JP4269629B2 - Communications system - Google Patents

Communications system Download PDF

Info

Publication number
JP4269629B2
JP4269629B2 JP2002299503A JP2002299503A JP4269629B2 JP 4269629 B2 JP4269629 B2 JP 4269629B2 JP 2002299503 A JP2002299503 A JP 2002299503A JP 2002299503 A JP2002299503 A JP 2002299503A JP 4269629 B2 JP4269629 B2 JP 4269629B2
Authority
JP
Japan
Prior art keywords
line
transmission
branch
unit
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002299503A
Other languages
Japanese (ja)
Other versions
JP2004135185A (en
Inventor
光治 池田
嘉浩 谷川
英雄 阪本
直樹 梅田
智英 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2002299503A priority Critical patent/JP4269629B2/en
Publication of JP2004135185A publication Critical patent/JP2004135185A/en
Application granted granted Critical
Publication of JP4269629B2 publication Critical patent/JP4269629B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、通信端末間で信号の送受信を行う通信システムに関するものである。
【0002】
【従来の技術】
従来、共通の伝送線路上で複数の通信端末が多重アクセスする通信システムには、LANでよく利用されるCSMA/CD(Carrier Sense Multiple Access with Collision Detect)方式がある。この方式は、伝送線路上に一定時間(フレーム間ギャップ)以上無信号状態が続くと、任意の通信端末が送信可能となる通信方式で、無信号を検出するためのキャリア信号検出機能と、他の通信端末と送信信号が衝突したことを検出する衝突検出機能を有している。衝突検出機能は、送信を行う通信端末が自身の送信した送信信号をループバック受信して、自身が送信した送信信号と伝送路上の信号とを監視し、自身が送信した送信信号と伝送路上の信号が一致した場合には信号の衝突は起こっていないと判断し、自身が送信した送信信号と伝送路上の信号が一致しない場合には、信号の衝突が起こっていると判断する。送信信号の衝突を検出した場合には、送信中の送信信号を停止させ、時間をおいて再び送信信号の送信を試みる(例えば、特許文献1参照。)。
【0003】
また、1本の伝送線路で信号の送受信を行うために、通信端末の送受信回路と伝送線路との間のインターフェイスとしてハイブリッド回路(2線−4線変換回路)が必要となる。
【0004】
従来のハイブリッド回路は、送受信回路から入力された送信信号を伝送線路に出力する送信部と、伝送線路から送信されてきた信号を受信し前記送受信回路に出力する受信部とを有し、送信部から受信部へは直接ループバック接続されており、受信部は送信部からのループバック信号を直接受信し、送受信回路にそのループバック信号を出力していた。
【0005】
この場合、多数の通信端末が分岐接続されるマルチドロップ方式のように減衰が大きい通信システムでは、他の通信端末からの受信信号が減衰し電圧レベルが小さくなるため、送信部から出力された送信信号のループバック信号と他の通信端末からの受信信号とで電圧レベル差が大きくなりすぎ、送信信号のループバック信号に他の通信端末からの受信信号が埋没し、信号同士の判別が困難になる事態が発生し得た。このため、上記した構成のハイブリッド回路を用いた通信端末は、減衰がある程度よりも少ない通信システムに適用された(例えば、適用減衰量は20〜40dB程度。)。
【0006】
上記ハイブリッド回路を改善し、より減衰の大きい通信システムに適用できるハイブリッド回路100を備えた通信端末X100を図8に示す。
【0007】
この通信端末X100は、幹線C100から分岐装置Y100を介して分岐された分岐線C200に接続され、幹線C100に、同様にして接続された別の通信端末X100と相互に信号を送受信する。
【0008】
通信端末X100は、データ信号の送信および受信を行う送受信回路200と、2線−4線変換を行うハイブリッド回路100とを備え、さらにハイブリッド回路100は、送信部101と受信部102とを備える。
【0009】
送信部101は、送受信回路200から出力された送信信号を入出力端子300を介して分岐線C200に出力する。また、送信部101と入出力端子300との間から伝送線路が分岐され、分岐線C200の特性インピーダンスに合致させた終端抵抗R100に接続される。
【0010】
受信部102は2つの入力部を有し、一方の入力部は送信部10と入出力端子300との間から送信信号をループバックし、他方の入力部は終端抵抗R100に接続されて送信信号をループバックし、2つのループバック信号成分の差である差動成分を送信信号のループバック信号として受信する。受信した信号は、増幅した後、送受信回路200に出力する。また、他の通信端末X100からの受信信号は打消し合うことなく受信され、増幅した後、送受信回路200に出力される。
【0011】
この場合、分岐線C200の特性インピーダンスと終端抵抗R100のインピーダンスとがある程度一致している限りにおいては、送信部101からの送信信号のループバック信号は、2つのループバック信号成分が互いに打消し合うために電圧レベルを小さくすることができる。
【0012】
従って、送信信号のループバック信号と他の通信端末からの受信信号との電圧レベル差を小さくすることができ、より減衰の大きい通信システムに適用できる(例えば、適用減衰量は40〜60dB程度。)。
【0013】
図9にハイブリッド回路100の回路構成例を示す。送信部101は平衡出力であって、送信部101の出力は、インピーダンス整合用抵抗R200,R201を介して伝送用トランスT100と接続されると共に、送信部101とインピーダンス整合用抵抗R200,R201との間に一端が接続されたインピーダンス整合用抵抗R203,R202を介して、終端抵抗R100と接続される。
【0014】
また、差動増幅器からなる受信部102の一方の入力端子に、インピーダンス整合用抵抗R200と伝送用トランスT100との間に一端が接続されたインピーダンス整合用抵抗R205の他端と、インピーダンス整合用抵抗R203と終端抵抗R100との間に一端が接続されたインピーダンス整合用抵抗R204の他端とが並列に接続され、他方の入力端子には、インピーダンス整合用抵抗R201と伝送用トランスT100との間に一端が接続されたインピーダンス整合用抵抗R206の他端と、インピーダンス整合用抵抗R202と終端抵抗R100との間に一端が接続されたインピーダンス整合用抵抗R207の他端とが並列に接続される。
【0015】
【特許文献1】
特公平7−32399号公報
【0016】
【発明が解決しようとする課題】
しかしながら、上記従来例において終端抵抗R100は固定値となるため、特性インピーダンスのばらつきや変動が大きい伝送線路や、様々な線種の伝送線路を利用する通信システムなどに適用する場合では、受信部の差動による効果が十分に利用できず、送信信号のループバック信号の電圧レベルが大きくなってしまうため、通信システムの適用減衰量を大きくできないという問題があった。
【0017】
また、分岐線C200の特性インピーダンスと終端抵抗R100のインピーダンスとで周波数特性を一致させるのが困難なことや、ハイブリッド回路100と分岐線C200の特性インピーダンスとの不整合による反射特性、あるいは伝送線路長の違いによる影響などのためにも、同様に通信システムの適用減衰量を大きくできないという問題があった。
【0018】
上記のような問題を改善するために、終端抵抗R100を可変にしたり切り換えたりすることも考えられるが、コストがかさんだり十分な効果が得られないなどの問題がある。
【0019】
本発明は上記問題点に鑑みて為されたものであって、その目的とするところは、減衰量が大きくても適用できる通信システムを提供することにある。
【0020】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、伝送線路に複数の通信端末が接続され通信端末間で信号の送受信を行う通信システムであって、一方が伝送線路に用いられ、他方が前記伝送線路に特性インピーダンスを合わせた擬似線路に用いられる2本の線路を同一シース内の対として備え、前記通信端末は、送信信号を送信する送信部と、他の通信端末から送信されてきた送信信号を受信すると共に前記送信部からのループバック信号を受信する受信部とからなるハイブリッド回路を備え、前記受信部は、前記送信部から前記伝送線路に出力された送信信号と、前記送信部から前記擬似線路に出力された送信信号との差動成分を送信信号のループバック信号として受信するものとした。
【0022】
請求項の発明は、請求項記載の発明において、前記受信部は、差動増幅器からなるものとした。
【0023】
請求項の発明は、請求項1又は2記載の発明において、前記伝送線路は、幹線と、幹線から分岐装置を介して分岐され前記通信端末が接続される分岐線とからなり、前記分岐装置は、前記幹線から前記分岐線を分岐すると共に該分岐線の特性インピーダンスに整合する分岐部と、前記擬似線路と接続され該擬似線路の特性インピーダンスに整合するインピーダンス整合部とを備えたものとした。
【0024】
請求項の発明は、請求項記載の発明において、前記インピーダンス整合部は、前記分岐線側から前記分岐部を見たときのインピーダンスに一致するように設定された等価終端回路で構成されたものとした。
【0025】
請求項の発明は、請求項記載の発明において、前記インピーダンス整合部は、前記分岐部と同構成の回路を前記幹線の特性インピーダンスで終端させた構成であるものとした。
【0026】
請求項の発明は、請求項1又は2記載の発明において、前記伝送線路は、幹線と、幹線から分岐装置を介して分岐され前記通信端末が接続される分岐線とからなり、前記擬似線路は、前記幹線と前記分岐線とに夫々並設され、前記分岐装置は、前記幹線から前記分岐線を分岐すると共に該分岐線の特性インピーダンスに整合する第1の分岐部と、この第1の分岐部と同構成の回路であり、前記幹線に並設された擬似線路から前記分岐線に並設された擬似線路を分岐すると共に該分岐線側の擬似線路の特性インピーダンスに整合する第2の分岐部とを備えたものとした。
【0027】
【発明の実施の形態】
以下、本発明を実施形態1から実施形態3によって説明する。
(実施形態1)
図1に、本実施形態の通信システムの構成図を示す。この通信システムは、1対のツイストペア線などの平衡伝送線路からなる幹線C1に複数の分岐装置Yが接続され、分岐装置Yを介して幹線C1から分岐された分岐線C2に通信端末Xが接続され、通信端末X間で信号の送受信を行う。
【0028】
本実施形態では、分岐線C2として、同一シース内の2対の平衡伝送線路が用いられ、1対が通信端末X間で信号の送受信を行う伝送線路C20に用いられ、別の1対が信号の送受信が行われない擬似線路C21に用いられる。この場合、伝送線路C20と擬似線路C21の特性インピーダンスは、ほぼ同じとなる。
【0029】
このようなケーブルとしては、例えばLAN用のCAT5ケーブル(4対)や、CPEV線(2または3対)などがあり、特性インピーダンスは、CAT5ケーブルならば100Ω、CPEV線ならば60〜90Ω程度である。
【0030】
通信端末Xは、信号の送受信を行う送受信回路2と、2線−4線変換を行うハイブリッド回路1とを備え、さらにハイブリッド回路1は、送信部10と受信部11とを備える。
【0031】
送信部10は、送受信回路2から出力された送信信号を増幅して入出力端子3を介して伝送線路C20に送信すると共に擬似負荷端子4を介して擬似路線C21に送信する。
【0032】
受信部11は、2つの入力部を有し、一方の入力部は送信部10と入出力端子3との間に接続され、送信部10から伝送線路C20に送信された送信信号をループバックし、他方の入力部は送信部10と擬似負荷端子4との間に接続され、送信部10から擬似線路C21に送信された送信信号をループバックする。
【0033】
受信部11は、ループバックした2つのループバック信号成分の差である差動成分を送信信号のループバック信号として受信し、受信した信号を増幅して送受信回路2へ出力する。また、他の通信端末Xから伝送線路C20を介して送信されてきた送信信号を受信し、増幅して送受信回路2へ出力する。
【0034】
図2に、ハイブリッド回路1の構成例を示す。
【0035】
送信部10は、平衡出力の増幅器であり、入力が送受信回路2に接続され、出力が伝送線路C20の特性インピーダンスと整合をとるためのインピーダンス整合用抵抗R1,R2を介して伝送用トランスT1に接続され、伝送用トランスT1を介して伝送線路C20に接続される。また、送信部10とインピーダンス整合用抵抗R1,R2との間に、擬似線路C21の特性インピーダンスと整合をとるためのインピーダンス整合用抵抗R3,R4の一端が接続され、インピーダンス整合用抵抗R3,R4を介して伝送用トランスT2に接続され、伝送用トランスT2を介して擬似線路C21に接続される。
【0036】
受信部11は差動増幅器からなり、一方の入力端子に、インピーダンス整合用抵抗R1と伝送用トランスT1との間に一端が接続されたインピーダンス整合用抵抗R6の他端と、インピーダンス整合用抵抗R4と伝送用トランスT2との間に一端が接続されたインピーダンス整合用抵抗R5の他端とが並列に接続され、他方の入力端子には、インピーダンス整合用抵抗R2と伝送用トランスT1との間に一端が接続されたインピーダンス整合用抵抗R7の他端と、インピーダンス整合用抵抗R3と伝送用トランスT2との間に一端が接続されたインピーダンス整合用抵抗R8の他端とが並列に接続される。
【0037】
伝送線路C20と、擬似線路C21との特性インピーダンスが概ね一致する場合は、インピーダンス整合用抵抗R1〜R8は全て同じ値に設定される。
【0038】
上記のように構成されたハイブリッド回路1においては、送信部10の出力は、伝送線路C20と擬似線路C21とに送信されると共に、伝送線路C20に送信した送信信号のループバック信号と、擬似線路C21に送信した送信信号のループバック信号とが互いに打消し合い、伝送線路C20側と擬似線路C21側の負荷インピーダンスの差分で誘起する差動成分が送信信号のループバック信号として受信部11に受信される。
【0039】
また、他の通信端末Xからの送信信号は、伝送線路C20を介して受信部11に受信される。
【0040】
受信部11は差動増幅器からなるため、差動増幅器の同相除去比(CMRR)を利用してループバック信号の差動成分を容易に生成できると共に、受信信号の増幅も同時に可能となる。
【0041】
また、送信部10にも増幅器を用いることで、信号送信時にノイズに対してレベルの大きな信号が送信されることになり、S/N比が向上し、より減衰の大きな通信システムに適用可能となる。また、通信システムに必要な信号増幅率を送信部10と受信部11の2つの増幅器で分担可能であるので、1つの増幅器で必要となるはずの高増幅が軽減され、例えば安価な増幅器を用いたり、回路の電源電圧を下げることなどが可能となり、低コストに回路を構成することができる。
【0042】
尚、各増幅器のゲインは例えば、10〜20dB程度に設定可能である。
【0043】
次に図1および図3を用いて、分岐装置Yについて説明する。
【0044】
分岐装置Yは、分岐部Y10とインピーダンス整合部Y20とを備える。分岐部Y10は、幹線C1および伝送線路C20と接続され、幹線C1から伝送線路C20を分岐する。インピーダンス整合部Y20は、擬似線路C21と接続され、伝送線路C20側から分岐部Y10を見たときの分岐部Y10のインピーダンスに一致するように設定された、終端抵抗や周波数特性補償回路を含む終端回路などの等価終端回路で構成される。
【0045】
図3に分岐装置Yの回路構成例を示す。
【0046】
分岐部Y10は、伝送用トランスT3と、伝送用トランスT3と幹線C1との間に接続されるインピーダンス整合用抵抗R10,R11からなり、例えば、1対6の巻数比の伝送用トランスT3に数kΩのインピーダンス整合用抵抗R10,R11などを用いて、幹線C1と伝送線路C20との整合を行い、約10〜20dBの分岐損失で分岐している。
【0047】
インピーダンス整合部Y20は、終端抵抗R12からなり、伝送線路C20側から分岐部Y10を見たときの分岐部Y10のインピーダンスに整合するように終端抵抗値を設定している。このように第2の分岐部20を構成することで、分岐部Y10とインピーダンス整合部Y20とでインピーダンスの差が小さくなり、分岐装置Yを用いたことによる伝送線路C20側と擬似線路C21側の負荷インピーダンスの差異を小さくできる。
【0048】
また、これらのインピーダンス整合値は、伝送線路C20と擬似線路C21の特性インピーダンスにも概ね一致するように設定されており、インピーダンスの不整合による不要な信号の反射を減らし、反射によるリップルなども少なくしている。
【0049】
上記のように幹線C1と、伝送線路C20および擬似線路C21からなる分岐線C2と、通信端末Xと、分岐装置Yとからなる通信システムにおいては、ハイブリッド回路1の負荷インピーダンスは、伝送線路C20側、擬似線路C21側とも概ね同じ特性となるため、送信部10から送信された送信信号のループバック信号の差動成分を十分に小さくできる。則ち、送信信号のループバック信号と他の通信端末Xからの受信信号との電圧レベル差を小さくすることができ、従って多数の通信端末が分岐接続されるマルチドロップ方式のように減衰量が大きな通信システムにも適用可能である。
【0050】
また、擬似線路C21を用いることにより、ハイブリッド回路1と分岐線C2との特性インピーダンスの不整合がある場合や、周波数による特性インピーダンスの変化がある場合、線路長が異なる場合、伝送線路での反射の影響がある場合、様々な線種(線種毎に特性インピーダンスや周波数特性が異なるもの)に対応する必要がある場合などでも、伝送線路C20側と擬似線路C21側との負荷インピーダンスの差分のみの影響でループバック信号を受信できるため、ループバック信号を安定的に小さくでき、減衰量が大きな通信システムにも適用可能である。
【0051】
また、伝送線路C20と擬似線路C21とに同一シース内の対を用いることで、余分なケーブルの設置の必要がなくて済むと共に、特性インピーダンスの周波数特性なども含めて差異が小さくなる。また、敷設済みのケーブルに空対があればその空対を用いればよいので、新たにケーブルを設置しなくても済む。
【0052】
(実施形態2)
本実施形態の通信システムの構成図を図4に示す。
【0053】
本実施形態の通信システムは、実施形態1の分岐装置Yに代えて分岐装置Y1を備えた点に特徴があり、その他の構成は実施形態1と共通するために共通する部分については同一の符号を付して説明を省略し、本実施形態の特徴となる部分についてのみ詳細に説明する。
【0054】
本実施形態の分岐装置Y1は、分岐部Y11とインピーダンス整合部Y21とを備える。
【0055】
分岐部Y11とインピーダンス整合部Y21とは同じ回路構成であるが、分岐部Y11が幹線C1と接続されているのに対して、インピーダンス整合部Y21は、幹線C1の特性インピーダンスで終端されている。
【0056】
図5に分岐装置Y1の回路構成例を示す。
【0057】
分岐部Y11は、図3に示した実施形態1の分岐部Y10と同じ回路構成であり、伝送用トランスT3と、伝送用トランスT3と幹線C1との間に接続されるインピーダンス整合用抵抗R10,R11とからなり、幹線C1と伝送線路C20との整合を行い、約10〜20dBの分岐損失で分岐している。
【0058】
インピーダンス整合部Y21は、分岐部Y11と同様に、伝送用トランスT3と、伝送用トランスT3とインピーダンス整合用抵抗R10,R11とからなり、インピーダンス整合抵抗R10,R11の幹線C1側の一端が、幹線C1の特性インピーダンスに相当する終端抵抗R13で終端されている。
【0059】
かかる通信システムにおいては、分岐部Y11とインピーダンス整合部Y21のインピーダンスや周波数特性、或いは温度特性といった環境による特性への影響をも概ね同じにすることができるので、実施形態1よりさらに安定してループバック信号の差動成分を小さくでき、減衰量が大きな通信システムにも適用できる。
【0060】
尚、幹線C1の特性インピーダンスの変動を小さくし、分岐部Y11とインピーダンス整合部Y21とのインピーダンスの差異を小さくするために、分岐部Y11は幹線C1に対してハイインピーダンスで分岐するのが望ましい。
【0061】
(実施形態3)
本実施形態の通信システムを図6に示す。
【0062】
本実施形態の通信システムは、実施形態2の幹線C1に代えて幹線C3を用い、また分岐装置Y1に代えて分岐装置Y2を備えた点に特徴があり、その他の構成は実施形態2と共通するために共通する部分については同一の符号を付して説明を省略し、本実施形態の特徴となる部分についてのみ詳細に説明する。
【0063】
本実施形態の幹線C3は、1対の信号の送受信を行う伝送線路C10と、1対の信号の送受信を行わない擬似線路C11とを備える。伝送線路C10と擬似線路C11とには同種の線が用いられ、特性インピーダンスが同じになるようにする。
【0064】
尚、伝送線路C10と擬似線路C11とは同一シースのケーブルや、分岐線C2と同じケーブルであってもよい。
【0065】
分岐装置Y2は、第1の分岐部Y11と、第2の分岐部Y21とを備える。
【0066】
第1の分岐部Y11は、実施形態2の分岐部Y11と同じ回路構成であり、伝送用トランスT3と、伝送用トランスT3と幹線C3の伝送線路C10との間に接続されるインピーダンス整合用抵抗R10,R11からなり、幹線C3の伝送線路C10と分岐線C2の伝送線路C20との整合を行い、約10〜20dBの分岐損失で分岐している。
【0067】
第2の分岐部Y21は、第1の分岐部Y11と同じ回路構成であるが、図7に示すように、インピーダンス整合用抵抗R10,R11の幹線C3側を、幹線C3の擬似線路C11に接続し、幹線C3の擬似線路C11と分岐線C2の擬似線路C21との整合を行っている。
【0068】
かかる通信システムにおいては、伝送線路C10,C20と完全に同様の擬似線路C11,C21を形成することができ、実施形態1または実施形態2よりもさらにループバック信号の差動成分を安定して小さくできるので、減衰量の大きな通信システムに適用可能である。
【0069】
尚、本実施形態の通信システムは、全通信システムで擬似線路を用いることとなり二重配線が必要になるため、システムで採用するケーブルに信号伝送などに利用していない空対がある場合か、コストアップしても減衰に強い通信システムが必要な場合に用いることが望ましい。
【0070】
【発明の効果】
請求項1の発明は、伝送線路に複数の通信端末が接続され通信端末間で信号の送受信を行う通信システムであって、一方が伝送線路に用いられ、他方が前記伝送線路に特性インピーダンスを合わせた擬似線路に用いられる2本の線路を同一シース内の対として備え、前記通信端末は、送信信号を送信する送信部と、他の通信端末から送信されてきた送信信号を受信すると共に前記送信部からのループバック信号を受信する受信部とからなるハイブリッド回路を備え、前記受信部は、前記送信部から前記伝送線路に出力された送信信号と、前記送信部から前記擬似線路に出力された送信信号との差動成分を送信信号のループバック信号として受信するので、擬似線路を用いることによりハイブリッド回路の負荷インピーダンスは、信号線路側と擬似線路側とで概ね同じ特性となるため、送信信号のループバック信号を十分小さくでき、送信信号のループバック信号と受信信号との電圧レベル差を小さくすることができると共に、ハイブリッド回路と伝送線路との特性インピーダンスの不整合がある場合や、周波数による特性インピーダンスの変化がある場合、線路長が異なる場合、伝送線路での反射の影響がある場合、様々な線種に対応する必要がある場合などでも、信号線路側と擬似線路側とのインピーダンスの差分のみの影響でループバック信号を受信でき、ループバック信号を安定的に小さくできるので、減衰量が大きな通信システムにも適用できるという効果がある。また、伝送線路と擬似線路とは同一シース内の対であるので、余分なケーブルの設置の必要がなく、スペース効率が良く、低コストであると共に、特性インピーダンスの差異を小さくできるという効果がある。
【0072】
請求項の発明は、請求項記載の発明において、前記受信部は、差動増幅器からなるので、差動増幅器の同相除去比を利用してループバック信号の差動成分を容易に生成できるとともに、受信信号の増幅も同時にできるという効果がある。
【0073】
請求項の発明は、請求項1又は2記載の発明において、前記伝送線路は、幹線と、幹線から分岐装置を介して分岐され前記通信端末が接続される分岐線とからなり、前記分岐装置は、前記幹線から前記分岐線を分岐すると共に該分岐線の特性インピーダンスに整合する分岐部と、前記擬似線路と接続され該擬似線路の特性インピーダンスに整合するインピーダンス整合部とを備えたので、不要な信号の反射が少なくなり、また反射によるリップルなども少なくなるという効果がある。
【0074】
請求項の発明は、請求項記載の発明において、前記インピーダンス整合部は、前記分岐線側から前記分岐部を見たときのインピーダンスに一致するように設定された等価終端回路で構成されたので、前記分岐部と前記インピーダンス整合部とでインピーダンスの差が小さくなり、前記分岐装置を用いたことによる前記分岐線側と前記擬似線路側の負荷インピーダンスの差異を小さくできるという効果がある。
【0075】
請求項の発明は、請求項記載の発明において、前記インピーダンス整合部は、前記分岐部と同構成の回路を前記幹線の特性インピーダンスで終端させた構成であるので、前記分岐部と前記インピーダンス整合部の周波数特性や、環境による特性への影響をも概ね同じにすることができるという効果がある。
【0076】
請求項の発明は、請求項1又は2記載の発明において、前記伝送線路は、幹線と、幹線から分岐装置を介して分岐され前記通信端末が接続される分岐線とからなり、前記擬似線路は、前記幹線と前記分岐線とに夫々並設され、前記分岐装置は、前記幹線から前記分岐線を分岐すると共に該分岐線の特性インピーダンスに整合する第1の分岐部と、この第1の分岐部と同構成の回路であり、前記幹線に並設された擬似線路から前記分岐線に並設された擬似線路を分岐すると共に該分岐線側の擬似線路の特性インピーダンスに整合する第2の分岐部とを備えたので、前記伝送線路と完全に同様の擬似線路を形成でき、大きな減衰の通信システムに適用できるという効果がある。
【図面の簡単な説明】
【図1】実施形態1の通信システムの構成図である。
【図2】同上のハイブリッド回路の構成例図である。
【図3】同上の分岐装置の回路構成例図である。
【図4】実施形態2の通信システムの構成図である。
【図5】同上の分岐装置の回路構成例図である。
【図6】実施形態3の通信システムの構成図である。
【図7】同上の分岐装置の回路構成例図である。
【図8】従来の通信システムの構成図である。
【図9】同上のハイブリッド回路の構成例図である。
【符号の説明】
1 ハイブリッド回路
2 送受信回路
3 入出力端子
4 擬似負荷端子
10 送信部
11 受信部
C1 幹線
C2 分岐線
C20 伝送線路
C21 擬似線路
X 通信端末
Y 分岐装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a communication system that transmits and receives signals between communication terminals.
[0002]
[Prior art]
Conventionally, there is a CSMA / CD (Carrier Sense Multiple Access with Collision Detect) system often used in a LAN as a communication system in which a plurality of communication terminals perform multiple access on a common transmission line. This method is a communication method that allows any communication terminal to transmit if there is no signal on the transmission line for more than a certain time (gap between frames). A collision detection function for detecting a collision between the communication terminal and the transmission signal. The collision detection function loops back the transmission signal transmitted by the communication terminal that performs transmission, monitors the transmission signal transmitted by itself and the signal on the transmission path, and transmits the transmission signal transmitted by itself and the transmission path on the transmission path. If the signals match, it is determined that no signal collision has occurred, and if the transmission signal transmitted by itself does not match the signal on the transmission path, it is determined that a signal collision has occurred. When a transmission signal collision is detected, the transmission signal being transmitted is stopped, and transmission of the transmission signal is attempted again after a time (see, for example, Patent Document 1).
[0003]
In addition, in order to transmit and receive signals with one transmission line, a hybrid circuit (2-wire to 4-wire conversion circuit) is required as an interface between the transmission / reception circuit of the communication terminal and the transmission line.
[0004]
A conventional hybrid circuit includes a transmission unit that outputs a transmission signal input from a transmission / reception circuit to a transmission line, and a reception unit that receives a signal transmitted from the transmission line and outputs the signal to the transmission / reception circuit. The receiver directly receives a loopback signal from the transmitter, and outputs the loopback signal to the transmission / reception circuit.
[0005]
In this case, in a communication system with a large attenuation such as a multi-drop method in which a large number of communication terminals are connected in a branch connection, a received signal from another communication terminal is attenuated and a voltage level is reduced. The voltage level difference between the signal loopback signal and the received signal from another communication terminal becomes too large, and the received signal from the other communication terminal is buried in the loopback signal of the transmission signal, making it difficult to distinguish between the signals. Could happen. For this reason, the communication terminal using the hybrid circuit having the above-described configuration is applied to a communication system in which attenuation is less than a certain level (for example, the applied attenuation is about 20 to 40 dB).
[0006]
FIG. 8 shows a communication terminal X100 provided with a hybrid circuit 100 that improves the hybrid circuit and can be applied to a communication system with greater attenuation.
[0007]
This communication terminal X100 is connected to a branch line C200 branched from the main line C100 via the branch device Y100, and transmits / receives signals to / from the main line C100 with another communication terminal X100 connected in the same manner.
[0008]
The communication terminal X100 includes a transmission / reception circuit 200 that performs transmission and reception of data signals, and a hybrid circuit 100 that performs 2-wire-to-wire conversion. The hybrid circuit 100 further includes a transmission unit 101 and a reception unit 102.
[0009]
The transmission unit 101 outputs the transmission signal output from the transmission / reception circuit 200 to the branch line C200 via the input / output terminal 300. Further, the transmission line is branched from between the transmission unit 101 and the input / output terminal 300, and is connected to a termination resistor R100 matched with the characteristic impedance of the branch line C200.
[0010]
The receiving unit 102 has two input units. One input unit loops back a transmission signal from between the transmission unit 10 and the input / output terminal 300, and the other input unit is connected to the termination resistor R100 to transmit the transmission signal. And a differential component that is a difference between two loopback signal components is received as a loopback signal of the transmission signal. The received signal is amplified and then output to the transmission / reception circuit 200. Also, received signals from other communication terminals X100 are received without canceling each other, amplified, and then output to the transmission / reception circuit 200.
[0011]
In this case, as long as the characteristic impedance of the branch line C200 and the impedance of the termination resistor R100 match to some extent, the loopback signal of the transmission signal from the transmission unit 101 cancels out the two loopback signal components. Therefore, the voltage level can be reduced.
[0012]
Therefore, the voltage level difference between the loopback signal of the transmission signal and the reception signal from another communication terminal can be reduced, and can be applied to a communication system with greater attenuation (for example, the applied attenuation is about 40 to 60 dB). ).
[0013]
FIG. 9 shows a circuit configuration example of the hybrid circuit 100. The transmission unit 101 is a balanced output, and the output of the transmission unit 101 is connected to the transmission transformer T100 via the impedance matching resistors R200 and R201, and between the transmission unit 101 and the impedance matching resistors R200 and R201. It is connected to the terminating resistor R100 via impedance matching resistors R203 and R202 having one end connected between them.
[0014]
The other end of the impedance matching resistor R205, one end of which is connected between the impedance matching resistor R200 and the transmission transformer T100, and the impedance matching resistor are connected to one input terminal of the receiving unit 102 formed of a differential amplifier. The other end of the impedance matching resistor R204 having one end connected between R203 and the terminating resistor R100 is connected in parallel, and the other input terminal is connected between the impedance matching resistor R201 and the transmission transformer T100. The other end of the impedance matching resistor R206 having one end connected and the other end of the impedance matching resistor R207 having one end connected between the impedance matching resistor R202 and the termination resistor R100 are connected in parallel.
[0015]
[Patent Document 1]
Japanese Patent Publication No. 7-32399
[0016]
[Problems to be solved by the invention]
However, since the termination resistor R100 has a fixed value in the above conventional example, in the case of application to a transmission line having a large variation or variation in characteristic impedance, a communication system using transmission lines of various line types, etc. Since the effect of the differential cannot be fully utilized and the voltage level of the loopback signal of the transmission signal becomes large, there is a problem that the applied attenuation amount of the communication system cannot be increased.
[0017]
Further, it is difficult to match the frequency characteristics between the characteristic impedance of the branch line C200 and the impedance of the termination resistor R100, reflection characteristics due to mismatch between the characteristic impedance of the hybrid circuit 100 and the branch line C200, or the transmission line length. Similarly, there is a problem that the applied attenuation amount of the communication system cannot be increased due to the influence of the difference.
[0018]
In order to improve the above problems, it is conceivable to change or switch the termination resistor R100. However, there are problems such as high costs and insufficient effects.
[0019]
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a communication system that can be applied even when the attenuation is large.
[0020]
[Means for Solving the Problems]
  In order to achieve the above object, the invention of claim 1 is a communication system in which a plurality of communication terminals are connected to a transmission line, and signals are transmitted and received between the communication terminals.One line is used for a transmission line, and the other is used as a pair in the same sheath as two lines used for a pseudo line in which characteristic impedance is matched to the transmission line,The communication terminal includes a hybrid circuit including a transmission unit that transmits a transmission signal and a reception unit that receives a transmission signal transmitted from another communication terminal and receives a loopback signal from the transmission unit.,in frontThe receiving unit receives a differential component between the transmission signal output from the transmission unit to the transmission line and the transmission signal output from the transmission unit to the pseudo line as a loopback signal of the transmission signal; did.
[0022]
  Claim2The invention of claim1In the described invention, the receiving unit includes a differential amplifier.
[0023]
  Claim3The invention of claim1 or 2In the described invention, the transmission line includes a trunk line and a branch line that is branched from the trunk line via a branch device and to which the communication terminal is connected. The branch device branches the branch line from the trunk line. A branch portion that matches the characteristic impedance of the branch line and an impedance matching portion that is connected to the pseudo line and matches the characteristic impedance of the pseudo line are provided.
[0024]
  Claim4The invention of claim3In the described invention, the impedance matching unit is configured by an equivalent termination circuit set to match the impedance when the branch unit is viewed from the branch line side.
[0025]
  Claim5The invention of claim4In the described invention, the impedance matching unit has a configuration in which a circuit having the same configuration as the branch unit is terminated with a characteristic impedance of the main line.
[0026]
  Claim6The invention of claim1 or 2In the described invention, the transmission line includes a trunk line and a branch line branched from the trunk line via a branching device and connected to the communication terminal, and the pseudo line is arranged in parallel with the trunk line and the branch line, respectively. The branching device is a first branching unit that branches the branching line from the trunk line and matches the characteristic impedance of the branching line, and a circuit having the same configuration as the first branching part, And a second branch section that branches the pseudo line arranged in parallel with the branch line to the characteristic impedance of the pseudo line on the branch line side.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to Embodiments 1 to 3.
(Embodiment 1)
FIG. 1 shows a configuration diagram of a communication system according to the present embodiment. In this communication system, a plurality of branch devices Y are connected to a trunk line C1 composed of a balanced transmission line such as a pair of twisted pair wires, and a communication terminal X is connected to a branch line C2 branched from the trunk line C1 via the branch device Y. Then, signals are transmitted and received between the communication terminals X.
[0028]
In the present embodiment, two pairs of balanced transmission lines in the same sheath are used as the branch line C2, one pair is used for the transmission line C20 that transmits and receives signals between the communication terminals X, and another pair is a signal. Is used for the pseudo line C21 in which no transmission / reception is performed. In this case, the characteristic impedances of the transmission line C20 and the pseudo line C21 are substantially the same.
[0029]
Examples of such cables include CAT5 cables for LAN (4 pairs) and CPEV lines (2 or 3 pairs). The characteristic impedance is about 100Ω for CAT5 cables and about 60 to 90Ω for CPEV lines. is there.
[0030]
The communication terminal X includes a transmission / reception circuit 2 that performs transmission / reception of signals and a hybrid circuit 1 that performs 2-wire / four-wire conversion. The hybrid circuit 1 further includes a transmission unit 10 and a reception unit 11.
[0031]
The transmission unit 10 amplifies the transmission signal output from the transmission / reception circuit 2, transmits the transmission signal to the transmission line C <b> 20 via the input / output terminal 3, and transmits it to the pseudo route C <b> 21 via the pseudo load terminal 4.
[0032]
The receiving unit 11 has two input units. One input unit is connected between the transmitting unit 10 and the input / output terminal 3 and loops back a transmission signal transmitted from the transmitting unit 10 to the transmission line C20. The other input unit is connected between the transmission unit 10 and the pseudo load terminal 4 and loops back the transmission signal transmitted from the transmission unit 10 to the pseudo line C21.
[0033]
The receiving unit 11 receives a differential component that is a difference between two loopback signal components that are looped back as a loopback signal of the transmission signal, amplifies the received signal, and outputs the amplified signal to the transmission / reception circuit 2. In addition, a transmission signal transmitted from another communication terminal X via the transmission line C <b> 20 is received, amplified, and output to the transmission / reception circuit 2.
[0034]
FIG. 2 shows a configuration example of the hybrid circuit 1.
[0035]
The transmitter 10 is a balanced output amplifier, and has an input connected to the transmission / reception circuit 2 and an output connected to the transmission transformer T1 via impedance matching resistors R1 and R2 for matching with the characteristic impedance of the transmission line C20. Connected to the transmission line C20 via the transmission transformer T1. Further, one end of impedance matching resistors R3 and R4 for matching with the characteristic impedance of the pseudo line C21 is connected between the transmitter 10 and the impedance matching resistors R1 and R2, and the impedance matching resistors R3 and R4 are connected. To the transmission transformer T2, and to the pseudo line C21 via the transmission transformer T2.
[0036]
The receiving unit 11 includes a differential amplifier, and has one input terminal connected to the other end of the impedance matching resistor R6 having one end connected between the impedance matching resistor R1 and the transmission transformer T1, and the impedance matching resistor R4. And the other end of the impedance matching resistor R5, one end of which is connected between the impedance transformer R2 and the transmission transformer T2, and the other input terminal is connected between the impedance matching resistor R2 and the transmission transformer T1. The other end of the impedance matching resistor R7 having one end connected and the other end of the impedance matching resistor R8 having one end connected between the impedance matching resistor R3 and the transmission transformer T2 are connected in parallel.
[0037]
When the characteristic impedances of the transmission line C20 and the pseudo line C21 are substantially the same, the impedance matching resistors R1 to R8 are all set to the same value.
[0038]
In the hybrid circuit 1 configured as described above, the output of the transmission unit 10 is transmitted to the transmission line C20 and the pseudo line C21, and the loopback signal of the transmission signal transmitted to the transmission line C20, and the pseudo line The loopback signal of the transmission signal transmitted to C21 cancels each other, and the differential component induced by the difference in load impedance between the transmission line C20 side and the pseudo line C21 side is received by the reception unit 11 as the loopback signal of the transmission signal. Is done.
[0039]
Moreover, the transmission signal from the other communication terminal X is received by the receiving part 11 via the transmission line C20.
[0040]
Since the receiving unit 11 includes a differential amplifier, the differential component of the loopback signal can be easily generated using the common-mode rejection ratio (CMRR) of the differential amplifier, and the received signal can be amplified simultaneously.
[0041]
Further, by using an amplifier for the transmission unit 10, a signal having a large level with respect to noise is transmitted at the time of signal transmission, the S / N ratio is improved, and it can be applied to a communication system having a larger attenuation. Become. In addition, since the signal amplification factor necessary for the communication system can be shared by the two amplifiers of the transmission unit 10 and the reception unit 11, the high amplification that should be required by one amplifier is reduced. For example, an inexpensive amplifier is used. In addition, the power supply voltage of the circuit can be reduced, and the circuit can be configured at low cost.
[0042]
The gain of each amplifier can be set to about 10 to 20 dB, for example.
[0043]
Next, the branch device Y will be described with reference to FIGS. 1 and 3.
[0044]
The branching device Y includes a branching unit Y10 and an impedance matching unit Y20. The branch portion Y10 is connected to the main line C1 and the transmission line C20, and branches the transmission line C20 from the main line C1. The impedance matching unit Y20 is connected to the pseudo line C21, and includes a termination resistor and a frequency characteristic compensation circuit that are set to match the impedance of the branch unit Y10 when the branch unit Y10 is viewed from the transmission line C20 side. It consists of an equivalent termination circuit such as a circuit.
[0045]
FIG. 3 shows a circuit configuration example of the branch device Y.
[0046]
The branch portion Y10 includes a transmission transformer T3, and impedance matching resistors R10 and R11 connected between the transmission transformer T3 and the trunk line C1, and for example, the transmission transformer T3 has a number of turns of 1: 6. Matching is performed between the trunk line C1 and the transmission line C20 by using impedance matching resistors R10 and R11 of kΩ, and the branch line is branched with a branch loss of about 10 to 20 dB.
[0047]
The impedance matching unit Y20 includes a termination resistor R12, and the termination resistance value is set so as to match the impedance of the branch unit Y10 when the branch unit Y10 is viewed from the transmission line C20 side. By configuring the second branch portion 20 in this manner, the difference in impedance between the branch portion Y10 and the impedance matching portion Y20 is reduced, and the transmission line C20 side and the pseudo line C21 side due to the use of the branch device Y are reduced. The difference in load impedance can be reduced.
[0048]
Further, these impedance matching values are set so as to substantially match the characteristic impedances of the transmission line C20 and the pseudo line C21, so that reflection of unnecessary signals due to impedance mismatch is reduced, and ripples due to reflection are small. is doing.
[0049]
As described above, in the communication system including the trunk line C1, the branch line C2 including the transmission line C20 and the pseudo line C21, the communication terminal X, and the branch device Y, the load impedance of the hybrid circuit 1 is the transmission line C20 side. Since the pseudo-line C21 side has substantially the same characteristics, the differential component of the loopback signal of the transmission signal transmitted from the transmission unit 10 can be sufficiently reduced. In other words, the voltage level difference between the loopback signal of the transmission signal and the reception signal from the other communication terminal X can be reduced, and therefore the attenuation is reduced as in the multi-drop method in which a large number of communication terminals are branched and connected. It can also be applied to large communication systems.
[0050]
Further, by using the pseudo line C21, when there is a mismatch in characteristic impedance between the hybrid circuit 1 and the branch line C2, when there is a change in characteristic impedance due to frequency, when the line length is different, reflection on the transmission line Even when there is a need to cope with various line types (those having different characteristic impedance and frequency characteristics), only the difference in load impedance between the transmission line C20 side and the pseudo line C21 side is required. Since the loopback signal can be received under the influence of the above, the loopback signal can be stably reduced and can be applied to a communication system having a large attenuation.
[0051]
Further, by using a pair in the same sheath for the transmission line C20 and the pseudo line C21, it is not necessary to install an extra cable, and the difference including the frequency characteristic of the characteristic impedance is reduced. Further, if there is an air pair in the laid cable, it is sufficient to use that air pair, so there is no need to newly install a cable.
[0052]
(Embodiment 2)
FIG. 4 shows a configuration diagram of the communication system of the present embodiment.
[0053]
The communication system of the present embodiment is characterized in that a branch device Y1 is provided instead of the branch device Y of the first embodiment, and the other components are the same as those in the first embodiment, and therefore common parts are denoted by the same reference numerals. The description will be omitted, and only the portions that are characteristic of this embodiment will be described in detail.
[0054]
The branch device Y1 of the present embodiment includes a branch portion Y11 and an impedance matching portion Y21.
[0055]
The branch part Y11 and the impedance matching part Y21 have the same circuit configuration, but the branch part Y11 is connected to the main line C1, whereas the impedance matching part Y21 is terminated with the characteristic impedance of the main line C1.
[0056]
FIG. 5 shows a circuit configuration example of the branch device Y1.
[0057]
The branch part Y11 has the same circuit configuration as that of the branch part Y10 of the first embodiment shown in FIG. 3, and includes a transmission transformer T3 and impedance matching resistors R10 connected between the transmission transformer T3 and the trunk line C1. The main line C1 and the transmission line C20 are matched and branched with a branch loss of about 10 to 20 dB.
[0058]
The impedance matching unit Y21 includes a transmission transformer T3, a transmission transformer T3, and impedance matching resistors R10 and R11, and one end of the impedance matching resistors R10 and R11 on the main line C1 side is connected to the main line, like the branch unit Y11. It is terminated with a termination resistor R13 corresponding to the characteristic impedance of C1.
[0059]
In such a communication system, the influence on the environment characteristics such as the impedance, frequency characteristics, and temperature characteristics of the branching section Y11 and the impedance matching section Y21 can be made substantially the same, so that the loop is more stable than in the first embodiment. The differential component of the back signal can be reduced, and the present invention can be applied to a communication system having a large attenuation.
[0060]
In order to reduce the fluctuation of the characteristic impedance of the main line C1 and to reduce the difference in impedance between the branch part Y11 and the impedance matching part Y21, it is desirable that the branch part Y11 branches with a high impedance with respect to the main line C1.
[0061]
(Embodiment 3)
The communication system of this embodiment is shown in FIG.
[0062]
The communication system of the present embodiment is characterized in that it uses a trunk line C3 instead of the trunk line C1 of the second embodiment, and includes a branching device Y2 instead of the branching device Y1. Other configurations are the same as those of the second embodiment. Therefore, common parts are denoted by the same reference numerals, description thereof is omitted, and only the parts that are characteristic of this embodiment will be described in detail.
[0063]
The trunk line C3 of this embodiment includes a transmission line C10 that transmits and receives a pair of signals, and a pseudo line C11 that does not transmit and receive a pair of signals. The same kind of line is used for the transmission line C10 and the pseudo line C11 so that the characteristic impedance is the same.
[0064]
The transmission line C10 and the pseudo line C11 may be the same sheath cable or the same cable as the branch line C2.
[0065]
The branch device Y2 includes a first branch part Y11 and a second branch part Y21.
[0066]
The first branch part Y11 has the same circuit configuration as that of the branch part Y11 of the second embodiment, and the impedance matching resistor connected between the transmission transformer T3 and the transmission line C10 of the transmission transformer T3 and the trunk line C3. The transmission line C10 of the main line C3 and the transmission line C20 of the branch line C2 are matched and branched with a branch loss of about 10 to 20 dB.
[0067]
The second branch portion Y21 has the same circuit configuration as the first branch portion Y11. However, as shown in FIG. 7, the main line C3 side of the impedance matching resistors R10 and R11 is connected to the pseudo line C11 of the main line C3. In addition, the pseudo line C11 of the trunk line C3 and the pseudo line C21 of the branch line C2 are matched.
[0068]
In such a communication system, pseudo-lines C11 and C21 that are completely the same as the transmission lines C10 and C20 can be formed, and the differential component of the loopback signal can be stably reduced more than in the first or second embodiment. Therefore, it can be applied to a communication system with a large attenuation.
[0069]
In addition, since the communication system of this embodiment uses a pseudo line in all communication systems and requires double wiring, there is an air pair that is not used for signal transmission or the like in the cable adopted in the system, It is desirable to use when a communication system that is resistant to attenuation is necessary even if the cost is increased.
[0070]
【The invention's effect】
  The invention of claim 1 is a communication system in which a plurality of communication terminals are connected to a transmission line and signals are transmitted and received between the communication terminals,One line is used for a transmission line, and the other is used as a pair in the same sheath with two lines used for a pseudo line in which characteristic impedance is matched to the transmission line,The communication terminal includes a hybrid circuit including a transmission unit that transmits a transmission signal and a reception unit that receives a transmission signal transmitted from another communication terminal and receives a loopback signal from the transmission unit.,in frontThe receiving unit receives a differential component between the transmission signal output from the transmission unit to the transmission line and the transmission signal output from the transmission unit to the pseudo line as a loopback signal of the transmission signal. By using the pseudo line, the load impedance of the hybrid circuit has substantially the same characteristics on the signal line side and the pseudo line side. Therefore, the loop back signal of the transmission signal can be made sufficiently small, and the loop back signal and the reception signal of the transmission signal can be reduced. The voltage level difference between the hybrid circuit and the transmission line can be reduced, the characteristic impedance can be mismatched between the hybrid circuit and the transmission line, the characteristic impedance can change due to frequency, the line length can be different, and the transmission line can be reflected. Even if there is a need to support various line types, the impedance between the signal line side and the pseudo line side Loopback signal can be received by the influence of only the difference, since the loop-back signal can be stably reduced, there is an effect that attenuation be applied to a large communication system.Moreover, since the transmission line and the pseudo line are a pair in the same sheath, there is no need to install an extra cable, there is an effect that the space efficiency is good, the cost is low, and the difference in characteristic impedance can be reduced. .
[0072]
  Claim2The invention of claim1In the described invention, since the receiving unit is composed of a differential amplifier, the differential component of the loopback signal can be easily generated using the common-mode rejection ratio of the differential amplifier, and the received signal can be amplified simultaneously. effective.
[0073]
  Claim3The invention of claim1 or 2In the described invention, the transmission line includes a trunk line and a branch line that is branched from the trunk line via a branch device and to which the communication terminal is connected. The branch device branches the branch line from the trunk line. Since it includes a branching unit that matches the characteristic impedance of the branching line and an impedance matching unit that is connected to the pseudo line and matches the characteristic impedance of the pseudo line, reflection of unnecessary signals is reduced, and ripple caused by reflection And so on.
[0074]
  Claim4The invention of claim3In the described invention, the impedance matching unit is configured by an equivalent termination circuit set to match an impedance when the branch unit is viewed from the branch line side, so the branch unit and the impedance matching unit Thus, there is an effect that the difference in impedance is reduced, and the difference in load impedance between the branch line side and the pseudo line side due to the use of the branch device can be reduced.
[0075]
  Claim5The invention of claim4In the described invention, the impedance matching unit has a configuration in which a circuit having the same configuration as that of the branch unit is terminated with a characteristic impedance of the main line. Therefore, the frequency characteristics of the branch unit and the impedance matching unit, and the characteristics depending on the environment There is an effect that the influence on the can be made almost the same.
[0076]
  Claim6The invention of claim1 or 2In the described invention, the transmission line includes a trunk line and a branch line branched from the trunk line via a branching device and connected to the communication terminal, and the pseudo line is arranged in parallel with the trunk line and the branch line, respectively. The branching device is a first branching unit that branches the branching line from the trunk line and matches the characteristic impedance of the branching line, and a circuit having the same configuration as the first branching part, And a second branch section for branching the pseudo line arranged in parallel to the branch line from the pseudo line arranged in parallel to the characteristic impedance of the pseudo line on the branch line side, The same pseudo line can be formed completely, and there is an effect that it can be applied to a communication system with large attenuation.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a communication system according to a first embodiment.
FIG. 2 is a configuration example diagram of the hybrid circuit same as above.
FIG. 3 is a circuit configuration example diagram of the above-described branching device.
FIG. 4 is a configuration diagram of a communication system according to a second embodiment.
FIG. 5 is a circuit configuration example diagram of the above-described branching device.
FIG. 6 is a configuration diagram of a communication system according to a third embodiment.
FIG. 7 is a circuit configuration example diagram of the above-described branching device.
FIG. 8 is a configuration diagram of a conventional communication system.
FIG. 9 is a configuration example diagram of the hybrid circuit same as above.
[Explanation of symbols]
1 Hybrid circuit
2 Transceiver circuit
3 Input / output terminals
4 pseudo load terminals
10 Transmitter
11 Receiver
C1 main line
C2 branch line
C20 transmission line
C21 pseudo line
X communication terminal
Y branch device

Claims (6)

伝送線路に複数の通信端末が接続され通信端末間で信号の送受信を行う通信システムであって、一方が伝送線路に用いられ、他方が前記伝送線路に特性インピーダンスを合わせた擬似線路に用いられる2本の線路を同一シース内の対として備え、前記通信端末は、送信信号を送信する送信部と、他の通信端末から送信されてきた送信信号を受信すると共に前記送信部からのループバック信号を受信する受信部とからなるハイブリッド回路を備え、前記受信部は、前記送信部から前記伝送線路に出力された送信信号と、前記送信部から前記擬似線路に出力された送信信号との差動成分を送信信号のループバック信号として受信することを特徴とする通信システム。A communication system in which a plurality of communication terminals are connected to a transmission line, and signals are transmitted and received between the communication terminals. One is used for a transmission line, and the other is used for a pseudo line having a characteristic impedance matched to the transmission line. The communication terminal is provided with a pair of lines in the same sheath, the communication terminal receives a transmission signal transmitted from another communication terminal, and a loopback signal from the transmission unit. includes a hybrid circuit consisting of a receiving unit that receives, before Symbol receiving unit, the transmission signal output from the transmitter to the transmission line, the differential of the transmission signal output to the pseudo line from said transmitting unit A communication system, wherein a component is received as a loopback signal of a transmission signal. 前記受信部は、差動増幅器からなることを特徴とする請求項1記載の通信システム。The communication system according to claim 1 , wherein the receiving unit includes a differential amplifier . 前記伝送線路は、幹線と、幹線から分岐装置を介して分岐され前記通信端末が接続される分岐線とからなり、前記分岐装置は、前記幹線から前記分岐線を分岐すると共に該分岐線の特性インピーダンスに整合する分岐部と、前記擬似線路と接続され該擬似線路の特性インピーダンスに整合するインピーダンス整合部とを備えたことを特徴とする請求項1又は2記載の通信システム。 The transmission line is composed of a trunk line and a branch line that is branched from the trunk line via a branch device and connected to the communication terminal, and the branch device branches the branch line from the trunk line and the characteristics of the branch line The communication system according to claim 1 , further comprising: a branching unit that matches an impedance; and an impedance matching unit that is connected to the pseudo line and matches a characteristic impedance of the pseudo line . 前記インピーダンス整合部は、前記分岐線側から前記分岐部を見たときのインピーダンスに一致するように設定された等価終端回路で構成されたことを特徴とする請求項記載の通信システム。 4. The communication system according to claim 3 , wherein the impedance matching unit is configured by an equivalent termination circuit set so as to match an impedance when the branch unit is viewed from the branch line side . 前記インピーダンス整合部は、前記分岐部と同構成の回路を前記幹線の特性インピーダンスで終端させた構成であることを特徴とする請求項4記載の通信システム。The communication system according to claim 4 , wherein the impedance matching unit has a configuration in which a circuit having the same configuration as the branch unit is terminated with a characteristic impedance of the main line . 前記伝送線路は、幹線と、幹線から分岐装置を介して分岐され前記通信端末が接続される分岐線とからなり、前記擬似線路は、前記幹線と前記分岐線とに夫々並設され、前記分岐装置は、前記幹線から前記分岐線を分岐すると共に該分岐線の特性インピーダンスに整合する第1の分岐部と、この第1の分岐部と同構成の回路であり、前記幹線に並設された擬似線路から前記分岐線に並設された擬似線路を分岐すると共に該分岐線側の擬似線路の特性インピーダンスに整合する第2の分岐部とを備えたことを特徴とする請求項1又は2記載の通信システム The transmission line is composed of a trunk line and a branch line branched from the trunk line via a branching device and connected to the communication terminal, and the pseudo line is arranged in parallel with the trunk line and the branch line, respectively. The apparatus includes a first branch part that branches the branch line from the main line and matches the characteristic impedance of the branch line, and a circuit having the same configuration as the first branch part, and is arranged in parallel with the main line. according to claim 1 or 2, characterized in that a second branch section that matches the characteristic impedance of the pseudo line of the branch line side with branched pseudo line that is arranged in the branch line from the pseudo line Communication system .
JP2002299503A 2002-10-11 2002-10-11 Communications system Expired - Lifetime JP4269629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002299503A JP4269629B2 (en) 2002-10-11 2002-10-11 Communications system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002299503A JP4269629B2 (en) 2002-10-11 2002-10-11 Communications system

Publications (2)

Publication Number Publication Date
JP2004135185A JP2004135185A (en) 2004-04-30
JP4269629B2 true JP4269629B2 (en) 2009-05-27

Family

ID=32288618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002299503A Expired - Lifetime JP4269629B2 (en) 2002-10-11 2002-10-11 Communications system

Country Status (1)

Country Link
JP (1) JP4269629B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6744332B2 (en) * 2002-06-21 2004-06-01 Hewlett-Packard Development Company, L.P. Four-drop bus with matched response
JPWO2006001301A1 (en) * 2004-06-25 2008-04-17 株式会社進化システム総合研究所 Transmission apparatus and transmission method
JP4714436B2 (en) * 2004-07-23 2011-06-29 ニッタン株式会社 Termination circuit, sensor, repeater and disaster prevention system
ES2330178B1 (en) * 2007-06-25 2010-08-30 Diseño De Sistemas En Silicio, S.A. SINGLE REPEATER OF A SINGLE PORT.
WO2011155597A1 (en) * 2010-06-11 2011-12-15 本田技研工業株式会社 Communication network

Also Published As

Publication number Publication date
JP2004135185A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
US7145990B2 (en) High-speed data communication over a residential telephone wiring network
US7035280B2 (en) Local area network of serial intelligent cells
US20100238785A1 (en) Cancellation of Crosstalk Energy in Communication Loops
US20070177679A1 (en) Simultaneous full-duplex communication over a single electrical conductor
US7570685B2 (en) System, method and apparatus for crosstalk cancellation
JP4269629B2 (en) Communications system
US20170257145A1 (en) Method and system of combining signals in bpl communications
US6956944B1 (en) Method and apparatus for compensating for an echo signal component in telecommunication systems
CA2356952A1 (en) A method and apparatus for an improved analog echo canceller
JP2005136643A (en) Communication system
JP3054318B2 (en) Two-way communication circuit
US6879625B1 (en) System and method for providing cancellation of interference in a repeater configuration with remote loop powering
US9484984B2 (en) Cable-level crosstalk reduction
CA2746355A1 (en) Method, system, and apparatus for a differential transformer-free hybrid circuit
US6922742B2 (en) Node device for a serial databus connecting a number of devices
JP3815702B2 (en) Transmission line extension method
US6584079B1 (en) Apparatus and method of implementing a home network by filtering ISDN-based signals within the customer premises
JP3717366B2 (en) CATV network system
JP3963132B2 (en) Communications system
JPH06261048A (en) Method and device for branching branch line
JPH079467Y2 (en) Optical adapter
JPH09331277A (en) Signal transmission circuit
WO2005057806A1 (en) Hitless modem pool expansion at steady state
CN114762297A (en) Data network having at least three line branches connected to one another via a common star node, motor vehicle to which said data network is suitable, and operating method
EP0338129A2 (en) Transceiver coupler for one-pair cabling of a high-speed network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4