例2における構造物に対するパイプ耐震構造体の全体斜視図Whole perspective view of pipe earthquake-proof structure to structure in Example 2 of the present invention プレストレストコンクリート構造物の一部破断した構成図Partially broken configuration diagram of prestressed concrete structure

符号の説明Explanation of symbols

1 鉄筋コンクリート製の構造物
パイプ
3 充填材
4a,4b,4c,4d,4e,4f,4g,4h,4i 連結帯
5 フーチング
6 地表面
7 支持部
8 挿入孔
10 柱
11 梁
13 PC構造体
14 シース
15 緊張鋼材
16 支持板
17 グリップ
18 キャップ
19 コンクリート支持体
DESCRIPTION OF SYMBOLS 1 Reinforced concrete structure 2 Pipe 3 Filler 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h, 4i Connection band 5 Footing 6 Ground surface 7 Supporting part 8 Insertion hole 10 Column 11 Beam 13 PC structure 14 Sheath 15 Tensile steel 16 Support plate 17 Grip 18 Cap 19 Concrete support

Claims (6)

長尺状で圧縮強度を向上させるための充填材が内部に充填されると共に構造物の側面に接触して立設されかつその端部がフーチング又は柱に当接して配置される複数のパイプと、地震による負荷が所定以上の応力となって作用する前記構造物の部位の周囲で巻回され前記複数のパイプを締付けにより前記構造物の側面に圧接させる連結帯とを備え、前記複数のパイプがこの連結帯の締付けによって地震時の前記構造物の動きと連動できる緊締力と緊締幅で緊締された直下型の地震の上下動に対応できるパイプ耐震構造体であって、
前記構造物がインパルス状の地震の衝撃を地盤から受けたとき、前記連結帯によって緊締された複数のパイプが、その端部によるフーチング又は柱との当接、前記構造物の動きとの連動に基づいて前記構造物と一体となった運動により抵抗し、前記パイプに加わる塑性変形を起こす圧縮力については前記充填材によって引き受け、前記パイプが座屈したときには座屈したパイプの補修が行える構成を有することを特徴とするパイプ耐震構造体。
A plurality of pipes which are long and are filled with a filler for improving compressive strength and which are erected in contact with the side surface of the structure and whose ends are in contact with the footings or pillars; A plurality of pipes wound around a portion of the structure that acts as a stress greater than or equal to a predetermined load caused by an earthquake and presses the plurality of pipes against the side surface of the structure by tightening. Is a pipe seismic structure that can respond to the vertical movement of a direct type earthquake tightened with a tightening force and a tightening width that can be interlocked with the movement of the structure at the time of an earthquake by tightening this connection band,
When the structure is subjected to an impulse-like earthquake shock from the ground, a plurality of pipes tightened by the connecting band are used for footing or contact with a column by the end portions, and in conjunction with the movement of the structure. Based on the structure, it is possible to repair the buckled pipe when the pipe buckles when the compressive force applied to the pipe resists by the movement integrated with the structure and causes the plastic deformation applied to the pipe. A pipe earthquake-resistant structure characterized by having.
前記構造物が橋脚の場合、前記連結帯が脚下部、脚上部、脚中央部、脚高さの1/3の高さ付近のうち少なくとも1部位以上の緊締位置で緊締されたことを特徴とする請求項1記載のパイプ耐震構造体。 When the structure is a bridge pier, the connecting band is tightened at a tightening position of at least one part among a lower leg portion, an upper leg portion, a middle leg portion, and a height of 1/3 of the leg height. The pipe earthquake-proof structure according to claim 1. 前記構造物が梁、桁を有する構造物またはプレストレストコンクリート構造物の場合、前記連結帯が前記構造物の中央部、両端部のうち前記端部の一方を含む少なくとも2部位以上の緊締位置で緊締されたことを特徴とする請求項1記載のパイプ耐震構造体。 When the structure is a structure having a beam, a girder, or a prestressed concrete structure, the connecting band is tightened at a tightening position of at least two portions including one of the end portions of the center portion and both end portions of the structure. The pipe earthquake-resistant structure according to claim 1, wherein 前記構造物が橋脚の場合、前記複数のパイプが前記橋脚の周囲のフーチングに設けられた基礎または支持地盤で支持され、垂直方向に向けて立設されたことを特徴とする請求項1または2記載のパイプ耐震構造体。 When the structure is a pier, the plurality of pipes are supported by a foundation or support ground provided in a footing around the pier, and are erected in a vertical direction. The pipe seismic structure described. 前記充填材が、砂,スラグ,モルタル,コンクリート,樹脂の1種または2種以上から構成されたことを特徴とする請求項1〜4のいずれかに記載のパイプ耐震構造体。 The pipe earthquake-resistant structure according to any one of claims 1 to 4, wherein the filler is composed of one or more of sand, slag, mortar, concrete, and resin. 長尺状で圧縮強度を向上させるための充填材が充填された複数のパイプを構造物の側面に接触して並んで配置すると共に、各端部をフーチング又は柱に当接させ、地震による負荷が所定以上の応力となって作用する前記構造物の部位において前記複数のパイプの周囲に連結帯を巻回し、前記充填材が内部に充填された複数のパイプを締付けにより地震時の前記構造物の動きと連動できる緊締力と緊締幅で緊締して、該複数のパイプを締付けによる圧接で地震の動きと連動させる直下型の地震の上下動に対応できるパイプ耐震補強方法であって、
前記構造物がインパルス状の地震の衝撃を地盤から受けたとき、前記連結帯によって緊締された複数のパイプの端部によるフーチング又は柱との当接とこの複数のパイプによる前記構造物の動きとの連動に基づいて前記構造物と一体となった運動により抵抗し、前記パイプに加わる塑性変形を起こす圧縮力については前記充填材によって引き受け、前記パイプが座屈したときには座屈したパイプの補修を行うことを特徴とするパイプ耐震補強方法。
A plurality of long pipes filled with fillers to improve compressive strength are arranged in contact with the side of the structure, and each end is brought into contact with a footing or a column, resulting in an earthquake load. The structure at the time of an earthquake is formed by winding a connecting band around the plurality of pipes at a portion of the structure where the stress acts as a stress greater than a predetermined value, and tightening the plurality of pipes filled with the filler. A pipe seismic reinforcement method capable of responding to the vertical movement of a direct type earthquake in which the plurality of pipes are tightened with a tightening force and a tightening width that can be interlocked with the movement of the pipe, and the plurality of pipes are interlocked with the movement of the earthquake by pressure welding by tightening,
When the structure is subjected to an impulse-like earthquake shock from the ground, the footing or the contact of the pillars by the ends of the plurality of pipes fastened by the connecting band and the movement of the structure by the plurality of pipes It resists by the movement integrated with the structure based on the interlocking of the structure, accepts the compressive force causing plastic deformation applied to the pipe by the filler, and repairs the buckled pipe when the pipe buckles. A method for seismic reinforcement of pipes characterized in that it is performed.
JP2006154363A 2006-06-02 2006-06-02 Pipe seismic structure and pipe seismic reinforcement method Expired - Fee Related JP4274487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006154363A JP4274487B2 (en) 2006-06-02 2006-06-02 Pipe seismic structure and pipe seismic reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006154363A JP4274487B2 (en) 2006-06-02 2006-06-02 Pipe seismic structure and pipe seismic reinforcement method

Publications (2)

Publication Number Publication Date
JP2007321486A JP2007321486A (en) 2007-12-13
JP4274487B2 true JP4274487B2 (en) 2009-06-10

Family

ID=38854541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006154363A Expired - Fee Related JP4274487B2 (en) 2006-06-02 2006-06-02 Pipe seismic structure and pipe seismic reinforcement method

Country Status (1)

Country Link
JP (1) JP4274487B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103510469A (en) * 2012-06-28 2014-01-15 中铁二十五局集团建筑安装工程有限公司 Construction method for manufacturing thin-walled hollow pier
KR101860429B1 (en) * 2018-01-29 2018-05-24 주식회사 서린디앤씨 Reinforcemrnt method for column

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131121B2 (en) * 2008-09-25 2013-01-30 株式会社大林組 Seismic reinforcement structure for columns and seismic reinforcement method
JP5428899B2 (en) * 2010-01-27 2014-02-26 Jfeスチール株式会社 Method for reinforcing tower-like structures
CN102251481B (en) * 2011-05-06 2013-11-06 中铁七局集团第一工程有限公司 Railway pier layered construction method and construction device
CN102493341A (en) * 2011-11-14 2012-06-13 中交一航局第四工程有限公司 Construction method for hollow thin-walled high pier non-bracket formwork turnover of railway
JP6058332B2 (en) * 2012-09-25 2017-01-11 東日本旅客鉄道株式会社 Seismic reinforcement structure for concrete column and seismic reinforcement method for concrete column
JP2014205989A (en) * 2013-04-12 2014-10-30 東日本旅客鉄道株式会社 Bridge pier reinforcing structure and bridge pier reinforcing method
JP6184738B2 (en) * 2013-05-08 2017-08-23 公益財団法人鉄道総合技術研究所 Reinforcing structure for concrete member and method for constructing the same
JP6053663B2 (en) * 2013-11-14 2016-12-27 三菱重工業株式会社 Seismic retrofit method
JP2015196981A (en) * 2014-04-01 2015-11-09 株式会社国土再生研究所 Reinforcing structure of existing earth retaining wall
JP6468596B2 (en) * 2014-11-28 2019-02-13 株式会社奥村組 Reinforcing structure and reinforcing method for existing columns
EP3455412B1 (en) 2016-05-10 2021-04-07 Soletanche Freyssinet Method for reinforcing a structure comprising a pier and a cross-beam

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090012A (en) * 2001-09-17 2003-03-28 Toko Tekko Kk Pier reinforcing structure by corrugated steel material
JP2005200928A (en) * 2004-01-15 2005-07-28 East Japan Railway Co Reinforcing structure of columnar construction
JP3963326B2 (en) * 2004-10-20 2007-08-22 東日本旅客鉄道株式会社 Seismic reinforcement structure for bridge pier and its construction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103510469A (en) * 2012-06-28 2014-01-15 中铁二十五局集团建筑安装工程有限公司 Construction method for manufacturing thin-walled hollow pier
KR101860429B1 (en) * 2018-01-29 2018-05-24 주식회사 서린디앤씨 Reinforcemrnt method for column

Also Published As

Publication number Publication date
JP2007321486A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP4274487B2 (en) Pipe seismic structure and pipe seismic reinforcement method
JP3765882B2 (en) Reinforcement structure of existing concrete columnar body
JP4647714B1 (en) Buildings using walled columns with seismic prestressing
White Controlled damage rocking systems for accelerated bridge construction
CN110541354B (en) Single-section prefabricated anti-seismic pier and construction method thereof
WO2006109580A1 (en) Seismic strengthening structure and seismic strengthening construction method for existing building
JP2001173241A (en) Concrete enclosed column base type earthquake resistant reinforcing structure of column leg part of column member, and method therefor
KR101464866B1 (en) Composite beam having tie anchor embedded in a concrete
JP6004558B1 (en) Seismic reinforcement structure for structures
JP3527718B2 (en) Prestressed concrete structure
KR20130091938A (en) Strengthening method of reinforced concrete structures using anchored steel plates and wire ropes
JP2001262774A (en) Steel concrete composite structural member
JP3389521B2 (en) Vibration energy absorber for tension structure and its construction method
KR101209363B1 (en) Concrete block for seismic reinforcement of H-shaped column and seismic reinforcing method using the same
JP5868603B2 (en) Seismic reinforcement method for existing buildings
JP2011169070A (en) Building using perpendicular vibration control pc structural member to which vibration control prestress has been applied
JP5301746B1 (en) Buildings using steel columns with seismic prestressing
KR102595911B1 (en) Seismic Retrofit method for Concrete square Columns
JP5411375B1 (en) Buildings using seismic control columns
JP5211258B1 (en) Buildings using steel columns with seismic prestressing
JP6388738B1 (en) Seismic reinforcement structure for concrete structures
JP4274323B2 (en) Steel structure reinforcement method
JP2009270432A (en) Construction method of steel frame exposed column base structure
JP4275689B2 (en) Seismic strengthening method using seismic structure and curved shell pipe
JP5291390B2 (en) Earthquake-resistant structure, construction method of earthquake-resistant structure, and building

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150313

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees