JP4259013B2 - Electrolytic capacitor and manufacturing method thereof - Google Patents

Electrolytic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP4259013B2
JP4259013B2 JP2001394229A JP2001394229A JP4259013B2 JP 4259013 B2 JP4259013 B2 JP 4259013B2 JP 2001394229 A JP2001394229 A JP 2001394229A JP 2001394229 A JP2001394229 A JP 2001394229A JP 4259013 B2 JP4259013 B2 JP 4259013B2
Authority
JP
Japan
Prior art keywords
internal electrode
connection
electrode tab
foil
electrode foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001394229A
Other languages
Japanese (ja)
Other versions
JP2003197472A (en
Inventor
宏次 芦野
好博 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2001394229A priority Critical patent/JP4259013B2/en
Publication of JP2003197472A publication Critical patent/JP2003197472A/en
Application granted granted Critical
Publication of JP4259013B2 publication Critical patent/JP4259013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【発明の属する技術の分野】
本発明は、コンデンサの電極箔と内部電極タブとを接続して成る電解コンデンサ、特には、冷間圧接接続または超音波溶接接続によりコンデンサの電極箔と内部電極タブとの接続部を適宜な間隔を有して間歇的に設けて成る電解コンデンサ及びその製造方法に関する。
【0002】
【従来の技術】
近年においてコンデンサ、とりわけアルミ電解コンデンサは、インバータ等の利用の広範囲化に伴い、従来の屋内だけではなく、車載等の用途が急速に拡大しており、これら車載等における用途では、スペース的な問題や放熱(冷却問題)等の観点から、長円形化されたコンデンサが使用されてきている。
【0003】
これら長円型のコンデンサを製造するには、コンデンサ素子も長円形化する必要があるが、コンデンサ素子を長円形化する手法としては、第1に、従来の円筒形のコンデンサ素子の製造方法とは異なり、所定の長円形巻軸により各素子材料を巻回す手法と、第2に、従来の円筒形のコンデンサ素子の製造方法を用い、比較的太い巻軸を使用して中空の円筒形コンデンサ素子を形成し、該中空の円筒形コンデンサ素子をプレスして長円形化する手法と、がある。
【0004】
【発明が解決しようとする課題】
前記2つの手法において、第1の手法は、巻回軸を長円化する必要があり、これら巻回軸を長円化に伴って、各素子材料の巻回時のテンションコントロール制御並びに素子引き出しリード等の位置合わせ等の制御等が非常に複雑となり、装置を専用化しなければならないばかりか、その装置の開発コストが膨大なものとなってしまうという問題がある。
【0005】
一方、前記第2の手法は、比較的太い巻軸を使用するのみで、現行の製造設備を使用でき、製造設備のコストを低く抑えることが可能ではあるものの、これら中空の円筒形コンデンサ素子をプレスして長円化するために、これらプレス時等において前記コンデンサ素子中の電極箔と内部電極タブとの接続部に機械的なストレスが印加されて、これら接続部の電気的な接続特性が低下したり、最悪の場合には、接続が破断してしまう場合があるという問題があった。
【0006】
また、通常の円筒形の電解コンデンサにおいても、コンデンサ素子は電極箔をセパレータを介して一定の緊締力で巻回形成されているため、コンデンサ素子中の電極箔と内部電極タブとの接続部には常に機械的なストレスが印加されている状態であり、このような状態でさらに外部からの衝撃等により、前記電極箔と内部電極タブとの接続部にさらに機械的なストレスが印加されると、接続部の電気的な接続特性が低下する可能性がある。
【0007】
よって、本発明は上記した問題点に着目してなされたもので、前記コンデンサ素子中の電極箔と内部電極タブとの接続部に機械的なストレスが印加されても、これら接続部の電気的な接続特性が低下したり接続が破断してしまうことを大幅に低減することのできる電解コンデンサ及びその製造方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
前記した問題を解決するために、本発明の電解コンデンサは、電極箔と内部電極タブとを重ね合わせた状態で、冷間圧接接続又は超音波溶接接続による接続部を内部電極タブの長手方向に適宜な間隔を有して間歇的に設けて前記電極箔と内部電極タブを接続して成る電解コンデンサにおいて、前記電極箔が接続される内部電極タブの一方側と対向する他方側にはトンネル状のドーム部が形成され、接続時における前記接続部間の内部電極タブが電極箔とともに変形して前記電極箔沿うように接続部間ごとに湾曲していることを特徴としている。
この特徴によれば、トンネル状のドーム部により内部電極タブが電極箔とともに変形しやすく、電解コンデンサ内の使用時における内部圧力の上昇に伴う接続部への機械的ストレスや、外部からの衝撃などによる接続部への機械的ストレスなどへの耐性を向上でき、電解コンデンサの歩留まり並びに信頼性を向上できる。
【0009】
本発明の電解コンデンサは、中空円形に形成されたコンデンサ素子をプレス加工することで長円状とされていることが好ましい。
このようにすれば、前記接合部がこれらプレス加工において印加される機械的ストレスにも耐えられるようになり、高価な製造設備を用いることなく、安価にて長円型の電解コンデンサを製造することができる。
【0010】
本発明の電解コンデンサの製造方法は、電極箔と内部電極タブとを重ね合わせた状態で、冷間圧接接続又は超音波溶接接続による接続部を内部電極タブの長手方向に適宜な間隔を有して間歇的に設けて前記電極箔と内部電極タブを接続する電解コンデンサの製造方法において、前記電極箔が接続される内部電極タブの一方側と対向する他方側にはトンネル状のドーム部が形成され、接続時における前記接続部間の内部電極タブを前記電極箔とともに変形させて、前記電極箔沿うように接続部間ごとに湾曲させたことを特徴としている。
この特徴によれば、前記内部電極タブが接続部間における前記電極箔の湾曲に沿うように変形されることで、前記接続部間における前記内部電極タブと電極箔との間の空隙が大幅に少なくなり、機械的なストレスの印加に対して内部電極タブと電極箔とが連携して抗するようになるため、これら接続部の電気的な接続特性が低下したり接続が破断してしまうことを大幅に低減することができる。
【0013】
本発明の電解コンデンサの製造方法は、電極箔と内部電極タブとを重ね合わせた状態で、冷間圧接接続又は超音波溶接接続による接続部を内部電極タブの長手方向に適宜な間隔を有して間歇的に設けて前記電極箔と内部電極タブを接続する電解コンデンサの製造方法において、前記冷間圧接接続又は超音波溶接接続に使用する金型の電極箔側の金型は前記接続部を形するための複数のチップ部を有し、他方の内部電極タブ側の金型は前記接続部間に位置する部位に、前記内部電極タブを前記電極箔の湾曲に沿うように変形させるドーム部を設け、前記冷間圧接接続又は超音波溶接接続による接続部の形成時に、内部電極タブを前記電極箔とともに変形させて、前記電極箔に沿うように接続部間ごとに湾曲させたことを特徴としている。
この特徴によれば、前記接続部の形成と同時に、前記他方の金型に設けられたドーム部により前記電極箔と内部電極タブとがほぼ密着するように確実に変形されるようになり、前記接続部の機械的ストレスへの耐性をより高いものとすることができる。
【0014】
【発明の実施の形態】
以下、図面に基づいて本発明の実施形態を説明する。
(実施例1)
図1は本実施例の長円型電解コンデンサを示す外観斜視図であり、図2は本実施例の長円型電解コンデンサを示す一部破断側断面図であり、図3は、本実施例の長円型電解コンデンサのA−A断面図である。
【0015】
本実施例の電解コンデンサは、図1および図2にその外観並びに内部構造を示すように、その上面視形状が長円形とされた長円型の電解コンデンサ1とされており、図1において3は、その内部に長円状とされたコンデンサ素子2を収納可能な有底筒状のアルミ製の外装ケ−スであり、該外装ケ−ス3の開口は封口部材5により塞がれているとともに、該封口部材5には該封口部材5を貫通して外部に露出する電極端子4が形成され、該電極端子4の各極は前記コンデンサ素子2の各電極箔7,8に接続された内部電極タブ10に接続されていて、該電極端子4間の中央部位置となる前記封口部材5上には、過度の電解コンデンサ1内部の圧力上昇による破裂を防止するための圧力弁6が設けられている。
【0016】
これら本実施例において使用されるコンデンサ素子2としては、図6(b)に示すように、アルミニウム等の弁金属からなる陽極箔7と陰極箔8との間にセパレータ9を介在させて、所定の円筒状に巻回した後、プレス加工により長円状に形成されて電解液が含浸されたものや、電解質として固体の二酸化マンガン層を前記陽極箔と陰極箔との間に形成した、固体電解コンデンサ素子等を用いることができる。
【0017】
これらコンデンサ素子2は、該コンデンサ素子2より導出された前記内部電極タブ10を前記電極端子4に接続した後、前述のように有底筒状とされた長円形の外装ケ−ス3に収納され、該開口部に前記封口部材5が配置されるとともに、該外装ケ−ス3の開放端がカ−リング加工されることで封口部材5が固定され、該外装ケ−ス3内部に密閉して収納されるようになっている。
【0018】
以下、本発明の特徴である前記長円型のコンデンサ素子2の製造方法並びに該製造方法における各電極箔7,8と、内部電極タブ10との接続方法について説明する。
【0019】
まず、本実施例の長円型のコンデンサ素子2に用いた前記内部電極タブ10は、図3の断面図にも示すように、その断面視形状がΩ状に加工されている。
【0020】
これら内部電極タブ10のΩ状加工は、図4に示す加工装置により実施しており、予めスリットにより所定幅とされてリール20に巻かれているアルミ製の平坦状リボン10’を、送りロール21並びにガイド22により、その外周に相互に嵌合可能な凹溝24並びに凸溝26が形成された凹ロール23と凸ロール25との間に挿通することで、該平坦状リボン10’の中央部分にトンネル状のドーム部11が形成されて断面視形状がΩ状の内部電極タブ10とされる。
【0021】
このように、本実施例では内部電極タブ10の断面視形状をΩ状としており、このようにすることは、前記内部電極タブ10の加工に際して、平坦状リボン10’が破断したりすることが少なく、連続的な加工が容易であることから好ましいとともに、これら連続的なトンネル状とすることで、冷間圧接接続(コールドウェルド)において位置合わせ等の必要がないことから好ましいが、本発明はこれに限定されるものではなく、これら電極タブの形状としては、後述する冷間圧接接続(コールドウェルド)における電極箔と内部電極タブとの接続部の間に位置する部位において、下型32の上面との間に適宜な空隙、例えば前述のようなΩ状などの曲形状からなるものや、また角形状からなるものが挙げられ、このような適宜な空隙を形成できるものであれば連続的な断面形状や、非連続的な断面形状等の任意の形状を使用することができる。
【0022】
このようにしてΩ状とされた内部電極タブ10は、陽極箔7並びに陰極箔8のそれぞれに、図6(b)のように、これら陽極箔7並びに陰極箔8とセパレータ9とを巻回して円筒状のコンデンサ素子2’とした際に、所定位置となる位置に冷間圧接接続(コールドウェルド)にて、その一端がコンデンサ素子2’の上方側となる端部側へ突出するように接続される。
【0023】
これら冷間圧接接続(コールドウェルド)の装置としては、図5並びに図6に示すように、その上面が平坦面とされて不動に固定された下型32と、その下面に接続部12(12’は接続予定位置を示す)を形成するために突出形成された複数のチップ部31を有し、上下動可能とされた上型30とを備える従来より使用されている通常の冷間圧接接続(コールドウェルド)装置をそのまま使用することができる。
【0024】
本実施例1では、図5並びに図6(a)に示すように、前記下型32の上面に、前記にて断面視Ω状とされた内部電極タブ10を、該内部電極タブ10と下型32の上面との間に、前記ドーム部11によるトンネル状の空隙が形成されるように配置した後、該内部電極タブ10と前記上型30と間に、陽極箔7或いは陰極箔8を挿通し、前記上型30を下方へ押し下げて前記チップ部31と下型32の上面との間に内部電極タブ10と陽極箔7或いは陰極箔8とを狭持、加圧することで、該加圧部に接続部12が形成される。
【0025】
これら内部電極タブ10が接続形成された陽極箔7或いは陰極箔8は、巻き取り後に芯部を中空とするための比較的大径の芯材13に、図6(b)に示すように、セパレータ9を両電極箔7,8の間に介在するようにして巻取られて円筒状のコンデンサ素子2’を作製する。
【0026】
このようにして得たコンデンサ素子2’は、巻き取った陽極箔7或いは陰極箔8並びにセパレータ9の巻き取りがほぐれないように、終端を固定した後、前記芯材13が抜き取られる。
【0027】
この芯材13が抜き取られた中空円筒状のコンデンサ素子2’は、図6(c)に示すように、前記内部電極タブ10が長円の長手水平位置に並ぶ位置となるようにプレス加工により潰されて、長円状のコンデンサ素子2とされる。
【0028】
ここで、電極箔と内部電極タブとの接続部間における電極箔の湾曲に沿うように内部電極タブが変型されたものとして、本実施例1の前記断面視形状がΩ状の内部電極タブ10を用い、前記電極箔7,8との接続部12に、機械的ストレスの印加として、前記図6(c)のプレス加工における機械的なストレスに対し、従来のものに比較して高い耐性があるかを確認する。比較例として図7(a)〜(c)に示すように、前記Ω状の加工をしていない前記平坦状リボン10’を内部電極タブとして使用して両電極箔7,8に対し、冷間圧接接続(コールドウェルド)接続したものを、前記本実施例品と同様に巻き取り、その後プレス加工により長円状のコンデンサ素子として、比較例を作製した。
【0029】
これら本実施例品と比較例との前記冷間圧接接続(コールドウェルド)後の接続部の断面写真(電極タブの長手方向断面)を図8に示す。
【0030】
図8にて明らかなように、平坦状リボン10’を用いて冷間圧接接続(コールドウェルド)接続した比較例のものは、図8(b)に示すように、平坦状リボン10’と電極箔との間に大きな間隙が形成されているのに対し、本実施例品は図8(a)に示すように、前記Ω状の内部電極タブ10を用い、前記のようにトンネル状の空隙を有する状態として冷間圧接接続(コールドウェルド)接続することで、内部電極タブ10が電極箔とともに変形して電極箔に沿うようになり、内部電極タブ10と電極箔との間の間隙が大幅に少なくなっていることが判る。
【0031】
これら本実施例品と比較例品の双方の前記プレス加工後の接続部の拡大断面写真を図9に示す。
【0032】
図9(b)に示す比較例品の場合には、プレス加工前の接続部は、電極箔と電極タブとが良好に接続されているが、プレス加工における機械的ストレスの印加により、電極箔と電極タブとの間隙が接続部近傍において大きく拡大していて、脱落に近い状況となっているのに対し、図9(a)に示す本実施例品においては、プレス加工後においてもプレス加工前に比較して大きな変化がなく、接続部の耐性が高いことが判る。
【0033】
(実施例2)
【0034】
前記実施例1では、前記内部電極タブ10を電極箔に沿うように変形させる方法として、予め内部電極タブ10の断面視形状をΩ状とすることで実施しているが、本実施例2では、これら電極箔に沿うようにする内部電極タブの変形を前記冷間圧接接続(コールドウェルド)接続による接続部の形成時に実施するようにしたものであり、これを実現するために、図10並びに図11に示すように、冷間圧接接続(コールドウェルド)に使用する下型35の上面の前記接続部12となるチップ部の間に位置する領域を円弧状のドーム部36としている。
【0035】
この下型35を用い、図10に示すように、該下型35と上型30との間に平坦状リボン10’と電極箔7,8を配置し、上型30を下型35に押しつけてプレスすることで、前記接続部12間となる位置に形成されているドーム部36により、前記平坦状リボン10’が電極箔7,8に沿うように湾曲されるようになり、前記実施例1と同様に電極箔7,8と内部電極タブ10との間隙が大幅に少ないものとなって、電極箔7,8と内部電極タブ10との一体性が向上し、前記接続部12にプレス加工時における機械的ストレスばかりでなく、使用時のコンデンサ内部の圧力上昇による機械的ストレスや、外部からの衝撃などによる機械的ストレスへの耐性を大幅に向上することができる。
【0036】
尚、本実施例2では、前記ドーム部36を図11に示すように、下型35の上面を横断するように形成しているが、本発明はこれに限定されるものではなく、図12に示す下型38のように、下型38の上面の中央位置のみに円弧状のドーム部37を形成するようにしても良い。
【0037】
また、これら円弧状のドーム部37の幅やドーム形状を前記実施例1の内部電極タブ10のΩ状とほぼ合致する形状とし、このドーム部37に前記内部電極タブ10のドーム部11が嵌入することで、内部電極タブ10の位置合わせを容易に実施できるようにするとともに、接続加工時のズレ等を回避できるようにしても良い。
【0038】
以上、本発明を図面に基づいて説明してきたが、本発明はこれら実施例に限定されるものではなく、本発明の主旨を逸脱しない範囲での変更や追加があっても、本発明に含まれることは言うまでもない。
【0039】
例えば、前記実施例では、冷間圧接接続(コールドウェルド)を主体として説明しているが、本発明はこれに限定されるものではなく、これら冷間圧接接続(コールドウェルド)と同様に、前記チップ部31に超音波を印加して超音波溶接を実施する超音波溶接にあっても、本発明を適用できることは明白である。
【図面の簡単な説明】
【図1】本発明の実施例における長円型電解コンデンサを示す外観斜視図である。
【図2】本発明の実施例における長円型電解コンデンサの構造を示す一部破断側面図である。
【図3】本発明の実施例における電解コンデンサのA−A断面図である。
【図4】本発明の実施例にて用いた内部電極タブの加工装置を示す図である。
【図5】本発明の実施例1にて用いた冷間圧接接続(コールドウェルド)の状況を示す側面図である。
【図6】(a)は、本実施例1における冷間圧接接続(コールドウェルド)工程を示す図であり、(b)は、前記冷間圧接接続(コールドウェルド)工程にて内部電極タブが接続された電極箔の巻回工程を示す図であり、(c)は、前記巻回工程にて得た円筒状のコンデンサ素子を長円状とするためのプレス加工工程を示す図である。
【図7】(a)は、比較例としてΩ状加工されていない内部電極タブを用いた場合の冷間圧接接続(コールドウェルド)工程を示す図であり、(b)は、前記冷間圧接接続(コールドウェルド)工程にて内部電極タブが接続された電極箔の巻回工程を示す図であり、(c)は、前記巻回工程にて得た円筒状のコンデンサ素子を長円状とするためのプレス加工工程を示す図である。
【図8】(a)は、本実施例1の冷間圧接接続(コールドウェルド)工程後の接続部並びに接続部間の状況を示す断面顕微鏡写真であり、(b)は、比較例の冷間圧接接続(コールドウェルド)工程後の接続部並びに接続部間の状況を示す断面顕微鏡写真である。
【図9】(a)は、本実施例1の前記プレス加工前後における接続部の状況を示す断面顕微鏡写真であり、(b)は、比較例の前記プレス加工前後における接続部の状況を示す断面顕微鏡写真である。
【図10】本発明の実施例2にて用いた冷間圧接接続(コールドウェルド)の状況を示す側面図である。
【図11】本発明の実施例2にて用いた冷間圧接接続(コールドウェルド)用の金型を示す外観斜視図である。
【図12】その他の形態の冷間圧接接続(コールドウェルド)用の金型を示す外観斜視図である。
【符号の説明】
l 電解コンデンサ
2 コンデンサ素子(長円状)
2’ コンデンサ素子(円筒状)
3 外装ケース
4 電極端子
5 封口部材
6 圧力弁
7 電極箔(陽極)
8 電極箔(陰極)
9 セパレータ
10 内部電極タブ
10’ 平坦状リボン
11 ドーム部
12 接続部
12’ 接続位置
13 芯材
20 リール
21 送りロール
22 ガイド
23 凹ロール
24 凹溝
25 凸ロール
26 凸溝
30 上型(金型)
31 チップ部
32 下型(金型)
35 下型(金型)
36 ドーム部(突出部)
37 ドーム部(突出部)
38 下型(金型)
[0001]
[Field of the Invention]
The present invention relates to an electrolytic capacitor formed by connecting a capacitor electrode foil and an internal electrode tab, and in particular, at an appropriate interval between the connection portions of the capacitor electrode foil and the internal electrode tab by cold pressure welding or ultrasonic welding connection. The present invention relates to an electrolytic capacitor provided intermittently and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, capacitors, especially aluminum electrolytic capacitors, have been used not only for conventional indoors but also for automobiles, etc., due to the widespread use of inverters, etc. From the viewpoint of heat dissipation (cooling problem), etc., an oblong capacitor has been used.
[0003]
In order to manufacture these elliptical capacitors, it is necessary to make the capacitor element also oval. However, as a method for making the capacitor element oval, first, there is a method for manufacturing a conventional cylindrical capacitor element. Unlike the method of winding each element material with a predetermined oval winding shaft, and secondly, a conventional cylindrical capacitor element manufacturing method, and using a relatively thick winding shaft, a hollow cylindrical capacitor There is a method of forming an element and pressing the hollow cylindrical capacitor element to make it oval.
[0004]
[Problems to be solved by the invention]
In the above two methods, the first method needs to make the winding shaft into an ellipse. As the winding shaft is made into an ellipse, tension control control and element extraction at the time of winding each element material are performed. There is a problem that the control of positioning and the like of the lead and the like becomes very complicated, and not only the device has to be dedicated, but also the development cost of the device becomes enormous.
[0005]
On the other hand, the second method can use the current manufacturing equipment only by using a relatively thick winding shaft, and the cost of the manufacturing equipment can be kept low. In order to press and make an ellipse, mechanical stress is applied to the connection portion between the electrode foil and the internal electrode tab in the capacitor element at the time of pressing, and the electrical connection characteristics of these connection portions are reduced. There has been a problem that the connection may be broken or in the worst case.
[0006]
Further, even in a normal cylindrical electrolytic capacitor, the capacitor element is formed by winding the electrode foil with a certain tightening force through the separator, so that the electrode foil in the capacitor element and the internal electrode tab are connected to each other. Is a state in which mechanical stress is always applied, and in this state, further mechanical stress is applied to the connection portion between the electrode foil and the internal electrode tab due to an external impact or the like. There is a possibility that the electrical connection characteristics of the connecting portion may be deteriorated.
[0007]
Therefore, the present invention has been made paying attention to the above-described problems, and even if mechanical stress is applied to the connection portion between the electrode foil and the internal electrode tab in the capacitor element, the electrical connection of these connection portions is not limited. An object of the present invention is to provide an electrolytic capacitor and a method for manufacturing the same that can greatly reduce the deterioration of the connection characteristics and the breakage of the connection.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problem, the electrolytic capacitor of the present invention has a connection portion formed by cold pressure welding connection or ultrasonic welding connection in the longitudinal direction of the internal electrode tab in a state where the electrode foil and the internal electrode tab are overlapped. In an electrolytic capacitor in which the electrode foil and the internal electrode tab are connected intermittently with an appropriate interval and connected to the electrode foil, the other side facing the one side of the internal electrode tab is tunnel-shaped The dome portion is formed, and internal electrode tabs between the connection portions at the time of connection are deformed together with the electrode foil and are curved between the connection portions so as to follow the electrode foil.
According to this feature, the internal electrode tab is easily deformed together with the electrode foil due to the tunnel-shaped dome , mechanical stress on the connection part due to the increase in internal pressure during use in the electrolytic capacitor, impact from the outside, etc. It is possible to improve the resistance to mechanical stress on the connection portion due to the above, and to improve the yield and reliability of the electrolytic capacitor.
[0009]
The electrolytic capacitor of the present invention is preferably formed into an oval shape by pressing a capacitor element formed into a hollow circle.
In this way, the joint can withstand the mechanical stress applied in these press workings, and an elliptical electrolytic capacitor can be manufactured at low cost without using expensive manufacturing equipment. Can do.
[0010]
The method for producing an electrolytic capacitor of the present invention has an appropriate interval in the longitudinal direction of the internal electrode tab with a connection portion by cold pressure welding or ultrasonic welding connection in a state where the electrode foil and the internal electrode tab are overlapped. In the method of manufacturing an electrolytic capacitor in which the electrode foil and the internal electrode tab are connected intermittently, a tunnel-shaped dome is formed on the other side facing the one side of the internal electrode tab to which the electrode foil is connected. is, the internal electrode tab between the connecting portion is deformed together with the electrode foil at the time of connection, it is characterized in that is curved between every connecting part along the electrode foil.
According to this feature, the internal electrode tab is deformed so as to follow the curve of the electrode foil between the connection portions, so that a gap between the internal electrode tab and the electrode foil between the connection portions is greatly increased. Since the internal electrode tab and the electrode foil will resist against the application of mechanical stress, the electrical connection characteristics of these connections will deteriorate or the connection will break Can be greatly reduced.
[0013]
The method for producing an electrolytic capacitor of the present invention has an appropriate interval in the longitudinal direction of the internal electrode tab with a connection portion by cold pressure welding or ultrasonic welding connection in a state where the electrode foil and the internal electrode tab are overlapped. In the manufacturing method of the electrolytic capacitor in which the electrode foil and the internal electrode tab are connected intermittently, the mold on the electrode foil side of the mold used for the cold pressure welding connection or the ultrasonic welding connection is the connection portion. A dome portion having a plurality of chip portions for forming, and a mold on the other internal electrode tab side deforming the internal electrode tab along the curve of the electrode foil at a position located between the connection portions The internal electrode tab is deformed together with the electrode foil at the time of forming the connection portion by the cold pressure welding connection or ultrasonic welding connection , and is curved for each connection portion along the electrode foil. It is said.
According to this feature, at the same time as the formation of the connection portion, the electrode foil and the internal electrode tab are reliably deformed so as to be almost in contact with each other by the dome portion provided on the other mold. The resistance to mechanical stress of the connecting portion can be made higher.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Example 1
FIG. 1 is an external perspective view showing an oval electrolytic capacitor according to the present embodiment, FIG. 2 is a partially broken side sectional view showing the oval electrolytic capacitor according to the present embodiment, and FIG. It is AA sectional drawing of this ellipse type electrolytic capacitor.
[0015]
The electrolytic capacitor of this example is an oval electrolytic capacitor 1 having an oval shape when viewed from above, as shown in FIG. 1 and FIG. Is a bottomed cylindrical aluminum outer case capable of accommodating an elliptical capacitor element 2 therein, and the opening of the outer case 3 is closed by a sealing member 5. In addition, the sealing member 5 is formed with electrode terminals 4 penetrating the sealing member 5 and exposed to the outside, and the electrodes of the electrode terminal 4 are connected to the electrode foils 7 and 8 of the capacitor element 2. A pressure valve 6 is connected to the internal electrode tab 10 and on the sealing member 5 at the center position between the electrode terminals 4 to prevent rupture due to excessive pressure increase inside the electrolytic capacitor 1. Is provided.
[0016]
As the capacitor element 2 used in these examples, as shown in FIG. 6 (b), a separator 9 is interposed between an anode foil 7 and a cathode foil 8 made of a valve metal such as aluminum, and a predetermined element. After being rolled into a cylindrical shape, an oblong shape formed by pressing and impregnated with an electrolytic solution, or a solid manganese dioxide layer formed as an electrolyte between the anode foil and the cathode foil, a solid An electrolytic capacitor element or the like can be used.
[0017]
These capacitor elements 2 are housed in the oval outer case 3 having a bottomed cylindrical shape as described above after the internal electrode tab 10 led out from the capacitor element 2 is connected to the electrode terminal 4. The sealing member 5 is disposed in the opening, and the opening end of the exterior case 3 is curled to fix the sealing member 5, and the exterior case 3 is hermetically sealed. To be stored.
[0018]
Hereinafter, a manufacturing method of the elliptical capacitor element 2 which is a feature of the present invention and a method of connecting the electrode foils 7 and 8 and the internal electrode tab 10 in the manufacturing method will be described.
[0019]
First, the internal electrode tab 10 used in the elliptical capacitor element 2 of this embodiment is processed to have an Ω shape in cross-sectional view as shown in the cross-sectional view of FIG.
[0020]
The Ω-shaped processing of these internal electrode tabs 10 is carried out by a processing apparatus shown in FIG. 4, and a flat ribbon 10 ′ made of aluminum wound around a reel 20 with a predetermined width by a slit in advance is fed to a feed roll. 21 and the guide 22 are inserted between a concave roll 23 and a convex roll 25 in which a concave groove 24 and a convex groove 26 that can be fitted to each other are formed on the outer periphery of the flat ribbon 10 ′. A tunnel-shaped dome portion 11 is formed in the portion to form an internal electrode tab 10 having a Ω-shaped cross-sectional view.
[0021]
Thus, in the present embodiment, the internal electrode tab 10 has a Ω-shaped cross-sectional view, and this may cause the flat ribbon 10 ′ to break during the processing of the internal electrode tab 10. It is preferable because it is less and continuous processing is easy, and it is preferable to form these continuous tunnels because there is no need for alignment or the like in cold welding connection (cold weld). The shape of the electrode tabs is not limited to this, and the shape of these electrode tabs is the portion of the lower mold 32 that is located between the electrode foil and the internal electrode tab in the cold-weld connection (cold weld) described later. Appropriate gaps between the upper surface, for example, those having a curved shape such as Ω shape as described above, and those having a square shape can be mentioned. If shall be used or a continuous cross-sectional shape, any shape such as a non-continuous cross-sectional shape.
[0022]
As shown in FIG. 6B, the internal electrode tab 10 having the Ω shape is wound around the anode foil 7 and the cathode foil 8 and the separator 9 as shown in FIG. When the cylindrical capacitor element 2 ′ is formed, one end of the capacitor element 2 ′ protrudes to the end side, which is the upper side of the capacitor element 2 ′, by cold-weld connection (cold weld) at a predetermined position. Connected.
[0023]
As shown in FIGS. 5 and 6, the cold pressure connection (cold weld) apparatus includes a lower mold 32 whose upper surface is a flat surface and is fixedly fixed, and a connecting portion 12 (12 on the lower surface). 'Indicates a planned connection position), and has a plurality of tip portions 31 protruding to form an upper die 30 that can be moved up and down, and is conventionally used for ordinary cold welding connection. The (cold weld) apparatus can be used as it is.
[0024]
In the first embodiment, as shown in FIG. 5 and FIG. 6A, the internal electrode tab 10 having the Ω shape in cross section is disposed on the upper surface of the lower mold 32. After arranging so that a tunnel-shaped gap by the dome portion 11 is formed between the upper surface of the mold 32, the anode foil 7 or the cathode foil 8 is placed between the internal electrode tab 10 and the upper mold 30. The upper die 30 is pushed downward and the internal electrode tab 10 and the anode foil 7 or the cathode foil 8 are sandwiched and pressed between the tip portion 31 and the upper surface of the lower die 32 to apply the pressure. A connecting portion 12 is formed in the pressure portion.
[0025]
As shown in FIG. 6B, the anode foil 7 or the cathode foil 8 to which the internal electrode tabs 10 are connected is formed on the core material 13 having a relatively large diameter for hollowing the core after winding. The separator 9 is wound so as to be interposed between the electrode foils 7 and 8 to produce a cylindrical capacitor element 2 ′.
[0026]
In the capacitor element 2 ′ thus obtained, the core member 13 is pulled out after fixing the terminal end so that the wound up anode foil 7 or cathode foil 8 and separator 9 are not loosened.
[0027]
As shown in FIG. 6C, the hollow cylindrical capacitor element 2 ′ from which the core material 13 has been extracted is formed by pressing so that the internal electrode tabs 10 are aligned in the longitudinal horizontal position of the ellipse. By being crushed, an elliptical capacitor element 2 is obtained.
[0028]
Here, it is assumed that the internal electrode tab is deformed so as to follow the curve of the electrode foil between the connection portions of the electrode foil and the internal electrode tab, and the internal electrode tab 10 in which the cross-sectional shape of the first embodiment is Ω-shaped. As a mechanical stress applied to the connecting portion 12 with the electrode foils 7 and 8, the mechanical stress in the press working of FIG. 6C is higher than the conventional one. Check if it exists. As a comparative example, as shown in FIGS. 7A to 7C, the flat ribbon 10 ′ not subjected to the Ω-shaped processing is used as an internal electrode tab, and both electrode foils 7 and 8 are cooled. A comparative example was produced by winding up an intermediate pressure connection (cold weld) connection in the same manner as the product of the present example, and then forming an elliptical capacitor element by pressing.
[0029]
FIG. 8 shows a cross-sectional photograph (longitudinal section of the electrode tab) of the connection part after the cold pressure connection (cold weld) between the product of this example and the comparative example.
[0030]
As is apparent from FIG. 8, the comparative example in which the cold ribbon connection (cold weld) is connected using the flat ribbon 10 ′ is the same as the flat ribbon 10 ′ and the electrode as shown in FIG. Whereas a large gap is formed between the foil and this embodiment, as shown in FIG. 8 (a), the Ω-shaped internal electrode tab 10 is used as shown in FIG. As a result of the cold welding connection (cold weld) connection, the internal electrode tab 10 is deformed along with the electrode foil so as to follow the electrode foil, and the gap between the internal electrode tab 10 and the electrode foil is greatly increased. It can be seen that the number is decreasing.
[0031]
FIG. 9 shows an enlarged cross-sectional photograph of the connection part after the press working of both the product of this example and the comparative example product.
[0032]
In the case of the comparative example product shown in FIG. 9 (b), the electrode foil and the electrode tab are well connected to each other before the press working, but the electrode foil is applied by applying mechanical stress in the press working. The gap between the electrode tab and the electrode tab is greatly enlarged in the vicinity of the connecting portion, and the situation is close to falling off. On the other hand, in the product of this example shown in FIG. It can be seen that there is no significant change compared to before and the resistance of the connection is high.
[0033]
(Example 2)
[0034]
In the first embodiment, as a method of deforming the internal electrode tab 10 so as to follow the electrode foil, the internal electrode tab 10 is implemented in advance by making the cross-sectional shape of the internal electrode tab 10 Ω, but in the second embodiment, The internal electrode tabs are deformed along the electrode foils when the connection part is formed by the cold pressure connection (cold weld) connection. In order to realize this, FIG. As shown in FIG. 11, an arc-shaped dome portion 36 is an area located between the chip portions that serve as the connection portions 12 on the upper surface of the lower die 35 used for cold pressure welding (cold weld).
[0035]
Using this lower die 35, as shown in FIG. 10, a flat ribbon 10 'and electrode foils 7 and 8 are arranged between the lower die 35 and the upper die 30, and the upper die 30 is pressed against the lower die 35. The flat ribbon 10 ′ is bent along the electrode foils 7 and 8 by the dome portion 36 formed at the position between the connection portions 12 by pressing, and the embodiment described above. 1, the gap between the electrode foils 7 and 8 and the internal electrode tab 10 is greatly reduced, and the integrity of the electrode foils 7 and 8 and the internal electrode tab 10 is improved, and the connecting portion 12 is pressed. Not only mechanical stress during processing, but also resistance to mechanical stress due to an increase in pressure inside the capacitor during use, and mechanical stress due to external impact can be greatly improved.
[0036]
In the second embodiment, the dome portion 36 is formed so as to cross the upper surface of the lower die 35 as shown in FIG. 11, but the present invention is not limited to this, and FIG. An arc-shaped dome portion 37 may be formed only at the center position of the upper surface of the lower die 38 as in the lower die 38 shown in FIG.
[0037]
Further, the width and dome shape of these arc-shaped dome portions 37 are substantially matched with the Ω shape of the internal electrode tab 10 of the first embodiment, and the dome portion 11 of the internal electrode tab 10 is fitted into the dome portion 37. By doing so, it is possible to easily align the internal electrode tabs 10 and to avoid misalignment during connection processing.
[0038]
The present invention has been described with reference to the drawings. However, the present invention is not limited to these embodiments, and modifications and additions within the scope of the present invention are included in the present invention. Needless to say.
[0039]
For example, in the above-described embodiment, the description is mainly made of cold pressure welding (cold weld), but the present invention is not limited to this, and similarly to these cold pressure welding (cold weld), It is apparent that the present invention can be applied to ultrasonic welding in which ultrasonic waves are applied to the tip portion 31 to perform ultrasonic welding.
[Brief description of the drawings]
FIG. 1 is an external perspective view showing an oval electrolytic capacitor in an embodiment of the present invention.
FIG. 2 is a partially broken side view showing the structure of an oval electrolytic capacitor in an example of the present invention.
FIG. 3 is a cross-sectional view taken along line AA of the electrolytic capacitor in the example of the present invention.
FIG. 4 is a diagram showing an internal electrode tab processing apparatus used in an example of the present invention.
FIG. 5 is a side view showing a state of cold pressure welding (cold weld) used in Example 1 of the present invention.
6A is a view showing a cold pressure connection (cold weld) process in the first embodiment, and FIG. 6B is a view showing an internal electrode tab in the cold pressure connection (cold weld) process. It is a figure which shows the winding process of the connected electrode foil, (c) is a figure which shows the press work process for making the cylindrical capacitor | condenser element obtained at the said winding process into an ellipse shape.
FIG. 7A is a diagram showing a cold welding connection (cold weld) process in the case of using an internal electrode tab not processed in Ω-shape as a comparative example, and FIG. 7B is a drawing showing the cold welding process; It is a figure which shows the winding process of the electrode foil in which the internal electrode tab was connected in the connection (cold weld) process, (c) is a cylindrical capacitor element obtained in the said winding process, and is made into ellipse shape. It is a figure which shows the press work process for performing.
8A is a cross-sectional photomicrograph showing the connection part after the cold pressure welding (cold weld) process of Example 1 and the state between the connection parts, and FIG. 8B is a cold micrograph of the comparative example. It is a cross-sectional photomicrograph which shows the condition between the connection part after a pressure welding connection (cold weld) process, and a connection part.
9A is a cross-sectional micrograph showing the state of the connection part before and after the press working in Example 1, and FIG. 9B shows the state of the connection part before and after the press working of the comparative example. It is a cross-sectional micrograph.
FIG. 10 is a side view showing a state of cold pressure welding (cold weld) used in Example 2 of the present invention.
FIG. 11 is an external perspective view showing a die for cold welding connection (cold weld) used in Example 2 of the present invention.
FIG. 12 is an external perspective view showing a die for cold pressure welding (cold weld) in another form.
[Explanation of symbols]
l Electrolytic capacitor 2 Capacitor element (oval shape)
2 'Capacitor element (cylindrical)
3 Exterior case 4 Electrode terminal 5 Sealing member 6 Pressure valve 7 Electrode foil (anode)
8 Electrode foil (cathode)
9 Separator 10 Internal electrode tab 10 'Flat ribbon 11 Dome part 12 Connection part 12' Connection position 13 Core material 20 Reel 21 Feed roll 22 Guide 23 Concave roll 24 Concave roll 25 Convex roll 26 Convex groove 30 Upper mold (mold)
31 Chip part 32 Lower mold (mold)
35 Lower mold (mold)
36 Dome (projection)
37 Dome (projection)
38 Lower mold (mold)

Claims (4)

電極箔と内部電極タブとを重ね合わせた状態で、冷間圧接接続又は超音波溶接接続による接続部を内部電極タブの長手方向に適宜な間隔を有して間歇的に設けて前記電極箔と内部電極タブを接続して成る電解コンデンサにおいて、前記電極箔が接続される内部電極タブの一方側と対向する他方側にはトンネル状のドーム部が形成され、接続時における前記接続部間の内部電極タブが電極箔とともに変形して前記電極箔沿うように接続部間ごとに湾曲していることを特徴とする電解コンデンサ。In a state where the electrode foil and the internal electrode tab are overlapped, a connection portion by cold pressure welding connection or ultrasonic welding connection is provided intermittently with an appropriate interval in the longitudinal direction of the internal electrode tab, and the electrode foil In an electrolytic capacitor formed by connecting internal electrode tabs, a tunnel-shaped dome is formed on the other side opposite to one side of the internal electrode tab to which the electrode foil is connected. electrolytic capacitor electrode tabs, characterized in that the deformed together with the electrode foil is curved between every connecting part along the electrode foil. 前記電解コンデンサは、中空円形に形成されたコンデンサ素子をプレス加工することで長円状とされている請求項1に記載の電解コンデンサ。  The electrolytic capacitor according to claim 1, wherein the electrolytic capacitor is formed into an oval shape by pressing a capacitor element formed into a hollow circle. 電極箔と内部電極タブとを重ね合わせた状態で、冷間圧接接続又は超音波溶接接続による接続部を内部電極タブの長手方向に適宜な間隔を有して間歇的に設けて前記電極箔と内部電極タブを接続する電解コンデンサの製造方法において、前記電極箔が接続される内部電極タブの一方側と対向する他方側にはトンネル状のドーム部が形成され、接続時における前記接続部間の内部電極タブを前記電極箔とともに変形させて、前記電極箔沿うように接続部間ごとに湾曲させたことを特徴とする電解コンデンサの製造方法。In a state where the electrode foil and the internal electrode tab are overlapped, a connection portion by cold pressure welding connection or ultrasonic welding connection is provided intermittently with an appropriate interval in the longitudinal direction of the internal electrode tab, and the electrode foil In the method of manufacturing an electrolytic capacitor for connecting an internal electrode tab, a tunnel-shaped dome is formed on the other side opposite to one side of the internal electrode tab to which the electrode foil is connected . A method of manufacturing an electrolytic capacitor, wherein an internal electrode tab is deformed together with the electrode foil , and is bent for each connection portion along the electrode foil. 電極箔と内部電極タブとを重ね合わせた状態で、冷間圧接接続又は超音波溶接接続による接続部を内部電極タブの長手方向に適宜な間隔を有して間歇的に設けて前記電極箔と内部電極タブを接続する電解コンデンサの製造方法において、前記冷間圧接接続又は超音波溶接接続に使用する金型の電極箔側の金型は前記接続部を形するための複数のチップ部を有し、他方の内部電極タブ側の金型は前記接続部間に位置する部位に、前記内部電極タブを前記電極箔の湾曲に沿うように変形させるドーム部を設け、前記冷間圧接接続又は超音波溶接接続による接続部の形成時に、内部電極タブを前記電極箔とともに変形させて、前記電極箔に沿うように接続部間ごとに湾曲させたことを特徴とする電解コンデンサの製造方法。 In a state where the electrode foil and the internal electrode tab are overlapped, a connection portion by cold pressure welding connection or ultrasonic welding connection is provided intermittently with an appropriate interval in the longitudinal direction of the internal electrode tab, and the electrode foil In the manufacturing method of the electrolytic capacitor for connecting the internal electrode tab, the mold on the electrode foil side of the mold used for the cold welding connection or the ultrasonic welding connection has a plurality of chip parts for forming the connection part. The mold on the other internal electrode tab side is provided with a dome portion that deforms the internal electrode tab along the curve of the electrode foil at a position located between the connection portions. An electrolytic capacitor manufacturing method, wherein , when forming a connection portion by sonic welding connection, an internal electrode tab is deformed together with the electrode foil and curved between the connection portions along the electrode foil .
JP2001394229A 2001-12-26 2001-12-26 Electrolytic capacitor and manufacturing method thereof Expired - Fee Related JP4259013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001394229A JP4259013B2 (en) 2001-12-26 2001-12-26 Electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001394229A JP4259013B2 (en) 2001-12-26 2001-12-26 Electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003197472A JP2003197472A (en) 2003-07-11
JP4259013B2 true JP4259013B2 (en) 2009-04-30

Family

ID=27601024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001394229A Expired - Fee Related JP4259013B2 (en) 2001-12-26 2001-12-26 Electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4259013B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6028438B2 (en) * 2012-07-26 2016-11-16 日本ケミコン株式会社 Capacitor manufacturing method
TWI604483B (en) * 2012-04-20 2017-11-01 日本貴彌功股份有限公司 Capacitor and its manufacturing method
JP6047971B2 (en) * 2012-07-18 2016-12-21 日本ケミコン株式会社 Capacitor manufacturing method
JP2016021596A (en) * 2015-10-02 2016-02-04 日本ケミコン株式会社 Method for manufacturing capacitor

Also Published As

Publication number Publication date
JP2003197472A (en) 2003-07-11

Similar Documents

Publication Publication Date Title
EP1033729B1 (en) Capacitor
US20040086783A1 (en) Electric battery assembly and method of manufacture
EP2133896B1 (en) Electrolytic capacitor
KR20140002460A (en) Wound type battery and method for fabricating same
JP5229440B2 (en) Electrochemical devices
JP3252846B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP4259013B2 (en) Electrolytic capacitor and manufacturing method thereof
US9437367B2 (en) Method of manufacturing a winding-type solid electrolytic capacitor package structure without using a lead frame
JP4918804B2 (en) Capacitor
JP5105241B2 (en) Electrolytic capacitor
KR20150013553A (en) Capacitor and method for manufacturing same
JP2009010069A (en) Lead wire connection device for electrode foil for capacitor
JP2012079882A (en) Capacitor and manufacturing method therefor
JP4864767B2 (en) Electronic components
JP2008091562A (en) Electrolytic capacitor
JPH1197301A (en) Cylindrical capacitor member and its manufacture
CN112640018B (en) Lead terminal and method for manufacturing the same
JP2000306789A (en) Capacitor having case provided with protective mechanism and manufacture thereof
JP3829536B2 (en) Electrolytic capacitor
JP4678166B2 (en) Electrolytic capacitor
JP2004221179A (en) Aluminum electrolytic capacitor
JP2013026293A (en) Capacitor and method of manufacturing the same
JPH01238009A (en) Manufacture of electrolytic capacitor element
JP6028438B2 (en) Capacitor manufacturing method
JPH11111326A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4259013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees