JP4265621B2 - Process for producing unsaturated aldehyde and unsaturated carboxylic acid - Google Patents

Process for producing unsaturated aldehyde and unsaturated carboxylic acid Download PDF

Info

Publication number
JP4265621B2
JP4265621B2 JP2006156917A JP2006156917A JP4265621B2 JP 4265621 B2 JP4265621 B2 JP 4265621B2 JP 2006156917 A JP2006156917 A JP 2006156917A JP 2006156917 A JP2006156917 A JP 2006156917A JP 4265621 B2 JP4265621 B2 JP 4265621B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction tube
raw material
reaction
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006156917A
Other languages
Japanese (ja)
Other versions
JP2007326787A (en
Inventor
直輝 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2006156917A priority Critical patent/JP4265621B2/en
Priority to SG200703766-6A priority patent/SG137814A1/en
Priority to KR1020070053441A priority patent/KR20070116724A/en
Publication of JP2007326787A publication Critical patent/JP2007326787A/en
Application granted granted Critical
Publication of JP4265621B2 publication Critical patent/JP4265621B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C47/22Acryaldehyde; Methacryaldehyde
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

本発明は、プロピレン、イソブチレン及びターシャリーブチルアルコールから選ばれる化合物を分子状酸素により気相接触酸化し、対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法に関する。   The present invention relates to a process for producing a corresponding unsaturated aldehyde and unsaturated carboxylic acid by subjecting a compound selected from propylene, isobutylene and tertiary butyl alcohol to gas phase catalytic oxidation with molecular oxygen.

いわゆるモリブデン−ビスマス−鉄系複合酸化物触媒を用いて気相接触酸化反応を行い、プロピレンや、イソブチレン、ターシャリーブチルアルコールから対応する不飽和アルデヒド及び不飽和カルボン酸を製造する技術は良く知られているところである。   The technology for producing the corresponding unsaturated aldehydes and unsaturated carboxylic acids from propylene, isobutylene and tertiary butyl alcohol by conducting a gas phase catalytic oxidation reaction using a so-called molybdenum-bismuth-iron complex oxide catalyst is well known. It is in place.

該酸化反応は、通常、触媒が充填された反応管に原料ガスを供給することにより行われ、工業的には多管式の反応器を用いて行われることが多いが、大きな発熱を伴うため、原料ガス入口側にホットスポットと呼ばれる局所的な高温帯が生じ易い。このホットスポットでは、過度の酸化反応が起こるため、収率が低下してしまうことが多く、更に、過大な熱負荷が触媒にかかるため、触媒が劣化し、触媒寿命を減少させてしまうこともある。特に単位触媒あたりの生産性を高めるために、原料ガス中の原料化合物濃度を高めたり、原料ガスの空間速度を大きくすると、上記のような問題はより重大になる。   The oxidation reaction is usually performed by supplying a raw material gas to a reaction tube filled with a catalyst, and is industrially often performed using a multi-tubular reactor, but with a large exotherm. A local high temperature zone called a hot spot is likely to be generated on the raw material gas inlet side. In this hot spot, an excessive oxidation reaction occurs, so the yield often decreases, and furthermore, an excessive heat load is applied to the catalyst, so the catalyst deteriorates and the catalyst life may be reduced. is there. In particular, when the concentration of the raw material compound in the raw material gas is increased or the space velocity of the raw material gas is increased in order to increase the productivity per unit catalyst, the above problem becomes more serious.

従って、かかるホットスポットでの過大な発熱を抑え、温度を下げることは、上記酸化反応により目的生成物を高収率で製造する上でも、また、触媒の劣化を抑え、工業的に長期間運転する上でも非常に重要である。   Therefore, it is possible to suppress excessive heat generation at such hot spots and reduce the temperature in order to produce the target product in a high yield by the above oxidation reaction, and also to suppress the deterioration of the catalyst and to operate for a long period of time industrially. It is also very important to do.

ホットスポットでの発熱を制御するために、過去にいくつかの提案がなされている。具体的には、特開昭47−10614号公報(特許文献1)には、ホットスポットが生じ易い部分の触媒を反応に不活性な物質で希釈する方法が、特開昭51−127013号公報(特許文献2)には、原料ガス入口部に所謂担持型触媒を充填し出口部に通常の成形触媒を充填する方法が、特開平6−192144号公報(特許文献3)には、担持触媒を原料ガス入口部から出口部に向かって触媒活性成分の担持量がより高くなるように充填する方法が提案されている。   Several proposals have been made in the past to control heat generation at hot spots. Specifically, Japanese Patent Application Laid-Open No. 47-10614 (Patent Document 1) discloses a method of diluting a portion of a catalyst that is prone to hot spots with a substance inert to the reaction. (Patent Document 2) discloses a method of filling a so-called supported catalyst in the raw material gas inlet and filling an ordinary molded catalyst in the outlet, and JP-A-6-192144 (Patent Document 3) discloses a supported catalyst. Has been proposed in which the amount of the catalyst active component supported is increased from the raw material gas inlet to the outlet.

また、特開平4−217932号公報(特許文献4)には、占有容積の異なる複数種の触媒を原料ガス入口部から出口部に向かって占有容積がより小さくなるように充填する方法が、更に、特開平3−294238号公報(特許文献5)には、複合酸化物触媒の構成成分であるアルカリ金属及びタリウムから選ばれる元素の種類及び/又は量を変更するとともに触媒調製時の焼成温度を変更することにより活性が制御された複数種の触媒を用意し、原料ガス入口部より出口部に向かって活性のより高い触媒を充填する方法が提案されている。 JP-A-4-217932 (Patent Document 4) further includes a method of filling a plurality of types of catalysts having different occupied volumes so that the occupied volume becomes smaller from the source gas inlet to the outlet. In JP-A-3-294238 (Patent Document 5), the kind and / or amount of an element selected from alkali metals and thallium, which are constituent components of a composite oxide catalyst, is changed and the firing temperature at the time of catalyst preparation is changed. There has been proposed a method in which a plurality of types of catalysts whose activities are controlled by changing are prepared and a catalyst having a higher activity is filled from the raw material gas inlet to the outlet.

しかしながら、これらの方法では、ホットスポットでの発熱を必ずしも満足の行く程度まで抑制することができず、また、収率、触媒寿命及び操作面において、工業的に必ずしも十分とはいえなかった。   However, these methods cannot suppress heat generation at the hot spot to a satisfactory level, and are not necessarily industrially sufficient in terms of yield, catalyst life and operation.

特開昭47−10614号公報JP 47-10614 A 特開昭51−127013号公報Japanese Patent Laid-Open No. 51-127003 特開平6−192144号公報JP-A-6-192144 特開平4−217932号公報JP-A-4-217932 特開平3−294238号公報JP-A-3-294238

かかる事情下に鑑み、本発明者等は、上記酸化反応におけるホットスポットでの発熱を十分に抑制し、収率の向上及び触媒への熱負荷の軽減を図り、操作も簡便で、工業的にもより有利な方法を提供することを目的として鋭意検討した。その結果、所定の触媒を還元性物質の存在下に熱処理してなり、活性が異なる複数種の触媒が、又は、所定の触媒を還元性物質の存在下に熱処理してなる触媒と、該熱処理をしていない触媒とが、反応管の原料ガス入口部から出口部に向け活性がより高くなるように充填されている反応管で上記酸化反応を行うことにより、上記目的を達成し得ることを見出し、本発明を完成するに至った。   In view of such circumstances, the present inventors have sufficiently suppressed the heat generation at the hot spots in the oxidation reaction, aimed to improve the yield and reduce the heat load on the catalyst, and are simple in operation, industrially. In order to provide a more advantageous method, we have intensively studied. As a result, a predetermined catalyst is heat-treated in the presence of a reducing substance, a plurality of types of catalysts having different activities, or a catalyst obtained by heat-treating a predetermined catalyst in the presence of a reducing substance, and the heat treatment. The above-mentioned object can be achieved by carrying out the oxidation reaction in a reaction tube filled so that the activity of the catalyst that has not been increased from the raw material gas inlet to the outlet of the reaction tube is higher. The headline and the present invention were completed.

すなわち本発明は、触媒が充填された反応管に、プロピレン、イソブチレン及びターシャリーブチルアルコールから選ばれる化合物と分子状酸素とからなる原料ガスを供給することによりに気相接触酸化反応を行い、対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法であって、上記反応管は、モリブデン、ビスマス及び鉄を含有する複合酸化物からなる触媒を還元性物質の存在下に熱処理してなり、活性が異なる複数種の触媒が、反応管の原料ガス入口部から出口部に向け活性がより高くなるように充填されていることを特徴とする不飽和アルデヒドおよび不飽和カルボン酸の製造方法を提供するものである。   That is, the present invention performs a gas phase catalytic oxidation reaction by supplying a raw material gas composed of a compound selected from propylene, isobutylene and tertiary butyl alcohol and molecular oxygen to a reaction tube filled with a catalyst. A method for producing an unsaturated aldehyde and an unsaturated carboxylic acid, wherein the reaction tube is obtained by heat-treating a catalyst comprising a composite oxide containing molybdenum, bismuth and iron in the presence of a reducing substance. Provided is a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid, in which a plurality of types of catalysts having different levels are packed so as to have higher activity from the raw material gas inlet to the outlet of the reaction tube Is.

また、本発明は、触媒が充填された反応管に、プロピレン、イソブチレン及びターシャリーブチルアルコールから選ばれる化合物と分子状酸素とからなる原料ガスを供給することによりに気相接触酸化反応を行い、対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法であって、上記反応管は、モリブデン、ビスマス及び鉄を含有する複合酸化物からなる触媒を還元性物質の存在下に熱処理してなる触媒と、上記複合酸化物からなり、上記熱処理をしていない触媒とが、反応管の原料ガス入口部から出口部に向け活性がより高くなるように充填されていることを特徴とする不飽和アルデヒド及び不飽和カルボン酸の製造方法を提供するものである。   Further, the present invention performs a gas phase catalytic oxidation reaction by supplying a raw material gas composed of a compound selected from propylene, isobutylene and tertiary butyl alcohol and molecular oxygen to a reaction tube filled with a catalyst, A method for producing a corresponding unsaturated aldehyde and unsaturated carboxylic acid, wherein the reaction tube is a catalyst obtained by heat-treating a catalyst comprising a composite oxide containing molybdenum, bismuth and iron in the presence of a reducing substance. And an unsaturated aldehyde comprising the composite oxide and a catalyst not subjected to the heat treatment, which are packed so as to have a higher activity from the raw material gas inlet to the outlet of the reaction tube. And the manufacturing method of unsaturated carboxylic acid is provided.

本発明によれば、上記不飽和アルデヒド及び不飽和カルボン酸の製造方法において、ホットスポットでの発熱が十分に抑制され、該ホットスポットの温度も良好に下げることができ、且つ高収率で目的生成物を得ることができる。また、ホットスポットでの触媒への熱負荷も軽減することができる。   According to the present invention, in the method for producing the unsaturated aldehyde and unsaturated carboxylic acid, heat generation at the hot spot is sufficiently suppressed, the temperature of the hot spot can be lowered well, and the purpose is high yield. A product can be obtained. In addition, the heat load on the catalyst at the hot spot can be reduced.

以下、本発明を詳細に説明する。本発明で用いる不飽和アルデヒド及び不飽和カルボン酸製造用触媒は、モリブデン、ビスマス及び鉄を必須とする複合酸化物からなるものである。この複合酸化物には、モリブデン、ビスマス及び鉄以外の元素が含まれていてもよく、例えば、ニッケル及び/又はコバルトや、カリウム、ルビジウム、セシウム及びタリウムから選ばれる元素が含まれるのが望ましい。   Hereinafter, the present invention will be described in detail. The unsaturated aldehyde and unsaturated carboxylic acid production catalyst used in the present invention comprises a composite oxide essentially comprising molybdenum, bismuth and iron. This composite oxide may contain elements other than molybdenum, bismuth and iron. For example, it is desirable that an element selected from nickel and / or cobalt, potassium, rubidium, cesium and thallium is contained.

かかる複合酸化物の好ましい例は、下記一般式(1)で示すことができる。   A preferred example of such a complex oxide can be represented by the following general formula (1).

MoaBibFecdefgx (1) Mo a Bi b Fe c A d Be C f D g O x (1)

(式中、Mo、Bi及びFeはそれぞれモリブデン、ビスマス及び鉄を表し、Aはニッケル及び/又はコバルトを表し、Bはマンガン、亜鉛、カルシウム、マグネシウム、スズ及び鉛から選ばれる元素を表し、Cはリン、ホウ素、ヒ素、テルル、タングステン、アンチモン、ケイ素、アルミニウム、チタン、ジルコニウム及びセリウムから選ばれる元素を表し、Dはカリウム、ルビジウム、セシウム及びタリウムから選ばれる元素を表し、a=12としたとき、0<b≦10、0<c≦10、1≦d≦10、0≦e≦10、0≦f≦10、0<g≦2であり、xは各元素の酸化状態により定まる値である。) (Wherein Mo, Bi and Fe represent molybdenum, bismuth and iron, A represents nickel and / or cobalt, B represents an element selected from manganese, zinc, calcium, magnesium, tin and lead, C Represents an element selected from phosphorus, boron, arsenic, tellurium, tungsten, antimony, silicon, aluminum, titanium, zirconium and cerium, D represents an element selected from potassium, rubidium, cesium and thallium, and a = 12 0 <b ≦ 10, 0 <c ≦ 10, 1 ≦ d ≦ 10, 0 ≦ e ≦ 10, 0 ≦ f ≦ 10, 0 <g ≦ 2, and x is a value determined by the oxidation state of each element .)

中でも、下記の組成(酸素原子を除く)を有するものが好ましく用いられる。   Among them, those having the following composition (excluding oxygen atoms) are preferably used.

Mo12Bi0.1-5Fe0.5-5Co5-10Cs0.01-1 Mo 12 Bi 0.1-5 Fe 0.5-5 Co 5-10 Cs 0.01-1

Mo12Bi0.1-5Fe0.5-5Co5-10Sb0.1-50.01-1 Mo 12 Bi 0.1-5 Fe 0.5-5 Co 5-10 Sb 0.1-5 K 0.01-1

Mo12Bi0.1-5Fe0.5-5Ni5-10Sb0.1-5Si0.1-5Tl0.01-1 Mo 12 Bi 0.1-5 Fe 0.5-5 Ni 5-10 Sb 0.1-5 Si 0.1-5 Tl 0.01-1

上記触媒の原料としては、通常、上記触媒に含まれる各元素の化合物、例えば、酸化物、硝酸塩、硫酸塩、炭酸塩、水酸化物、オキソ酸やそのアンモニウム塩、ハロゲン化物等が、所望の原子比を満たすような割合で用いられる。例えば、モリブデン化合物としては、三酸化モリブデン、モリブデン酸、パラモリブデン酸アンモニウム等が、ビスマス化合物としては、酸化ビスマス、硝酸ビスマス、硫酸ビスマス等が、鉄化合物としては、硝酸鉄(III)、硫酸鉄(III)、塩化鉄(III)等が、それぞれ使用できる。   As the raw material of the catalyst, compounds of each element contained in the catalyst, for example, oxides, nitrates, sulfates, carbonates, hydroxides, oxoacids and ammonium salts thereof, halides, etc. are desired. It is used at a rate that satisfies the atomic ratio. For example, molybdenum trioxide, molybdic acid, ammonium paramolybdate, etc. as the molybdenum compound, bismuth oxide, bismuth nitrate, bismuth sulfate, etc. as the bismuth compound, and iron (III) nitrate, iron sulfate as the iron compound (III), iron (III) chloride, etc. can be used respectively.

上記複合酸化物からなる触媒は、通常、上記の触媒原料を水中にて混合して水溶液又は水性スラリーを調製し、その後、乾燥し、次いで該乾燥物を分子状酸素含有ガスの雰囲気下に焼成することにより得られる(例えば、特開昭59−46132号公報、特開昭60−163830号、特開2000−288396号公報参照)。ここで、上記乾燥は、例えば、ニーダー、箱型乾燥機、ドラム型通気乾燥装置、スプレードライヤー、気流乾燥機等を用いて行うことができる。また、上記焼成で使用される分子状酸素含有ガス中の分子状酸素濃度は、通常1〜30容量%、好ましくは10〜25容量%である。分子状酸素源としては、通常、空気や純酸素が使用され、これが必要に応じて窒素、二酸化炭素、水、ヘリウム、アルゴン等で希釈されて、分子状酸素含有ガスとして使用される。焼成温度は、通常300〜600℃、好ましくは400〜550℃である。また、焼成時間は、通常5分〜40時間、好ましくは1時間〜20時間である。   The catalyst composed of the above complex oxide is usually prepared by mixing the above catalyst raw materials in water to prepare an aqueous solution or aqueous slurry, then drying, and then firing the dried product in an atmosphere of molecular oxygen-containing gas (See, for example, JP-A-59-46132, JP-A-60-163830, and JP-A-2000-288396). Here, the drying can be performed using, for example, a kneader, a box-type dryer, a drum-type aeration dryer, a spray dryer, an air dryer, or the like. Further, the molecular oxygen concentration in the molecular oxygen-containing gas used in the firing is usually 1 to 30% by volume, preferably 10 to 25% by volume. As the molecular oxygen source, air or pure oxygen is usually used, and this is diluted with nitrogen, carbon dioxide, water, helium, argon or the like as necessary, and used as a molecular oxygen-containing gas. A calcination temperature is 300-600 degreeC normally, Preferably it is 400-550 degreeC. The firing time is usually 5 minutes to 40 hours, preferably 1 hour to 20 hours.

触媒は通常、所望の形状に成型され用いられる。この成型は打錠成型や押出成型等によってリング状、ペレット、球状等にするのがよい。なお、この成型は、分子状酸素含有ガス雰囲気下で焼成する前の段階で行ってもよいし、該焼成後に行ってもよいし、後述の還元処理後に行ってもよい。また、この成型の際、触媒の機械的強度を向上させるために、例えば特開平9−52053号公報に記載される如く、対象とする酸化反応に対し実質的に不活性な無機ファイバー等を添加してもよい。   The catalyst is usually used after being molded into a desired shape. This molding is preferably formed into a ring shape, a pellet, a spherical shape or the like by tableting molding or extrusion molding. This molding may be performed at a stage before firing in a molecular oxygen-containing gas atmosphere, may be performed after the firing, or may be performed after a reduction treatment described later. Further, during this molding, in order to improve the mechanical strength of the catalyst, for example, inorganic fibers that are substantially inert to the target oxidation reaction are added as described in JP-A-9-52053, for example. May be.

上記のようにして得られた触媒を更に還元性物質の存在下に熱処理(以下、この還元性物質の存在下での熱処理を単に還元処理ということがある。)することで活性が制御される。   The activity is controlled by further heat-treating the catalyst obtained as described above in the presence of a reducing substance (hereinafter, heat treatment in the presence of the reducing substance may be simply referred to as reduction treatment). .

還元性物質としては、例えば、水素、アンモニア、一酸化炭素、炭化水素、アルコール、アルデヒド、アミン等が挙げられ、必要に応じてそれらの2種以上を用いることができる。ここで、炭化水素、アルコール、アルデヒド及びアミンは、それぞれ、その炭素数が1〜6程度であるのがよく、かかる炭化水素の例としては、メタン、エタン、プロパン、n−ブタン、イソブタンの如き飽和脂肪族炭化水素、エチレン、プロピレン、α−ブチレン、β−ブチレン、イソブチレンの如き不飽和脂肪族炭化水素、ベンゼン等が挙げられ、アルコールの例としては、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、セカンダリーブチルアルコール、ターシャリーブチルアルコールの如き飽和脂肪族アルコール、アリルアルコール、クロチルアルコール、メタリルアルコールの如き不飽和脂肪族アルコール、フェノール等が挙げられる。また、アルデヒドの例としては、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n−ブチルアルデヒド、イソブチルアルデヒドの如き飽和脂肪族アルデヒド、アクロレイン、クロトンアルデヒド、メタクロレインの如き不飽和脂肪族アルデヒド等が挙げられ、アミンの例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミンの如き飽和脂肪族アミン、アリルアミン、ジアリルアミンの如き不飽和脂肪族アミン、アニリン等が挙げられる。   Examples of the reducing substance include hydrogen, ammonia, carbon monoxide, hydrocarbon, alcohol, aldehyde, amine, and the like, and two or more of them can be used as necessary. Here, hydrocarbons, alcohols, aldehydes and amines each preferably have about 1 to 6 carbon atoms, and examples of such hydrocarbons include methane, ethane, propane, n-butane, and isobutane. Examples include saturated aliphatic hydrocarbons, unsaturated aliphatic hydrocarbons such as ethylene, propylene, α-butylene, β-butylene, and isobutylene, benzene, etc. Examples of alcohols include methyl alcohol, ethyl alcohol, and n-propyl alcohol. , Saturated aliphatic alcohols such as isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, secondary butyl alcohol, and tertiary butyl alcohol, unsaturated aliphatic alcohols such as allyl alcohol, crotyl alcohol, and methallyl alcohol, and phenol. . Examples of aldehydes include saturated aliphatic aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, and isobutyraldehyde, unsaturated aliphatic aldehydes such as acrolein, crotonaldehyde, and methacrolein. Examples include saturated aliphatic amines such as methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine and triethylamine, unsaturated aliphatic amines such as allylamine and diallylamine, and aniline.

還元処理は、通常、上記還元性物質を含むガスの雰囲気下に触媒を熱処理することにより行われる。このガス中の還元性物質の濃度は、通常0.1〜50容量%、好ましくは1〜30容量%であり、このような濃度になるように、還元性物質を窒素、二酸化炭素、水、ヘリウム、アルゴン等で希釈すればよい。なお、分子状酸素は、還元処理の効果を損なわない範囲で存在させてもよいが、通常は存在させないのがよい。   The reduction treatment is usually performed by heat-treating the catalyst in an atmosphere of a gas containing the reducing substance. The concentration of the reducing substance in the gas is usually 0.1 to 50% by volume, preferably 1 to 30% by volume, and the reducing substance is nitrogen, carbon dioxide, water, What is necessary is just to dilute with helium, argon, etc. In addition, although molecular oxygen may exist in the range which does not impair the effect of a reduction process, it is good not to exist normally.

還元処理の温度は、通常200〜600℃、好ましくは250〜550℃である。また、還元処理の時間は、通常5分〜20時間、好ましくは30分〜10時間である。還元処理は、触媒を管型や箱型等の容器に入れ、ここに還元性物質を含むガスを流通させながら行うのが好ましく、その際、容器から排出されたガスは必要により循環再使用してもよい。   The temperature of the reduction treatment is usually 200 to 600 ° C, preferably 250 to 550 ° C. The reduction treatment time is usually 5 minutes to 20 hours, preferably 30 minutes to 10 hours. The reduction treatment is preferably carried out by putting the catalyst in a tube-type or box-type container and circulating a gas containing a reducing substance therein. At this time, the gas discharged from the container is recycled and reused as necessary. May be.

通常、還元処理前後で、触媒の質量減少が見られる。かかる還元処理前後の質量減少率は、次式により表される。   Usually, a mass reduction of the catalyst is observed before and after the reduction treatment. The mass reduction rate before and after the reduction treatment is expressed by the following equation.

質量減少率(%)=(還元処理前の触媒の質量−還元処理後の触媒の質量)/還元処理前の触媒の質量×100   Mass reduction rate (%) = (mass of catalyst before reduction treatment−mass of catalyst after reduction treatment) / mass of catalyst before reduction treatment × 100

還元処理による質量減少は、触媒中の格子酸素が失われるため起こると考えられ、かかる格子酸素の喪失により触媒活性も変化すると考えられる。還元の程度は、還元処理時間、還元処理温度により調整することができ、還元が進むにつれ、上記質量減少率も高くなる傾向にある。一方、触媒活性は、還元が進むにつれ、しばらく増加するが、その後、極大となり、次いで徐々に減少していく傾向にある。従って、質量減少率が高くなるほど、必ず触媒活性が高くなるというわけではないが、通常、質量減少率が0.01〜6%である触媒は、還元処理を行わない触媒よりも活性が高くなるため、反応管に充填する触媒のうち少なくとも1種は、該触媒を用いることが好ましい。質量減少率が6%を超えた触媒については、該触媒をそのまま用いることも可能であるが、再度、分子状酸素含有ガスの雰囲気下に焼成し、その後、還元処理を行って活性を制御するのが好ましい。   It is considered that the mass reduction due to the reduction treatment occurs because lattice oxygen in the catalyst is lost, and the catalytic activity is also changed due to the loss of lattice oxygen. The degree of reduction can be adjusted by the reduction treatment time and the reduction treatment temperature, and the mass reduction rate tends to increase as the reduction proceeds. On the other hand, the catalytic activity increases for a while as the reduction proceeds, but then becomes maximal and then gradually decreases. Therefore, the higher the mass reduction rate, the higher the catalyst activity does not necessarily become. Usually, however, a catalyst having a mass reduction rate of 0.01 to 6% has a higher activity than a catalyst that does not perform the reduction treatment. Therefore, it is preferable to use at least one of the catalysts filled in the reaction tube. For a catalyst having a mass reduction rate exceeding 6%, the catalyst can be used as it is. However, the catalyst is calcined again in an atmosphere of molecular oxygen-containing gas, and then reduced to control the activity. Is preferred.

還元処理の際、用いる還元性物質の種類や熱処理条件等によっては、還元性物質自身や還元性物質由来の分解生成物等が還元処理後の触媒に残存することがある。このような場合は、別途、触媒中の該残存物質量を測定し、これを該残存物込みの触媒質量から差し引いて、還元処理後の質量を算出すればよい。該残存物は、典型的には炭素であるので、例えば、全炭素(TC:total carbon)測定等により、その質量を求めればよい。   During the reduction treatment, depending on the type of reducing substance used, the heat treatment conditions, and the like, the reducing substance itself or a decomposition product derived from the reducing substance may remain in the catalyst after the reduction treatment. In such a case, the amount of the residual substance in the catalyst may be separately measured, and this may be subtracted from the catalyst mass including the residue to calculate the mass after the reduction treatment. Since the residue is typically carbon, its mass may be determined by, for example, total carbon (TC) measurement.

本発明の製造方法においては、上記還元処理により得られる活性が異なる複数種の触媒を、反応管の原料ガス入口部から出口部に向け活性がより高くなるように充填して上記気相接触酸化反応を行う。又は、上記還元処理を行った触媒と、上記還元処理を行っていない触媒とを、反応管の原料ガス入口部から出口部に向け活性がより高くなるように充填して該酸化反応を行う。かかる活性の制御された触媒を所定の序列で反応管に充填し、該反応管を上記気相接触酸化反応に用いることで、ホットスポットでの発熱を十分に抑制し、高収率で目的生成物を得ることができる。尚、触媒の充填は、入口部から行ってもよいし、反対に出口部から行ってもよい。   In the production method of the present invention, the above-mentioned gas phase catalytic oxidation is performed by filling a plurality of types of catalysts obtained by the reduction treatment with different activities from the raw material gas inlet to the outlet of the reaction tube. Perform the reaction. Or the catalyst which performed the said reduction process and the catalyst which has not performed the said reduction process are filled so that activity may become higher toward the exit part from the raw material gas inlet part of a reaction tube, and this oxidation reaction is performed. The reaction-controlled catalyst is filled into the reaction tube in a predetermined order, and the reaction tube is used for the gas phase catalytic oxidation reaction, thereby sufficiently suppressing the heat generation at the hot spot and producing the target in a high yield. You can get things. The catalyst filling may be performed from the inlet portion or, conversely, from the outlet portion.

本発明においては、触媒種の数を多くするほど、反応管内の温度分布をより効果的に制御することができる。しかしながら、触媒の製造及び充填操作が煩雑となるため、かかる点から、反応管に充填される触媒は2種であるのが好ましい。   In the present invention, the temperature distribution in the reaction tube can be controlled more effectively as the number of catalyst species is increased. However, since the production and filling operation of the catalyst becomes complicated, it is preferable from this point that the catalyst filled in the reaction tube is two kinds.

なお、上記反応管に充填される触媒の形状は同一であってもよいし、異なっていてもよい。また、ホットスポットでの発熱を抑える従来公知の方法と本発明とを併用してもよい。   The shape of the catalyst filled in the reaction tube may be the same or different. Further, the present invention may be used in combination with a conventionally known method for suppressing heat generation at a hot spot.

本発明の気相接触酸化反応は、上記反応管に、プロピレン、イソブチレン及びターシャリーブチルアルコールから選ばれる原料化合物と分子状酸素とからなる原料ガスを供給することにより行われる。工業的には、上記反応管を含む固定床多管式反応器が使用される。また、分子状酸素源としては、通常、空気が用いられ、原料ガス中には、原料化合物及び分子状酸素以外の成分として、窒素、二酸化炭素、一酸化炭素、水蒸気等が含まれうる。   The gas phase catalytic oxidation reaction of the present invention is performed by supplying a raw material gas composed of a raw material compound selected from propylene, isobutylene and tertiary butyl alcohol and molecular oxygen to the reaction tube. Industrially, a fixed bed multitubular reactor including the reaction tube is used. In addition, air is usually used as the molecular oxygen source, and the raw material gas may contain nitrogen, carbon dioxide, carbon monoxide, water vapor and the like as components other than the raw material compound and molecular oxygen.

反応温度は通常250〜400℃、反応圧力は減圧でも可能であるが、通常、常圧〜500kPaである。原料化合物に対する分子状酸素の量は通常1〜3モル倍である。また、原料ガスの空間速度SVは、STP(Standard temperature and pressure)基準で
、通常500〜5000h-1である。
The reaction temperature is usually 250 to 400 ° C. and the reaction pressure can be reduced, but it is usually atmospheric pressure to 500 kPa. The amount of molecular oxygen relative to the raw material compound is usually 1 to 3 mol times. The space velocity SV of the source gas is usually 500 to 5000 h −1 on the basis of STP (Standard temperature and pressure).

かくして、ホットスポットでの過大な発熱を十分に抑制し、該ホットスポットの温度を良好に下げ、プロピレンからはアクロレイン及びアクリル酸を、イソブチレンやターシャリーブチルアルコールからはメタクロレイン及びメタクリル酸を収率良く製造することができる。   Thus, excessive heat generation in the hot spot is sufficiently suppressed, the temperature of the hot spot is lowered well, and acrolein and acrylic acid are obtained from propylene, and methacrolein and methacrylic acid are obtained from isobutylene and tertiary butyl alcohol. Can be manufactured well.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。特にことわりのない限り、ガスの体積及び空間速度はSTP基準での値である。尚、本発明の実施例において反応率(%)及び合計収率(%)は次の如く定義した。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to this. Unless otherwise specified, gas volume and space velocity are values based on STP. In the examples of the present invention, the reaction rate (%) and the total yield (%) were defined as follows.

反応率(%)=[(供給イソブチレンのモル数)−(未反応イソブチレンのモル数)]÷(供給イソブチレンのモル数)×100
合計収率(%)=(メタクロレイン及びメタクリル酸のモル数)÷(供給イソブチレンのモル数)×100
Reaction rate (%) = [(moles of supplied isobutylene) − (moles of unreacted isobutylene)] ÷ (moles of supplied isobutylene) × 100
Total yield (%) = (moles of methacrolein and methacrylic acid) ÷ (moles of supplied isobutylene) × 100

比較例1
(a)触媒の製造
モリブデン酸アンモニウム[(NH4)6Mo724・4H2O]13241gを温水15000gに溶解し、これをA液とした。一方、硝酸鉄(III)[Fe(NO3)3・9H2O]6060g、硝酸コバルト[Co(NO3)2・6H2O]13096g及び硝酸セシウム[CsNO3]585gを温水6000gに溶解し、次いで硝酸ビスマス[Bi(NO3)3・5H2O]2910gを溶解し、これをB液とした。A液を攪拌し、この中にB液を添加してスラリーを得、次いでこのスラリーを気流乾燥機にて乾燥し、乾燥物を得た。この乾燥物100質量部に対し6質量部のシリカアルミナファイバー(サンゴバン・ティーエム製、RFC400−SL)を添加して、外径6.3mm、内径2.5mm、長さ6mmのリング状に成型し、次いで、空気気流下に516℃で6時間焼成して、触媒Aを得た。この触媒は、モリブデン12原子に対しビスマス0.96原子、鉄2.4原子、コバルト7.2原子、セシウム0.48原子を含んでいる。
Comparative Example 1
(A) Production of catalyst 13241 g of ammonium molybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] was dissolved in 15000 g of hot water, and this was designated as solution A. On the other hand, 6060 g of iron (III) nitrate [Fe (NO 3 ) 3 .9H 2 O], 13096 g of cobalt nitrate [Co (NO 3 ) 2 .6H 2 O] and 585 g of cesium nitrate [CsNO 3 ] are dissolved in 6000 g of hot water. Next, 2910 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] was dissolved, and this was designated as B solution. A liquid A was stirred, B liquid was added in this, the slurry was obtained, and this slurry was then dried with the airflow dryer, and the dried material was obtained. 6 parts by mass of silica-alumina fiber (RFC400-SL, manufactured by Saint-Gobain TM) is added to 100 parts by mass of the dried product, and molded into a ring shape having an outer diameter of 6.3 mm, an inner diameter of 2.5 mm, and a length of 6 mm. Then, the catalyst A was obtained by calcining at 516 ° C. for 6 hours under an air stream. This catalyst contains 0.96 atoms of bismuth, 2.4 atoms of iron, 7.2 atoms of cobalt, and 0.48 atoms of cesium with respect to 12 atoms of molybdenum.

(b)酸化反応
内径18mmのガラス製反応管に、上記(a)で得られた触媒Aを13ml充填し、ここに、イソブチレン/酸素/窒素/スチーム=1/2.2/6.7/2.1(モル比)の混合ガスを750h-1の空間速度で供給し、反応温度(反応管を加熱するための熱源の温度)360℃にて酸化反応を行った。イソブチレンの反応率とメタクロレイン及びメタクリル酸の合計収率を表1に示す。
(B) Oxidation reaction A glass reaction tube having an inner diameter of 18 mm was charged with 13 ml of the catalyst A obtained in the above (a), and this was mixed with isobutylene / oxygen / nitrogen / steam = 1 / 2.2 / 6.7 / A mixed gas of 2.1 (molar ratio) was supplied at a space velocity of 750 h −1, and an oxidation reaction was performed at a reaction temperature (temperature of a heat source for heating the reaction tube) of 360 ° C. Table 1 shows the reaction rate of isobutylene and the total yield of methacrolein and methacrylic acid.

比較例2
比較例1(a)で得られた触媒Aをガラス管に50g充填し、ここに水素/窒素=20/80(容積比)の混合ガスを200ml/minの流量で供給し、400℃にて3時間還元処理を行った。次いで水素の供給を停止し、窒素気流下に室温まで冷却し、還元処理触媒Bを得た。還元処理による触媒の質量減少率は3.52%であった。
Comparative Example 2
50 g of the catalyst A obtained in Comparative Example 1 (a) was filled in a glass tube, and a mixed gas of hydrogen / nitrogen = 20/80 (volume ratio) was supplied thereto at a flow rate of 200 ml / min. Reduction treatment was performed for 3 hours. Next, the supply of hydrogen was stopped, and the mixture was cooled to room temperature under a nitrogen stream to obtain reduction treatment catalyst B. The mass reduction rate of the catalyst due to the reduction treatment was 3.52%.

この触媒Bを用いて、反応温度を320℃に変更した以外は、比較例1(b)と同様に酸化反応を行った。その結果を表1に示す。   Using this catalyst B, an oxidation reaction was carried out in the same manner as in Comparative Example 1 (b) except that the reaction temperature was changed to 320 ° C. The results are shown in Table 1.

比較例3
還元処理に使用するガスを水素/窒素=10/90(容積比)の混合ガスに変更し、還元処理温度を250℃に変更し、かつ、還元処理時間を1時間に変更した以外は、比較例と同様の操作を行い、還元処理触媒Cを得た。還元処理による触媒の質量減少率は0.04%であった。

Comparative Example 3
Compared except that the gas used for the reduction treatment is changed to a mixed gas of hydrogen / nitrogen = 10/90 (volume ratio), the reduction treatment temperature is changed to 250 ° C, and the reduction treatment time is changed to 1 hour. The same operation as in Example 2 was performed to obtain a reduction catalyst C. The mass reduction rate of the catalyst due to the reduction treatment was 0.04%.

この触媒Cを用いて、比較例1(b)と同様に酸化反応を行った。その結果を表1に示す。   Using this catalyst C, an oxidation reaction was carried out in the same manner as in Comparative Example 1 (b). The results are shown in Table 1.

実施例1
内径18mmのガラス製反応管の原料ガス入口部に、比較例1(a)で得られた触媒Aを6.5ml(50容量%)充填し、一方原料ガス出口部に比較例2で得られた触媒B6.5ml(50容量%)を充填した。ここに、イソブチレン/酸素/窒素/スチーム=1/2.2/6.7/2.1(モル比)の混合ガスを750h-1の空間速度で供給し、反応温度330℃にて酸化反応を行った。イソブチレンの反応率とメタクロレイン及びメタクリル酸の合計収率を表1に示す。
Example 1
The raw material gas inlet of a glass reaction tube with an inner diameter of 18 mm was filled with 6.5 ml (50% by volume) of catalyst A obtained in Comparative Example 1 (a), while the raw material gas outlet was obtained in Comparative Example 2. The catalyst B was charged with 6.5 ml (50% by volume). Here, a mixed gas of isobutylene / oxygen / nitrogen / steam = 1 / 2.2 / 6.7 / 2.1 (molar ratio) was supplied at a space velocity of 750 h −1, and an oxidation reaction was performed at a reaction temperature of 330 ° C. Went. Table 1 shows the reaction rate of isobutylene and the total yield of methacrolein and methacrylic acid.

実施例2
実施例1において、原料ガス入口部に触媒Aではなく比較例3で得られた触媒Cを6.5ml(50容量%)充填した以外は、実施例1と同様に酸化反応を行った。その結果を表1に示す。
Example 2
In Example 1, the oxidation reaction was performed in the same manner as in Example 1 except that 6.5 ml (50% by volume) of the catalyst C obtained in Comparative Example 3 instead of the catalyst A was charged at the raw material gas inlet. The results are shown in Table 1.

Figure 0004265621
Figure 0004265621

比較例1〜3及び実施例1〜2では、イソブチレンの反応率が99%程度になるように、反応温度(反応管を加熱するための熱源の温度)を調整して評価した。また、表中ΔTは、ホットスポット部温度と反応温度との温度差(前者−後者)を表す。   In Comparative Examples 1 to 3 and Examples 1 to 2, the reaction temperature (temperature of the heat source for heating the reaction tube) was adjusted and evaluated so that the reaction rate of isobutylene was about 99%. Further, ΔT in the table represents a temperature difference between the hot spot temperature and the reaction temperature (the former-the latter).

触媒A及び触媒Cをそれぞれ単独で用いた比較例1及び比較例3では、イソブチレンの反応率を99%程度とするためには高い反応温度が必要となり、合計収率も低いものとなった。また、ΔTも大きく、触媒に高い熱負荷がかかった。一方、触媒Bを単独で用いた比較例2では、反応温度及びΔTを抑えることはできたが、合計収率はやや低めであった。   In Comparative Example 1 and Comparative Example 3 in which Catalyst A and Catalyst C were used alone, respectively, a high reaction temperature was required to reduce the isobutylene reaction rate to about 99%, and the total yield was low. Further, ΔT was large, and a high heat load was applied to the catalyst. On the other hand, in Comparative Example 2 using Catalyst B alone, the reaction temperature and ΔT could be suppressed, but the total yield was slightly lower.

一方、実施例が示す通り、反応管の原料ガス入口部から出口部に向け活性がより高くなるように、触媒A及び触媒B、又は触媒C及び触媒Bが充填された反応管を用いた場合においては、それぞれの触媒を単独で用いた場合よりΔTが小さくなっており、ホットスポットでの発熱を良好に抑え、合計収率もより高い値となった。
On the other hand, when the reaction tube filled with the catalyst A and the catalyst B or the catalyst C and the catalyst B is used so that the activity becomes higher from the source gas inlet to the outlet of the reaction tube as shown in the examples. In FIG. 2, ΔT was smaller than when each catalyst was used alone, heat generation at the hot spot was suppressed satisfactorily, and the total yield was also higher.

Claims (5)

触媒が充填された反応管に、プロピレン、イソブチレン及びターシャリーブチルアルコールから選ばれる化合物と分子状酸素とからなる原料ガスを供給することによりに気相接触酸化反応を行い、対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法であって、
上記反応管は、モリブデン、ビスマス及び鉄を含有する複合酸化物からなり、水素を含む還元性ガス雰囲気下に熱処理されて活性が向上した、活性異なる複数種の触媒が、反応管の原料ガス入口部から出口部に向け活性がより高くなるように充填されていることを特徴とする不飽和アルデヒド及び不飽和カルボン酸の製造方法。
A gas phase catalytic oxidation reaction is performed by supplying a raw material gas composed of a compound selected from propylene, isobutylene and tertiary butyl alcohol and molecular oxygen to a reaction tube filled with a catalyst, and the corresponding unsaturated aldehyde and A method for producing an unsaturated carboxylic acid, comprising:
The reaction tubes, molybdenum, made of a composite oxide containing bismuth and iron, are heat-treated in a reducing gas atmosphere containing hydrogen with improved activity, more catalysts having different activities, the raw material gas in the reaction tube A method for producing an unsaturated aldehyde and an unsaturated carboxylic acid, which is filled so as to have a higher activity from the inlet to the outlet.
触媒が充填された反応管に、プロピレン、イソブチレン及びターシャリーブチルアルコールから選ばれる化合物と分子状酸素とからなる原料ガスを供給することによりに気相接触酸化反応を行い、対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法であって、
上記反応管は、モリブデン、ビスマス及び鉄を含有する複合酸化物からなり、水素を含む還元性ガス雰囲気下に熱処理されて活性が向上した触媒と、上記複合酸化物からなり、上記熱処理がされていない触媒とが、反応管の原料ガス入口部から出口部に向け活性がより高くなるように充填されていることを特徴とする不飽和アルデヒド及び不飽和カルボン酸の製造方法。
A gas phase catalytic oxidation reaction is performed by supplying a raw material gas composed of a compound selected from propylene, isobutylene and tertiary butyl alcohol and molecular oxygen to a reaction tube filled with a catalyst, and the corresponding unsaturated aldehyde and A method for producing an unsaturated carboxylic acid, comprising:
The reaction tube is made of a composite oxide containing molybdenum, bismuth, and iron, and is made of a catalyst that has been heat-treated in a reducing gas atmosphere containing hydrogen and has improved activity, and the composite oxide, and has been subjected to the heat treatment. A method for producing an unsaturated aldehyde and an unsaturated carboxylic acid, wherein the catalyst is packed so as to have a higher activity from the raw material gas inlet to the outlet of the reaction tube.
前記熱処理による触媒の質量減少率が0.01〜6質量%である請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein a mass reduction rate of the catalyst by the heat treatment is 0.01 to 6 mass%. 前記反応管に充填される触媒が2種である請求項1〜のいずれかに記載の方法。 The method according to any one of claims 1 to 3 catalyst to be filled in the reaction tube is two. 前記複合酸化物が、下記一般式(1)
MoaBibFecdefgx (1)
(式中、Mo、Bi及びFeはそれぞれモリブデン、ビスマス及び鉄を表し、Aはニッケル及び/又はコバルトを表し、Bはマンガン、亜鉛、カルシウム、マグネシウム、スズ及び鉛から選ばれる元素を表し、Cはリン、ホウ素、ヒ素、テルル、タングステン、アンチモン、ケイ素、アルミニウム、チタン、ジルコニウム及びセリウムから選ばれる元素を表し、Dはカリウム、ルビジウム、セシウム及びタリウムから選ばれる元素を表し、a=12としたとき、0<b≦10、0<c≦10、1≦d≦10、0≦e≦10、0≦f≦10、0<g≦2であり、xは各元素の酸化状態により定まる値である。)
で示されるものである請求項1〜のいずれかに記載の方法。
The composite oxide has the following general formula (1)
Mo a Bi b Fe c A d Be C f D g O x (1)
(Wherein Mo, Bi and Fe represent molybdenum, bismuth and iron, A represents nickel and / or cobalt, B represents an element selected from manganese, zinc, calcium, magnesium, tin and lead, C Represents an element selected from phosphorus, boron, arsenic, tellurium, tungsten, antimony, silicon, aluminum, titanium, zirconium and cerium, D represents an element selected from potassium, rubidium, cesium and thallium, and a = 12 0 <b ≦ 10, 0 <c ≦ 10, 1 ≦ d ≦ 10, 0 ≦ e ≦ 10, 0 ≦ f ≦ 10, 0 <g ≦ 2, and x is a value determined by the oxidation state of each element .)
The method of any of claims 1-4 is in what is shown.
JP2006156917A 2006-06-06 2006-06-06 Process for producing unsaturated aldehyde and unsaturated carboxylic acid Expired - Fee Related JP4265621B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006156917A JP4265621B2 (en) 2006-06-06 2006-06-06 Process for producing unsaturated aldehyde and unsaturated carboxylic acid
SG200703766-6A SG137814A1 (en) 2006-06-06 2007-05-24 Process for preparing unsaturated aldehyde and unsaturated carboxylic acid
KR1020070053441A KR20070116724A (en) 2006-06-06 2007-05-31 Process for preparing unsaturated aldehyde and unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006156917A JP4265621B2 (en) 2006-06-06 2006-06-06 Process for producing unsaturated aldehyde and unsaturated carboxylic acid

Publications (2)

Publication Number Publication Date
JP2007326787A JP2007326787A (en) 2007-12-20
JP4265621B2 true JP4265621B2 (en) 2009-05-20

Family

ID=38871510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156917A Expired - Fee Related JP4265621B2 (en) 2006-06-06 2006-06-06 Process for producing unsaturated aldehyde and unsaturated carboxylic acid

Country Status (3)

Country Link
JP (1) JP4265621B2 (en)
KR (1) KR20070116724A (en)
SG (1) SG137814A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231044A (en) * 2007-03-22 2008-10-02 Sumitomo Chemical Co Ltd Process for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163273B2 (en) * 2008-05-16 2013-03-13 住友化学株式会社 Method for producing catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
FR2934262B1 (en) * 2008-07-22 2012-08-10 Arkema France PROCESS FOR THE PRODUCTION OF DIALCOXYALKANES BY PARTIAL OXIDATION OF LOWER ALCOHOLS IN THE PRESENCE OF A CATALYST BASED ON A MIXED OXIDE OF MOLYBDENES
JP5547922B2 (en) 2009-07-31 2014-07-16 住友化学株式会社 Method for producing composite oxide containing molybdenum and cobalt
JP5387297B2 (en) 2009-09-30 2014-01-15 住友化学株式会社 Method for producing composite oxide catalyst
JP2012158482A (en) 2011-01-31 2012-08-23 Sumitomo Chemical Co Ltd Method for recovering molybdenum and cobalt
JP2014019675A (en) * 2012-07-20 2014-02-03 Nippon Kayaku Co Ltd Process for producing unsaturated aldehyde and/or unsaturated carboxylic acid
US9580376B2 (en) 2013-07-18 2017-02-28 Nippon Kayaku Kabushiki Kaisha Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP2016106082A (en) * 2015-11-24 2016-06-16 日本化薬株式会社 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231044A (en) * 2007-03-22 2008-10-02 Sumitomo Chemical Co Ltd Process for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Also Published As

Publication number Publication date
JP2007326787A (en) 2007-12-20
KR20070116724A (en) 2007-12-11
SG137814A1 (en) 2007-12-28

Similar Documents

Publication Publication Date Title
JP5045175B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
US8252714B2 (en) Method for producing catalyst for use in production of unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP4265621B2 (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
JP3793317B2 (en) Catalyst and method for producing unsaturated aldehyde and unsaturated acid
JP4720431B2 (en) Method for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4318367B2 (en) Method for producing acrolein and acrylic acid
JP5387297B2 (en) Method for producing composite oxide catalyst
JP2008535784A (en) Process for producing unsaturated aldehyde and / or unsaturated acid
JP2000325795A (en) Composite oxide catalyst and manufacture of methacrolein and methacrylic acid
WO2016136882A1 (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
JPWO2017010159A1 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
US20030191343A1 (en) Catalytic gas phase oxidation process
US20050090695A1 (en) Catalytic gas phase oxidation reaction
JP3939187B2 (en) Process for producing unsaturated aldehyde
JP2016059898A (en) Catalyst for producing acrylic acid and process for producing acrylic acid using the catalyst
JP2005187460A (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2003012589A (en) Method of producing acrolein and acrylic acid
JP3296146B2 (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2011088028A (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2013188669A (en) Method for producing catalyst for production of unsaturated aldehyde and/or unsaturated carboxylic acid
JP2005162744A (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2019210228A (en) Process for producing methacrolein
JP2000351744A (en) Method for producing methacrolein and methacrylic acid
JP4185404B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2004002208A (en) Method for producing unsaturated aldehyde

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees