JP2005187460A - Method for producing unsaturated aldehyde and unsaturated carboxylic acid - Google Patents

Method for producing unsaturated aldehyde and unsaturated carboxylic acid Download PDF

Info

Publication number
JP2005187460A
JP2005187460A JP2004350633A JP2004350633A JP2005187460A JP 2005187460 A JP2005187460 A JP 2005187460A JP 2004350633 A JP2004350633 A JP 2004350633A JP 2004350633 A JP2004350633 A JP 2004350633A JP 2005187460 A JP2005187460 A JP 2005187460A
Authority
JP
Japan
Prior art keywords
catalyst
catalysts
gas
carboxylic acid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004350633A
Other languages
Japanese (ja)
Inventor
Nariyasu Kanuka
成康 嘉糠
Tsutomu Teshigawara
力 勅使河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004350633A priority Critical patent/JP2005187460A/en
Publication of JP2005187460A publication Critical patent/JP2005187460A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid in high yield by catalytically oxidizing an olefin with a molecular oxygen-containing gas in a gas phase, stable for a long time by dissolving problems caused by hot spots. <P>SOLUTION: The method for producing the unsaturated aldehyde and the unsaturated carboxylic acid is to oxidize the olefin with molecular oxygen or the molecular oxygen-containing gas by using a fixed bed tubular reactor filled with a complex oxide catalyst containing molybdenum and bismuth, use (A) two or more catalysts having different activities prepared by baking the catalysts with changing a gas flow rate or times of baking as the complex oxide catalyst, instal (B) two or more reaction zones in the shaft direction of the reactor, and fill (C) two or more catalysts in each reaction zone so as to have grdually larger activity with the zones of the inlet to the outlet of the raw gas. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、オレフィンを分子状酸素含有ガスにより気相接触酸化し、長期にわたり安定して、かつ高収率で対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法に関する。   The present invention relates to a method for producing a corresponding unsaturated aldehyde and unsaturated carboxylic acid by vapor phase catalytic oxidation of an olefin with a molecular oxygen-containing gas and stably for a long period of time in a high yield.

プロピレン、イソブチレンなどのオレフィンを、複合酸化物触媒の存在下に分子状酸素により気相接触酸化して、それぞれ対応するアクロレイン、メタクロレインなどの不飽和アルデヒド及びアクリル酸、メタクリル酸などの不飽和カルボン酸を製造する方法については、従来から数多くの提案がなされ、既に一部は工業的に実施されている。   Olefin such as propylene and isobutylene is subjected to gas phase catalytic oxidation with molecular oxygen in the presence of a complex oxide catalyst, and unsaturated aldehydes such as acrolein and methacrolein, and unsaturated carboxylic acids such as acrylic acid and methacrylic acid, respectively. Many proposals have been made on the method for producing acids, and some of them have already been industrially implemented.

この製造反応は、固定床多管式反応器を用いて行われるが、大きな発熱を伴う反応のために、特に原料ガスの入口側にホットスポット(異常高温部)を生じ易い。このため過度の酸化反応による収率の低下や、触媒劣化が加速されることによる触媒寿命が低下するなどの問題を生じる。特に、単位触媒あたりの生産量を高めるために原料のオレフィン濃度を高くしたり、空間速度を大きくしようとすると、この問題はさらに増大する。結果的に、長期にわたり安定して、かつ高収率で対応する不飽和アルデヒド及び不飽和カルボン酸を製造することは実際上困難であった。   This production reaction is carried out using a fixed-bed multitubular reactor. However, due to the reaction accompanied by a large exotherm, a hot spot (abnormally high temperature portion) is likely to be generated particularly on the inlet side of the raw material gas. For this reason, problems such as a decrease in yield due to an excessive oxidation reaction and a decrease in catalyst life due to acceleration of catalyst deterioration occur. In particular, when the olefin concentration of the raw material is increased or the space velocity is increased in order to increase the production amount per unit catalyst, this problem is further increased. As a result, it was practically difficult to produce the corresponding unsaturated aldehydes and unsaturated carboxylic acids stably over a long period of time and in high yields.

従来から、上記ホットスポットを抑え、生産性と触媒寿命を改善するための製造方法が提案されている。例えば、特許文献1には、Mo−Bi系の複合酸化物触媒中のBi及びFeの量を変更した複数種の触媒を、原料ガスの入口から出口に向かってBi及びFeの量が少なくなるように充填した固定床管式反応器にて反応させる方法が開示されている。   Conventionally, production methods for suppressing the hot spots and improving productivity and catalyst life have been proposed. For example, Patent Document 1 discloses that a plurality of types of catalysts in which the amounts of Bi and Fe in a Mo-Bi composite oxide catalyst are changed are reduced in the amounts of Bi and Fe from the inlet of the raw material gas to the outlet. A method of reacting in a fixed bed tubular reactor packed as described above is disclosed.

また、特許文献2には、含有されるアルカリ土類元素の種類及び/又は量を変更した活性の異なる複数種の触媒を調製し、これらを、各反応管内の触媒層を管軸方向に2層以上に分割した複数個の反応帯に原料ガスの入口から出口に向って触媒活性が高くなるように充填した固定床管式反応器にて反応させる方法が開示されている。   In Patent Document 2, a plurality of types of catalysts having different activities with different types and / or amounts of alkaline earth elements contained therein are prepared, and the catalyst layers in each reaction tube are divided into 2 in the tube axis direction. A method is disclosed in which a reaction is performed in a fixed bed tubular reactor in which a plurality of reaction zones divided into layers or more are packed so that the catalytic activity increases from the inlet to the outlet of the raw material gas.

更に、特許文献3、特許文献4には、触媒組成を事実上変更せずに焼成温度の異なる複数種の触媒を調製し、これらを、各反応管内の触媒層を管軸方向に2層以上に分割した複数個の反応帯に、原料ガスの入口側ほど高温度で焼成して調製した触媒を充填した固定床管式反応器にて反応させる方法が開示されている。   Furthermore, in Patent Document 3 and Patent Document 4, a plurality of types of catalysts having different calcination temperatures are prepared without substantially changing the catalyst composition, and two or more catalyst layers in each reaction tube are arranged in the tube axis direction. There is disclosed a method of reacting in a plurality of reaction zones divided into the above in a fixed bed tubular reactor filled with a catalyst prepared by firing at a higher temperature toward the inlet side of the raw material gas.

しかしながら、これら従来技術による場合、それなりに効果は得られるものの、必ずしも満足のいくものではなく、ホットスポットに起因する問題を十分に解決するための新たな方法が求められている。
特開2001-48817号公報 特許2809476号公報 特開平10−168003号公報 特許3139285号公報
However, according to these conventional techniques, although the effect is obtained as it is, it is not always satisfactory, and a new method for sufficiently solving the problem caused by the hot spot is required.
JP 2001-48817 A Japanese Patent No. 2809476 JP-A-10-168003 Japanese Patent No. 3139285

上記のような従来技術に鑑み、本発明の目的は、Mo−Bi系複合酸化物触媒の存在下にオレフィン、特にプロピレンを気相酸化する場合において、ホットスポットに起因する問題を解決する新たなる手段を提供し、長期にわたり安定して、かつ高収率で不飽和アルデヒド及び不飽和カルボン酸、特に、アクロレイン及びアクリル酸を製造する方法を提供することにある。   In view of the prior art as described above, the object of the present invention is to solve the problem caused by hot spots in the case of vapor phase oxidation of olefins, particularly propylene, in the presence of a Mo-Bi composite oxide catalyst. It is an object of the present invention to provide a method for producing unsaturated aldehydes and unsaturated carboxylic acids, particularly acrolein and acrylic acid, in a stable and high yield for a long period of time.

本発明者は、上記課題を解決すべく鋭意研究を進めたところ、Mo−Bi系複合酸化物触媒を製造する焼成過程における条件について、(雰囲気ガス流量/触媒量)の量比を変えるか又は焼成回数を変えることにより得られる触媒は、オレフィンを分子状酸素により気相接触酸化して不飽和アルデヒド及び不飽和カルボン酸を製造する際の活性の大きさが異なることを見出した。即ち、上記焼成における条件を変えることにより触媒の有する活性を制御でき、活性の異なる複数の触媒を製造できることを見出した。   As a result of diligent research to solve the above-mentioned problems, the present inventor changed the ratio of (atmospheric gas flow rate / catalyst amount) in terms of conditions in the calcination process for producing the Mo-Bi composite oxide catalyst, or It has been found that the catalysts obtained by changing the number of times of calcination have different activities when producing unsaturated aldehydes and unsaturated carboxylic acids by vapor-phase catalytic oxidation of olefins with molecular oxygen. That is, it has been found that the activity of the catalyst can be controlled by changing the conditions for the calcination, and a plurality of catalysts having different activities can be produced.

更に、本発明者は、このようして得られた活性の異なる複数の触媒を、固定床管式反応器を分割して形成された複数の反応帯中に原料ガスの入口から出口に向って活性が大きくなるように特定の方向に充填した反応器を使用することにより上記課題を解決できることを見出した。   Furthermore, the present inventor divides a plurality of catalysts having different activities obtained in this way from a gas inlet to an outlet in a plurality of reaction zones formed by dividing a fixed bed tubular reactor. It has been found that the above problem can be solved by using a reactor packed in a specific direction so that the activity is increased.

即ち、本発明は、以下の特徴を有する要旨からなるものである。
(1)モリブデン及びビスマスを含有する複合酸化物触媒を充填した固定床管型反応器を用いてオレフィンを分子状酸素含有ガスにより気相接触酸化する不飽和アルデヒド及び不飽和カルボン酸の製造方法であって、
(A)上記複合酸化物触媒として、活性の異なる複数の触媒を使用し、該複数種の触媒は、触媒量に対する雰囲気ガス流量の量比を変えて焼成すること又は焼成回数を変えて得られたものであり、
(B)反応器内の管軸方向に複数の反応帯を設け、
(C)該反応帯毎に該複数の触媒を原料ガスの入口から出口に向かって活性が大きくなるように充填することを特徴とする不飽和アルデヒド及び不飽和カルボン酸の製造方法。
(2)複合酸化物触媒が、下記式(I)を有する触媒である上記(1)に記載の製造方法。
MoaBibCocNidFeeXfYgZh QiSijOk (1)
(式中、Xは、Na、K、Rb、Cs及びTlからなる群から選ばれる少なくとも1種の元素であり、Yは、B、P、As及びWからなる群から選ばれる少なくとも1種の元素であり、Zは、Mg、Ca、Zn、Ce及びSmからなる群から選ばれる少なくとも1種の元素であり、Qはハロゲンを表す。また、a〜jはそれぞれの元素の原子比を表わし、aが12のとき、0.5≦b≦7、0≦c≦10、0≦d≦10(但し、1≦c+d≦10)、0.05≦e≦3、0.0005≦f≦〜3、0≦g≦3、0≦h≦1、0≦i≦0.5、0≦j≦40の範囲にあり、また、kは他の元素の酸化状態を満足させる数値である。)
(3)2種以上の複合酸化物触媒の有する活性が、原料ガスの入口側の触媒の活性を1とした場合、出口側の活性が5以下である上記(1)又は(2)に記載の製造方法。
(4)反応帯の数が2〜4である上記(1)、(2)又は(3)に記載の製造方法。
(5)オレフィンがプロピレンであり、不飽和アルデヒド及び不飽和カルボン酸がそれぞれ、アクロレイン及びアクリル酸である上記(1)〜(4)のいずれかに記載の製造方法。
That is, this invention consists of the summary which has the following characteristics.
(1) A method for producing an unsaturated aldehyde and an unsaturated carboxylic acid, in which a olefin is gas-phase catalytically oxidized with a molecular oxygen-containing gas using a fixed bed tube reactor filled with a composite oxide catalyst containing molybdenum and bismuth. There,
(A) A plurality of catalysts having different activities are used as the composite oxide catalyst, and the plurality of types of catalysts are obtained by calcination or changing the number of calcinations by changing the ratio of the atmospheric gas flow rate to the catalyst amount. And
(B) providing a plurality of reaction zones in the axial direction of the tube in the reactor,
(C) A method for producing an unsaturated aldehyde and an unsaturated carboxylic acid, wherein the plurality of catalysts are filled for each reaction zone so that the activity increases from the inlet of the raw material gas toward the outlet.
(2) The production method according to (1), wherein the composite oxide catalyst is a catalyst having the following formula (I).
MoaBibCocNidFeeXfYgZh QiSijOk (1)
(Wherein X is at least one element selected from the group consisting of Na, K, Rb, Cs and Tl, and Y is at least one element selected from the group consisting of B, P, As and W) Z is at least one element selected from the group consisting of Mg, Ca, Zn, Ce and Sm, Q is halogen, and a to j are atomic ratios of the respective elements. When a is 12, 0.5 ≦ b ≦ 7, 0 ≦ c ≦ 10, 0 ≦ d ≦ 10 (where 1 ≦ c + d ≦ 10), 0.05 ≦ e ≦ 3, 0.0005 ≦ f ≦ -3, 0≤g≤3, 0≤h≤1, 0≤i≤0.5, 0≤j≤40, and k is a numerical value that satisfies the oxidation state of other elements. )
(3) The activity of the two or more composite oxide catalysts is described in the above (1) or (2), wherein the activity on the outlet side is 5 or less when the activity of the catalyst on the inlet side of the raw material gas is 1. Manufacturing method.
(4) The manufacturing method as described in said (1), (2) or (3) whose number of reaction zones is 2-4.
(5) The production method according to any one of (1) to (4), wherein the olefin is propylene, and the unsaturated aldehyde and unsaturated carboxylic acid are acrolein and acrylic acid, respectively.

本発明の方法によれば、ホットスポットの発生に伴う暴走反応や過度の酸化反応による副生物の生成を抑制し、高選択率かつ高収率で目的とする不飽和アルデヒド及び不飽和カルボン酸を製造することができ、さらに、触媒を長時間安定して使用することができるため、生産性も大幅に向上させることが可能になる。   According to the method of the present invention, the generation of by-products due to runaway reaction and excessive oxidation reaction associated with the generation of hot spots is suppressed, and the target unsaturated aldehyde and unsaturated carboxylic acid are obtained with high selectivity and high yield. Further, since the catalyst can be used stably for a long time, productivity can be greatly improved.

以下に本発明について詳細に説明するが、本発明において、オレフィン転化率、目的物選択率、及び収率は、次の式で算出される。
・オレフィン転化率(モル%)=(反応したオレフィンのモル数/供給したオレフィンのモル数)×100
・目的物の選択率(モル%) =(生成した不飽和アルデヒドのモル数+生成した不飽和カルボン酸のモル数)/反応したオレフィンのモル数)×100
・目的物の収率(モル%) =((生成した不飽和アルデヒドのモル数+生成した不飽和カルボン酸のモル数)/供給したオレフィンのモル数)×100
本発明では、モリブデン−ビスマス系複合酸化物触媒の種々のものが使用され、いずれもそれなりの効果が達成されるが、なかでも、下記する式(1)で表される触媒を使用した場合に顕著な効果が達成されるので好ましい。
MoaBibCocNidFeeXfYgZhQiSijOk (1)
(式中、Moはモリブデン、 Biはビスマス、Coはコバルト、Niはニッケル、Feは鉄、Siはケイ素、Oは酸素であり、Xは、Na、K、Rb、Cs及びTlからなる群から選ばれる少なくとも1種の元素であり、Yは、B、P、As及びWからなる群から選ばれる少なくとも1種の元素であり、Zは、Mg、Ca、Zn、Ce及びSmからなる群から選ばれる少なくとも1種の元素であり、Qは塩素原子などのハロゲンを表す。また、a〜jはそれぞれの元素の原子比を表わし、aが12のとき、0.5≦b≦7、0≦c≦10、0≦d≦10(但し、1≦c+d≦10)、0.05≦e≦3、0.0005≦f≦3、0≦g≦3、0≦h≦1、0≦i≦0.5、0≦j≦40の範囲にあり、また,kは他の元素の酸化状態を満足させる数値である。)
なかでも、本発明で使用される触媒は、上記式(1)において、Qは塩素原子であるのが好ましく、また、aが12のとき、0.5≦b≦7、0≦c≦10、0≦d≦10、1≦c+d≦10、0.05≦e≦3、0.0005≦f≦3、0≦g≦3、0≦h≦1、0≦i≦0.05、0≦j≦40の範囲が特に好ましい。
Hereinafter, the present invention will be described in detail. In the present invention, the olefin conversion rate, target product selectivity, and yield are calculated by the following equations.
Olefin conversion (mol%) = (mol number of reacted olefin / mol number of supplied olefin) × 100
Selectivity of target product (mol%) = (number of moles of unsaturated aldehyde produced + number of moles of unsaturated carboxylic acid produced) / number of moles of reacted olefin) × 100
Yield of target product (mol%) = ((number of moles of unsaturated aldehyde produced + number of moles of unsaturated carboxylic acid produced) / number of moles of olefin supplied) × 100
In the present invention, various molybdenum-bismuth-based composite oxide catalysts are used, and any effect can be achieved. In particular, when a catalyst represented by the following formula (1) is used. A remarkable effect is achieved, which is preferable.
MoaBibCocNidFeeXfYgZhQiSijOk (1)
(Wherein Mo is molybdenum, Bi is bismuth, Co is cobalt, Ni is nickel, Fe is iron, Si is silicon, O is oxygen, and X is a group consisting of Na, K, Rb, Cs and Tl. Is at least one element selected, Y is at least one element selected from the group consisting of B, P, As and W, and Z is from the group consisting of Mg, Ca, Zn, Ce and Sm At least one element selected, Q represents a halogen such as a chlorine atom, and a to j represent the atomic ratio of each element, and when a is 12, 0.5 ≦ b ≦ 7, 0 ≦ c ≦ 10, 0 ≦ d ≦ 10 (where 1 ≦ c + d ≦ 10), 0.05 ≦ e ≦ 3, 0.0005 ≦ f ≦ 3, 0 ≦ g ≦ 3, 0 ≦ h ≦ 1, 0 ≦ i ≦ 0.5, 0 ≦ j ≦ 40, and k satisfies the oxidation state of other elements That is a number.)
Among them, in the catalyst used in the present invention, in the above formula (1), Q is preferably a chlorine atom, and when a is 12, 0.5 ≦ b ≦ 7, 0 ≦ c ≦ 10. 0 ≦ d ≦ 10, 1 ≦ c + d ≦ 10, 0.05 ≦ e ≦ 3, 0.0005 ≦ f ≦ 3, 0 ≦ g ≦ 3, 0 ≦ h ≦ 1, 0 ≦ i ≦ 0.05, 0 A range of ≦ j ≦ 40 is particularly preferable.

本発明における上記複合酸化物触媒は、種々の方法で製造される。例えば、通常、触媒を構成する各元素成分を含有する原料化合物の所要量を水性媒体中に適宜溶解あるいは分散し、加熱撹拌した後、蒸発乾固し、乾燥、粉砕して製造される。各成分の原料は、それぞれの元素の硝酸塩、アンモニウム塩、水酸化物、酸化物、酢酸塩などが用いられる。得られた粉体状の混合物は、通常、好ましくは、押出し成型、造粒成型、打錠成型などの成型方法により球状、円柱状、リング状などの任意の形状に成型される。なお、上記混合物には、触媒の強度、粉化度を改善するために一般に知られているガラス繊維などの無機繊維、各種ウィスカーなどを添加してもよい。また、触媒物性を再現性よく制御するために、硝酸アンモニウム、セルロース、デンプン、ポリビニルアルコール、ステアリン酸など一般に結合剤として知られている添加物を使用することもできる。   The composite oxide catalyst in the present invention is produced by various methods. For example, it is usually produced by dissolving or dispersing a required amount of a raw material compound containing each elemental component constituting a catalyst in an aqueous medium, heating and stirring, evaporating to dryness, drying and pulverizing. As the raw material of each component, nitrates, ammonium salts, hydroxides, oxides, acetates of the respective elements are used. The obtained powdery mixture is usually preferably molded into an arbitrary shape such as a spherical shape, a cylindrical shape or a ring shape by a molding method such as extrusion molding, granulation molding or tableting molding. In addition, you may add inorganic fiber, such as a glass fiber generally known in order to improve the intensity | strength of a catalyst, and a powder degree, various whiskers, etc. to the said mixture. In order to control the physical properties of the catalyst with good reproducibility, additives generally known as binders such as ammonium nitrate, cellulose, starch, polyvinyl alcohol and stearic acid can also be used.

また、本発明における複合酸化物触媒は、それ単独で使用することができるが、アルミナ、シリカ、シリカ−アルミナ、シリコンカーバイド、酸化チタン、酸化マグネシウム、アルミニウムスポンジ、シリカ−チタニアなどの一般に不活性担体として知られている担体に担持して使用してもよい。この場合もまた、触媒の強度などを改善するために前記の無機繊維などを使用してもよく、また、触媒物性を再現性よく制御するために前記の硝酸アンモニウムなどの結合剤を使用することもできる。   The composite oxide catalyst in the present invention can be used alone, but generally is an inert carrier such as alumina, silica, silica-alumina, silicon carbide, titanium oxide, magnesium oxide, aluminum sponge, silica-titania, etc. It may be used by being supported on a carrier known as. In this case as well, the above-described inorganic fibers may be used to improve the strength of the catalyst, and a binder such as ammonium nitrate may be used to control the catalyst physical properties with good reproducibility. it can.

次いで、上記の成型体または担持体は雰囲気ガスの流通下に焼成されるが、該焼成は、通常、400〜650℃、好ましくは450〜600℃の温度で、通常、1〜20時間、好ましくは1〜10時間で行われる。本発明では、この焼成過程における焼成の雰囲気ガス流量を変えるか、又は焼成回数を変えることにより活性を変えた複数の触媒が調製される。   Next, the above molded body or carrier is fired under a flow of atmospheric gas. The firing is usually 400 to 650 ° C., preferably 450 to 600 ° C., usually 1 to 20 hours, preferably Is performed in 1 to 10 hours. In the present invention, a plurality of catalysts having different activities are prepared by changing the firing gas flow rate in the firing process or by changing the number of firings.

本発明者の検討によると、焼成における雰囲気ガス量と触媒量の量比について、(雰囲気ガス量/触媒量)の量比が大きい条件では、目的物に対する選択率を大きく低下させることなく活性の大きい触媒が得られる。一方、(雰囲気ガス量/触媒量)の量比が小さい条件では、目的物に対する選択率を向上させるが活性を抑制した触媒が得られることが見出だされた。このように、(雰囲気ガス量/触媒量)の量比を変えることにより、活性の異なる複数の触媒が製造されるが、後記する反応器の分割数とも関係し、本発明では、好ましくは2〜4の活性の異なる複数の触媒を得るのが好ましい。   According to the study of the present inventor, the amount ratio of the atmosphere gas amount to the catalyst amount in the calcination is such that the selectivity for the target product is not greatly reduced under the condition that the amount ratio of (atmosphere gas amount / catalyst amount) is large. A large catalyst is obtained. On the other hand, it was found that under a condition where the quantity ratio of (atmospheric gas quantity / catalyst quantity) is small, a catalyst with improved activity but reduced activity can be obtained. Thus, by changing the quantity ratio of (atmospheric gas quantity / catalyst quantity), a plurality of catalysts having different activities can be produced. It is preferable to obtain a plurality of catalysts having different activities of ˜4.

(雰囲気ガス量/触媒量)の量比を変えて活性の異なる触媒を得る場合、雰囲気ガス流量の単位を(ml/分)、触媒量の単位を(ml)としたとき、(雰囲気ガス量/触媒量)の量比は、好ましくは0.05〜100、より好ましくは0.1〜50、最も好ましくは0.5〜10の範囲で変化させることが好ましい。上記の量比が0.05より小さい場合には、滞留ガスの置換効果が小さくなり、得られる触媒の活性が過度に小さくなり、また、上記の量比が100より大きい場合には、触媒に対する雰囲気ガス量が多くなり経済的に不利である。   When obtaining catalysts having different activities by changing the ratio of (atmospheric gas amount / catalyst amount), when the unit of the atmospheric gas flow rate is (ml / min) and the unit of catalyst amount is (ml), (atmospheric gas amount) / Catalyst amount) is preferably changed in the range of 0.05 to 100, more preferably 0.1 to 50, and most preferably 0.5 to 10. When the above quantitative ratio is less than 0.05, the replacement effect of the staying gas becomes small, the activity of the resulting catalyst becomes excessively small, and when the above quantitative ratio is larger than 100, The amount of atmospheric gas is large, which is economically disadvantageous.

また、本発明で、焼成過程における焼成回数を変えることによりオレフィン転化率を変えた複数の触媒を調製する場合、焼成は、上記の温度、時間にて焼成した触媒を再焼成、再々焼成する、多段焼成により行われる。各回の焼成は、得られる焼成物を好ましくは一旦冷却した後に行われる。このようにして、多段焼成を行った場合、得られる触媒は、多段になるほど触媒の有する活性は低下していくことが見出された。即ち、2段焼成触媒は、1段焼成触媒よりも活性が低下し、3段焼成触媒は、2段焼成触媒よりも活性が低下する。しかし、一方において、触媒の活性が低下するにつれて、目的物に対する選択率は向上することが見出された。   Further, in the present invention, when preparing a plurality of catalysts having changed olefin conversion rate by changing the number of firings in the firing process, the firing is performed by re-firing and re-firing the catalyst fired at the above temperature and time. It is performed by multistage baking. Each firing is preferably performed after the obtained fired product is cooled once. Thus, it was found that when the multi-stage calcination was performed, the activity of the catalyst decreased as the number of stages of the catalyst obtained increased. That is, the activity of the two-stage calcination catalyst is lower than that of the one-stage calcination catalyst, and the activity of the three-stage calcination catalyst is lower than that of the two-stage calcination catalyst. However, on the other hand, it has been found that the selectivity for the target product increases as the activity of the catalyst decreases.

多段焼成により活性の異なった複数の触媒を得る場合、後記する反応器の分割数とも関係し、焼成は、好ましくは2〜4段で行うのが好ましい。また、2段目以降の焼成条件は、温度、時間、雰囲気ガス流量を1段目の焼成条件と変更しても構わないし、2段目以降も同じ条件で焼成しても構わない。また、上記多段焼成によれば、活性の異なった複数の触媒を容易に調製することができる。例えば、活性の異なった2種類の触媒を、再焼成することにより、活性の異なった4種類の触媒が容易に調製できる。   When obtaining a plurality of catalysts having different activities by multistage calcination, the calcination is preferably carried out in 2 to 4 stages in relation to the number of divisions of the reactor described later. The firing conditions for the second and subsequent stages may be changed in the temperature, time, and atmospheric gas flow rate to the firing conditions for the first stage, and the second and subsequent stages may be fired under the same conditions. Moreover, according to the multistage calcination, a plurality of catalysts having different activities can be easily prepared. For example, four types of catalysts having different activities can be easily prepared by recalculating two types of catalysts having different activities.

本発明において、上記焼成は雰囲気焼成炉を用いて実施できる。雰囲気焼成炉としては、例えば、固定床反応器に触媒を充填し雰囲気ガスの流通下で外部から加熱する方法、前記固定床反応器が熱交換型である方法、マッフル炉内部に雰囲気ガスを流通する方法、トンネル炉内部に雰囲気ガスを流通する方法、キルン炉内部に雰囲気ガスを流通する方法等を用いることができる。滞留する雰囲気ガス流量を抑制することを考慮すると、好ましくは固定床反応器に触媒を充填し雰囲気ガスの流通下で外部から加熱する方法、より好ましくは熱交換型固定床反応器に触媒を充填し雰囲気ガスの流通下で外部から加熱する方法を用いることができる。雰囲気ガスは、空気のほか、空気と窒素などの不活性ガスの混合気体を用いることができる。経済的に有利なことから、好ましくは空気を用いることができる。   In the present invention, the firing can be performed using an atmosphere firing furnace. As the atmosphere firing furnace, for example, a method in which a fixed bed reactor is filled with a catalyst and heated from the outside under the circulation of the atmosphere gas, a method in which the fixed bed reactor is a heat exchange type, and an atmosphere gas is circulated inside the muffle furnace A method of circulating the atmosphere gas inside the tunnel furnace, a method of circulating the atmosphere gas inside the kiln furnace, and the like can be used. In consideration of controlling the flow rate of the atmospheric gas that stays, it is preferable that the fixed bed reactor is filled with a catalyst and heated from the outside under a flow of atmospheric gas, more preferably the heat exchange type fixed bed reactor is filled with a catalyst. A method of heating from the outside under the circulation of atmospheric gas can be used. As the atmospheric gas, in addition to air, a mixed gas of air and an inert gas such as nitrogen can be used. Air is preferably used because it is economically advantageous.

一方、本発明では、固定床管型反応器の反応器の触媒層を管軸方向に2層以上に分割して2以上の反応帯を設ける。反応器の分割は、分割数が多くなればそれだけホットスポットの抑制が容易になるが、通常、好ましくは2〜4の反応帯を形成するように分割される。分割された反応帯の長さは必ずしも等しくなくてもよく任意である。例えば、2つに分割する場合、前段長さをL1,後段長さをL2とした場合、L1/L2が好ましくは0.1〜10、特に好ましくは0.3〜3にせしめられる。使用する反応管の本数、反応管径、触媒の充填する長さなどは、運転条件や生産能力などによって異なり適宜決定される。   On the other hand, in the present invention, two or more reaction zones are provided by dividing the catalyst layer of the reactor of the fixed bed tubular reactor into two or more layers in the tube axis direction. The division of the reactor becomes easier as the number of divisions increases, so that suppression of hot spots is facilitated, but the division is usually preferably performed so as to form 2 to 4 reaction zones. The lengths of the divided reaction zones are not necessarily equal and are arbitrary. For example, when dividing into two, when L1 is the front length and L2 is the rear length, L1 / L2 is preferably 0.1 to 10, particularly preferably 0.3 to 3. The number of reaction tubes to be used, the diameter of the reaction tube, the length to be filled with the catalyst, and the like vary depending on operating conditions, production capacity, etc., and are appropriately determined.

本発明では、上記2つ以上の複数に分割された反応器の反応帯に対して、上記した活性の異なる2種以上の触媒を、原料ガスの入口から出口に向かって、触媒の有する活性が大きくなるように充填される。反応器の分割により2つの反応帯を設けた場合を例に挙げると、活性の異なる2種類の触媒を調製し、原料ガス入口側の反応帯(以下、前段反応帯という)には活性が小さい触媒を充填し、出口側の反応帯(以下、後段反応帯という)には活性が大きい触媒が充填される。   In the present invention, two or more kinds of catalysts having different activities described above from the reaction zone of the two or more reactors divided into two or more, the activity of the catalyst from the inlet of the raw material gas to the outlet thereof. Filled to be larger. For example, when two reaction zones are provided by dividing the reactor, two types of catalysts having different activities are prepared, and the reaction zone on the raw material gas inlet side (hereinafter referred to as the pre-reaction zone) has low activity. The catalyst is filled, and the reaction zone on the outlet side (hereinafter referred to as the subsequent reaction zone) is filled with a catalyst having high activity.

本発明で複数の反応帯に対して活性が異なる2種以上の触媒を原料ガスの入口から出口に向かって充填される場合、原料ガスの入口側の触媒の活性を1とした場合、ガス出口側の触媒の活性が好ましくは5以下、特に好ましくは3以下になるように充填するのが好ましい。原料ガス入口側の触媒に対して、ガス出口側の触媒の活性が5より大きい場合には出口側の反応帯の触媒層温度が高くなり好ましくはない。   In the present invention, when two or more kinds of catalysts having different activities with respect to a plurality of reaction zones are filled from the inlet of the raw material gas to the outlet, when the activity of the catalyst on the inlet side of the raw material gas is 1, the gas outlet It is preferable to fill the catalyst so that the activity of the catalyst on the side is preferably 5 or less, particularly preferably 3 or less. When the activity of the catalyst on the gas outlet side is greater than 5 with respect to the catalyst on the raw material gas inlet side, the catalyst layer temperature in the reaction zone on the outlet side becomes undesirably high.

なお、本発明において、活性が異なる複数の触媒を使用する場合には、個々の全ての触媒の有する活性が原料ガス入口から出口に向かって大きい必要はなく、充填される触媒全体で見て相対的に活性が原料ガス入口から出口に向かって大きければよい。また、複数の各反応帯には、必ずしも一種の触媒が充填されなくてもよく、活性が異なる複数の触媒を充填してもよい。本発明で各反応帯に充填する触媒の形状、大きさなどについて特に制限はなく、既知の形状、大きさなどから適宜選ぶことができる。   In the present invention, when a plurality of catalysts having different activities are used, it is not necessary that the activities of all the individual catalysts be large from the raw material gas inlet to the outlet. In particular, the activity should be large from the raw material gas inlet to the outlet. Further, each of the plurality of reaction zones does not necessarily need to be filled with one type of catalyst, and may be filled with a plurality of catalysts having different activities. In the present invention, the shape, size, etc. of the catalyst charged in each reaction zone are not particularly limited, and can be appropriately selected from known shapes, sizes, etc.

本発明の分子状酸素含有ガスを使用した気相接触酸化反応には、反応管を通じて単流通法でもリサイクル法であってもよく、この種の反応に一般的に使用される条件下で実施できる。例えば、プロピレン1〜15容量%、分子状酸素3〜30容量%、水蒸気0〜60容量%、窒素、炭酸ガスなどの不活性ガス20〜80容量%などからなる混合ガスを、内径が好ましくは15〜50mmの各反応管の各反応帯に充填した触媒層に250〜450℃、0.1〜1MPaの圧力下、空間速度(SV)300〜5000hr-1で導入される。しかし、本発明では、より生産性を上げるために高負荷反応条件下、例えば、より高い原料濃度、又は高い空間速度の条件下でも運転することもできる。 The gas phase catalytic oxidation reaction using the molecular oxygen-containing gas of the present invention may be a single flow method or a recycling method through a reaction tube, and can be carried out under conditions generally used for this kind of reaction. . For example, a mixed gas composed of 1 to 15% by volume of propylene, 3 to 30% by volume of molecular oxygen, 0 to 60% by volume of water vapor, 20 to 80% by volume of an inert gas such as nitrogen or carbon dioxide, It introduce | transduces into the catalyst layer with which each reaction zone of 15-50 mm each reaction cell was filled at 250-450 degreeC and the pressure of 0.1-1 Mpa, and the space velocity (SV) 300-5000 hr < -1 >. However, in the present invention, it is possible to operate under high load reaction conditions, for example, higher raw material concentration or high space velocity conditions in order to increase productivity.

以下に本発明の実施例を挙げて本発明をさらに詳細に説明するが、本発明はかかる実施例に限定して解釈されるものでないことはもちろんである。なお、下記において、例1、例4は、本発明の実施例であり、例2、例3及び例5、例6は比較例である。   EXAMPLES The present invention will be described in more detail below with reference to examples of the present invention, but the present invention should not be construed as being limited to such examples. In the following, Examples 1 and 4 are examples of the present invention, and Examples 2, 3 and 5 and Example 6 are comparative examples.

例1
(触媒1調製)
パラモリブデン酸アンモン105.5gを加温した純水500mlに溶解させた。次に硝酸第二鉄10.1g、硝酸コバルト97.0gを加温した純水100mlに溶解させた。これらの溶液を、充分に撹拌しながら徐々に混合した。
次に、純水40mlにホウ砂0.96g及び硝酸カリウム0.51gを加温下に溶解させて、上記スラリーに加える。次に、シリカ72.9gを加えて、充分に撹拌する。
続いて、純水20mlに硝酸2.7mlを加えてさらに硝酸ビスマス24.1gを加えて、撹拌混合した。このスラリーを加熱乾燥した後、空気雰囲気で300℃、1時間の熱処理に付す。得られた粒状固体を粉砕し、打錠成形機にて径5mm、高さ4mmの錠剤に成型した。
次に熱交換型固定床反応器に成型体1000mlを充填し、雰囲気ガスとして空気5000ml/分を流通させる。外部より加熱して500℃、8時間の焼成を行い、複合酸化物触媒を製造した。
仕込み原料から計算される触媒は、次の原子比を有する複合酸化物である。
Mo:Bi:Co:Fe:Na:B:K:Si=12:1:6.6:0.6:0.1:0.2:0.1:24
(触媒2調製)
上記触媒1の調製において、雰囲気ガスとして空気1000ml/分を流通させた以外は全く同様にして複合酸化物触媒を調製した。
(酸化反応)
熱伝対を設置した直径25mmのステンレス製反応管の原料ガスの入口側に上記触媒2を500mlを充填し、原料ガスの出口側に触媒1を1000mlを充填した。上記反応管入口からプロピレン8容量%、空気67容量%、水蒸気25容量%の混合ガスをSV1800hr−1で導入し1,000時間にわたって反応を継続した。反応初期の性能及び1,000時間経過時の性能を表1に示した。
Example 1
(Catalyst 1 preparation)
105.5 g of ammonium paramolybdate was dissolved in 500 ml of heated pure water. Next, 10.1 g of ferric nitrate and 97.0 g of cobalt nitrate were dissolved in 100 ml of heated pure water. These solutions were gradually mixed with thorough stirring.
Next, 0.96 g of borax and 0.51 g of potassium nitrate are dissolved in 40 ml of pure water under heating and added to the slurry. Next, 72.9 g of silica is added and stirred thoroughly.
Subsequently, 2.7 ml of nitric acid was added to 20 ml of pure water, and 24.1 g of bismuth nitrate was further added, followed by stirring and mixing. The slurry is heat-dried and then subjected to heat treatment at 300 ° C. for 1 hour in an air atmosphere. The obtained granular solid was pulverized and molded into a tablet having a diameter of 5 mm and a height of 4 mm with a tableting machine.
Next, the heat exchange type fixed bed reactor is filled with 1000 ml of the molded body, and 5000 ml / min of air is circulated as the atmospheric gas. The composite oxide catalyst was manufactured by heating from the outside and baking at 500 ° C. for 8 hours.
The catalyst calculated from the charged raw materials is a complex oxide having the following atomic ratio.
Mo: Bi: Co: Fe: Na: B: K: Si = 12: 1: 6.6: 0.6: 0.1: 0.2: 0.1: 24
(Catalyst 2 preparation)
A composite oxide catalyst was prepared in exactly the same manner as in the preparation of the catalyst 1 except that 1000 ml / min of air was circulated as the atmospheric gas.
(Oxidation reaction)
500 ml of the catalyst 2 was filled on the inlet side of the raw material gas of a stainless steel reaction tube having a diameter of 25 mm provided with a thermocouple, and 1000 ml of the catalyst 1 was filled on the outlet side of the raw material gas. A mixed gas of 8% by volume of propylene, 67% by volume of air, and 25% by volume of water vapor was introduced at SV1800hr- 1 from the reaction tube inlet, and the reaction was continued for 1,000 hours. Table 1 shows the initial performance of the reaction and the performance after 1,000 hours.

例2
例1において、触媒1を1500mlのみを使用した以外は例1と同様に反応を行った。反応初期の性能及び1,000時間経過時の性能を表1示した。
Example 2
In Example 1, the reaction was performed in the same manner as in Example 1 except that only 1500 ml of Catalyst 1 was used. Table 1 shows the initial performance of the reaction and the performance after 1,000 hours.

例3
例1において、触媒2を1500mlのみを使用した以外は例1と同様に反応を行った。反応初期の性能及び1,000時間経過時の性能を表1示した。
Example 3
In Example 1, the reaction was conducted in the same manner as in Example 1 except that only 1500 ml of catalyst 2 was used. Table 1 shows the initial performance of the reaction and the performance after 1,000 hours.

Figure 2005187460
Figure 2005187460

例4
(触媒3調製)
パラモリブデン酸アンモン105.5gを加温した純水500mlに溶解させた。次に硝酸第二鉄10.1g、硝酸コバルト97.0gを加温した純水100mlに溶解させた。これらの溶液を、充分に撹拌しながら徐々に混合した。
次に、純水40mlにホウ砂0.96g及び硝酸カリウム0.51gを加温下に溶解させて、上記スラリーに加える。次に、シリカ72.9gを加えて、充分に撹拌した。
続いて、純水20mlに硝酸2.7mlを加え、さらに硝酸ビスマス24.1gを加えて、撹拌混合した。このスラリーを加熱乾燥した後、空気雰囲気で300℃、1時間の熱処理に付した。得られた粒状固体を粉砕し、打錠成形機にて径5mm、高さ4mmの錠剤に成型した。
次に熱交換型固定床反応器に成型体1000mlを充填し、雰囲気ガスとして空気2500ml/minを流通させた。外部より加熱して505℃、4時間の焼成を行い、複合酸化物触媒を製造した。
仕込み原料から計算される触媒は、次の原子比を有する複合酸化物である。
Mo:Bi:Co:Fe:Na:B:K:Si =12:1:6.6:0.6:0.1:0.2:0.1:24
(触媒4調製)
熱交換型固定床反応器に(触媒3)1000mlを充填し、雰囲気ガスとして空気2500ml/minを流通させた。外部より加熱して505℃、4時間の焼成を行い、複合酸化物触媒を製造した。
(酸化反応)
熱伝対を設置した直径25mmのステンレス製反応管の原料ガス入口側に上記触媒4を500mlを充填し、原料ガス出口側に触媒3を1000mlを充填した。上記反応管入口からプロピレン8容量%、空気67容量%、水蒸気25容量%の混合ガスをSV1800hr−1で導入し1,000時間にわたって反応を継続した。反応初期の性能及び1,000時間経過時の性能を表2に示した。
Example 4
(Catalyst 3 preparation)
105.5 g of ammonium paramolybdate was dissolved in 500 ml of heated pure water. Next, 10.1 g of ferric nitrate and 97.0 g of cobalt nitrate were dissolved in 100 ml of heated pure water. These solutions were gradually mixed with thorough stirring.
Next, 0.96 g of borax and 0.51 g of potassium nitrate are dissolved in 40 ml of pure water under heating and added to the slurry. Next, 72.9 g of silica was added and stirred thoroughly.
Subsequently, 2.7 ml of nitric acid was added to 20 ml of pure water, and 24.1 g of bismuth nitrate was further added, followed by stirring and mixing. The slurry was heat-dried and then subjected to heat treatment at 300 ° C. for 1 hour in an air atmosphere. The obtained granular solid was pulverized and molded into a tablet having a diameter of 5 mm and a height of 4 mm with a tableting machine.
Next, the heat exchange type fixed bed reactor was filled with 1000 ml of the molded product, and air was circulated at 2500 ml / min as the atmospheric gas. The composite oxide catalyst was manufactured by heating from outside and firing at 505 ° C. for 4 hours.
The catalyst calculated from the charged raw materials is a complex oxide having the following atomic ratio.
Mo: Bi: Co: Fe: Na: B: K: Si = 12: 1: 6.6: 0.6: 0.1: 0.2: 0.1: 24
(Catalyst 4 preparation)
A heat exchange type fixed bed reactor was charged with 1000 ml of (Catalyst 3), and air was circulated as an atmosphere gas at 2500 ml / min. The composite oxide catalyst was manufactured by heating from outside and firing at 505 ° C. for 4 hours.
(Oxidation reaction)
500 ml of the catalyst 4 was filled on the raw material gas inlet side of a stainless steel reaction tube having a diameter of 25 mm provided with a thermocouple, and 1000 ml of the catalyst 3 was filled on the raw material gas outlet side. A mixed gas of 8% by volume of propylene, 67% by volume of air, and 25% by volume of water vapor was introduced at SV1800hr- 1 from the reaction tube inlet, and the reaction was continued for 1,000 hours. Table 2 shows the initial performance of the reaction and the performance after 1,000 hours.

例5
例4において、触媒3を1500mlのみを使用した以外は例5と同様に反応を行った。反応初期の性能及び1,000時間経過時の性能を表2に示した。
Example 5
In Example 4, the reaction was performed in the same manner as in Example 5 except that only 1500 ml of catalyst 3 was used. Table 2 shows the initial performance of the reaction and the performance after 1,000 hours.

例6
例4において、触媒4を1500mlのみを使用した以外は例5と同様に反応を行った。反応初期の性能及び1,000時間経過時の性能を表2に示した。
Example 6
In Example 4, the reaction was performed in the same manner as in Example 5 except that only 1500 ml of catalyst 4 was used. Table 2 shows the initial performance of the reaction and the performance after 1,000 hours.

Figure 2005187460
Figure 2005187460

本発明方法は、オレフィン、特にプロピレンを分子状酸素含有ガスにより気相接触酸化し、長期にわたり安定して、かつ高収率で対応する不飽和アルデヒド、特にアクロレイン及び不飽和カルボン酸、特にアクリル酸を製造するために広く使用できる。製造された不飽和アルデヒド及び不飽和カルボン酸は、各種化学品の原料、汎用樹脂のモノマー、吸水性樹脂などの機能性樹脂のモノマー、凝集剤、増粘剤となどとして広範な用途に使用される。   The process of the present invention involves the gas-phase catalytic oxidation of olefins, especially propylene, with molecular oxygen-containing gas, and the corresponding unsaturated aldehydes, especially acrolein and unsaturated carboxylic acids, especially acrylic acid, which are stable over a long period and in high yield. Can be widely used for manufacturing. The produced unsaturated aldehydes and unsaturated carboxylic acids are used in a wide range of applications as raw materials for various chemicals, monomers for general-purpose resins, monomers for functional resins such as water-absorbing resins, flocculants, and thickeners. The

Claims (5)

モリブデン及びビスマスを含有する複合酸化物触媒を充填した固定床管型反応器を用いてオレフィンを分子状酸素含有ガスにより気相接触酸化する不飽和アルデヒド及び不飽和カルボン酸の製造方法であって、
(A)上記複合酸化物触媒として、活性の異なる複数の触媒を使用し、該複数種の触媒は、触媒量に対する雰囲気ガス流量の量比を変えて焼成すること又は焼成回数を変えて得られたものであり、
(B)反応器内の管軸方向に複数の反応帯を設け、
(C)該反応帯毎に該複数の触媒を原料ガスの入口から出口に向かって活性が大きくなるように充填することを特徴とする不飽和アルデヒド及び不飽和カルボン酸の製造方法。
A method for producing an unsaturated aldehyde and an unsaturated carboxylic acid, wherein a olefin is gas-phase catalytically oxidized with a molecular oxygen-containing gas using a fixed bed tubular reactor filled with a composite oxide catalyst containing molybdenum and bismuth,
(A) A plurality of catalysts having different activities are used as the composite oxide catalyst, and the plurality of types of catalysts are obtained by calcination or changing the number of calcinations by changing the ratio of the atmospheric gas flow rate to the catalyst amount. And
(B) providing a plurality of reaction zones in the axial direction of the tube in the reactor,
(C) A method for producing an unsaturated aldehyde and an unsaturated carboxylic acid, wherein the plurality of catalysts are filled for each reaction zone so that the activity increases from the inlet of the raw material gas toward the outlet.
複合酸化物触媒が、下記式(1)を有する触媒である請求項1に記載の製造方法。
MoaBibCocNidFeeXfYgZhQiSijOk(1)
(式中、Xは、Na、K、Rb、Cs及びTlからなる群から選ばれる少なくとも1種の元素であり、Yは、B、P、As及びWからなる群から選ばれる少なくとも1種の元素であり、Zは、Mg、Ca、Zn、Ce及びSmからなる群から選ばれる少なくとも1種の元素であり、Qはハロゲンを表す。また、a〜jはそれぞれの元素の原子比を表わし、aが12のとき、0.5≦b≦7、0≦c≦10、0≦d≦10(但し、1≦c+d≦10)、0.05≦e≦3、0.0005≦f≦〜3、0≦g≦3、0≦h≦1、0≦i≦0.5、0≦j≦40の範囲にあり、また、kは他の元素の酸化状態を満足させる数値である。)
The production method according to claim 1, wherein the composite oxide catalyst is a catalyst having the following formula (1).
MoaBibCocNidFeeXfYgZhQiSijOk (1)
(Wherein X is at least one element selected from the group consisting of Na, K, Rb, Cs and Tl, and Y is at least one element selected from the group consisting of B, P, As and W) Z is at least one element selected from the group consisting of Mg, Ca, Zn, Ce and Sm, Q is halogen, and a to j are atomic ratios of the respective elements. When a is 12, 0.5 ≦ b ≦ 7, 0 ≦ c ≦ 10, 0 ≦ d ≦ 10 (where 1 ≦ c + d ≦ 10), 0.05 ≦ e ≦ 3, 0.0005 ≦ f ≦ -3, 0≤g≤3, 0≤h≤1, 0≤i≤0.5, 0≤j≤40, and k is a numerical value that satisfies the oxidation state of other elements. )
2種以上の複合酸化物触媒の有する活性が、原料ガスの入口側の触媒の活性を1とした場合、出口側の活性が5以下である請求項1又は2に記載の製造方法。   The production method according to claim 1 or 2, wherein the activity of the two or more composite oxide catalysts is 5 or less when the activity of the catalyst on the inlet side of the raw material gas is 1. 反応帯の数が2〜4である請求項1、2又は3に記載の製造方法。   The number of reaction zones is 2-4, The manufacturing method of Claim 1, 2, or 3. オレフィンがプロピレンであり、不飽和アルデヒド及び不飽和カルボン酸がそれぞれ、アクロレイン及びアクリル酸である請求項1〜4のいずれかに記載の製造方法。   The production method according to any one of claims 1 to 4, wherein the olefin is propylene, and the unsaturated aldehyde and the unsaturated carboxylic acid are acrolein and acrylic acid, respectively.
JP2004350633A 2003-12-03 2004-12-03 Method for producing unsaturated aldehyde and unsaturated carboxylic acid Withdrawn JP2005187460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004350633A JP2005187460A (en) 2003-12-03 2004-12-03 Method for producing unsaturated aldehyde and unsaturated carboxylic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003405046 2003-12-03
JP2004350633A JP2005187460A (en) 2003-12-03 2004-12-03 Method for producing unsaturated aldehyde and unsaturated carboxylic acid

Publications (1)

Publication Number Publication Date
JP2005187460A true JP2005187460A (en) 2005-07-14

Family

ID=34797565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350633A Withdrawn JP2005187460A (en) 2003-12-03 2004-12-03 Method for producing unsaturated aldehyde and unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JP2005187460A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100714606B1 (en) 2005-02-25 2007-05-07 주식회사 엘지화학 Method of producing unsaturated aldehyde and/or unsaturated acid
JP2010214218A (en) * 2009-03-13 2010-09-30 Nippon Shokubai Co Ltd Catalyst for producing acrylic acid and method of producing acrylic acid using the catalyst
JP2010214217A (en) * 2009-03-13 2010-09-30 Nippon Shokubai Co Ltd Catalyst for producing acrolein and method of producing acrolein and/or acrylic acid using the catalyst
DE102010047136A1 (en) 2009-09-30 2011-04-28 Sumitomo Chemical Company, Ltd. Process for the preparation of a complex oxide catalyst
WO2013147041A1 (en) 2012-03-30 2013-10-03 株式会社日本触媒 Method for producing acrylic acid and acrolein using fixed-bed multitubular reactor
EP2832718A4 (en) * 2012-03-29 2015-12-02 Nippon Catalytic Chem Ind Process for producing acrylic acid using fixed-bed multitubular reactor
WO2018084460A1 (en) * 2016-11-01 2018-05-11 주식회사 엘지화학 Method for producing unsaturated aldehyde and unsaturated carboxylic acid
US10472235B2 (en) 2015-03-23 2019-11-12 Chiyoda Corporation Synthesis gas manufacturing method and synthesis gas manufacturing apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100714606B1 (en) 2005-02-25 2007-05-07 주식회사 엘지화학 Method of producing unsaturated aldehyde and/or unsaturated acid
JP2010214218A (en) * 2009-03-13 2010-09-30 Nippon Shokubai Co Ltd Catalyst for producing acrylic acid and method of producing acrylic acid using the catalyst
JP2010214217A (en) * 2009-03-13 2010-09-30 Nippon Shokubai Co Ltd Catalyst for producing acrolein and method of producing acrolein and/or acrylic acid using the catalyst
DE102010047136A1 (en) 2009-09-30 2011-04-28 Sumitomo Chemical Company, Ltd. Process for the preparation of a complex oxide catalyst
US8361923B2 (en) 2009-09-30 2013-01-29 Sumitomo Chemical Company, Limited Process for producing complex oxide catalyst
EP2832718A4 (en) * 2012-03-29 2015-12-02 Nippon Catalytic Chem Ind Process for producing acrylic acid using fixed-bed multitubular reactor
EP2832717A1 (en) * 2012-03-30 2015-02-04 Nippon Shokubai Co., Ltd. Method for producing acrylic acid and acrolein using fixed-bed multitubular reactor
US9073845B2 (en) 2012-03-30 2015-07-07 Nippon Shokubai Co., Ltd. Method for producing acrolein and acrylic acid with a fixed-bed multitubular reactor
EP2832717A4 (en) * 2012-03-30 2015-11-11 Nippon Catalytic Chem Ind Method for producing acrylic acid and acrolein using fixed-bed multitubular reactor
WO2013147041A1 (en) 2012-03-30 2013-10-03 株式会社日本触媒 Method for producing acrylic acid and acrolein using fixed-bed multitubular reactor
US10472235B2 (en) 2015-03-23 2019-11-12 Chiyoda Corporation Synthesis gas manufacturing method and synthesis gas manufacturing apparatus
WO2018084460A1 (en) * 2016-11-01 2018-05-11 주식회사 엘지화학 Method for producing unsaturated aldehyde and unsaturated carboxylic acid
US10428007B2 (en) 2016-11-01 2019-10-01 Lg Chem, Ltd. Method for producing unsaturated aldehyde and unsaturated carboxylic acid

Similar Documents

Publication Publication Date Title
US7132384B2 (en) Process for producing composite oxide catalyst
JP3793317B2 (en) Catalyst and method for producing unsaturated aldehyde and unsaturated acid
JP4318367B2 (en) Method for producing acrolein and acrylic acid
JPH0784400B2 (en) Process for producing unsaturated aldehyde and unsaturated acid
JPH09241209A (en) Production of acrylic acid
JP2008535784A (en) Process for producing unsaturated aldehyde and / or unsaturated acid
JP6674441B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP2002273229A (en) Catalyst for manufacturing unsaturated aldehyde and unsaturated carboxylic acid
KR102612311B1 (en) Method for producing acrolein, methacrolein, acrylic acid or methacrylic acid
JP2003251183A (en) Catalyst for synthesizing unsaturated aldehyde and manufacturing method therefor, and method for manufacturing unsaturated aldehyde using the catalyst
JP4045693B2 (en) Method for producing methacrylic acid
JP2005187460A (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4424180B2 (en) Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2004002209A (en) Method for producing unsaturated aldehyde
JP2005169311A (en) Production method for complex oxide catalyst
JP2003146920A (en) Method for producing acrolein and acrylic acid
JP2988660B2 (en) Method for producing methacrolein and methacrylic acid
JP6762370B2 (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2638241B2 (en) Method for producing methacrolein and methacrylic acid
JP2005162744A (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
WO2005054166A1 (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
JP5112849B2 (en) Fixed bed reactor and method for producing unsaturated carboxylic acid
JP2003261501A (en) Method for vapor-phase catalytic oxidation
JP6238354B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JPH03294238A (en) Production of methacrolein and methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070711

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090709