JP4252884B2 - Optical connection structure and optical connection method - Google Patents

Optical connection structure and optical connection method Download PDF

Info

Publication number
JP4252884B2
JP4252884B2 JP2003388708A JP2003388708A JP4252884B2 JP 4252884 B2 JP4252884 B2 JP 4252884B2 JP 2003388708 A JP2003388708 A JP 2003388708A JP 2003388708 A JP2003388708 A JP 2003388708A JP 4252884 B2 JP4252884 B2 JP 4252884B2
Authority
JP
Japan
Prior art keywords
optical
connection
optical fiber
connecting member
transmission medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003388708A
Other languages
Japanese (ja)
Other versions
JP2005148580A (en
Inventor
正義 鈴木
恭一 佐々木
辰志 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2003388708A priority Critical patent/JP4252884B2/en
Publication of JP2005148580A publication Critical patent/JP2005148580A/en
Application granted granted Critical
Publication of JP4252884B2 publication Critical patent/JP4252884B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、光伝送媒体同士、あるいは光伝送媒体と光部品との光学接続構造とそれを用いた光学接続方法に関するものである。   The present invention relates to an optical connection structure between optical transmission media or between an optical transmission medium and an optical component, and an optical connection method using the same.

一般的な光ファイバの接続方法として、光ファイバ同士を突き合わせることによる物理的接続方法がある。物理的接続には、メカニカルスプライスや光コネクタを用いる例があるが、両者ともに光ファイバ端面に軸方向の押圧力をかけることによって物理的な接続を可能にしている。光コネクタによる接続の場合は、一般的には光ファイバが脆くて弱いために光ファイバをフェルールに挿入して保護し、それにより、光ファイバの端面の物理的接触を可能としている。 As a general optical fiber connection method, there is a physical connection method by abutting optical fibers together. Examples of the physical connection include a mechanical splice and an optical connector, both of which enable physical connection by applying an axial pressing force to the end face of the optical fiber. In the case of connection using an optical connector, since the optical fiber is generally brittle and weak, the optical fiber is inserted into a ferrule for protection, thereby enabling physical contact of the end face of the optical fiber.

この物理的な接続において、光ファイバの位置決め精度や端面形状は、接続特性に大きく影響し、光ファイバの端面の角度のずれや端面形状が荒れていたりすると、突き合わせた光ファイバ端部間に空気が入ることにより、接続端面でフレネル反射が大きくなる為、接続損失が大きくなる。これを改良する方法として、光ファイバの端面あるいは光ファイバの端面とフェルールを高度な研磨処理をする方法があるが、研磨処理には多大な時間と経費が必要である点が大きな課題となっていた。 In this physical connection, the positioning accuracy and end face shape of the optical fiber greatly affect the connection characteristics. If the angle deviation of the end face of the optical fiber or the end face shape is rough, the air between the ends of the abutted optical fibers Since the Fresnel reflection increases at the connection end face, the connection loss increases. As a method for improving this, there is a method in which the end face of the optical fiber or the end face of the optical fiber and the ferrule are subjected to an advanced polishing process. However, the polishing process requires a great deal of time and expense. It was.

そのため、研磨工程を必要とせずに、カットしたままの状態の光ファイバを接続する方法が検討されてきた。その一つの方法として、光ファイバの接続端面に光ファイバのコアと同等かあるいは近似した屈折率を有する液状あるいはゲル状の屈折率整合剤を介在させて接続する方法が提案されている。これは、その屈折率整合剤を光ファイバ端面に塗布し、光ファイバを突き合わせることによって、接続端面の空気の侵入を防ぐことで、空気によって生じるフレネル反射を回避し、接続損失を低減する方法である。しかしながら、この場合に使用する屈折率整合剤はシリコーン系やパラフィン系の液状、あるいはグリース状のものが一般的に使用されているため、非常に小さな面積である光ファイバ端面に一定量塗布することは困難であった。また過剰に屈折率整合剤が塗布されると、接続部周囲の汚染や、それによる埃などの付着が問題となっていた。 Therefore, a method for connecting an optical fiber in a cut state without requiring a polishing step has been studied. As one of the methods, there is proposed a method in which a liquid or gel-like refractive index matching agent having a refractive index equivalent to or close to that of the optical fiber core is connected to the connection end face of the optical fiber. This is a method for avoiding Fresnel reflection caused by air and reducing connection loss by applying the refractive index matching agent to the end face of the optical fiber and butting the optical fiber to prevent air from entering the end face. It is. However, since the refractive index matching agent used in this case is generally a silicone-based or paraffin-based liquid or grease-like material, a certain amount is applied to the end face of the optical fiber having a very small area. Was difficult. Further, when the refractive index matching agent is applied excessively, contamination around the connecting portion and adhesion of dust or the like due to the contamination have been a problem.

これに対し、固体の屈折率整合部材を用いる方法が検討されてきた。その一つに、光ファイバの端面に透明な整合材フィルムを直接密着するように取りつける方法(特許文献1)がある。この方法では、接続部周囲の汚染等の問題を解決することはできるが、フィルムに光ファイバを突き当てた時の光ファイバ端部の移動可能な距離は、フィルムの内部変形量に相当する距離であり、おのずから限界があった。したがって、光ファイバとフィルムとの十分な密着性を得ることはできず、結果として良好な光学特性を得られないという問題があった。また、整合材フィルムを取付けたアダプタに光ファイバを固定するために、光ファイバを所定の位置に設置するには、高度な位置合わせを必要とし、作業性を低下させていた。さらに光ファイバ端部の移動量が小さいため、光ファイバ端部に応力が集中してフィルムの保持部周辺が破れたり、光ファイバが破損する恐れがあった。 On the other hand, a method using a solid refractive index matching member has been studied. One of them is a method (Patent Document 1) in which a transparent matching material film is directly attached to the end face of an optical fiber. Although this method can solve problems such as contamination around the connection part, the movable distance of the optical fiber end when the optical fiber is abutted against the film is a distance corresponding to the amount of internal deformation of the film. And there was naturally a limit. Therefore, there is a problem that sufficient adhesion between the optical fiber and the film cannot be obtained, and as a result, good optical characteristics cannot be obtained. Further, in order to fix the optical fiber to the adapter to which the alignment material film is attached, in order to install the optical fiber at a predetermined position, a high degree of alignment is required and workability is lowered. Further, since the movement amount of the end portion of the optical fiber is small, there is a possibility that stress concentrates on the end portion of the optical fiber and the periphery of the holding portion of the film is broken or the optical fiber is broken.

また、光透過性で光ファイバコアに近い屈折率を有する樹脂の層をフェルール端面に密着させて設け、光ファイバを突き当てて接続する方法(特許文献2)がある。この樹脂の場合もフィルムの場合と同様に上記問題を解決することができず、さらに樹脂は2つのフェルールに挟まれているため、光ファイバ同士の接続において、光ファイバが突き出した場合、樹脂が光ファイバの突き出し量にあった変形をすることが困難であり、接続時に光ファイバの変形、破壊が起きる可能性があった。
特許第2676705号公報 特開2002−31745号公報
Further, there is a method (Patent Document 2) in which a resin layer having a light transmittance and a refractive index close to that of an optical fiber core is provided in close contact with an end face of a ferrule, and the optical fiber is abutted and connected. In the case of this resin as well as the case of the film, the above problem cannot be solved, and since the resin is sandwiched between two ferrules, when the optical fiber protrudes in the connection between the optical fibers, It is difficult to deform the optical fiber in accordance with the protruding amount of the optical fiber, and the optical fiber may be deformed or broken during connection.
Japanese Patent No. 2676705 JP 2002-31745 A

接続部材を光ファイバ同士の端部に挟んで光学接続する構造においては、上記のような種々の問題が発生していた。それらの問題を解決すべく、本発明者らは、従来の手段よりも単純な構造で、接続部材を光ファイバに十分密着させることができ、接続時の光ファイバ端面の位置に自由度を持たせることができ、また多心であっても光学安定性に優れ、作業性の良い光学接続構造及び光学接続方法を提案しようとするものである。   In the structure in which the connecting member is optically connected between the end portions of the optical fibers, various problems as described above have occurred. In order to solve these problems, the present inventors have a simpler structure than the conventional means, can sufficiently attach the connecting member to the optical fiber, and have a degree of freedom in the position of the end face of the optical fiber at the time of connection. The present invention is to propose an optical connection structure and an optical connection method which are excellent in optical stability and workability even with a multi-core structure.

上記の課題を解決する手段として、本発明者らは、光伝送媒体および光学部品と屈折率整合性を有する接続部材が、互いに対向する該光伝送媒体の端面もしくは該光伝送媒体と該光学部品との間に介在し、前記接続部材は、該光伝送媒体の端面を接合する際に生じる起伏を伴って、かつ、該光伝送媒体の軸方向に伸びて変形することを特徴とする光学接続構造を提案する(請求項1)。さらに、前記接続部材が、光伝送媒体の端面形状に対応して凹部をともなって変形していることを特徴とする光学接続構造を提案する(請求項2)。

As means for solving the above-mentioned problems, the present inventors have proposed that the connection member having refractive index matching with the optical transmission medium and the optical component is opposite to the end face of the optical transmission medium facing each other or the optical transmission medium and the optical component. An optical connection characterized in that the connecting member is deformed with undulations that occur when joining the end faces of the optical transmission medium and extending in the axial direction of the optical transmission medium. A structure is proposed (claim 1). Furthermore, an optical connection structure is proposed in which the connection member is deformed with a recess corresponding to the shape of the end face of the optical transmission medium.

本発明の光学接続構造においては、前記接続部材の接続点における接続後の厚みが、50μm以下であることが好ましく(請求項3)、光伝送媒体と接続部材が接する面の中心から、接続部材の周縁部までの距離の最小値Dと該ファイバの半径Rが、R<D≦60Rの関係を満たすことが好ましい(請求項4)。また、接続部材の周縁部には支持材が具備されている場合(請求項5)でも、上記接続される光伝送媒体が多心の光ファイバである場合(請求項6)でも、本発明は有効に適用できる。 In the optical connection structure of the present invention, the thickness after connection at the connection point of the connection member is preferably 50 μm or less (Claim 3), from the center of the surface where the optical transmission medium and the connection member are in contact with each other. It is preferable that the minimum value D of the distance to the peripheral edge of the fiber and the radius R of the fiber satisfy the relationship of R <D ≦ 60R. Further, even when the peripheral portion of the connecting member is provided with a support material (Claim 5), even when the optical transmission medium to be connected is a multi-core optical fiber (Claim 6), the present invention It can be applied effectively.

また、本発明の光学接続方法は、光伝送媒体および光学部品と屈折率整合性を有する接続部材を用いて、該光伝送媒体の端面同士もしくは該光伝送媒体の端面と光学部品を接続する方法であって、互いに対向する該光伝送媒体の端面、もしくは該光伝送媒体の端面と光学部品の間に接続部材を配置する工程と、一方の光伝送媒体の端面を接続部材に密着するまで移動する工程と、該一方の光伝送媒体の端面を、前記接続部材が波状の変形をともなって他方の該光伝送媒体もしくは光学部品に接触するまでさらに移動する工程、とからなることを特徴とする(請求項7)。本方法においては、一方の光伝送媒体の端面を接続部材に密着するまで移動する工程と、該一方の光伝送媒体の端面を、前記接続部材が波状の変形をともなって他方の該光伝送媒体もしくは光学部品に接触するまでさらに移動する工程が連続的に行なわれても、断続的に行なわれてもどちらでも構わない。 Further, the optical connection method of the present invention is a method of connecting the end surfaces of the optical transmission medium or the end surfaces of the optical transmission medium and the optical component using a connection member having refractive index matching with the optical transmission medium and the optical component. The step of disposing the connecting member between the end faces of the optical transmission medium facing each other or between the end face of the optical transmission medium and the optical component, and moving until the end face of one of the optical transmission media is in close contact with the connecting member And a step of further moving the end face of the one optical transmission medium until the connecting member comes into contact with the other optical transmission medium or optical component with wave-like deformation. (Claim 7). In this method, the step of moving the end face of one optical transmission medium until it is in close contact with the connecting member, and the end face of the one optical transmission medium are moved along the other optical transmission medium with the connecting member being wavyly deformed. Alternatively, the process of moving further until it contacts the optical component may be performed continuously or intermittently.

本発明は、光伝送媒体および光学部品と屈折率整合性を有する接続部材が、互いに対向する該光伝送媒体の端面もしくは該光伝送媒体と該光学部品との間に波状に変形して介在することを特徴とする光学接続構造であって、光伝送媒体と接続部材を密着させることができ、低損失な光学接続を実現することができる。また、光伝送媒体の端面の位置に自由度が増すために、光伝送媒体に過剰な押圧力がかからなくなり、光伝送媒体及び接続部材が破損することもなく、また接続作業性が向上する。さらに、複数本の光伝送媒体の接続であっても簡単に接続でき、接続部材が、光伝送媒体のそれぞれの突き当てに対して変形することにより、光伝送媒体の突き出し量のばらつきがあっても各光伝送媒体と接続部材が密着し、光伝送媒体及び接続部材に破壊が起こることなく安定した光学接続を行うことができる。 According to the present invention, a connecting member having refractive index matching with the optical transmission medium and the optical component is deformed in a wave shape between the end surfaces of the optical transmission medium facing each other or between the optical transmission medium and the optical component. In this optical connection structure, the optical transmission medium and the connection member can be brought into close contact with each other, and low-loss optical connection can be realized. In addition, since the degree of freedom increases in the position of the end face of the optical transmission medium, an excessive pressing force is not applied to the optical transmission medium, the optical transmission medium and the connection member are not damaged, and connection workability is improved. . Furthermore, even when a plurality of optical transmission media are connected, they can be easily connected, and the connecting member is deformed with respect to each abutment of the optical transmission medium, so that there is a variation in the protruding amount of the optical transmission medium. In addition, each optical transmission medium and the connection member are in close contact with each other, and stable optical connection can be performed without breaking the optical transmission medium and the connection member.

以下、本発明の光学接続構造を説明する。本発明で用いられる光伝送媒体は、上記で示した光ファイバや光導波路などがあるが、その種類は特に限定されない。光ファイバは何等限定されるものではなく、その用途等に応じて、適宜選択すればよく、例えば、石英、プラスチック等の材料からなる光ファイバを用いることができる。また光導波路はポリイミド光導波路、PMMA光導波路、エポキシ樹脂光導波路などが利用される。また、使用する2つの光伝送媒体の種類が異なっていても、また異なる外径の光伝送媒体であってもコア径が同じであれば、本発明を適用することができる。なお、光ファイバの本数、光導波路の枚数も何等限定されない。 Hereinafter, the optical connection structure of the present invention will be described. Examples of the optical transmission medium used in the present invention include the optical fiber and the optical waveguide described above, but the type is not particularly limited. The optical fiber is not limited in any way, and may be appropriately selected according to its use. For example, an optical fiber made of a material such as quartz or plastic can be used. As the optical waveguide, a polyimide optical waveguide, a PMMA optical waveguide, an epoxy resin optical waveguide, or the like is used. In addition, the present invention can be applied as long as the core diameter is the same even if the types of the two optical transmission media to be used are different or optical transmission media having different outer diameters. The number of optical fibers and the number of optical waveguides are not limited at all.

光ファイバと接続する光学部品には、上記光学レンズの他にも、フィルタ等があげられるが、光学部品の種類に関しては特に限定されるものではない。光学レンズとしては、例えば両凸、両凹、凹凸、平凸、非球面などの各種形状のレンズ、コリメートレンズ、ロッドレンズなどが適用でき、フィルタとしては、一般光通信用フィルタの他、多層膜フィルタやポリイミドフィルタなどが適用できる。 The optical component connected to the optical fiber includes a filter in addition to the optical lens, but the type of the optical component is not particularly limited. As the optical lens, for example, lenses having various shapes such as biconvex, biconcave, uneven, plano-convex, and aspherical surfaces, collimating lenses, rod lenses, etc. can be applied. As filters, in addition to general optical communication filters, multilayer films A filter, a polyimide filter, etc. are applicable.

本発明の接続部材は、光伝送媒体との間で、および光学部品との間で屈折率整合性を有することが必要である。この場合の屈折率整合性とは、接続部材の屈折率と光伝送媒体および光部品の屈折率との近接の程度をいう。したがって、本発明を構成する接続部材の屈折率は、光伝送媒体および光学部品の屈折率に近いものであれば特に限定されないが、フレネル反射の回避による伝送損失の面から、それらの屈折率の差が±0.1以内であることが好ましく、さらにより好ましくは±0.05以内であるとよい。なお、仮に光伝送媒体と光学部品の屈折率の差が大きい場合には、光伝送媒体と光学部品の屈折率の平均値と接続部材の屈折率が上記の範囲内で、近接していることが好ましい。 The connecting member of the present invention needs to have refractive index matching with the optical transmission medium and with the optical component. The refractive index matching in this case refers to the degree of proximity between the refractive index of the connecting member and the refractive indexes of the optical transmission medium and the optical component. Accordingly, the refractive index of the connecting member constituting the present invention is not particularly limited as long as it is close to the refractive index of the optical transmission medium and the optical component, but from the aspect of transmission loss due to avoidance of Fresnel reflection, The difference is preferably within ± 0.1, and even more preferably within ± 0.05. If the difference in refractive index between the optical transmission medium and the optical component is large, the average value of the refractive index between the optical transmission medium and the optical component and the refractive index of the connecting member are close to each other within the above range. Is preferred.

また、接続部材は、光ファイバ同士、あるいは光ファイバと光学部品の間に挟むことができ、接続時に波状に変形できる柔軟性を有するものであれば、その構成材料は如何なるものも使用でき、例えばポリエチレン、ポリプロピレン、ポリフッ化ビニリデン等の多孔質基材、アクリル系、エポキシ系、ビニル系、シリコーン系、ゴム系、ウレタン系、メタクリル系、ナイロン系、ビスフェノール系、ジオール系、ポリイミド系、フッ素化エポキシ系、フッ素化アクリル系などの基材等を使用することができ、上記材料に架橋剤、添加剤、軟化剤等を添加し、任意に柔軟性を調節してよく、耐水性や耐熱性を付加してもよい。また、接続部材の構造は上記材料を複合してシート基材に塗布したり、組み合わせる等、光学的に問題が無ければ多層構造であってもかまわない。さらに、着脱して利用する際には、復元性を有する材料を選択するのが好ましい。さらにまた、接続部材を変形させる手段は、接続時に波状に変形していればよく、接続部材を縮めて変形させたり、接続部材の位置を移動させて、接続部材の変形の程度を調節してもかまわない。 In addition, the connecting member can be sandwiched between optical fibers or between an optical fiber and an optical component, and any material can be used as long as it has flexibility that can be deformed in a wavy shape at the time of connection. Porous base materials such as polyethylene, polypropylene, polyvinylidene fluoride, acrylic, epoxy, vinyl, silicone, rubber, urethane, methacryl, nylon, bisphenol, diol, polyimide, fluorinated epoxy Base materials such as fluorinated acrylics, etc. can be used, and crosslinking agents, additives, softeners, etc. may be added to the above materials, and the flexibility may be arbitrarily adjusted to improve water resistance and heat resistance. It may be added. Further, the structure of the connecting member may be a multilayer structure as long as there is no optical problem such as combining the above materials and applying or combining them on the sheet base material. Furthermore, it is preferable to select a material having resilience when it is used by attaching and detaching. Furthermore, the means for deforming the connecting member only needs to be deformed in a wavy shape at the time of connection. The connecting member is contracted and deformed, or the position of the connecting member is moved to adjust the degree of deformation of the connecting member. It doesn't matter.

接続部材の厚みについても特に限定しないが、厚すぎると光損失が起きやすくなり、また薄すぎると取り扱いが難しくなり、強度も弱くなるため、光学接続において要求する接続損失レベルを満たし、適当な強度を持つような膜厚になるよう適宜選択すればよい。また、接続部材の形状は、例えば円形状、楕円形状、多角形状などを取りうるが、特に限定せず、使用環境及び接続に用いる光ファイバや光学部品に適した形状のものを用いればよい。さらに、そのサイズも使用環境及び接続に用いる光ファイバや光学部品に適したものを適宜選択してよい。 The thickness of the connecting member is not particularly limited, but if it is too thick, light loss is likely to occur, and if it is too thin, it becomes difficult to handle and the strength becomes weak. The film thickness may be selected as appropriate. The shape of the connecting member may be, for example, a circular shape, an elliptical shape, or a polygonal shape, but is not particularly limited, and a shape suitable for the use environment and the optical fiber or optical component used for connection may be used. Furthermore, the size may be appropriately selected according to the use environment and the optical fiber or optical component used for connection.

接続部材の交換は、例えば接続部材表面に埃、あるいは塵が付着したなどの場合に適宜行えばよい。また、交換前の異物混入を防ぐために、接続部材の片面あるいは両面に保護フィルムを貼り付けておいても良い。 The replacement of the connecting member may be appropriately performed when, for example, dust or dust adheres to the surface of the connecting member. Further, a protective film may be attached to one side or both sides of the connection member in order to prevent foreign matter from being mixed before replacement.

接続部材が波状に変形するとは、後述の図1(c)、図6(c)、および図7に示す接続部材の形状を称し、光ファイバの端面を接続部材の表面に接合する際に生じる起伏を伴った変形を意味する。図7についていうならば、当該変形により接続の前後で光ファイバの端面の位置が変動し、対向する光ファイバの端面との密着性が保持される。 The deformation of the connecting member into a wave shape refers to the shape of the connecting member shown in FIGS. 1C, 6C, and 7 described later, and occurs when the end face of the optical fiber is joined to the surface of the connecting member. Deformation with undulations. Referring to FIG. 7, the deformation causes the position of the end face of the optical fiber to fluctuate before and after connection, and the adhesion with the end face of the opposing optical fiber is maintained.

次に、本発明の光学接続構造の実施態様について、図面を参照して説明する。なお、以下の説明では、光伝送媒体として、光ファイバを用いた例について述べる。図1(a)〜(c)は、本発明における光学接続構造の一例および光学接続方法の一例を示す工程図である。図1において、端部の被覆を除去し、カットした光ファイバ1a、1bと、屈折率整合性を有する接続部材2は一定の間隔を置いて設置されている(図1(a))。次に、一方の光ファイバ1aの端部を接続部材2に密着させるまで移動させる(図1(b))。さらに、接続部材2を変形させながら光ファイバ1aを他方の光ファイバ1bと接続部材を接触させるまで移動させる(図1(c))。それにより、光ファイバ1a、1bを光学的に接続した光学接続構造が形成される。この場合、接続部材2が波状に変形する。このように、接続部材2が、光ファイバの軸方向に伸びて変形することによって、光ファイバ1a、1bと接続部材2がより密着し、それにより光ファイバ間の光損失を非常に小さくすることができる。また、光ファイバの接続の際には、光ファイバの接続位置は接続部材が波状に変形する範囲内のどこでも可能なため、光ファイバに過剰な押圧力がかかりにくくなり、光ファイバ並びに接続部材の破損を防ぐことができる。さらに、もう一方の光ファイバを接続部材に密着させ、次いで接続部材と他方の光ファイバを接触させるまで移動させるような接続方法をとることにより、2つの光ファイバと接続部材を確実に密着させることが可能となる。また、一方の光ファイバを固定しておき、もう一方を、上記のように移動させるため、微妙な精度を要する光ファイバの位置合わせが不要となり、実用上、より信頼性のある該媒体の接続が可能となる。なお、図1(a)において、光ファイバ1a,1bはV溝や貫通孔などの位置合わせ手段により互いに位置合わせされるのが好ましいが、特に限定されるものではない。 Next, embodiments of the optical connection structure of the present invention will be described with reference to the drawings. In the following description, an example using an optical fiber as an optical transmission medium will be described. 1A to 1C are process diagrams showing an example of an optical connection structure and an example of an optical connection method in the present invention. In FIG. 1, the optical fibers 1a and 1b that have been cut off at the end portions and the cut optical fibers 1a and 1b and the connecting member 2 having refractive index matching are placed at a constant interval (FIG. 1 (a)). Next, it moves until the edge part of one optical fiber 1a is contact | adhered to the connection member 2 (FIG.1 (b)). Further, while deforming the connecting member 2, the optical fiber 1a is moved until the connecting member is brought into contact with the other optical fiber 1b (FIG. 1C). Thereby, an optical connection structure in which the optical fibers 1a and 1b are optically connected is formed. In this case, the connecting member 2 is deformed into a wave shape. As described above, the connecting member 2 extends and deforms in the axial direction of the optical fiber so that the optical fibers 1a and 1b and the connecting member 2 are in close contact with each other, thereby making the optical loss between the optical fibers very small. Can do. Further, when connecting an optical fiber, the connection position of the optical fiber can be anywhere within the range where the connecting member is deformed in a wave shape, so that excessive pressing force is hardly applied to the optical fiber. Damage can be prevented. Further, the two optical fibers and the connection member are securely adhered by adopting a connection method in which the other optical fiber is brought into close contact with the connection member and then moved until the connection member and the other optical fiber are brought into contact with each other. Is possible. Further, since one optical fiber is fixed and the other is moved as described above, it is not necessary to align the optical fiber that requires delicate accuracy, and the medium can be connected more reliably in practice. Is possible. In FIG. 1A, the optical fibers 1a and 1b are preferably aligned with each other by alignment means such as V-grooves and through holes, but are not particularly limited.

光ファイバ同士が突き合わされ、挟まれた時の、接続部材の厚みは50μm以下であることが好ましい。50μm以上である場合は、突き合わされた光ファイバ間の間隔が大きすぎるために光損失が増大し、接続構造として適さない。これは、光ファイバと光部品の接続の場合でも同様である。突きあわされた後の接続部材のより好ましい厚さは5μm以上、30μm以下である。 The thickness of the connecting member when the optical fibers are abutted and sandwiched is preferably 50 μm or less. When it is 50 μm or more, the distance between the optical fibers that are abutted is too large, so that the optical loss increases, and it is not suitable as a connection structure. The same applies to the connection between the optical fiber and the optical component. A more preferable thickness of the connecting member after being struck is 5 μm or more and 30 μm or less.

図2に本発明の光学接続構造の他の一例を説明する平面図を示す。図2においては、図1(c)と同様に接続部材2が変形し、突き合わされる前の接続部材2の端面の位置(図2中の破線)に対して、突き合わされた後の接続部材2が波状に変形し、さらに内部に凹んで変形している。このように、波状の変形と内部変形を合わせた構造によって、光ファイバのより柔軟な突き当てができるようになり、光ファイバ1a、1bと接続部材2をさらに確実に密着させ、光ファイバ及び接続部材が破損する危険性を回避できる。 FIG. 2 is a plan view for explaining another example of the optical connection structure of the present invention. In FIG. 2, the connecting member 2 is deformed in the same manner as in FIG. 1C, and the connecting member after being abutted against the position of the end surface of the connecting member 2 before being abutted (broken line in FIG. 2). 2 is deformed in a wave shape and is further deformed by being recessed inside. As described above, the structure in which the wavy deformation and the internal deformation are combined allows the optical fiber to be more flexibly abutted, and the optical fibers 1a and 1b and the connection member 2 are more closely adhered to each other, so that the optical fiber and the connection can be obtained. The risk of damaging the member can be avoided.

図3に示すのは、光ファイバ1と接続部材2の接続部を光ファイバの軸と垂直の方向からみた平面図であり、光ファイバ1と接続部材2が接する面20の中心21から接続部材2の周縁部22までの距離の最小値Dと、光ファイバの半径Rを示している。接続部材が上記のように変形するには、Dの値とRの値が、R<D≦60Rの関係を満たすことが望ましい。図4(a)〜(e)は、種々の形状の接続部材2に対するDの値を説明する図であり、光ファイバの軸方向から見た平面図である。図中20は光ファイバと接続部材が接する面、21はその面の中心、22は接続部材2の周縁部を示している。図4(e)のように多心の光ファイバを用いた場合は、Dは近接する光ファイバ端部の接触位置と光ファイバ中心との最短距離を意味する。ただし、後述する支持材を具備した場合や、何らかの部材で接続部材を固定した場合は、Dの値は、支持材、あるいは部材が接触する部分を除いた部分の周縁部と光ファイバ中心との最短距離をいう。このように、接続部材を一定の間隔で固定し、接続部材周辺に一定の空間を持たせることにより、接続部材が光ファイバと密着した状態でも、自由度を持ち、柔軟に変形することができる。Dの値が60Rより大きい場合は、光ファイバの突き出しにより、接続部材の変形量が大きくなり、全体的にたるみやしわが生じ、それにより接続部材が破れる恐れがあるため、安定的な接続をすることができなくなる。また、DがRと等しい場合は、光ファイバを突き合わせたときに接続部材が密着するが、接続部材が波状に変形することができない。さらにDがRより小さい場合は光ファイバ表面全体に接続部材が密着しないために、空気に接触し、光損失が増大する。また、Dの範囲は2R≦D≦30Rとするのがより好ましい。なお、光導波路のように長方形の断面をもつものについてのRの値は、長方形の対角線の半分の長さをRと定義する。また、接続部材を固定するための手段は特に限定しないが、接続部材が常に固定した状態で使用されることが好ましい。 FIG. 3 is a plan view of the connecting portion between the optical fiber 1 and the connecting member 2 as seen from a direction perpendicular to the axis of the optical fiber, and the connecting member from the center 21 of the surface 20 where the optical fiber 1 and the connecting member 2 contact each other. 2 shows the minimum value D of the distance to the peripheral portion 22 and the radius R of the optical fiber. In order for the connecting member to deform as described above, it is desirable that the value of D and the value of R satisfy the relationship of R <D ≦ 60R. 4A to 4E are diagrams for explaining the value of D for the connection member 2 having various shapes, and are plan views viewed from the axial direction of the optical fiber. In the figure, 20 is a surface where the optical fiber and the connection member are in contact, 21 is the center of the surface, and 22 is the peripheral edge of the connection member 2. When a multi-core optical fiber is used as shown in FIG. 4E, D means the shortest distance between the contact position of the adjacent optical fiber end and the optical fiber center. However, when the support member described later is provided, or when the connecting member is fixed by some member, the value of D is determined between the peripheral portion of the portion excluding the portion where the support member or the member contacts and the center of the optical fiber. The shortest distance. In this way, by fixing the connecting member at a constant interval and providing a constant space around the connecting member, the connecting member can be flexibly deformed even when the connecting member is in close contact with the optical fiber. . When the value of D is larger than 60R, the amount of deformation of the connecting member increases due to the protrusion of the optical fiber, and overall sagging and wrinkles may occur, which may break the connecting member. Can not do. When D is equal to R, the connecting member comes into close contact when the optical fibers are butted together, but the connecting member cannot be deformed into a wave shape. Further, when D is smaller than R, the connection member does not adhere to the entire surface of the optical fiber, so that it comes into contact with air and the light loss increases. The range of D is more preferably 2R ≦ D ≦ 30R. In addition, the value of R about the thing with a rectangular cross section like an optical waveguide defines the length of the half of a diagonal of a rectangle as R. The means for fixing the connecting member is not particularly limited, but it is preferable that the connecting member is always used in a fixed state.

接続部材を固定するための手段は特に限定しないが、接続部材が常に固定された状態で使用されることが好ましく、例えば、以下に示すような支持材を用いるのが好ましい。図5(a)〜(f)は、本発明における支持材4が具備された接続部材2の一例を説明する斜視図である。支持材4は接続部材2を把持でき、かつ少なくともその両端を固定できればよく、その形状は図5(a)のように両端を把持した簡易的な形状であっても、図5(b)のような3方向を固定したコの字形状であってもかまわないが、上下左右方向を安定して把持できる図5(c)、図5(d)のような窓型形状であることがより好ましい。また、接続部材を容易に安定して固定できるように、図5(e)のようなラッチ部61を設けるなどの工夫を施しても構わない。さらに、支持材を構成する部材の個数についても限定せず、安定化するために図5(f)のように2つの部材により接続部材を挟み込んだ構造であっても構わない。なお、支持材のサイズについては特に限定せず、使用環境および仕様に応じて適宜選択して用いればよい。また、支持材の材料に関しても、金属類、プラスチック材料、ゴム材料など適宜選択して用いればよい。このように支持材を設け、接続部材を保持して固定することによって、接続部材が柔軟に変形することができる。また、支持材の枠がある場合は、接続部材の設置作業において、接続部材に接触することなく取り扱うことが可能となるため、接続部材表面の汚染や塵などの付着を防止することができる。したがって、接続部材の交換も容易に行うことができる。 The means for fixing the connecting member is not particularly limited, but it is preferably used in a state where the connecting member is always fixed. For example, it is preferable to use a support material as shown below. FIGS. 5A to 5F are perspective views illustrating an example of the connection member 2 provided with the support member 4 in the present invention. The support member 4 only needs to be able to grip the connecting member 2 and at least fix both ends thereof. Even if the shape is a simple shape gripping both ends as shown in FIG. It may be a U-shape with three directions fixed, but it is more preferable to have a window shape as shown in FIGS. 5 (c) and 5 (d) that can stably hold in the vertical and horizontal directions. preferable. Further, a device such as providing a latch portion 61 as shown in FIG. 5E may be provided so that the connecting member can be easily and stably fixed. Further, the number of members constituting the support member is not limited, and a structure in which the connecting member is sandwiched between two members as shown in FIG. The size of the support material is not particularly limited, and may be appropriately selected and used depending on the use environment and specifications. Further, regarding the material of the support material, metals, plastic materials, rubber materials, etc. may be appropriately selected and used. Thus, by providing the support material and holding and fixing the connection member, the connection member can be flexibly deformed. Further, when there is a support member frame, the connection member can be handled without contacting the connection member in the installation work of the connection member, so that contamination of the surface of the connection member and adhesion of dust and the like can be prevented. Therefore, the connection member can be easily replaced.

図6(a)〜(c)は、本発明の光ファイバと光部品の光学接続構造の一例を示す平面図、および光学接続方法の一例を示す工程図である。この例は、端部の被覆を除去し、カットした光ファイバ1と接続部材2と光学レンズ6からなり、光ファイバ1と光学レンズ6が光学的に接続されている光学接続構造を示している。接続部材2と光ファイバ1及び光学レンズ6は、当初一定の間隔で設置・固定されており、接続部材は張られた状態で固定されている(図6(a))。光ファイバ1の端部を接続部材に密着させるまで移動させ(図6(b))、次に、光ファイバ1をさらに接続部材を変形させながら光学レンズ6に接触させるまで移動させる(図6(c))。それにより、光ファイバ1と光学レンズ6を光学的に接続した接続構造が形成される。このように、中央部より外周部に向けて段階的あるいは連続的に厚みが薄くなるような凸形状の光学部品に対しても本発明の光学接続構造は容易に適用できる。また、接続部材を光学レンズに貼り付けたり、密着させることなく、接続部材を光ファイバの先端断面形状分だけ光学レンズに接触させればよく、それにより、接続部材の密着面積が最小で済むために、容易に接続部材を着脱することができる。また、光学レンズは固定されていればよいので、接続の際に光学部品を移動させる機構は全く必要としない。 6A to 6C are a plan view illustrating an example of an optical connection structure between an optical fiber and an optical component of the present invention, and a process diagram illustrating an example of an optical connection method. This example shows an optical connection structure in which the coating of the end portion is removed and the optical fiber 1, the connection member 2, and the optical lens 6 are cut, and the optical fiber 1 and the optical lens 6 are optically connected. . The connecting member 2, the optical fiber 1, and the optical lens 6 are initially installed and fixed at regular intervals, and the connecting member is fixed in a stretched state (FIG. 6A). The end of the optical fiber 1 is moved until it is in close contact with the connecting member (FIG. 6B), and then the optical fiber 1 is further moved until it contacts the optical lens 6 while deforming the connecting member (FIG. 6 ( c)). Thereby, a connection structure in which the optical fiber 1 and the optical lens 6 are optically connected is formed. Thus, the optical connection structure of the present invention can be easily applied to a convex optical component whose thickness decreases stepwise or continuously from the central portion toward the outer peripheral portion. In addition, the connection member may be brought into contact with the optical lens by the cross-sectional shape of the tip of the optical fiber without attaching or attaching the connection member to the optical lens, thereby minimizing the contact area of the connection member. In addition, the connecting member can be easily attached and detached. Further, since the optical lens only needs to be fixed, no mechanism for moving the optical component is required at the time of connection.

図7は、本発明の多心接続の光学接続構造の一例を示す平面図である。この光学接続構造は、4本の光ファイバ1a〜1d、光ファイバ接続用整列部材5、接続部材2から構成され、光ファイバとしては先端を被覆除去した後カットしてある4心の光ファイバテープ心線7a、7bを用いている。光ファイバ接続用整列部材5は、中央に溝51を有し、また溝を挟んだ両側に同軸の一対の貫通孔52を有している。貫通孔52は並列に一定間隔で4個並べられている。テープ心線、7a、7b中の4本の光ファイバは貫通孔52にそれぞれ挿入され、並列しながら接続部材2を挟んで、お互い突き合わさっている。接続部材2は、弾性を持つフィルムである。接続された状態では、4本の光ファイバは、それぞれ光ファイバの軸方向に対して異なる位置で一枚の接続部材に接続され、接続部材2は波状になっている。本発明では、接続部材が柔軟に波状に外部変形することができるために、図7のように光ファイバの突き出し量にあった変形をすることができ、接続時の各光ファイバと接続部材は密着し、また光ファイバあるいは整列部材に変形、破壊が起こることはなく、安定した光学接続ができる。 FIG. 7 is a plan view showing an example of an optical connection structure for multi-core connection according to the present invention. This optical connection structure is composed of four optical fibers 1a to 1d, an optical fiber connecting alignment member 5, and a connecting member 2, and the optical fiber is a four-fiber optical fiber tape that has been cut after the coating is removed. The core wires 7a and 7b are used. The optical fiber connecting alignment member 5 has a groove 51 in the center and a pair of coaxial through holes 52 on both sides of the groove. Four through holes 52 are arranged in parallel at regular intervals. The four optical fibers in the tape core wires 7a and 7b are respectively inserted into the through holes 52, and face each other with the connection member 2 interposed therebetween in parallel. The connecting member 2 is an elastic film. In the connected state, the four optical fibers are respectively connected to one connecting member at different positions with respect to the axial direction of the optical fiber, and the connecting member 2 has a wave shape. In the present invention, since the connection member can be flexibly deformed externally in a wave shape, it can be deformed according to the protruding amount of the optical fiber as shown in FIG. The optical fiber or the alignment member is not deformed or broken, and a stable optical connection can be made.

以下、本発明の光学接続構造および光学接続方法を実施例によって説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the optical connection structure and the optical connection method of the present invention will be described with reference to examples, but the present invention is not limited thereto.

図8(a)〜(c)に示すのは本実施例の光学接続構造を示す平面図と、光学接続方法を示す工程図である。接続部材として屈折率1.46に調節したウレタンエラストマー系樹脂をシート化し、厚み15μm、サイズ3mm×3mmのシートを用いたものである。まず、2本のシングルモード光ファイバ1a、1b(古川電工製、250μm径)の被覆を端部から20mm除去し、光ファイバ素線(125μm)を剥き出しにし、端部から10mmのところで光ファイバ素線をカットした。次に、2個のV溝基板8a、8b(サイズ5mm×10mm)を用意し、両者のV溝断面を光学顕微鏡で位置合わせし、次いで、50μmのスリット91を設けたガラス基板9(サイズ10mm×20mm)上にスリットから0.2mmの位置にV溝端部を合わせ、V溝基板8a、8bをガラス基板9に接着剤で固定した。その後、接続部材2をガラス基板9のスリット91に挿入し、ガラス基板表面に垂直に固定した。さらに、両方のV溝基板8a、8bのV溝内に光ファイバ1a、1bをそれぞれ位置させ、V溝に沿わせて光ファイバ1a、1bを平行移動させ、2本の光ファイバ素線の端部を接続部材に接触させない程度にV溝基板から適当な距離に位置させた後、光ファイバ1bを平面板12bとV溝基板8bで挟み込み、接着剤でV溝基板8b上に固定した(図8(a))。次いで、もう一方の光ファイバ素線1aを、接続部材2に密着するまで移動し (図8(b))、さらに両方の光ファイバが密着するまで接続部材2を押しつけた。そのあと、光ファイバ1aを平面板12aとV溝基板8aで挟み込み、さらに光ファイバ固定ジグ14で、平面板12aとV溝基板8aを挟み込み、これらを固定した(図8(c))。なお、本実施例においては、R=62.5μm、D=1.5mmであり、D=24Rであった。また、光ファイバが突きあわされたあとの接続部材の厚さは10μmであった。 FIGS. 8A to 8C are a plan view showing the optical connection structure of this embodiment and a process drawing showing the optical connection method. A urethane elastomer resin adjusted to a refractive index of 1.46 is formed into a sheet as a connecting member, and a sheet having a thickness of 15 μm and a size of 3 mm × 3 mm is used. First, the coating of the two single mode optical fibers 1a and 1b (Furukawa Electric, 250 μm diameter) is removed 20 mm from the end, the optical fiber strand (125 μm) is exposed, and the optical fiber element is 10 mm from the end. Cut the line. Next, two V-groove substrates 8a and 8b (size 5 mm × 10 mm) are prepared, both V-groove cross sections are aligned with an optical microscope, and then a glass substrate 9 (size 10 mm) provided with a 50 μm slit 91 is provided. The end of the V-groove was aligned at a position 0.2 mm from the slit on the × 20 mm), and the V-groove substrates 8a and 8b were fixed to the glass substrate 9 with an adhesive. Thereafter, the connecting member 2 was inserted into the slit 91 of the glass substrate 9 and fixed perpendicularly to the glass substrate surface. Further, the optical fibers 1a and 1b are respectively positioned in the V grooves of both the V groove substrates 8a and 8b, the optical fibers 1a and 1b are translated along the V grooves, and the ends of the two optical fiber strands. After the optical fiber 1b is sandwiched between the flat plate 12b and the V-groove substrate 8b and fixed on the V-groove substrate 8b with an adhesive (FIG. 8 (a)). Next, the other optical fiber 1a was moved until it was in close contact with the connection member 2 (FIG. 8B), and the connection member 2 was pressed until both of the optical fibers were in close contact. After that, the optical fiber 1a was sandwiched between the flat plate 12a and the V-groove substrate 8a, and the flat plate 12a and the V-groove substrate 8a were sandwiched between the optical fiber fixing jigs 14 to fix them (FIG. 8 (c)). In this example, R = 62.5 μm, D = 1.5 mm, and D = 24R. Further, the thickness of the connecting member after the optical fiber was struck was 10 μm.

このように、光ファイバが接触する接続部材周辺に空間を設け、接続部材を波状に変形させることによって、光ファイバ端面が接続部材に十分に密着するため、接続損失は0.3dB以下と小さかった。また光ファイバの端面周辺に自由度が増すために、光ファイバに過剰な押圧力がかからなくなるため、光ファイバや接続部材の破損は起こることなく、極めて良好な取り扱い性で光学接続を行うことができた。また光ファイバ端部と接続部材間には、高精度の軸方向の位置合わせ手段を必要としなくても良く、作業性を向上させることができた。また、光ファイバの位置合わせをするV溝基板に接続部材を接触させる必要が無く、接続部材を容易に交換して再接続することもできた。 In this way, by providing a space around the connecting member that comes into contact with the optical fiber and deforming the connecting member into a wave shape, the end face of the optical fiber is sufficiently adhered to the connecting member, so that the connection loss is as small as 0.3 dB or less. . In addition, since the degree of freedom increases around the end face of the optical fiber, no excessive pressing force is applied to the optical fiber, so that the optical fiber and connection member are not damaged, and optical connection is performed with extremely good handling. I was able to. Further, it is not necessary to provide a highly accurate axial alignment means between the optical fiber end portion and the connecting member, and the workability can be improved. Further, there is no need to bring the connecting member into contact with the V-groove substrate for aligning the optical fiber, and the connecting member can be easily replaced and reconnected.

図9に示すのは本実施例の光学接続構造を示す平面図である。4本の光ファイバ同士の光学接続を実現するにあたり、光ファイバ1a〜1dをもつ4心の光ファイバテープ心線(7a、7b)を2本とガラス基板9上に設置される4本のV溝を持つV溝基板8を2個用いた以外は、実施例1と同様に接続作業を行った。その結果、一枚の接続部材2で、4本の光ファイバ1a〜1dを簡単に光学接続することができた。また、カットした光ファイバの長さを計測したところ、4本の光ファイバ素線間で±10μm程度のばらつきがあったが、接続部材が柔軟に変形して、各光ファイバの端面と接続部材が十分に密着した。このため各光ファイバの接続損失は、各ファイバで0.3dB以下であり、光学接続構造として、十分使用可能なことが判った。 FIG. 9 is a plan view showing the optical connection structure of the present embodiment. In realizing optical connection between the four optical fibers, two optical fiber tape cores (7a, 7b) having optical fibers 1a to 1d and four Vs installed on the glass substrate 9 are provided. The connection work was performed in the same manner as in Example 1 except that two V-groove substrates 8 having grooves were used. As a result, it was possible to easily optically connect the four optical fibers 1a to 1d with one connecting member 2. Further, when the length of the cut optical fiber was measured, there was a variation of about ± 10 μm between the four optical fiber strands. However, the connecting member was deformed flexibly, and the end face of each optical fiber and the connecting member Was in close contact. For this reason, the connection loss of each optical fiber is 0.3 dB or less in each fiber, and it was found that the optical fiber can be sufficiently used as an optical connection structure.

図10(a)〜(c)に示すのは本実施例の光学接続構造を示す平面図と光学接続方法を示す工程図である。光ファイバ1にロッドレンズ11を接続する際に実施例1で使用した接続部材を用いて行った。すなわち、実施例1と同様に光ファイバ素線1をガラス基板9上のV溝基板8に設置した。一方、ロッドレンズ11(mflends社製、外径2mmφ)を2.1mmφの貫通孔52を有する整列部材5(サイズ5mm×5mm×10mm)に貫通させ、ロッドレンズ端面を整列部材端面から適当な距離に位置させて接着剤で固定した。ロッドレンズとV溝が位置合わせされた状態で、V溝基板8を、ガラス基板9のスリット91から0.05mmの位置に接着剤で固定した。次に、スリット91に接続部材2を挿入して設置した(図10(a))。その後、光ファイバ1をV溝に這わせる様に移動させて(図10(b))、光ファイバ1の端面を接続部材2に突き当て、さらに光ファイバ1を移動させて接続部材2を変形させることにより、接続部材2の反対側の面をロッドレンズ11に接触させた。その後、平面板12とV溝基板8で光ファイバ1を挟み、コの字型の光ファイバ固定治具14をはめ込んで平面板12とV溝基板8を押さえ込み、これを固定した(図10(c))。 FIG. 10A to FIG. 10C are a plan view showing an optical connection structure of this embodiment and a process diagram showing an optical connection method. The connection member used in Example 1 was used when connecting the rod lens 11 to the optical fiber 1. That is, the optical fiber 1 was placed on the V-groove substrate 8 on the glass substrate 9 as in Example 1. On the other hand, the rod lens 11 (manufactured by mfriends, outer diameter 2 mmφ) is passed through the alignment member 5 (size 5 mm × 5 mm × 10 mm) having a through hole 52 of 2.1 mmφ, and the rod lens end surface is appropriately spaced from the alignment member end surface. And fixed with an adhesive. With the rod lens and the V-groove aligned, the V-groove substrate 8 was fixed with an adhesive at a position 0.05 mm from the slit 91 of the glass substrate 9. Next, the connecting member 2 was inserted into the slit 91 and installed (FIG. 10A). After that, the optical fiber 1 is moved so as to pass over the V-groove (FIG. 10B), the end face of the optical fiber 1 is abutted against the connecting member 2, and the optical fiber 1 is further moved to deform the connecting member 2. By doing so, the opposite surface of the connecting member 2 was brought into contact with the rod lens 11. Thereafter, the optical fiber 1 is sandwiched between the flat plate 12 and the V-groove substrate 8, and a U-shaped optical fiber fixing jig 14 is fitted into the flat plate 12 and the V-groove substrate 8 to be fixed (FIG. 10 ( c)).

このように、光ファイバとレンズのようなサイズの異なる接続媒体同士の接続であっても、光ファイバを押し当てて接続部材を変形させることによって、レンズと接続部材は最小限の面積で密着させて光学接続できるので、両者の着脱作業時に簡単に剥がすことが可能であり、光ファイバ固定治具を取り外すことにより、光ファイバの着脱を繰り返しても傷が付くようなことはなかった。さらに光学レンズのように中央部より外周部に向けて段階的あるいは連続的に厚みが薄くなるような凸形状の光学部品であっても容易に光学接続ができた。 In this way, even when connecting connection media of different sizes such as an optical fiber and a lens, the lens and the connection member are brought into close contact with each other by pressing the optical fiber and deforming the connection member. Thus, the optical connection can be easily removed at the time of attaching and detaching both, and by removing the optical fiber fixing jig, the optical fiber is not damaged even when the optical fiber is repeatedly attached and detached. Further, even an optical component having a convex shape whose thickness decreases stepwise or continuously from the central portion toward the outer peripheral portion, such as an optical lens, can be easily optically connected.

図11(a)に示すのは本実施例の光学接続構造を示す斜視図であり、図11(b)〜(d)に示すのは、本実施例の光学接続方法を示す工程図である。実施例1で用いた接続部材を中央に空洞(2mm角)を有する透明のプラスチック樹脂の支持材の枠(3mm角厚み0.1mm)2枚で両側から挟み込み、接続部材内包カートリッジ13(形状は図5(f)と同様)を作製した。ついで、この接続部材13を図11(a)に示す整列部材5に装着して2本の光ファイバ1a、1b同士の接続を行なった。整列部材5(サイズ10mm×20mm×42.1mm)には中央に0.25mmの溝51が設けられ、端部より溝に貫通する同軸上の一対の貫通孔(φ0.125)52a、52bが備わっている。この整列部材5の溝51に接続部材内包カートリッジ13を垂直に挿入した。先端25mmを被覆除去し、カットした2本の光ファイバ1a、1bを、貫通孔52a、52bにそれぞれ挿入し、片方の光ファイバ1bは貫通孔52bの端部より接続部材2に接しない程度に適当量突き出して、整列部材の端部に接着剤10bで光ファイバ1bを固定した(図11(b))。そして、他方の光ファイバ1aを接続部材側にゆっくり押し込んで接続部材2に突き当て(図11(c))、接続部材2を変形させながら、反対側の光ファイバ1bに接触させた。その後、整列部材5に光ファイバ1aを接着材10aで固定した(図11(d))。 FIG. 11A is a perspective view showing the optical connection structure of this embodiment, and FIGS. 11B to 11D are process diagrams showing the optical connection method of this embodiment. . The connection member used in Example 1 was sandwiched from both sides with two transparent plastic resin support material frames (3 mm square thickness 0.1 mm) having a cavity (2 mm square) in the center, and the connection member inclusion cartridge 13 (the shape was The same as in FIG. 5F was prepared. Next, the connecting member 13 was attached to the alignment member 5 shown in FIG. 11A to connect the two optical fibers 1a and 1b. The alignment member 5 (size 10 mm × 20 mm × 42.1 mm) is provided with a 0.25 mm groove 51 at the center, and a pair of coaxial through holes (φ0.125) 52a and 52b penetrating from the end into the groove. It is equipped. The connecting member containing cartridge 13 was inserted vertically into the groove 51 of the alignment member 5. The two ends of the optical fiber 1a, 1b with the tip 25 mm removed are inserted into the through holes 52a, 52b so that one optical fiber 1b does not contact the connection member 2 from the end of the through hole 52b. An appropriate amount protruded, and the optical fiber 1b was fixed to the end portion of the alignment member with the adhesive 10b (FIG. 11B). Then, the other optical fiber 1a was slowly pushed into the connecting member side and abutted against the connecting member 2 (FIG. 11C), and the connecting member 2 was deformed and brought into contact with the opposite optical fiber 1b. Thereafter, the optical fiber 1a was fixed to the alignment member 5 with an adhesive 10a (FIG. 11 (d)).

このように接続部材をカートリッジとし、支持材の枠を介して整列部材と一体化することで、構造的に安定した光学接続が可能であった。また、支持材の枠を介することから整列部材と接続部材の距離を一定に保つことができ、接続部材の変形をコントロールしやすくなり、取り扱い性、作業性を向上させることができた。さらにカートリッジにしたことで、接続の実施がさらに簡単になり、作業効率および生産効率が向上した。 In this way, the connection member is a cartridge and is integrated with the alignment member via the frame of the support material, thereby enabling structurally stable optical connection. Further, since the support member frame is interposed, the distance between the alignment member and the connection member can be kept constant, the deformation of the connection member can be easily controlled, and the handling property and workability can be improved. In addition, the use of cartridges has made connection easier and improved work efficiency and production efficiency.

(a)〜(c)本発明における光学接続構造の一例を示す平面図、および本発明の光学接続方法の一例を示す工程図である。(A)-(c) It is a top view which shows an example of the optical connection structure in this invention, and process drawing which shows an example of the optical connection method of this invention. 本発明の光学接続構造の一例を説明する平面図である。It is a top view explaining an example of the optical connection structure of this invention. 本発明の光ファイバと接続部材の接続部を光ファイバの軸と垂直の方向からみた平面図であり、光ファイバと接続部材が接する面の中心から接続部材の周縁部までの距離の最小値Dと、光ファイバの半径Rを示している。FIG. 3 is a plan view of the connecting portion between the optical fiber and the connecting member of the present invention as viewed from the direction perpendicular to the axis of the optical fiber, and the minimum value D of the distance from the center of the surface where the optical fiber and the connecting member are in contact to the peripheral portion of the connecting member The radius R of the optical fiber is shown. (a)〜(e)本発明の接続部材の種々の形状に対するDの値を説明する平面図である。(A)-(e) It is a top view explaining the value of D with respect to the various shapes of the connection member of this invention. (a)〜(f)本発明の支持体を具備した接続部材の例を示す斜視図である。(A)-(f) It is a perspective view which shows the example of the connection member which comprised the support body of this invention. (a)〜(c)本発明の光ファイバと光部品の光学接続構造の一例を示す平面図、および光学接続方法を示す工程図である。(A)-(c) It is a top view which shows an example of the optical connection structure of the optical fiber of this invention, and an optical component, and process drawing which shows the optical connection method. 本発明の多心接続の光学接続構造の一例を示す平面図である。It is a top view which shows an example of the optical connection structure of the multi-core connection of this invention. (a)〜(c)本発明の光学接続構造の実施例の一例を示す平面図と、光学接続方法の実施例の一例を示す工程図である。(A)-(c) It is a top view which shows an example of the Example of the optical connection structure of this invention, and process drawing which shows an example of the Example of the optical connection method. 本発明の光学接続構造の実施例の一例を示す平面図である。It is a top view which shows an example of the Example of the optical connection structure of this invention. (a)〜(c)本発明の光学接続構造の実施例の一例を示す平面図と、光学接続方法の実施例の一例を示す工程図である。(A)-(c) It is a top view which shows an example of the Example of the optical connection structure of this invention, and process drawing which shows an example of the Example of the optical connection method. (a)本発明の光学接続構造の実施例の一例を示す斜視図である。(b)〜(d)本発明の光学接続方法の実施例の一例を示す工程図である。(A) It is a perspective view which shows an example of the Example of the optical connection structure of this invention. (B)-(d) It is process drawing which shows an example of the Example of the optical connection method of this invention.

符号の説明Explanation of symbols

1、1a〜1d…光ファイバ、2…接続部材、4…支持材、5…接続用整列部材、6…光学レンズ、7a、7b…光ファイバテープ心線、8、8a、8b…V溝基板、9…ガラス基板、10、10a、10b…接着剤、11…ロッドレンズ、12、12a、12b…平面板、13…接続部材内包カートリッジ、14…光ファイバ固定ジグ、20…光ファイバと接続部材が接する面、21…光ファイバと接続部材が接する面の中心、22…接続部材の周縁部、51…溝、52、52a、52b…貫通孔、61…ラッチ、91…スリット
DESCRIPTION OF SYMBOLS 1, 1a-1d ... Optical fiber, 2 ... Connection member, 4 ... Support material, 5 ... Connection alignment member, 6 ... Optical lens, 7a, 7b ... Optical fiber ribbon, 8, 8a, 8b ... V-groove board | substrate DESCRIPTION OF SYMBOLS 9 ... Glass substrate 10, 10a, 10b ... Adhesive, 11 ... Rod lens, 12, 12a, 12b ... Planar plate, 13 ... Connection member inclusion cartridge, 14 ... Optical fiber fixing jig, 20 ... Optical fiber and connection member , 21 ... the center of the surface where the optical fiber and the connection member contact, 22 ... the peripheral edge of the connection member, 51 ... the groove, 52, 52a, 52b ... the through hole, 61 ... the latch, 91 ... the slit

Claims (6)

光伝送媒体および光学部品と屈折率整合性を有する接続部材が、互いに対向する該光伝送媒体の端面もしくは該光伝送媒体と該光学部品との間に介在し、
前記接続部材は、該光伝送媒体の端面を接合する際に生じる起伏を伴って、かつ、該光伝送媒体の軸方向に伸びて変形することを特徴とする光学接続構造。
A connection member having refractive index matching with the optical transmission medium and the optical component is interposed between the end surfaces of the optical transmission medium facing each other or between the optical transmission medium and the optical component ,
The optical connection structure characterized in that the connection member is deformed with undulations generated when the end faces of the optical transmission medium are joined and extending in the axial direction of the optical transmission medium .
前記接続部材が、前記光伝送媒体の端面形状に対応して凹部をともなって変形していることを特徴とする請求項1記載の光学接続構造。 The optical connection structure according to claim 1, wherein the connection member is deformed with a concave portion corresponding to an end surface shape of the optical transmission medium. 前記接続部材の接続点における接続後の厚みが、50μm以下であることを特徴とする請求項1又は請求項2記載の光学接続構造。 The optical connection structure according to claim 1, wherein a thickness after connection at a connection point of the connection member is 50 μm or less. 前記光伝送媒体と前記接続部材の接触面の中心から、該接続部材の周縁部までの距離の最小値Dと該光伝送媒体の半径Rが、
R<D≦60R
の関係を満たすことを特徴とする請求項1乃至請求項3記載の光学接続構造。
The minimum value D of the distance from the center of the contact surface between the optical transmission medium and the connection member to the peripheral edge of the connection member and the radius R of the optical transmission medium are:
R <D ≦ 60R
The optical connection structure according to claim 1, wherein the optical connection structure is satisfied.
前記接続部材の周縁部に支持材が具備されていることを特徴とする請求項1乃至請求項4記載の光学接続構造。 The optical connection structure according to claim 1, wherein a support member is provided at a peripheral portion of the connection member. 前記光伝送媒体が多心の光ファイバであることを特徴とする請求項1乃至請求項5記載の光学接続構造。 6. The optical connection structure according to claim 1, wherein the optical transmission medium is a multi-core optical fiber.
JP2003388708A 2003-11-19 2003-11-19 Optical connection structure and optical connection method Expired - Lifetime JP4252884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003388708A JP4252884B2 (en) 2003-11-19 2003-11-19 Optical connection structure and optical connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003388708A JP4252884B2 (en) 2003-11-19 2003-11-19 Optical connection structure and optical connection method

Publications (2)

Publication Number Publication Date
JP2005148580A JP2005148580A (en) 2005-06-09
JP4252884B2 true JP4252884B2 (en) 2009-04-08

Family

ID=34695658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003388708A Expired - Lifetime JP4252884B2 (en) 2003-11-19 2003-11-19 Optical connection structure and optical connection method

Country Status (1)

Country Link
JP (1) JP4252884B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221031A (en) * 2005-02-14 2006-08-24 Tomoegawa Paper Co Ltd Optical connection structure
JP2007093647A (en) * 2005-09-27 2007-04-12 Tomoegawa Paper Co Ltd Optical connecting structure and method
JP2007132983A (en) * 2005-11-08 2007-05-31 Bridgestone Corp Refractive index control sheet for optical path junction
JP5027789B2 (en) * 2008-12-03 2012-09-19 住友電気工業株式会社 Optical connector assembly method and optical connector
JP5027788B2 (en) * 2008-12-03 2012-09-19 住友電気工業株式会社 Optical connector assembly method and optical connector
JP5221492B2 (en) * 2009-11-20 2013-06-26 住友電気工業株式会社 Optical connector assembly method and optical connector
US9645044B2 (en) 2014-09-30 2017-05-09 Corning Optical Communications LLC Controlled-contact method of measuring insertion loss in optical fiber connectors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2620276B2 (en) * 1988-01-08 1997-06-11 住友電気工業株式会社 Optical connector
JPH08136764A (en) * 1994-11-09 1996-05-31 Sony Corp Connector for optical fiber
JP2002031745A (en) * 2000-07-19 2002-01-31 Nippon Telegr & Teleph Corp <Ntt> Optical connector plug and optical connection part structure of device equipped with such plug
JP2002156563A (en) * 2000-11-22 2002-05-31 Kyocera Corp Receptacle type optical module

Also Published As

Publication number Publication date
JP2005148580A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
KR100867261B1 (en) Optical connection structure and optical connection method
JP2006221031A (en) Optical connection structure
US8480311B2 (en) Optical connector, method of attaching the optical connector to coated optical fiber, and optical connection member
JP4332490B2 (en) Optical connection structure and optical connection method thereof
US10107967B1 (en) Fiber array assemblies for multifiber connectorized ribbon cables and methods of forming same
US20030175000A1 (en) Fiber and lens grippers, optical devices and methods of manufacture
JP2009122451A (en) Optical connection structure
JP4043448B2 (en) OPTICAL CONNECTION STRUCTURE AND METHOD FOR MANUFACTURING THE SAME
US6623174B2 (en) Optical connector
JP4109653B2 (en) Optical connector, and split sleeve for connection, support member and adapter used therefor
JP4252884B2 (en) Optical connection structure and optical connection method
EP3379309B1 (en) Optical connector and optical connector manufacturing method
JP4117004B2 (en) Optical transmission medium connection method, optical connection structure, and optical transmission medium connection component
EP1312955B1 (en) Process for coupling optical fibres
US20050063662A1 (en) Device for gripping optical fibers
JP4167498B2 (en) Optical transmission component connection structure and optical connection method
US20050063645A1 (en) Device for gripping optical fibers
JP3993590B2 (en) OPTICAL CONNECTION STRUCTURE, ITS MANUFACTURING METHOD, AND SUPPORT MEMBER USED FOR THE SAME
CA2945745C (en) Optical fiber splicing structure
WO2023085332A1 (en) Fusion splicing method for optical fibers and fusion splicing device for optical fibers
JP2009244545A (en) Optical connection structure and optical connection method
JPH11271538A (en) Optical fiber cutting method
JP2007248522A (en) Method for manufacturing fiber collimator and optical fiber holding base
JP2009244556A (en) Optical connection structure and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090122

R150 Certificate of patent or registration of utility model

Ref document number: 4252884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term