JP4269610B2 - 露光装置及び露光装置の製造方法 - Google Patents

露光装置及び露光装置の製造方法 Download PDF

Info

Publication number
JP4269610B2
JP4269610B2 JP2002270569A JP2002270569A JP4269610B2 JP 4269610 B2 JP4269610 B2 JP 4269610B2 JP 2002270569 A JP2002270569 A JP 2002270569A JP 2002270569 A JP2002270569 A JP 2002270569A JP 4269610 B2 JP4269610 B2 JP 4269610B2
Authority
JP
Japan
Prior art keywords
block
mask
exposure apparatus
exposure
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002270569A
Other languages
English (en)
Other versions
JP2004111569A (ja
Inventor
智秀 浜田
正人 畑沢
保夫 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2002270569A priority Critical patent/JP4269610B2/ja
Publication of JP2004111569A publication Critical patent/JP2004111569A/ja
Application granted granted Critical
Publication of JP4269610B2 publication Critical patent/JP4269610B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マスクを露光光で照明し、マスクのパターンを感光基板に露光する露光処理本体部を有する露光装置に関するものである。
【0002】
【従来の技術】
液晶表示素子や半導体素子等のマイクロデバイスはマスク上に形成されたパターンを基板(感光基板)上に転写するいわゆるフォトリソグラフィの手法により製造される。このフォトリソグラフィ工程で使用される露光装置の構造例が下記の特許文献に記載されている。
【0003】
【特許文献1】
特開平11−212266号公報
【特許文献2】
特開2000−243693号公報
【特許文献3】
特開2000−260691号公報
【特許文献4】
特開2001−307983号公報
【特許文献5】
特開2000−100897号公報
【特許文献6】
特開2000−164493号公報
【0004】
上記特許文献に記載されているように、露光装置は、露光光の光路上に設けられマスクのパターンを感光基板に露光する露光処理本体部と、露光処理本体部に対してマスクを搬送するマスク搬送系、露光処理本体部に対して感光基板を搬送する基板搬送系、露光装置の動作制御を行う制御系、及びこれらを収容するチャンバなど複数の周辺装置とを有している。露光処理本体部は露光光の光路上に設けられるものであって、マスクを支持するマスクステージと、感光基板を支持する基板ステージと、マスクを露光光で照明する照明光学系と、露光光で照明されたマスクのパターンを感光基板に投影する投影光学系とを備える。
【0005】
従来において、露光装置は、露光装置製造工場において、上記各ステージ、光学系、及び搬送系などのそれぞれをユニットとして個別に製造し、これら各ユニットを組み立てて調整することにより製造されていた。ここで、調整工程には装置精度計測及び動作確認作業が含まれる。そして、露光装置製造工場で製造された露光装置を露光装置の稼働によりデバイスを製造するデバイス製造工場に納品する際には、輸送しやすいように露光処理本体部と周辺装置とを分割して輸送し、デバイス製造工場において再度組み立てて調整し直すといったことが行われていた。
【0006】
【発明が解決しようとする課題】
しかしながら上述した従来技術には以下に述べる問題が生じるようになった。
近年におけるデバイスを製造するための感光基板の大型化の要求に伴い露光装置も大型化する必要があるが、露光装置が大型化すると露光装置製造工場とデバイス製造工場との間の輸送が困難となる。この場合、露光装置を分割して輸送することが考えられる。従来、露光処理本体部と周辺装置とを分割して輸送しデバイス製造工場で組み立てることは装置精度上問題無いため行われていたが、露光処理本体部を分割して輸送し、デバイス製造工場で組み立てることは装置精度上不都合が生じるため、露光処理本体部は露光装置製造工場で製造された後、分割せずに一体で輸送せざるを得なかった。そのため、露光処理本体部を分割して輸送しデバイス製造工場で組み立てても装置精度を維持できる技術が必要となる。
【0007】
また、上記従来技術では、露光装置の調整工程は、露光装置製造工場とデバイス製造工場とで2回行われる構成であり、デバイス製造工場に露光装置を据え付けるまでの工期が長期化するという問題も生じる。
【0008】
本発明はこのような事情に鑑みてなされたもので、装置が大型化しても円滑に輸送でき、しかも装置精度を維持しつつ据え付けるまでの工期を短期化できる露光装置及び露光装置の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の課題を解決するため本発明は、実施の形態に示す図1〜図22に対応付けした以下の構成を採用している。
本発明の露光装置(SYS)は、マスク(M)を露光光(EL)で照明し、マスク(M)のパターンを感光基板(P)に露光する露光処理本体部(EX)を有する露光装置において、露光処理本体部(EX)は、機能別に分けられた複数の機能ブロック(A、B、C)と、複数の機能ブロック(A、B、C)に対応して、該機能ブロック(A、B、C)毎に動作を調整可能とする制御ユニット(AC、BC、CC)とを備え、複数の機能ブロック(A、B、C)毎に動作を調整する調整パラメータを有し、制御ユニット(AC、BC、CC)は調整パラメータを記憶することを特徴とする。
本発明によれば、露光光が通過する露光処理本体部を複数の機能ブロックに分けるとともにこれら機能ブロックのそれぞれに動作を調整する制御ユニットを設ることにより、各機能ブロック毎に動作確認及び調整作業を行うことができる。露光処理本体部を輸送する際には機能ブロック毎に輸送すればよいので、露光装置全体が大型化しても輸送作業を円滑に行うことができる。そして、機能ブロック毎に動作確認及び調整作業が可能であるので、例えば露光装置製造工場において各ブロック毎に調整作業を行えば、輸送先であるデバイス製造工場での組み立て後における調整作業を簡略もしくは省略できる。したがって、露光装置を据え付けるまでの工期を短期化できる。
【0010】
本発明の露光装置の製造方法は、マスク(M)を露光光(EL)で照明し、マスク(M)のパターンを感光基板(P)に露光する露光処理本体部(EX)を有する露光装置の製造方法において、露光処理本体部(EX)を構成する第1の機能ブロック(B)を製造する第1ブロック製造工程と、第1の機能ブロック(B)の状態を計測する計測工程と、露光処理本体部(EX)を構成するとともに第1の機能ブロック(B)に接続される第2の機能ブロック(A、C)を製造する第2ブロック製造工程とを有し、第2ブロック製造工程は、第1及び第2の機能ブロックを接続した際に所定の性能を発生するように、計測工程で計測した計測結果に基づいて第2の機能ブロック(A、C)を調整する調整値を求め、第2の機能ブロック(A、C)を製造することを特徴とする。
本発明によれば、露光処理本体部を第1の機能ブロックと第2の機能ブロックとに分割してそれぞれを接続する際、第1の機能ブロックの状態を計測し、この計測結果に基づいて第2の機能ブロックを調整するための調整値を求めて第2の機能ブロックを製造することにより、機能ブロック相互に誤差があってもこの誤差を調整値に基づいてキャンセルできる。したがって、露光処理本体部は所定の性能を発揮できる。
【0011】
本発明の露光装置の製造方法は、マスク(M)を露光光(EL)で照明し、マスク(M)のパターンを感光基板(P)に露光する露光処理本体部(EX)を有する露光装置の製造方法において、露光処理本体部(EX)を構成する複数の機能ブロック(A、B、C)のそれぞれを第1の場所で製造するブロック製造工程と、製造された機能ブロック(A、B、C)のそれぞれを第1の場所で調整する調整工程と、調整された機能ブロック(A、B、C)のそれぞれを第1の場所とは異なる第2の場所に輸送する輸送工程と、第2の場所で複数の機能ブロック(A、B、C)どうしを結合する結合工程とを有し、結合工程は、複数の機能ブロック(A、B、C)のうち1つの機能ブロックの状態に基づいて、1つの機能ブロックに接続する他の機能ブロックの補正値を設定することを特徴とする。
本発明によれば、露光処理本体部を複数の機能ブロックで構成し、第1の場所において製造した機能ブロックを調整してから輸送することにより、第2の場所においてこれら機能ブロックどうしを結合する際、煩雑な調整作業を行うことなく所定の性能を発揮できる露光処理本体部を製造できる。したがって、露光装置を短期間のうちに第2の場所に据え付けることができる。
【0012】
本発明の露光装置の製造方法は、マスク(M)を露光光(EL)で照明し、マスク(M)のパターンを感光基板(P)に露光する露光処理本体部(EX)を有する露光装置の製造方法において、露光処理本体部(EX)を構成する複数の機能ブロック(A、B、C)毎に製造及び機能調整し、機能ブロック(A、B、C)毎に機能調整された複数の機能ブロック(A、B、C)を露光装置(SYS)の稼働場所に輸送し、稼働場所において、複数の機能ブロック(A、B、C)を結合することにより露光処理本体部(EX)を組み立てることを特徴とする。
本発明によれば、露光処理本体部を複数の機能ブロックで構成し、これら機能ブロック毎に製造及び機能調整することにより、露光装置の稼働場所においてこれら調整された機能ブロックどうしを結合するだけで所定の性能を発揮する露光装置を製造できる。
【0013】
【発明の実施の形態】
以下、本発明の露光装置について図面を参照しながら説明する。図1は本発明の露光装置の一実施形態を示す概略正面図、図2は図1の側面図である。
図1及び図2において、露光装置SYSは、マスクMを露光光ELで照明し、マスクMのパターンを感光基板Pに露光する露光処理本体部EXを有している。露光処理本体部EXは、マスクMを支持するマスクステージMSTと、感光基板Pを支持する基板ステージPSTと、マスクステージMSTに支持されているマスクMを露光光ELで照明する照明光学系ILと、露光光ELで照明されたマスクMのパターンを基板ステージPSTに支持されている感光基板Pに投影する投影光学系PLとを備えている。投影光学系PLは複数(7つ)の投影光学モジュールPLa〜PLgにより構成され、本実施形態に係る露光装置SYS(露光処理本体部EX)は、この投影光学系PLに対してマスクMと感光基板Pとを所定方向に同期移動しつつマスクMを露光光ELで照明し、マスクMのパターンを感光基板Pに露光する、所謂マルチレンズスキャン型露光装置である。
【0014】
ここで、以下の説明において、水平面内においてマスクMと感光基板Pとが同期移動する方向(走査方向)をY軸方向、水平面内において前記走査方向と直交する方向(非走査方向)をX軸方向、X軸方向及びY軸方向に直交する方向をZ軸方向とする。また、X軸、Y軸、及びZ軸の軸線まわり方向を、それぞれθX、θY、及びθZ方向とする。
【0015】
露光装置SYSは、露光光ELの光路上に配置された前記露光処理本体部EXと、この露光処理本体部EXとは別に設けられ、マスクMを搬送するマスク搬送系MRと、感光基板Pを搬送する基板搬送系PRとを有している。マスク搬送系MRは露光処理本体部EXのマスクステージMSTに対してマスクMを搬送するマスクローダ及びアンローダを含む。基板搬送系PRは露光処理本体部EXの基板ステージPSTに対して感光基板Pを搬送する基板ローダ及びアンローダを含む。また、マスク搬送系MR及び基板搬送系PRのそれぞれは、マスクM及び感光基板Pを搬送可能なロボットアームをそれぞれ有している。露光処理本体部EX、マスク搬送系MR、及び基板搬送系PRはチャンバCH内に収容され、パーティクル及びケミカル的にクリーン度を維持されている。そして、マスク搬送系MR、基板搬送系PR、及びチャンバCHは、マスクMのパターンを感光基板Pに露光する露光処理本体部EXに対する周辺装置を構成している。更に、露光装置SYSは、周辺装置として、チャンバCH内の環境(例えば、温度など)の制御及び浄化を行う空調系、露光処理に関する操作入力や動作表示をする操作表示部、光学系や搬送系のモータその他のアクチュエータに冷却液を供給する液体温調系等を備えている。
【0016】
露光処理本体部EXは、機能別に複数の機能ブロックA、B、及びCに分けられている。露光処理本体部EXは、マスクMを露光光ELで照明する照明光学系ILを含む照明ブロックA、マスクMを支持するマスクステージMST及び露光光ELで照明されたマスクMのパターンを投影する投影光学系PLを含む光学ブロックB、及び感光基板Pを支持する基板ステージPSTを含むステージブロックCを有している。照明ブロックAは、この照明ブロックAに対応して設けられ、照明ブロックAの動作を調整可能とする照明制御ユニットACを有している。光学ブロックBは、この光学ブロックBに対応して設けられ、光学ブロックBの動作を調整可能とする光学制御ユニットBCを有している。ステージブロックCは、このステージブロックCに対応して設けられ、ステージブロックCの動作を調整可能とするステージ制御ユニットCCを有している。そして、露光装置SYSは、これら各制御ユニットAC、BC、及びCCに接続され、制御ユニットAC、BC、及びCCを制御することにより露光処理本体部EXを制御する制御装置CONTを備えている。ここで、制御装置CONTは、各制御ユニットAC、BC、及びCCを制御することで露光処理本体部EXの動作をシーケンス制御する。制御装置CONTは露光装置SYS全体の動作も制御可能である。
【0017】
一方、マスクMを搬送するマスク搬送系MRもブロック化(ユニット化)されてマスク搬送ブロックGを構成している。感光基板Pを搬送する基板搬送系PRもブロック化(ユニット化)されて基板搬送ブロックHを構成している。更に、チャンバCHはチャンバブロックを構成している。
【0018】
図3は照明ブロックAを示す概略斜視図である。図3において、照明光学系ILを構成する光学素子はハウジング部100に収容されており、これら光学素子及びハウジング部100が一体化されて照明ブロックAを構成している。図2及び図3に示すように、照明ブロックA(ハウジング部100)は、下端部を設置面であるデバイス製造工場の床に設置し、Z軸方向(鉛直方向)に延びる支柱部101と、支柱部100の上端部より−Y方向に梁り出た梁出部102と、梁出部102の−Y側端部に接続し、露光光ELの射出口を−Z方向に向けた射出部103とを有している。この照明ブロックAは、照明制御ユニットACにより単独で駆動及び調整可能であるとともに、単独で搬送(輸送)可能である。ここで、照明光学系ILは、不図示ではあるが、複数の光源と、複数の光源から射出された光束を一旦集合した後に均等分配して射出するライトガイドと、露光光ELの光路上に進退可能に設けられ、マスクMに対する露光光ELの照度を調整するフィルタと、ライトガイドからの光束を均一な照度分布の光束(露光光)に変換するオプティカルインテグレータと、オプティカルインテグレータからの露光光ELをスリット状に整形するための開口を有するブラインドと、ブラインドを通過した露光光ELをマスクM上に結像するコンデンサレンズとを備えている。コンデンサレンズからの露光光ELはマスクMを複数のスリット状の照明領域で照明する。本実施形態における光源には水銀ランプが用いられ、露光光ELとしては、不図示の波長選択フィルタにより、露光に必要な波長であるg線(436nm)、h線(405nm)、i線(365nm)などが用いられる。なお、露光光ELとしては、上記水銀ランプから射出される紫外域の輝線(g線、h線、i線)の他に、KrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)や、ArFエキシマレーザ光(波長193nm)及びFレーザ光(波長157nm)等の真空紫外光(VUV光)などが用いられてもよい。
【0019】
そして、照明制御ユニットACは、光源を駆動する動作、照度を調整するフィルタを露光光ELの光路上に対して進退する動作、及びブラインドを駆動して開口を調整する動作等といった照明ブロックAの駆動に関する動作を駆動装置を介して単独で行うとともにこの動作を単独で調整可能とする。例えば、照明制御ユニットACは、光源を駆動し、射出される露光光ELの照度分布の調整をフィルタ等を用いて単独で行うことができる。
【0020】
図1及び図2に示すように、光学ブロックBは、コラム1上に設けられたマスクステージMSTと、コラム1に支持されている投影光学系PLとを備えている。投影光学系PLは、上述したように、複数の投影光学モジュールPLa〜PLgで構成されており、複数の投影光学モジュールPLa〜PLgのうち投影光学モジュールPLa、PLc、PLe、PlgがX軸方向に並んで配置され、投影光学モジュールPLb、PLd、PLfがX軸方向に並んで配置されている。また、X軸方向に並んだ投影光学モジュールPLa、PLc、PLe、Plgと、X軸方向に並んだ投影光学モジュールPLb、PLd、PLfとはY軸方向にずれて配置されており、全体で千鳥状に配置されている。すなわち、千鳥状に配置されている投影光学モジュールPLa〜PLgのそれぞれは、隣合う投影光学モジュールどうし(例えば投影光学モジュールPLaとPLb、PLbとPLc)をY軸方向に所定量変位させて配置されている。
【0021】
図4は、光学ブロックBを示す概略斜視図である。図4に示すように、コラム1は、マスクステージMSTを支持する上部支持部1Aと、上部支持部1Aの4隅のそれぞれより下方に延びる脚部1Bと、脚部1Bの下端部に設けられ、後述するステージブロックCの支持台13の支持面に支持される下部支持部1Cとを有している。4つの脚部1Bのうち、Y軸方向に並んだ脚部1Bどうしは接続部材1Dで接続されている。一方、4つの脚部1Bのうち、X軸方向に並んだ脚部1Bとうしは接続されておらず、コラム1のX軸方向における側部は大きく開口した構成となっており、開口部10を形成している。
【0022】
マスクステージMSTは、コラム1上に設けられ、マスクMを保持するマスクホルダ2と、コラム1上においてマスクホルダ2をY軸方向に所定ストロークで移動可能な一対のリニアモータ3、3と、コラム1上に設けられ、Y軸方向に移動するマスクホルダ2を案内する一対のガイド部4、4とを備えている。マスクホルダ2はバキュームチャックを介してマスクMを保持する。マスクホルダ2の中央部にはマスクMのパターン像が通過する開口部Kが形成されている。コラム1の上部支持部1Aにもマスクホルダ2の開口部Kと連続する開口部が形成されている。リニアモータ3のそれぞれは、コラム1の上部支持部1AにおいてY軸方向に延びるように設けられたコイルユニット(電機子ユニット)からなる一対の固定子3Aと、この固定子3Aに対応して設けられ、連結部材を介してマスクホルダ2に固定された磁石ユニットからなる可動子3Bとを備えている。そして、これら固定子3A及び可動子3Bによりムービングマグネット型のリニアモータ3が構成されており、可動子3Bが固定子3Aとの間の電磁気的相互作用により駆動することでマスクホルダ2がY軸方向に移動する。ここで、固定子3Aのそれぞれは非接触ベアリングである複数のエアベアリングによりコラム1に対して浮上支持されている。このため、運動量保存の法則によりマスクホルダ2の+Y方向の移動に応じて固定子3Aが−Y方向に移動する。この固定子3Aの移動によりマスクホルダ2の移動に伴う反力が相殺されるとともに重心位置の変化を防ぐことができる。ガイド部4のそれぞれは、Y軸方向に移動するマスクホルダ2を案内するものであって、コラム1の上部支持部1AにおいてY軸方向に延びるように固定されている。また、マスクホルダ2とガイド部4、4との間には非接触ベアリングである不図示のエアベアリングが設けられており、マスクホルダ2はガイド部4に対して非接触で支持されている。
【0023】
図4には不図示であるが、図1に示すように、光学ブロックBは、コラム1上に設けられ、マスクステージMST(マスクホルダ2)のX軸方向における位置を検出するレーザ干渉計7を有している。マスクホルダ2のX軸方向の一端部には移動鏡8が設けられており、コラム1上には参照鏡9が設けられている。レーザ干渉計7は、移動鏡8にレーザビーム(測長ビーム)を照射するとともに、参照鏡9にレーザビーム(参照ビーム)を照射する。照射した測長ビーム及び参照ビームに基づく移動鏡8及び参照鏡9それぞれからの反射光はレーザ干渉計7の受光部で受光され、レーザ干渉計7はこれら光を干渉し、参照ビームの光路長を基準とした測長ビームの光路長の変化量、ひいては、参照鏡9を基準とした移動鏡8の位置(座標)を検出する。移動鏡8の位置を検出することによりマスクステージMST(マスクホルダ2)のX軸方向における位置が検出される。不図示ではあるが、光学ブロックBは、マスクステージMSTのY軸方向における位置検出に用いられる移動鏡及び参照鏡と、これら移動鏡及び参照鏡にレーザビームを照射可能なY軸方向位置検出用のレーザ干渉計とを備えている。
【0024】
そして、光学制御ユニットBCは、リニアモータ3をはじめとする各駆動装置を介してマスクホルダ2を駆動する動作、及びレーザ干渉計によるマスクホルダ2の位置検出動作等といった光学ブロックBの駆動に関する動作を単独で行うとともにこの動作を単独で調整可能とする。更に、光学ブロックBは単独で輸送可能である。例えば、光学制御ユニットBCは、光学ブロックBを他のブロックと接続しない状態で、レーザ干渉計でマスクホルダ2の位置を検出し、この検出結果に基づいてリニアモータ3等の駆動装置を介してマスクホルダ2(マスクM)の位置を制御することが可能である。更に、光学制御ユニットBCは、例えばアクチュエータ(駆動装置)の制御性やセンサの直線性の調整を単独で行うことができる。
【0025】
また、図1に示すように、光学ブロックBのうちコラム1の上部支持部1Aの下面には基板ステージPSTに支持された感光基板Pの表面(被露光面)のZ軸方向における位置を検出するAF検出系11が設けられている。AF検出系11は複数設けられており、感光基板P表面の複数点におけるZ軸方向の位置を検出可能である。これにより、AF検出系11は感光基板PのZ軸方向の位置、及びθX、θY方向の位置(姿勢)を検出可能である。また、投影光学系PLの鏡筒の側面の所定位置には、後述する基板ステージPSTのXY方向を位置検出するためのレーザ干渉計の検出動作で用いられる参照鏡12が設けられている。更に、不図示ではあるが、光学ブロックBには、マスクMと感光基板Pとの位置合わせを行うアライメント光学系も設けられている。
【0026】
図5は投影光学系PLのうち1つの投影光学モジュールPLfを示す概略構成図である。なお、他の投影光学モジュールPLa〜PLe、PLgも投影光学モジュールPLfと同様の構成である。また、本実施形態において、投影光学系PL(投影光学モジュール)は等倍正立系の光学系である。図5において、投影光学モジュールPLfは、シフト調整機構23と、二組の反射屈折型光学系24、25と、像面調整機構20と、不図示の視野絞りと、スケーリング調整機構27とを備えている。
【0027】
マスクMを透過した光束は、シフト調整機構23に入射する。シフト調整機構23は、X軸まわりに回転可能に設けられた平行平面ガラス板23Aと、Y軸まわりに回転可能に設けられた平行平面ガラス板23Bと有している。平行平面ガラス板23Aはモータなどの駆動装置40AによりX軸まわりに回転し、平行平面ガラス板23Bはモータなどの駆動装置40BによりY軸まわりに回転する。平行平面ガラス板23AがX軸まわりに回転することにより感光基板P上におけるマスクMのパターンの像はY軸方向にシフトし、平行平面ガラス板23BがY軸まわりに回転することにより感光基板P上におけるマスクMのパターンの像はX軸方向にシフトする。駆動装置40A,40Bの駆動速度及び駆動量は光学制御ユニットBCによりそれぞれ独立して制御されるようになっている。駆動装置40A,40Bのそれぞれは光学制御ユニットBCの制御に基づいて、平行平面ガラス板23A,23Bのそれぞれを所定速度で所定量(所定角度)回転する。シフト調整機構23を透過した光束は、1組目の反射屈折型光学系24に入射する。
【0028】
反射屈折型光学系24は、マスクMのパターンの中間像を形成するものであって、直角プリズム(補正機構)28と、レンズ29と、凹面鏡30とを備えている。直角プリズム28はZ軸まわりに回転可能に設けられており、モータなどの駆動装置41AによりZ軸まわりに回転する。直角プリズム28がZ軸まわりに回転することにより感光基板P上におけるマスクMのパターンの像はZ軸まわりに回転する。すなわち、直角プリズム28はローテーション調整機構としての機能を有している。駆動装置41Aの駆動速度及び駆動量は光学制御ユニットBCにより制御されるようになっている。駆動装置41Aは光学制御ユニットBCの制御に基づいて、直角プリズム28を所定速度で所定量(所定角度)回転する。反射屈折型光学系24により形成されるパターンの中間像位置には不図示の視野絞りが配置されている。視野絞りは、感光基板P上における投影領域を設定するものである。本実施形態において、視野絞りは台形状の開口を有し、この視野絞りにより感光基板P上の投影領域が台形状に規定される。視野絞りを透過した光束は、2組目の反射屈折型光学系25に入射する。
【0029】
反射屈折型光学系25は、反射屈折型光学系24と同様に、ローテーション調整機構としての直角プリズム(補正機構)31と、レンズ32と、凹面鏡33とを備えている。直角プリズム31もモータなどの駆動装置41Bの駆動によりZ軸まわりに回転するようになっており、回転することで感光基板P上におけるマスクMのパターンの像をZ軸まわりに回転する。駆動装置41Bの駆動速度及び駆動量は光学制御ユニットBCにより制御されるようになっており、駆動装置41Bは光学制御ユニットBCの制御に基づいて、直角プリズム31を所定速度で所定量(所定角度)回転する。
【0030】
反射屈折型光学系25から射出した光束は、スケーリング調整機構(補正機構)27を通り、感光基板P上にマスクMのパターンの像を正立等倍で結像する。スケーリング調整機構27は、図5のようにレンズをZ軸方向に移動させたり、又は3枚のレンズ構成で例えば、凹レンズ、凸レンズ、凹レンズから構成され、凹レンズと凹レンズとの間に位置する凸レンズをZ軸方向に移動させることにより、マスクMのパターンの像の倍率(スケーリング)調整を行うようになっている。図5の場合、凸レンズは駆動装置42により移動するようになっており、駆動装置42は光学制御ユニットBCにより制御される。駆動装置42は光学制御ユニット42の制御に基づいて、凸レンズを所定速度で所定量移動させる。なお、凸レンズは、両凸レンズでも平凸レンズでもよい。
【0031】
二組の反射屈折型光学系24,25の間の光路上には、投影光学モジュールの結像位置及び像面の傾斜を調整する像面調整機構20が設けられている。像面調整機構20は反射屈折型光学系24による中間像が形成される位置近傍に設けられている。すなわち、像面調整機構20はマスクM及び感光基板Pに対してほぼ共役な位置に設けられている。像面調整機構20は、第1光学部材21と、第2光学部材22と、第1光学部材21及び第2光学部材22を非接触状態に支持する不図示のエアベアリングと、第2光学部材22に対して第1光学部材21を移動する駆動装置43、44とを備えている。第1光学部材21及び第2光学部材22のそれぞれはくさび状に形成され露光光ELを透過可能なガラス板であり、一対のくさび型光学部材を構成している。露光光ELはこの第1光学部材21及び第2光学部材22のそれぞれを通過する。駆動装置43、44の駆動量及び駆動速度、すなわち第1光学部材21と第2光学部材22との相対的な移動量及び移動速度は光学制御ユニットBCにより制御される。
【0032】
図6は、第2光学部材22に対して第1光学部材21をY軸方向にスライドした際に投影光学モジュール(投影光学系)の結像位置が変化する様子を説明する図である。図6に示すように、第1光学部材21は、光入射面としての第1入射面21aと、この第1入射面21aに対して斜めに交わる光射出面としての第1射出面21bとを有している。また、第2光学部材22は、第1光学部材21の第1射出面21bに対向するように設けられこの第1射出面21bと略平行な光入射面としての第2入射面22aと、第1光学部材21の第1入射面21aに対して略平行な光射出面としての第2射出面22bとを有している。そして、第1光学部材を破線で示す位置(符号21’参照)から、実線で示す位置(符号21参照)にスライドすることにより、第1光学部材21の第1入射面21aと第2光学部材22の第2射出面22bとの相対寸法(厚さ)が変更する。すると、結像位置は距離δだけ変更する。すなわち、図6に示すように、第1光学部材21が−Y側に移動して第1光学部材21の第1入射面21aと第2光学部材22の第2射出面22bとの相対寸法が大きくなると、結像位置は−Z側にシフトする。一方、相対寸法が小さくなると、結像位置は+Z側にシフトする。したがって、第1光学部材21を第2光学部材22に対してY軸方向にスライドすることにより、像面調整機構20は投影光学系PL(投影光学モジュールPLa〜PLg)それぞれの結像位置を調整することができる。
【0033】
図7は、駆動装置43、44を用いて第1光学部材21を第2光学部材22に対して移動した際の像面の位置を説明するための模式図である。図7(a1)に示すように、第1光学部材21を破線で示す位置(符号21’参照)から実線で示す位置(符号21参照)まで第2光学部材22に対してY軸方向にスライド移動することにより、図7(a2)に示すように、パターンの像面の位置はZ軸方向、すなわち像面と直交する方向に移動する。図7(a1)に示す例では、第1光学部材21が+Y側に移動することにより第1光学部材21の第1入射面21aと第2光学部材22の第2射出面22bとの相対寸法は小さくなるため、像面は+Z側に移動する。ここで、像面のZ軸方向における移動量δは駆動装置43(44)の駆動量(補正量)に基づく。駆動装置43(44)の駆動量と像面のZ軸方向における移動量δとの関係は、例えば実験的あるいは数値計算を用いて予め求めることができる。そして、前記関係は光学制御ユニットBCに記憶される。
【0034】
図7(b1)に示すように、第1光学部材21を破線で示す位置(符号21’参照)から実線で示す位置(符号21参照)まで、第2光学部材22に対してZ軸回りに回転することにより、すなわち、一対のくさび型光学部材である第1、第2光学部材21,22を、これを貫通する光路の光軸回りに相対的に回転することにより、図7(b2)に示すように、パターンの像面はX軸とY軸とでなるXY平面に対して傾斜する(Y軸回りに回転する)。つまり、第1光学部材21を第2光学部材22に対して回転することにより、図7(b1)に示すように、像面調整機構20のうち、+X側端部における第1光学部材21の第1入射面21aと第2光学部材22の第2射出面22bとの相対寸法は小さくなり、一方、−X側端部における第1光学部材21の第1入射面21aと第2光学部材22の第2射出面22bとの相対寸法は大きくなる。そして、この相対寸法は、+X側端部から−X側端部に亘って連続的に変化するため、図7(b2)に示すように、パターンの像面はXY平面に対して傾斜する。ここで、像面のX軸に対する回転量rは、駆動装置43(44)の駆動量(補正量)に基づく。駆動装置43(44)の駆動量と像面のX軸に対する回転量rとの関係は、例えば実験的あるいは数値計算を用いて予め求めることができる。そして、前記関係は光学制御ユニットBCに記憶される。
【0035】
そして、光学制御ユニットBCは、駆動装置40A、40B、41A、41B、42、43、44を単独で駆動可能であるとともに、これら駆動装置を介して感光基板P上でのマスクMのパターンの結像特性(シフト、スケーリング、ローテーション、像面位置、及び像面傾斜)を単独で調整可能とする。
【0036】
ここで、投影光学モジュールPLa〜PLgを構成する光学素子及び上記各駆動装置は鏡筒内に収容されており、駆動装置は鏡筒外部より操作可能となっている。したがって、投影光学系(投影光学モジュール)の結像特性の調整は、例えば作業者が鏡筒内部にアクセスすることなく実施可能であり、作業者がアクセスすることに生じる光学素子の温度変化の発生を抑制できる。
【0037】
図1及び図2に示すように、ステージブロックCは、支持台13上に設けられた基板ステージPSTを備えている。基板ステージPSTは感光基板Pを吸着保持する基板ホルダ14を有している。そして、支持台13の支持面上に光学ブロックBのコラム1の下部支持部1Cが支持される。ステージブロックCは、支持台13上に設けられ、基板ステージPST(基板ホルダ14)のX軸方向における位置を検出するレーザ干渉計15を有している。基板ホルダ14のX軸方向の一端部には移動鏡16が設けられており、投影光学系PLの鏡筒のうちレーザ干渉計14と対向する位置には参照鏡12が設けられている。レーザ干渉計15は、移動鏡16にレーザビーム(測長ビーム)を照射するとともに、参照鏡12にレーザビーム(参照ビーム)を照射する。照射した測長ビーム及び参照ビームに基づく移動鏡16及び参照鏡12それぞれからの反射光はレーザ干渉計15の受光部で受光され、レーザ干渉計15はこれら光を干渉し、参照ビームの光路長を基準とした測長ビームの光路長の変化量、ひいては、参照鏡12を基準とした移動鏡16の位置(座標)を検出する。移動鏡16の位置を検出することにより基板ステージPST(基板ホルダ14)のX軸方向における位置が検出される。また、ステージブロックCは、基板ステージPSTのY軸方向における位置検出に用いられる移動鏡及び参照鏡と、これら移動鏡及び参照鏡にレーザビームを照射可能なY軸方向位置検出用のレーザ干渉計とを備えている。
【0038】
図8は、ステージブロックCを示す概略斜視図である。図8に示すように、ステージブロックCは、支持台13と、支持台13上においてXY平面に沿った2次元方向に移動可能な基板ホルダ14を有する基板ステージPSTとを備えている。基板ホルダ14は感光基板Pを真空吸着保持する。基板ホルダ4の+X側端部にはY軸方向に延びるようにX軸方向位置検出用の移動鏡16が設けられ、−Y側端部にはX軸方向に延びるようにY軸方向位置検出用の移動鏡17が設けられている。基板ステージPSTは、支持台13上において基板ホルダ14をY軸方向に所定ストロークで移動可能な一対のリニアモータ50、50と、支持台13上に設けられ、Y軸方向に移動する基板ホルダ14を案内する一対のガイド部51、51と、基板ホルダ14をX軸方向に案内しつつ移動自在に支持するガイドステージ52と、ガイドステージ52に設けられ、基板ホルダ14をX軸方向に移動可能なリニアモータ53とを備えている。リニアモータ50のそれぞれはガイドステージ52の長手方向両端に設けられており、ガイドステージ52を基板ホルダ14とともにY軸方向に移動する。支持台13は設置面である床上に防振ユニット18を介してほぼ水平に支持される。なお、図8では防振ユニット18を支持台13の4隅に配置するようにしているが、支持台13上の重量分布に応じて4個から、6個、8個と増設するようにしてもよい。
【0039】
リニアモータ53は、ガイドステージ52にX軸方向に延びるように設けられたコイルユニットからなる固定子53Aと、この固定子53Aに対応して設けられ、基板ホルダ14に固定された磁石ユニットからなる可動子(基板ホルダ14の下方に設けられており図8には図示されていない)とを備えている。これら固定子53A及び可動子によりムービングマグネット型のリニアモータ53が構成されており、可動子が固定子53Aとの間の電磁気的相互作用により駆動することで基板ホルダ14がX軸方向に移動する。ここで、基板ホルダ14はガイドステージ52に対してZ軸方向に所定量のギャップを維持する磁石及びアクチュエータからなる磁気ガイドにより非接触で支持されている。基板ホルダ14はガイドステージ52に非接触支持された状態でリニアモータ53によりX軸方向に移動する。
【0040】
リニアモータ50のそれぞれは、ガイドステージ52の長手方向両端に設けられた磁石ユニットからなる可動子50Bと、この可動子50Bに対応して設けられコイルユニットからなる固定子50Aとを備えている。なお、図8中、手前側(+X側)の固定子は図示されていない。これら固定子50A及び可動子50Bによりムービングマグネット型のリニアモータ50が構成されており、可動子50Bが固定子50Aとの間の電磁気的相互作用により駆動することでガイドステージ52がY軸方向に移動する。また、リニアモータ50、50のそれぞれの駆動を調整することでガイドステージ52はθZ方向にも回転移動可能となっている。したがって、このリニアモータ50、50により基板ホルダ14がガイドステージ52とほぼ一体的にY軸方向及びθZ方向に移動可能となっている。更に、基板ステージPSTは基板ホルダ14をZ軸方向に所定ストロークで移動する駆動装置を備えている。更に、基板ホルダ14はθX及びθY方向にも移動可能となっている。
【0041】
そして、ステージ制御ユニットCCは、リニアモータをはじめとする各駆動装置を介して基板ホルダ14を駆動する動作、レーザ干渉計による基板ホルダ14の位置検出動作等といったステージブロックCの駆動に関する動作を単独で行うとともにこの動作を単独で調整可能とする。更に、ステージブロックCは単独で輸送可能である。例えば、ステージ制御ユニットCCは、ステージブロックCを他のブロックと接続しない状態で、レーザ干渉計で基板ホルダ4の位置を検出し、この検出結果に基づいてリニアモータ等の駆動装置を介して基板ホルダ14(感光基板P)の位置を制御することが可能である。更に、ステージ制御ユニットCCは、例えばアクチュエータの制御性やセンサの直線性の調整を単独で行うことができる。
【0042】
次に、上述した構成を有する露光装置の製造方法について説明する。本実施形態に係る露光装置の製造方法は、図9に示すように、露光処理本体部EXを構成する前記照明ブロックA、光学ブロックB、及びステージブロックCのそれぞれを露光装置を製造する露光装置製造工場内(第1の場所)で製造するブロック製造工程と、製造した各ブロックA、B、及びCのそれぞれを露光装置製造工場で調整する調整工程と、調整したブロックA、B、及びCのそれぞれを露光装置の稼働によりデバイスを製造するデバイス製造工場内(第2の場所、稼働場所)に輸送する輸送工程と、デバイス製造工場でブロックA、B、及びCどうしを結合する結合工程とを有する。なお、以下の説明では、照明ブロックA、光学ブロックB、及びステージブロックCに関して説明するが、露光処理本体部EXの周辺装置であるマスク搬送ブロックG及び基板搬送ブロックH、あるいはチャンバブロックのそれぞれも露光装置製造工場内において製造及び調整され、デバイス製造工場に輸送されて結合される。
【0043】
≪ブロック製造工程≫
ブロック製造工程では、複数の部品を組み立てることにより各ブロックA、B、及びCのそれぞれが製造される。各ブロックA、B、及びCのそれぞれにはこれらブロック毎に動作を調整可能とする制御ユニットAC、BC、及びCCが設けられる。
【0044】
ブロック製造工程において、各ブロックA、B、及びCのそれぞれは、輸送工程で輸送可能な大きさを上限として製造される。すなわち、輸送工程における輸送機(温調付エアーサスペンション式トラック等)が輸送可能な大きさ及び重量となるように、つまり、輸送機の最大積載量以下となるように、露光処理本体部EXを構成する各ブロックA、B、及びCのそれぞれの大きさ及び重量が設定される。あるいは、デバイス製造工場内に搬入する際、デバイス製造工場の入口から搬入可能な大きさ、デバイス製造工場内における輸送装置(リフタやエレベータ等)で輸送可能な大きさ(重量)に各ブロックA、B、及びCが設定され、製造される。こうすることにより、各ブロックA、B、及びCは輸送工程において円滑に輸送される。
【0045】
あるいは、各ブロックA、B、及びCは、これらブロックを構成する部品を加工する加工装置の加工限界を上限として製造される。すなわち、例えばコラム1を成形する成形装置の加工限界に基づいてコラム1の大きさが設定され、設定されたコラム1の大きさに基づいて光学ブロックBが製造される。
【0046】
≪調整工程≫
調整工程では、各ブロックA、B、及びCが制御ユニットAC、BC、及びCCの制御のもとで個別に動作を調整される。以下、各ブロックのそれぞれの調整工程における装置構成の一例について説明する。
図10は、照明光学系ILを含む照明ブロックAの調整工程における装置構成の一例を示す模式図である。照明ブロックAは照明駆動装置ADを有している。照明駆動装置ADの駆動は照明制御ユニットACにより制御される。ここで、照明駆動装置ADは、光源を点灯する点灯装置、ブラインドを駆動するブラインド駆動部、及び照度を調整するフィルタを露光光の光路上に対して進退するフィルタ駆動部等を含むものであり、以下の説明では簡単のため照明駆動装置ADと適宜称する。照明ブロックAの射出部103下方には照度検出装置60が配置される。そして、照明ブロックAの調整工程では、照明光学系ILより射出した露光光(照明光)ELを照度検出装置60で検出し、照明ブロックAの照明光の照度均一性、及びテレセントリシティーを計測する。本実施形態では、複数(7つ)の投影光学モジュールに対応して、照明光学系も複数(7つ)の照明モジュールを有しているため、各照明モジュール間照度差、1つの照明モジュール内における照度均一性(モジュール内走査方向に発生する照度むら)、及び各照明モジュールのテレセントリシティーが計測される。そして、この計測結果に基づいて照度均一性及びテレセントリシティーに関する調整作業が行われる。照明制御ユニットACには、照明光学系の照度分布に関する情報、及び照度分布を調整するための調整パラメータが記憶される。
【0047】
図11は、投影光学系PL及びマスクステージMSTを含む光学ブロックBの調整工程における装置構成の一例を示す模式図である。光学ブロックBは光学駆動装置BDを有している。光学駆動装置BDの駆動は光学制御ユニットBCにより制御される。ここで、光学駆動装置BDは、マスクステージMST(マスクホルダ2)を駆動するリニアモータ及び投影光学系PLの光学素子を駆動する駆動装置を含むものであり、以下の説明では簡単のため光学駆動装置BDと適宜称する。光学ブロックBはコラム1を介してテスト用基板ステージSTを載置している支持台13Tに支持される。テスト用基板ステージSTはステージブロックCの基板ステージPSTと同様、Z軸方向への移動は可能であるが、基板ステージPSTに比べて水平方向(XY方向)へのストロークが短く比較的簡易な構成を有する。また、マスクステージMSTの上方には、照明ブロックAの照明光学系ILよりも簡易な構成を有するテスト用照明系ILTが配置される。
【0048】
光学ブロックBの調整工程では、投影光学系PLの結像特性(シフト、スケーリング、ローテーション、像面位置、像面傾斜)調整、照度分布調整、及びステージ調整が行われる。結像特性調整には複数の投影光学モジュールの投影領域の配列(像配列)の調整などが含まれる。照度分布調整には、複数(7つ)の投影光学モジュール間照度差、1つの投影光学モジュール内における照度均一性の調整などが含まれる。また、ステージ調整には、マスクステージMSTの動特性(振動モード等)、位置決め精度、走査移動時の等速精度及び整定時間、駆動装置の制御性、及びセンサの直線性の調整などが含まれる。以下、光学ブロックBの調整工程の一例について説明する。
【0049】
光学ブロックBの結像特性の調整工程では、投影光学系PLを介した露光光ELの結像特性の計測及び調整工程が行われる。結像特性の計測工程では、テスト用基板ステージSTで感光基板Pを支持するとともにマスクステージMSTでマスクMを支持し、テスト用照明系ILTによりマスクMをテスト用露光光で照明し、マスクMのパターンをテスト用基板ステージSTに支持されている感光基板Pに露光する。そして、感光基板Pに対して現像処理を施し、感光基板Pに形成された線幅パターンを計測することにより、投影光学系PLの結像特性が計測される。この計測結果に基づき、光学制御ユニットBCは、図5を用いて説明した投影光学系PL(投影光学モジュール)の各調整機構20、23、28、31、及び27を適宜駆動し、結像特性を調整する。光学制御ユニットBCには、このときの結像特性に関する情報、及び結像特性を調整するための調整パラメータ(駆動装置の駆動量等)が記憶される。具体的には、例えばシフト調整機構23の駆動量及び及びこのときの像面位置に関する情報が記憶される。なお、ここでは、感光基板Pに投影光学系PLを介した露光光を照射し、このときのパターン形状計測結果に基づいて結像特性を計測しているが、照度センサを基板ステージ上に配置し、投影光学系PLを介した露光光の照度を計測し、この計測結果に基づいて結像特性を計測するようにしてもよい。
【0050】
光学ブロックBの照度分布の調整工程では、投影光学系PLを介した露光光ELの照度分布の計測及び調整工程が行われる。照度分布の計測工程では、基板ステージ上に照度センサを設け、この照度センサを用いて計測する。そして、この計測結果に基づいて、投影光学系PLの照度分布の調整が行われる。光学制御ユニットBCには、このときの照度分布に関する情報、及び照度分布を調整するための調整パラメータが記憶される。
【0051】
光学ブロックBのマスクステージMSTの調整工程では、マスクホルダ2の位置検出に用いる移動鏡8はマスクホルダ2上に設けられ、参照鏡9はコラム1上に設けられているため、光学制御ユニットBCは、レーザ干渉計7により移動鏡8にレーザビーム(測長ビーム)を照射するとともに、参照鏡9にレーザビーム(参照ビーム)を照射する。照射した測長ビーム及び参照ビームに基づく移動鏡8及び参照鏡9それぞれからの反射光はレーザ干渉計7の受光部で受光され、レーザ干渉計7はこれら光を干渉し、参照ビームの光路長を基準とした測長ビームの光路長の変化量、ひいては、参照鏡9を基準とした移動鏡8の位置(座標)を検出する。移動鏡8の位置を検出することによりマスクホルダ2(マスクステージMST)のX軸方向における位置が検出される。そして、光学制御ユニットBCは、駆動装置でマスクホルダ2を移動しつつレーザ干渉計7によりマスクホルダ2の位置をモニタすることで、マスクステージMSTの位置決め精度や動特性を計測する。そして、この計測結果に基づいて駆動装置BDなどが調整される。レーザ干渉計7、移動鏡8、及び参照鏡9は1つのブロック内に設けられているため、光学ブロックBのステージ調整工程は、光学制御ユニットBCの制御のもとで独立して行われる。そして、光学制御ユニットBCには、マスクステージMSTを調整するための調整パラメータが記憶される。なお、マスクステージMSTのY軸方向における調整も同様に行われる。
【0052】
図12は、基板ステージPSTを含むステージブロックCの調整工程における装置構成の一例を示す模式図である。ステージブロックCはステージ駆動装置CDを有している。ステージ駆動装置CDの駆動はステージ制御ユニットCCにより制御される。ここで、ステージ駆動装置CDは、基板ホルダ14をXY方向、Z軸方向、及びθX、θY方向に駆動する駆動装置を含むものであり、以下の説明では簡単のためステージ駆動装置CDと適宜称する。
【0053】
ステージブロックCの調整工程では、ステージ調整が行われる。ステージ調整には、基板ステージPSTの動特性(振動モード等)、位置決め精度、走査移動時の等速精度及び整定時間、駆動装置の制御性、及びセンサの直線性の調整などが含まれる。ここで、基板ホルダ14の位置検出のために用いられる参照鏡12は光学ブロックBの投影光学系PLの鏡筒に設けられており、ステージブロックCには設けられていない。そこで、ステージブロックCの調整工程においては、仮の参照鏡である仮基準部材12Tが用いられる。ステージ制御ユニットCCは、レーザ干渉計15より移動鏡16にレーザビーム(測長ビーム)を照射するとともに仮基準部材12Tにレーザビーム(参照ビーム)を照射する。照射した測長ビーム及び参照ビームに基づく移動鏡16及び仮基準部材12Tそれぞれからの反射光はレーザ干渉計15の受光部で受光され、レーザ干渉計15はこれら光を干渉し、参照ビームの光路長を基準とした測長ビームの光路長の変化量、ひいては、仮基準部材12Tを基準とした移動鏡16の位置(座標)を検出する。移動鏡16の位置を検出することにより基板ホルダ14(基板ステージPST)のX軸方向における位置が検出される。そして、ステージ制御ユニットCCは、駆動装置CDで基板ホルダ14を移動しつつレーザ干渉計15により基板ホルダ14の位置をモニタすることで、基板ステージPSTの位置決め精度や動特性を計測する。そして、この計測結果に基づいて駆動装置CDなどが調整される。そして、ステージ制御ユニットCCには、基板ステージPSTを調整するための調整パラメータが記憶される。なお、基板ステージPSTのY軸方向における調整も同様に行われる。
【0054】
以上、各ブロックの調整手順について説明した。
ところで、ステージブロックCを製造するに際し、例えば基板ステージのZ軸方向におけるストローク(調整値)を、投影光学系PLの結像特性の計測結果に基づいて設定することができる。例えば、図13の模式図に示すように、像面調整機構20の調整により設定された投影光学系PLの像面位置に基づいて、像面が基板ステージPSTのZ軸方向におけるストロークにおさまるように、基板ステージのストローク及びストローク中心位置が設定される。このように、図14に示すフローチャート図のように、光学ブロック(第1の機能ブロック)Bの結像特性(状態)を計測し、この光学ブロックBに接続するステージブロック(第2の機能ブロック)Cを製造する際に、投影光学系PLの像面と基板ステージ上の感光基板P表面とが合致するように光学ブロックBの結像特性の計測結果に基づいてステージブロックCの基板ステージのZ軸方向へのストローク(調整値)を設定し、この設定した調整値に基づいてステージブロックCの製造を行う。こうすることにより、光学ブロックBとステージブロックCとを分けてデバイス製造工場に輸送し、結合する構成であっても、投影光学系PLの像面位置と基板ステージPST上の感光基板Pの表面とを円滑に合致することができる。もちろん、Z軸方向だけでなく、投影光学系の各調整機構による投影光学系の像面位置に応じて、例えば基板ステージのθX及びθY方向(チルト方向)における移動ストロークを設定するようにしてもよい。
【0055】
更に、照明ブロックAを製造するに際し、例えば照明光学系ILの照度分布(調整値)を、投影光学系PLを介した感光基板P上での照度分布の計測結果に基づいて設定することができる。例えば、図15に示す模式図のように、投影光学系PLを介した露光光の照度が低い領域に対応する照明光学系ILの照明領域における照度を高く設定して照明ブロックAを製造することにより、感光基板P上においては良好な照度均一性を得ることができる。このように、図16に示すフローチャート図のように、光学ブロック(第1の機能ブロック)Bの照度分布(状態)を計測し、この光学ブロックBに接続する照明ブロック(第2の機能ブロック)Aを製造する際に、投影光学系PLの照度分布が均一になるように、光学ブロックBの照度分布の計測結果に基づいて照明ブロックAの照明光学系ILの照度分布(調整値)を設定し、この設定した調整値に基づいて照明ブロックの製造を行う。こうすることにより、光学ブロックBと照明ブロックAとを分けてデバイス製造工場に輸送し、結合する構成であっても、照明光学系IL及び投影光学系PLを介した露光光で感光基板Pを露光するに際し、感光基板P上において良好な照度均一性を得ることができる。なお、ここでは、投影光学系PLの照度分布を予め計測し、この計測結果に基づいて、感光基板P上における照度むらをキャンセルするように照明光学系ILの照度分布を調整するように説明したが、逆に、照明光学系ILの照度分布を予め計測し、この計測結果に基づいて、感光基板P上における照度むらをキャンセルするように投影光学系PLの照度分布を調整するようにしてもよい。
【0056】
また、図17に示すフローチャート図のように、照明ブロックA及び光学ブロックBのそれぞれを製造した後、調整工程において、光学ブロックBの投影光学系PLの照度分布(状態)を計測し、この計測結果に基づいて、光学ブロックBに接続される照明ブロックAに対する照度に関する補正量を求め、この補正量に基づいて照明ブロックAの照度分布を調整するようにしてもよい。これにより、光学ブロックBの投影光学系PLの照度分布が不均一であっても、投影光学系PLの照度分布に応じて照明光学系ELの照度分布が設定されているので、照明ブロックAと光学ブロックBとをドッキングした際も煩雑な照度調整を行うことなく感光基板P上において均一な照度を得ることができる。
【0057】
≪輸送工程≫
輸送工程では、ブロックA、B、及びCのそれぞれが所定の輸送機、例えば温調付エアーサスペンション式トラックにより輸送される。トラックの荷台は密閉された空間を有し、ブロックはこの空間に配置されて輸送される。ここで、輸送の際には、ブロックのそれぞれを不純物質を通さずにしかもアウトガスの発生の少ない材料からなるシートにより梱包して輸送することが好ましい。また、トラックの荷台の前記空間を化学的にクリーンな気体、例えばドライエアなどにより満たし、輸送時におけるブロックの清浄度を維持することが好ましい。
【0058】
≪結合工程≫
デバイス製造工場にブロックA、B、及びCが輸送されたら、これらブロックどうしを結合する工程が行われる。
ブロックどうしを結合する際には、まず、図18(a)に示すように、デバイス製造工場内(第2の場所)において、光学ブロックBがキャスター70上に載置され、所定の位置に配置される。次いで、図18(b)に示すように、光学ブロックBのコラム1のうち開口部10が設けられていない側部に架台71が接続され、光学ブロックBは架台71を介して床(設置面)上に支持される。そして、架台71で光学ブロックBを支持した状態でキャスター70が除かれる。これにより、架台71に支持された状態の光学ブロックBの下方には空間72が形成される。
【0059】
次いで、図19(a)に示すように、光学ブロックBの下方に設けられた空間72に、ステージブロックCが配置される。ステージブロックCは、光学ブロックBのうち開口部10が設けられている側から、光学ブロックBに対してY軸方向に沿ってスライド移動することにより配置される。こうして、図19(b)に示すように、ステージブロックCの支持台13上に光学ブロックBのコラム1が支持されることで、光学ブロックBとステージブロックCとが結合(ドッキング)される。光学ブロックBとステージブロックCとを結合するに際し、光学ブロックBに対してステージブロックCをスライド移動することにより結合するようにしたので、結合時にクレーン等の大型装置を用いることなく比較的小さいスペースで結合作業を行うことができる。したがって、デバイス製造工場の設置スペースに制約されずに作業性良く結合作業を行うことができる。
【0060】
ここで、図19において、光学ブロックBとステージブロックCとを結合するに際し、各ブロックB、Cどうしの長手方向が略直交するように互いに結合されるようになっている。すなわち、光学ブロックBはX軸方向を長手方向に設定されており、ステージブロックCはY軸方向を長手方向に設定されている。このように、各ブロックB、Cどうしの長手方向を略直交するように互いに結合することにより、露光処理本体部EXの設置面積をコンパクト化できる。
【0061】
そして、図20に示すように、照明ブロックAが床(設置面)上の所定の位置に設置され、照明ブロックA、光学ブロックB、及びステージブロックCのそれぞれが結合(ドッキング)され、露光処理本体部EXとなる。照明ブロックA、光学ブロックB、及びステージブロックCは結合されることにより機械的及び光学的に接続する。なお、図1に示した搬送ブロックG、H、及びチャンバブロックCHも結合される。ここで、照明ブロックAは、光学ブロックB及びステージブロックCとは独立して設けられ、照明ブロックAと床との間には不図示の防止ユニットが設けられている。したがって、床から照明ブロックAに対して伝わる振動は防振ユニットにより吸収される。同様に、ステージブロックCの下部には防振ユニット18が設けられているため、床(設置面)からステージブロックC及び光学ブロックBに対して伝わる振動は防振ユニット18で吸収される。
【0062】
各ブロックA、B、及びCが結合されたら、これら各ブロックに対応して設けられた制御ユニットAC、BC、及びCCのそれぞれに対して制御装置CONTが接続される。制御装置CONTは制御ユニットAC、BC、及びCCを介して各ブロックA、B、及びCを制御する。
【0063】
光学ブロックBとステージブロックCとが結合されたら、光学ブロックBのAF検出系11がステージブロックCの基板ステージPSTのZ軸方向における位置(状態)を検出する。すなわち、AF検出系11により、光学ブロックBとステージブロックCとの相互の位置誤差が検出される。制御装置CONTは、この位置誤差を補正する補正量を設定し、記憶する。そして、設定した補正値に基づいて、基板ステージPSTの調整作業が行われる。具体的には、例えば図21に示すように、投影光学系PLのZ軸方向に関する像面位置が、基板ステージPSTのZ軸方向に関する初期設定ストローク(露光装置製造工場で設定されたストローク)内におさまっていなかったら、制御装置CONTは、投影光学系PLの像面位置が基板ステージPSTのストローク内におさまるように、ストロークの中心位置をZ軸方向に所定量シフトする(あるいはストロークを大きくする)。ここで、投影光学系PLの像面位置に関する情報は光学制御ユニットBCに記憶されいるため、制御装置CONTは前記AF検出系11の検出結果と前記記憶されている像面位置に関する情報とに基づいて、投影光学系PLと基板ステージPSTのZ軸方向における位置とを合致することができる。このように、光学ブロックBとステージブロックCとのドッキング後の僅かな調整作業により、投影光学系PLの像面位置と基板ステージPSTのZ軸方向における位置とを容易に合致させることができる。なお、基板ステージPSTのZ軸方向における全移動ストロークは予め大きく設定されているので、ストロークの中心位置をシフトできる。なお、基板ステージPSTのストロークの中心位置をシフトしてもストローク内に像面をおさめることができない場合には、像面調整機構20を駆動して投影光学系PLの像面位置を変更すればよい。
【0064】
ここで、マスクステージMSTと投影光学系PLとの位置調整は、これらは同じブロックに設けられ、露光装置製造工場において機械的及び光学的に精度良く位置決め・調整されているので、デバイス製造工場においては調整作業を行う必要がない。
【0065】
そして、ドッキング後において、露光装置の性能確認作業が行われる。例えば、TFD(トータル・フォーカス・デプス)確認、すなわち、投影領域の複数点におけるフォーカス位置を確認作業が行われる。あるいは、マスクステージMST及び基板ステージPSTの同期移動精度確認作業が行われる。
【0066】
なお、光学ブロックBとステージブロックCとの間(あるいは、光学ブロックBと照明ブロックAとの間)に、光軸に対して傾斜方向のずれが生じている場合には、光学ブロックBの一部に設けられた反射鏡及びステージブロックCの一部に設けられた反射鏡のそれぞれに例えばレーザビームを照射し、反射したレーザービームの光情報に基づいて、光学ブロックBとステージブロックCとの相対位置情報を検出し、この検出結果に基づいて、光学ブロックBとステージブロックCとの相対位置を調整(補正)するようにしてもよい。このときの光学ブロックBとステージブロックCとの相対位置の調整はこれらブロックB、C間に設けられた所定の駆動装置(アクチュエータ)により行われる。
【0067】
以上説明したように、露光光ELが通過する露光処理本体部EXを複数の機能ブロックA、B、及びCに分けるとともに、これら機能ブロックA、B、及びCのそれぞれに動作を調整する制御ユニットAC、BC、及びCCを設けたので、各機能ブロックA、B、及びC毎に動作確認及び調整作業を行うことができる。したがって、露光装置製造工場において全体を組み立ててから調整し、デバイス製造工場においても調整作業をするといった2重の作業を省略あるいは簡略化できる。そして、デバイス製造工場に露光処理本体部を輸送する際には、機能ブロック毎に輸送すればよいので、露光装置全体が大型化しても輸送作業を円滑に行うことができる。
【0068】
なお、本実施形態では、マスクステージMSTと投影光学系PLとが同じブロックとなっているが、もちろん、マスクステージを含むブロックと投影光学系を含むブロックとに分けてもよい。一方、マスクステージ及び投影光学系を1つのブロックとし、このブロック(光学ブロック)に、露光処理において所定の精度が要求される各光学系(投影光学系、AF検出系、及びアライメント光学系等)を集約して設けることにより、これら光学系の異なるブロック間での調整作業がいらないので、装置精度を維持できる。
【0069】
なお、上記実施形態における露光装置SYS(露光処理本体部EX)は、互いに隣接する複数の投影光学系を有する、いわゆるマルチレンズスキャン型露光装置であるが、投影光学系が1つである走査型露光装置ついても、本発明を適用することができる。更に、本実施形態の露光装置SYSとして、マスクMと感光基板Pとを同期移動してマスクMのパターンを露光する走査型露光装置の他に、マスクMと感光基板Pとを静止した状態でマスクMのパターンを露光し、感光基板Pを順次ステップ移動させるステップ・アンド・リピート型の露光装置にも適用することができる。
【0070】
なお、露光装置SYSの用途としては角型のガラスプレートに液晶表示素子パターンを露光する液晶用の露光装置に限定されることなく、例えば、半導体製造用の露光装置や薄膜磁気ヘッドを製造するための露光装置にも広く適当できる。
【0071】
投影光学系PLの倍率は等倍系のみならず、縮小系及び拡大系のいずれでもよい。投影光学系PLとしては、エキシマレーザなどの遠紫外線を用いる場合は硝材として石英や蛍石などの遠紫外線を透過する材料を用い、Fレーザを用いる場合は反射屈折系または屈折系の光学系にする。
【0072】
基板ステージPSTやマスクステージMSTにリニアモータを用いる場合は、エアベアリングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用いてもいい。また、ステージは、ガイドに沿って移動するタイプでもいいし、ガイドを設けないガイドレスタイプでもよい。
【0073】
ステージの駆動装置として平面モ−タを用いる場合、磁石ユニットと電機子ユニットのいずれか一方をステージに接続し、磁石ユニットと電機子ユニットの他方をステージの移動面側(ベース)に設ければよい。
【0074】
基板ステージPSTの移動により発生する反力は、特開平8−166475号公報に記載されているように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。本発明は、このような構造を備えた露光装置においても適用可能である。
【0075】
マスクステージMSTの移動により発生する反力は、特開平8−330224号公報に記載されているように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。本発明は、このような構造を備えた露光装置においても適用可能である。
【0076】
以上のように、本願実施形態の露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
【0077】
半導体デバイスは、図22に示すように、デバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板(ウエハ、ガラスプレート)を製造するステップ203、前述した実施形態の露光装置によりマスクのパターンを基板に露光する基板処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)205、検査ステップ206等を経て製造される。
【0078】
【発明の効果】
本発明によれば、露光光が通過する露光処理本体部を複数の機能ブロックに分けるとともに、これら機能ブロックのそれぞれに動作を調整する制御ユニットを設けたので、各機能ブロックを独立した装置として各機能ブロック毎に動作を調整できる。したがって、露光装置全体を組み立ててから調整する作業を省略あるいは簡略化でき、露光装置を据え付けるまでの工期を短期化できる。また、露光処理本体部を輸送する際には、機能ブロック毎に輸送すればよいので、露光装置全体が大型化しても輸送作業を作業性良く行うことができる。
【図面の簡単な説明】
【図1】本発明の露光装置の一実施形態を示す概略正面図である。
【図2】図1の側面図である。
【図3】照明ブロックを示す斜視図である。
【図4】光学ブロックを示す斜視図である。
【図5】投影光学系の一実施形態を示す概略構成図である。
【図6】像面調整機構により像面位置が調整される様子を説明するための図である。
【図7】像面調整機構により像面位置が調整される様子を説明するための図である。
【図8】ステージブロックを示す斜視図である。
【図9】本発明の露光装置の製造方法を説明するための図である。
【図10】光学ブロックの調整工程を説明するための模式図である。
【図11】ステージブロックの調整工程を説明するための模式図である。
【図12】照明ブロックの調整工程を説明するための模式図である。
【図13】ブロック製造工程の一例を説明するための模式図である。
【図14】ブロック製造工程の一例を示すフローチャート図である。
【図15】ブロック製造工程の一例を説明するための模式図である。
【図16】ブロック製造工程の一例を示すフローチャート図である。
【図17】調整工程の一例を示すフローチャート図である。
【図18】露光処理本体部の結合工程を説明するための図である。
【図19】露光処理本体部の結合工程を説明するための図である。
【図20】露光処理本体部の結合工程を説明するための図である。
【図21】結合工程におけるブロック間相互の誤差を補正する工程を説明するための図である。
【図22】半導体デバイスの製造工程の一例を示すフローチャート図である。
【符号の説明】
A…照明ブロック(機能ブロック)、AC…照明制御ユニット、
B…光学ブロック(機能ブロック)、BC…光学制御ユニット、
C…ステージブロック(機能ブロック)、CC…ステージ制御ユニット、
CONT…制御装置、EL…露光光、EX…露光処理本体部、
G…搬送ブロック、H…搬送ブロック、IL…照明光学系、M…マスク、
MST…マスクステージ、P…感光基板、PL…投影光学系、
PST…基板ステージ、 SYS…露光装置

Claims (9)

  1. マスクを露光光で照明し、前記マスクのパターンを感光基板に露光する露光処理本体部を有する露光装置において、
    前記露光処理本体部は、機能別に分けられた複数の機能ブロックと、
    前記複数の機能ブロックに対応して、該機能ブロック毎に動作を調整可能とする制御ユニットとを備え
    前記複数の機能ブロック毎に動作を調整する調整パラメータを有し、前記制御ユニットは前記調整パラメータを記憶することを特徴とする露光装置。
  2. 前記機能ブロックは、前記マスクを支持するマスクステージを含むブロック、前記マスクのパターンを投影する投影光学系を含むブロック、前記マスクを前記露光光で照明する照明光学系を含むブロック、及び前記感光基板を支持する基板ステージを含むブロックのうち少なくともいずれか1つであることを特徴とする請求項1記載の露光装置。
  3. 前記露光処理本体部とは別に、前記マスク又は前記感光基板を搬送する搬送ブロックを備えたことを特徴とする請求項1又は2記載の露光装置。
  4. 前記露光処理本体部を制御する制御装置を備え、
    前記制御装置は、前記複数の機能ブロックに対応して設けられた前記制御ユニットに接続され、該制御ユニットを制御することにより前記露光処理本体部を制御することを特徴とする請求項1〜のいずれか一項記載の露光装置。
  5. 前記複数の機能ブロックを組み立てるにあたり、前記各機能ブロック相互の誤差を計測し、前記制御装置もしくは一方の前記制御ユニットに前記誤差を補正する補正量を記憶することを特徴とする請求項記載の露光装置。
  6. マスクを露光光で照明し、前記マスクのパターンを感光基板に露光する露光処理本体部を有する露光装置の製造方法において、
    前記露光処理本体部を構成する複数の機能ブロックのそれぞれを第1の場所で製造するブロック製造工程と、
    前記製造された前記機能ブロックのそれぞれを前記第1の場所で調整する調整工程と、
    前記調整された前記機能ブロックのそれぞれを前記第1の場所とは異なる第2の場所に輸送する輸送工程と、
    前記第2の場所で前記複数の機能ブロックどうしを結合する結合工程とを有し、
    前記結合工程は、前記複数の機能ブロックのうち1つの機能ブロックの状態に基づいて、前記1つの機能ブロックに接続する他の機能ブロックの補正値を設定することを特徴とする露光装置の製造方法。
  7. 前記第1の場所は前記露光装置を製造する製造工場内であり、前記第2の場所は前記露光装置の稼働によりデバイスを製造するデバイス製造工場内であることを特徴とする請求項記載の露光装置の製造方法。
  8. 前記結合工程は、前記1つの機能ブロックに対して相対的に前記他の機能ブロックをスライド移動することにより結合することを特徴とする請求項又は記載の露光装置の製造方法。
  9. 前記ブロック製造工程は、前記輸送工程で輸送可能な大きさを上限として分割し、前記複数の機能ブロックのそれぞれを製造することを特徴とする請求項のいずれか一項記載の露光装置の製造方法。
JP2002270569A 2002-09-17 2002-09-17 露光装置及び露光装置の製造方法 Expired - Lifetime JP4269610B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002270569A JP4269610B2 (ja) 2002-09-17 2002-09-17 露光装置及び露光装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002270569A JP4269610B2 (ja) 2002-09-17 2002-09-17 露光装置及び露光装置の製造方法

Publications (2)

Publication Number Publication Date
JP2004111569A JP2004111569A (ja) 2004-04-08
JP4269610B2 true JP4269610B2 (ja) 2009-05-27

Family

ID=32268156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270569A Expired - Lifetime JP4269610B2 (ja) 2002-09-17 2002-09-17 露光装置及び露光装置の製造方法

Country Status (1)

Country Link
JP (1) JP4269610B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101124179B1 (ko) 2003-04-09 2012-03-27 가부시키가이샤 니콘 노광 방법 및 장치, 그리고 디바이스 제조 방법
TWI457712B (zh) 2003-10-28 2014-10-21 尼康股份有限公司 照明光學裝置、投影曝光裝置、曝光方法以及元件製造方法
TWI512335B (zh) 2003-11-20 2015-12-11 尼康股份有限公司 光束變換元件、光學照明裝置、曝光裝置、以及曝光方法
TWI360837B (en) 2004-02-06 2012-03-21 Nikon Corp Polarization changing device, optical illumination
KR101494115B1 (ko) 2005-03-29 2015-02-16 가부시키가이샤 니콘 노광 장치, 노광 장치의 제조 방법 및 마이크로 디바이스 제조 방법
EP1881521B1 (en) 2005-05-12 2014-07-23 Nikon Corporation Projection optical system, exposure apparatus and exposure method
JP5267029B2 (ja) 2007-10-12 2013-08-21 株式会社ニコン 照明光学装置、露光装置及びデバイスの製造方法
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
TWI480706B (zh) * 2008-10-15 2015-04-11 尼康股份有限公司 An exposure apparatus, a method of assembling the same, and a method of manufacturing the same
JP5245775B2 (ja) * 2008-12-04 2013-07-24 株式会社ニコン 照明装置、露光装置、及びデバイス製造方法
KR101693168B1 (ko) * 2009-05-15 2017-01-17 가부시키가이샤 니콘 이동체 장치, 용력 전달 장치, 및 노광 장치, 그리고 디바이스 제조 방법
US8841065B2 (en) * 2010-02-12 2014-09-23 Nikon Corporation Manufacturing method of exposure apparatus and device manufacturing method
CN102636961B (zh) * 2011-02-12 2014-08-20 上海微电子装备有限公司 旋转光刻机

Also Published As

Publication number Publication date
JP2004111569A (ja) 2004-04-08

Similar Documents

Publication Publication Date Title
JP6904384B2 (ja) 移動体装置及び物体の移動方法、露光装置及び露光方法、並びにフラットパネルディスプレイの製造方法及びデバイス製造方法
JP6838598B2 (ja) 露光装置、フラットパネルディスプレイの製造方法及びデバイス製造方法
TWI704640B (zh) 物體處理裝置、物體處理方法、以及元件製造方法
TWI686896B (zh) 移動體裝置、曝光裝置、曝光方法、平面面板顯示器之製造方法、以及元件製造方法
JP6638774B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法及びフラットパネルディスプレイの製造方法
JP6708222B2 (ja) 露光装置、フラットパネルディスプレイの製造方法、並びにデバイス製造方法
TWI789689B (zh) 曝光裝置、平面顯示器之製造方法、及元件製造方法
JP4269610B2 (ja) 露光装置及び露光装置の製造方法
TWI728425B (zh) 移動體裝置、曝光裝置、平面顯示器之製造方法、以及元件製造方法
WO2013031235A1 (ja) 位置合わせ方法、露光方法、デバイス製造方法、及びフラットパネルディスプレイの製造方法
JP7047876B2 (ja) 移動体装置、移動方法、露光装置、露光方法、フラットパネルディスプレイの製造方法、並びにデバイス製造方法
JPWO2017057587A1 (ja) 露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法
JP2004014915A (ja) ステージ装置および露光装置
JP5455166B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2013219068A (ja) 物体駆動システム、露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び物体の駆動方法
JP2011145317A (ja) 移動体装置の組み立て方法、及び移動体装置の調整方法
JP5772196B2 (ja) 移動体装置、露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び移動体装置の組立方法。
JP6447845B2 (ja) 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法
JP5262455B2 (ja) 露光装置、露光方法、及びデバイス製造方法
JP2013051231A (ja) 露光方法及び露光装置、並びにデバイス製造方法及びフラットパネルディスプレイの製造方法
JP2005032812A (ja) ステージ装置及び露光装置
JP2005064373A (ja) 露光装置
JP2011060844A (ja) ステージ装置、露光装置、露光方法及びデバイスの製造方法
JP2011242627A (ja) 物体支持装置、物体搬送システム、露光装置、デバイス製造方法、及びフラットパネルディスプレイの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4269610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150306

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150306

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150306

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term