JP2009244556A - Optical connection structure and method - Google Patents

Optical connection structure and method Download PDF

Info

Publication number
JP2009244556A
JP2009244556A JP2008090408A JP2008090408A JP2009244556A JP 2009244556 A JP2009244556 A JP 2009244556A JP 2008090408 A JP2008090408 A JP 2008090408A JP 2008090408 A JP2008090408 A JP 2008090408A JP 2009244556 A JP2009244556 A JP 2009244556A
Authority
JP
Japan
Prior art keywords
optical transmission
optical
transmission medium
adhesive
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008090408A
Other languages
Japanese (ja)
Inventor
Yuki Furue
友樹 古江
Takeshi Sukegawa
健 助川
Nobuhiro Hashimoto
展宏 橋本
Makoto Goto
誠 後藤
Masayoshi Suzuki
正義 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2008090408A priority Critical patent/JP2009244556A/en
Publication of JP2009244556A publication Critical patent/JP2009244556A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide optical connection structure and method for connecting optical transmission media speedily and accurately without requiring a series of work for forming adhesive connection members in end parts of the optical transmission media every time the optical transmission media are mutually connected. <P>SOLUTION: In this optical connection structure in which the optical transmission media are inserted through both ends of a mechanical splice to connect the optical transmission media mutually and optically, the mechanical splice includes an intermediary optical transmission medium. The intermediary optical transmission medium is provided with the adhesive connection members at both ends, and each optical transmission medium is abutted and connected on/with each of the adhesive connection members. In this optical connection method, the optical transmission media are inserted through both ends of the mechanical splice to connect the optical transmission media optically and mutually. The adhesive connection members are provided at both ends of the intermediary optical transmission medium, which is held in the inside of the mechanical splice. The optical transmission media are inserted through both ends of the mechanical splice and are abutted on the adhesive connection members, respectively. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光伝送媒体同士を接続する光学接続構造および光学接続方法に関するものである。   The present invention relates to an optical connection structure and an optical connection method for connecting optical transmission media.

従来より、光ファイバ等の光伝送媒体同士を接続する方法としては、光伝送媒体同士を突き合わせたり、光伝送媒体を挿入したフェルール同士を突き合わせることによって、物理的に接続する方法が一般的に採用されてきた。   Conventionally, as a method of connecting optical transmission media such as optical fibers, a method of physically connecting the optical transmission media by matching the optical transmission media or by matching the ferrules inserted with the optical transmission media is generally used. Has been adopted.

光伝送媒体の接続が永久的に行われ変更がない場合は、融着接続の他、対向する光伝送媒体同士を挟持して固定するメカニカルスプライスが用いられ(例えば、特許文献1または2参照)、接続が頻繁に着脱される場合は、光伝送媒体端部をフェルールで保護した上で光コネクタ接続を行っている。これらの場合において、対向する光伝送媒体は、端部が物理的に接触することで接続されている。   When the optical transmission medium is permanently connected and is not changed, a mechanical splice that sandwiches and fixes the opposite optical transmission media is used in addition to the fusion connection (see, for example, Patent Document 1 or 2). When the connection is frequently attached and detached, the optical connector connection is performed after protecting the end of the optical transmission medium with a ferrule. In these cases, the opposite optical transmission media are connected by physically contacting the ends.

しかしながら、光伝送媒体同士を直接接触させて接続を行うと、微細な傷等が接続特性に大きな影響を及ぼすという問題があった。また、仮に端面が平滑であっても、微視的には対向する端部間に空隙があり、この部分における接続損失も無視することができない。さらに、光伝送媒体は強度が低いため、端部への押圧力が増大すると光伝送媒体を破損してしまうおそれがあった。   However, when the optical transmission media are directly connected to each other for connection, there is a problem that fine scratches or the like greatly affect the connection characteristics. Even if the end surface is smooth, there is a gap between the opposing ends microscopically, and the connection loss at this portion cannot be ignored. Furthermore, since the strength of the optical transmission medium is low, there is a possibility that the optical transmission medium may be damaged when the pressing force to the end portion is increased.

上述した方法のうちメカニカルスプライスを用いる技術として、接続される光伝送媒体の端部に粘着性接続部材を設け、続いて光伝送媒体同士を対向させて接続する方法が開示されている(例えば、特許文献3参照)。この方法では、一方の光伝送媒体の端部を粘着性接続部材シートに当接させ、押し破ることによって、光伝送媒体の端部に粘着性接続部材層を設け、続いて、他方の光伝送媒体を対向させ、接続を行っている。この接続を、メカニカルスプライス内で行うこともできる旨、開示されている。   Among the methods described above, as a technique using a mechanical splice, a method is disclosed in which an adhesive connection member is provided at an end of an optical transmission medium to be connected, and then the optical transmission media are opposed to each other (for example, (See Patent Document 3). In this method, the end of one optical transmission medium is brought into contact with the adhesive connecting member sheet, and is pressed to form an adhesive connecting member layer on the end of the optical transmission medium, followed by the other optical transmission medium. Connection is made with the medium facing each other. It is disclosed that this connection can also be made in a mechanical splice.

特開2000−241660号公報JP 2000-241660 A 特開2002−22997号公報JP 2002-22997 A 特開2005−274839号公報JP 2005-274839 A

しかしながら、上記の光学接続構造では、光伝送媒体の接続が必要とされる際に、光伝送媒体を粘着性接続部材に押し当てて密着させたまま、粘着性接続部材を移動させて切り離し、粘着性接続部材層を光伝送媒体の端部に設けるといった一連の工程をその都度行わなければならず非効率的であり、光学回路を作製する際の作業環境によっては、そのような一連の工程を現場で行うことが困難である場合もあり、より簡易的かつ正確な接続のための改善が求められていた。   However, in the optical connection structure described above, when the optical transmission medium is required to be connected, the adhesive connection member is moved and disconnected while the optical transmission medium is pressed against the adhesive connection member to be adhered. A series of processes such as providing a conductive connecting member layer at the end of the optical transmission medium must be performed each time, which is inefficient, and depending on the working environment when manufacturing the optical circuit, such a series of processes may be performed. There are cases where it is difficult to carry out on site, and improvements for simpler and more accurate connection have been demanded.

本発明は、以上のような問題点に鑑みてなされたものであり、その目的とするところは、メカニカルスプライス構造を用いる光伝送媒体同士の接続において、接続が行われる度に光伝送媒体端部に粘着性接続部材を形成する一連の作業を必要とせず、迅速かつ正確に接続を行うことができる光学接続構造および光学接続方法を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an end portion of an optical transmission medium every time connection is made in connection between optical transmission media using a mechanical splice structure. It is an object of the present invention to provide an optical connection structure and an optical connection method that can perform a quick and accurate connection without requiring a series of operations for forming an adhesive connection member.

本発明は、光伝送媒体がメカニカルスプライスの両端からそれぞれ挿入され光伝送媒体同士が互いに光学的に接続されている光学接続構造であって、メカニカルスプライスは、内部に仲介光伝送媒体を備え、仲介光伝送媒体は、その両端に粘着性接続部材を備え、各光伝送媒体は、それぞれ粘着性接続部材に当接して接続されていることを特徴としている。   The present invention provides an optical connection structure in which an optical transmission medium is inserted from both ends of a mechanical splice and the optical transmission media are optically connected to each other. The mechanical splice includes an intermediary optical transmission medium inside, The optical transmission medium is provided with adhesive connection members at both ends, and each optical transmission medium is in contact with and connected to the adhesive connection member.

また、粘着性接続部材は、硬度がJIS(A型)5〜100であることや、二層構造であることを好ましい態様としている。   In addition, the adhesive connecting member preferably has a hardness of JIS (A type) 5 to 100 or a two-layer structure.

さらに、本発明は、光伝送媒体をメカニカルスプライスの両端からそれぞれ挿入して光伝送媒体同士を互いに光学的に接続する光学接続方法であって、仲介光伝送媒体の両端に粘着性接続部材を設け、仲介伝送媒体をメカニカルスプライスの内部に挟持させ、光伝送媒体をメカニカルスプライスの両端から挿入して粘着性接続部材に当接させることを特徴としている。   Furthermore, the present invention is an optical connection method in which an optical transmission medium is inserted from both ends of a mechanical splice to optically connect the optical transmission media to each other, and adhesive connection members are provided at both ends of the intermediate optical transmission medium. The intermediary transmission medium is sandwiched inside the mechanical splice, and the optical transmission medium is inserted from both ends of the mechanical splice and brought into contact with the adhesive connecting member.

本発明の光学接続構造および光学接続方法によれば、予め両端に粘着性接続部材を設けた仲介光伝送媒体がメカニカルスプライスの内部に備えられているので、光伝送媒体同士を接続する際に、光伝送媒体へ粘着性接続部材を設ける工程を省略することができ、当該メカニカルスプライスの両端から光伝送媒体を挿入して仲介光伝送媒体に当接させるだけで、正確かつ迅速に接続を完了することが可能となる。また、空気混入のない接続が可能となる。さらに、粘着性接続部材の硬度を規定することで、メカニカルスプライスでありながら再接続可能とすることができる。   According to the optical connection structure and the optical connection method of the present invention, since the intermediary light transmission medium provided with the adhesive connection member at both ends in advance is provided inside the mechanical splice, when connecting the optical transmission media, The step of providing an adhesive connection member on the optical transmission medium can be omitted, and the optical transmission medium is inserted from both ends of the mechanical splice and brought into contact with the intermediate optical transmission medium, thereby completing the connection accurately and quickly. It becomes possible. In addition, connection without air mixing becomes possible. Furthermore, by defining the hardness of the adhesive connecting member, it can be reconnected while being a mechanical splice.

以下、図面を用いて本発明の光学接続構造の実施形態について具体的に説明する。
図1は、メカニカルスプライス構造を模式的に示した斜視図である。メカニカルスプライス1は、押さえ基板11と、V溝基板12とを接合することによってなり、その外周部に断面コ字状のクランプスプリング14を取り付けて、両基板を固定する。V溝基板12には、光伝送媒体21を挿入する一方の端面から他方の端面に貫通する、断面V字状の溝13が切ってあり、この溝13によって光伝送媒体21がガイドされる。また、押さえ基板11によって、光伝送媒体21は、溝13内に固定される。また、符号22は、光伝送媒体21の被覆部であり、必要に応じて光伝送媒体21から除去される。
Hereinafter, embodiments of the optical connection structure of the present invention will be specifically described with reference to the drawings.
FIG. 1 is a perspective view schematically showing a mechanical splice structure. The mechanical splice 1 is formed by joining a holding substrate 11 and a V-groove substrate 12, and a clamp spring 14 having a U-shaped cross section is attached to the outer peripheral portion thereof to fix both substrates. The V-groove substrate 12 has a groove 13 having a V-shaped cross section penetrating from one end face into which the optical transmission medium 21 is inserted into the other end face, and the optical transmission medium 21 is guided by the groove 13. Further, the optical transmission medium 21 is fixed in the groove 13 by the holding substrate 11. Reference numeral 22 denotes a covering portion of the optical transmission medium 21 and is removed from the optical transmission medium 21 as necessary.

図2は、本発明のメカニカルスプライス構造を用いた光学接続構造の模式断面図である。図に示すように、本発明では、まず、仲介光伝送媒体23の両端に、粘着性接続部材3を設け、これをメカニカルスプライス1の内部に予め備える。次に、光伝送媒体21をメカニカルスプライス1の両端から挿入して、粘着性接続部材3に当接させる。これら工程によって、光伝送媒体の接続を行う。   FIG. 2 is a schematic cross-sectional view of an optical connection structure using the mechanical splice structure of the present invention. As shown in the figure, in the present invention, first, the adhesive connection members 3 are provided at both ends of the intermediary light transmission medium 23, and these are provided in advance inside the mechanical splice 1. Next, the optical transmission medium 21 is inserted from both ends of the mechanical splice 1 and brought into contact with the adhesive connecting member 3. By these steps, the optical transmission medium is connected.

このように両端に粘着性接続部材を備えた仲介光伝送媒体を挟持するメカニカルスプライスを予め作製しておくことで、光伝送媒体の接続が必要とされる際には、両端から光伝送媒体を挿入するという簡便な工程のみによって、光伝送媒体の接続を完了することができて、好適である。   In this way, by preparing in advance a mechanical splice that sandwiches the intermediary optical transmission medium provided with adhesive connection members at both ends, when connection of the optical transmission medium is required, the optical transmission medium is connected from both ends. It is preferable that the connection of the optical transmission medium can be completed only by a simple process of inserting.

粘着性接続部材3としては、光伝送媒体21に接触した際、適度なタック性を伴って密着する屈折率整合体であればよい。   The adhesive connecting member 3 may be any refractive index matching body that comes into close contact with the optical transmission medium 21 with appropriate tackiness.

適度なタック性を有するには、粘着力が1〜100gf/25mmであることが好ましく、より好ましくは5〜50gf/25mm、特に好ましくは10〜30gf/25mmである。   In order to have an appropriate tackiness, the adhesive strength is preferably 1 to 100 gf / 25 mm, more preferably 5 to 50 gf / 25 mm, and particularly preferably 10 to 30 gf / 25 mm.

粘着力が1gf/25mm未満だと接続が安定せず、100gf/25mmを超えると取り外した光伝送媒体21に粘着性物質が付着して好ましくない。   If the adhesive strength is less than 1 gf / 25 mm, the connection is not stable, and if it exceeds 100 gf / 25 mm, an adhesive substance adheres to the removed optical transmission medium 21, which is not preferable.

また、粘着性接続部材3を強粘着層と弱粘着層の二層構造にして、強粘着層を仲介光伝送媒体23と接触させる構成とすることもできる。   Alternatively, the adhesive connecting member 3 may have a two-layer structure of a strong adhesive layer and a weak adhesive layer so that the strong adhesive layer is brought into contact with the mediating optical transmission medium 23.

この構成によれば、接続解除により取り外した光伝送媒体21に粘着性物質が付着することがなく、粘着性接続部材3は常に仲介光伝送媒体23側に残るので、光伝送媒体21を他の用途に用いる際にメンテナンス作業が不要で好適である。   According to this configuration, the adhesive substance does not adhere to the optical transmission medium 21 removed by the connection release, and the adhesive connection member 3 always remains on the intermediate optical transmission medium 23 side. When used for applications, maintenance work is unnecessary and suitable.

この場合、強粘着層の粘着力は、弱粘着層の粘着力より20gf/25mm以上強いことが好ましい。その上で、弱粘着層の2倍以上の粘着力を有することがより好ましい。   In this case, the adhesive strength of the strong adhesive layer is preferably 20 gf / 25 mm or more stronger than the adhesive strength of the weak adhesive layer. In addition, it is more preferable that the adhesive strength is twice or more that of the weak adhesive layer.

なお、上記の粘着力はJIS Z 0237の90度引きはがし粘着力に準拠して測定した値である。   In addition, said adhesive force is the value measured based on 90 degree peeling peel strength of JISZ0237.

次に、屈折率整合体であるには、光伝送媒体21と屈折率が近ければよい。具体的には、フレネル反射の回避による伝送損失の面から屈折率の差が±0.1以内であることが好ましく、特に±0.05以内であることが好ましい。なお、接続される2つの光伝送媒体の屈折率差が大きい場合には、これらの屈折率の平均値と粘着性接続部材の屈折率とが上記範囲内であることが好ましい。なお、上記屈折率は20℃での値であり、測定には波長1310nmの光源を用いる。   Next, in order to be a refractive index matching body, it is sufficient that the refractive index is close to that of the optical transmission medium 21. Specifically, in terms of transmission loss due to avoidance of Fresnel reflection, the difference in refractive index is preferably within ± 0.1, and particularly preferably within ± 0.05. In addition, when the refractive index difference of the two optical transmission media connected is large, it is preferable that the average value of these refractive indexes and the refractive index of an adhesive connection member are in the said range. The refractive index is a value at 20 ° C., and a light source having a wavelength of 1310 nm is used for measurement.

また、粘着性接続部材3は、硬度がJIS(A型)5〜100であれば凝集破壊が起こり難く、仲介光伝送媒体をそのままにして再接続可能となるので好ましい。さらに好ましくは20〜90である。上記の硬度はJIS K−6253に準拠して測定した値である。なお、仲介光伝送媒体を交換して再接続することもできる。   Further, the adhesive connecting member 3 is preferably JIS (A type) 5 to 100, since cohesive failure is unlikely to occur, and the intermediary light transmission medium can be reconnected as it is. More preferably, it is 20-90. The above hardness is a value measured according to JIS K-6253. The intermediary optical transmission medium can be exchanged and reconnected.

粘着性接続部材3には、高分子材料、例えばアクリル系、エポキシ系、ビニル系、シリコーン系、ゴム系、ウレタン系、メタクリル系、ナイロン系、ビスフェノール系、ジオール系、ポリイミド系、フッ素化エポキシ系、フッ素化アクリル系等の各種粘着材料を用いることが好ましい。   The adhesive connecting member 3 includes a polymer material such as acrylic, epoxy, vinyl, silicone, rubber, urethane, methacrylic, nylon, bisphenol, diol, polyimide, and fluorinated epoxy. It is preferable to use various adhesive materials such as fluorinated acrylic.

中でも、耐環境性及び接着性の面から、シリコーン系及びアクリル系の粘着材料が特に好ましい。また、適宜架橋剤、添加剤、軟化剤、粘着調整剤等の添加により接着力、濡れ性を調節してもよく、耐水性や耐湿性、耐熱性を付加してもよい。   Of these, silicone-based and acrylic pressure-sensitive adhesive materials are particularly preferable in terms of environmental resistance and adhesiveness. Moreover, adhesive force and wettability may be adjusted by adding a crosslinking agent, an additive, a softening agent, a tackifier, and the like, and water resistance, moisture resistance, and heat resistance may be added.

粘着性接続部材3の膜厚は5μm〜100μmが好ましく、10μm〜50μmがより好ましい。   The thickness of the adhesive connecting member 3 is preferably 5 μm to 100 μm, and more preferably 10 μm to 50 μm.

仲介光伝送媒体23の両端に粘着性接続部材を設ける工程は、公知の任意の方法を用いることができる。例えば、図3に示すような、粘着性接続部材からなるシートに仲介光伝送媒体23を突き当て、そのまま突き破ることによって端部に粘着性接続部材層を設ける方法や、図4に示すような、粘着性接続部材からなるシートに仲介光伝送媒体23を突き当て、逆方向に引いて破断させて端部に粘着性接続部材層を設ける方法、さらに、仲介光伝送媒体を帯電させ、粘着性接続部材を吸着して設ける方法等が挙げられるが、これらのみに限定されない。   For the process of providing the adhesive connecting members at both ends of the intermediary light transmission medium 23, any known method can be used. For example, as shown in FIG. 3, a method of providing an adhesive connecting member layer at the end by abutting the intermediate light transmission medium 23 against a sheet made of an adhesive connecting member, A method in which the intermediary light transmission medium 23 is abutted against a sheet made of an adhesive connection member, pulled in the opposite direction and broken to provide an adhesive connection member layer at the end, and further, the intermediary light transmission medium is charged to form an adhesive connection Although the method etc. which adsorb | suck and provide a member are mentioned, It is not limited only to these.

また、本発明における光伝送媒体21は、単心の光ファイバに限られず、光ファイバを複数本テープ化したテープ心線等でもよく、一度に接続される光伝送媒体の数量に制限はない。光伝送媒体21を複数本の光ファイバとする場合は、その本数に対応した仲介光伝送媒体をメカニカルスプライス内に予め収納することとなる。   In addition, the optical transmission medium 21 in the present invention is not limited to a single optical fiber, but may be a tape core or the like in which a plurality of optical fibers are taped, and the number of optical transmission media connected at one time is not limited. When the optical transmission medium 21 is a plurality of optical fibers, the intermediary optical transmission medium corresponding to the number of optical fibers is stored in advance in the mechanical splice.

また、光伝送媒体21としては、石英ファイバ、プラスチックファイバ等を好適に用いることができるが、その材料は限定されない。なお、ホーリーファイバ等のフォトニック結晶型ファイバも適用できる。また、光伝送媒体として、光導波路を用いることができ、その形状および材質は、適宜選択して使用することができる。さらに、光伝送媒体における屈折率分布は、ステップ分布やグレーテッド分布等、使用目的により適宜選択することができる。   Moreover, as the optical transmission medium 21, a quartz fiber, a plastic fiber, etc. can be used suitably, However, The material is not limited. A photonic crystal fiber such as a holey fiber can also be applied. Moreover, an optical waveguide can be used as the optical transmission medium, and the shape and material thereof can be appropriately selected and used. Furthermore, the refractive index distribution in the optical transmission medium can be appropriately selected depending on the purpose of use, such as a step distribution or a graded distribution.

本発明における仲介光伝送媒体23としては、通常、接続される光伝送媒体21と同じ材質のものが所望の長さに切断して使用されるが、必ずしも同種の材質に限定されず、公知の光ファイバ等を幅広く使用することができる。   As the intermediary optical transmission medium 23 in the present invention, the same material as that of the optical transmission medium 21 to be connected is usually cut into a desired length, but is not necessarily limited to the same kind of material and is publicly known. A wide range of optical fibers can be used.

また、本発明におけるメカニカルスプライスの押さえ基板やV溝基板に用いられる材料は、接続される光伝送媒体の材料や、要求される強度や位置合わせ精度により適宜選択されるが、特に熱的寸法変化が小さいプラスチック、セラミック、金属等で作製されたものが好ましく使用される。プラスチック材料としては、ガラス混入エポキシ材料、PPS(ポリフェニルサルファイド)、PEEK(ポリエーテルエーテルケトン)等の結晶性高分子が好ましく使用される。   In addition, the material used for the holding substrate of the mechanical splice and the V-groove substrate in the present invention is appropriately selected depending on the material of the optical transmission medium to be connected, the required strength and alignment accuracy, but in particular the thermal dimensional change Those made of small plastic, ceramic, metal, etc. are preferably used. As the plastic material, a glassy epoxy material, a crystalline polymer such as PPS (polyphenyl sulfide), PEEK (polyether ether ketone) is preferably used.

本発明のV溝基板12に形成されている溝13は、押さえ基板と共に光伝送媒体を固定するものであればV字状に限定されず、U字状、半円や矩形であってもよく、これらの溝は、接続される光伝送媒体と同数形成されており、それぞれに仲介光伝送媒体が収納されることが好ましい。   The groove 13 formed in the V-groove substrate 12 of the present invention is not limited to a V shape as long as the optical transmission medium is fixed together with the pressing substrate, and may be a U shape, a semicircle, or a rectangle. These grooves are formed in the same number as the optical transmission media to be connected, and it is preferable that the intermediary optical transmission media are accommodated in each of the grooves.

次に、本発明の光学接続構造について、実施例を用いてさらに詳細に説明する。
<実施例1>
まず、粘着性接続部材の材料として、屈折率を1.46に調整したアクリル系粘着材料を用意した。
このアクリル系粘着材料は、n−ブチルアクリレート/メチルアクリレート/アクリル酸/2−ヒドロキシエチルメタクリレート共重合体(配合重量比=82/15/2.7/0.3)の30%酢酸エチル溶液100部に、コロネートL(日本ポリウレタン工業社製、トリメチロールプロパンのトリレンジイソシアネートアダクト)1.0部を配合して混合してなる溶液である。なお、当該アクリル系粘着材料の粘度は、0.1Pa・S程度である。
Next, the optical connection structure of the present invention will be described in more detail using examples.
<Example 1>
First, an acrylic adhesive material having a refractive index adjusted to 1.46 was prepared as a material for the adhesive connection member.
This acrylic pressure-sensitive adhesive material is a 30% ethyl acetate solution of n-butyl acrylate / methyl acrylate / acrylic acid / 2-hydroxyethyl methacrylate copolymer (blending weight ratio = 82/15 / 2.7 / 0.3) 100 It is a solution obtained by mixing 1.0 part of Coronate L (manufactured by Nippon Polyurethane Industry Co., Ltd., tolylene diisocyanate adduct of trimethylolpropane) with mixing. The acrylic adhesive material has a viscosity of about 0.1 Pa · S.

次に、石英系シングルモードの光ファイバ(住友電工社製、外径0.25mm、20℃での屈折率1.452)を用意し、長さが約1mmとなるように両端を光ファイバカッタ(古河電工社製 商品名:「S325A」)により鏡面カットした。この光ファイバを帯電させ、その端面を前記アクリル系粘着材料の液面に近接させることでアクリル系粘着材料を光ファイバの端面に吸着させた(特開2007−183383号公報を参照)。その後、もう一方の端面にもアクリル系粘着材料を吸着させた。そして、該光ファイバを100℃のオーブンに1.5時間入れ、アクリル系粘着材料を固化させて粘着性接続部材とすることで、両端に粘着性接続部材を備える仲介ファイバを作製した。なお、粘着性接続部材の粘着力は30gf/25mm、屈折率は1.46、硬度は、25、膜厚は20μmであった。   Next, a quartz single mode optical fiber (manufactured by Sumitomo Electric Co., Ltd., outer diameter 0.25 mm, refractive index 1.452 at 20 ° C.) is prepared, and both ends are optical fiber cutters so that the length is about 1 mm. (Furukawa Electric product name: “S325A”) was mirror-cut. The optical fiber was charged and its end face was brought close to the liquid surface of the acrylic pressure-sensitive adhesive material to adsorb the acrylic pressure-sensitive adhesive material to the end face of the optical fiber (see Japanese Patent Application Laid-Open No. 2007-183383). Thereafter, the acrylic adhesive material was also adsorbed on the other end face. Then, the optical fiber was placed in an oven at 100 ° C. for 1.5 hours to solidify the acrylic adhesive material to form an adhesive connection member, thereby producing an intermediate fiber having adhesive connection members at both ends. The adhesive strength of the adhesive connecting member was 30 gf / 25 mm, the refractive index was 1.46, the hardness was 25, and the film thickness was 20 μm.

次に、該仲介ファイバをメカニカルスプライス内部のV溝にセッティングした。そして、組み立て治具(単心メカニカルスプライス 接続工具「H」 型番:HOT−HMS−CRC)を用いてクランプスプリングに押さえ基板とV溝基板を嵌め込み、メカニカルスプライス(単心メカニカルスプライス「H」 型式:HOT−HMS−1−125)を組み立てた。   Next, the mediating fiber was set in a V groove inside the mechanical splice. Then, using the assembly jig (single-core mechanical splice connection tool “H” model number: HOT-HMS-CRC), the holding substrate and the V-groove substrate are fitted into the clamp spring, and the mechanical splice (single-core mechanical splice “H”) HOT-HMS-1-125) was assembled.

次に、一端にFCコネクタを有する石英系シングルモードの光ファイバF2(住友電工社製、外径0.25m、20℃での屈折率1.452、長さ3.5m)を2本用意した。そして、FCコネクタのない側の端面を鏡面カットして前記メカニカルスプライスの両端からそれぞれ挿入し、仲介光ファイバに当接させて実施例1の光学接続構造を作製した。   Next, two silica-based single-mode optical fibers F2 (manufactured by Sumitomo Electric Co., Ltd., outer diameter 0.25 m, refractive index 1.452 at 20 ° C., length 3.5 m) having an FC connector at one end were prepared. . Then, the end face on the side without the FC connector was mirror-cut, inserted from both ends of the mechanical splice, and brought into contact with the intermediate optical fiber to produce the optical connection structure of Example 1.

<比較例1>
仲介光ファイバを用いなかったことを除き、実施例1と同様にして比較例1の光学接続構造を作製した。
<Comparative Example 1>
An optical connection structure of Comparative Example 1 was produced in the same manner as in Example 1 except that no intermediate optical fiber was used.

<比較例2>
予め粘着性接続部材シート(粘着力は30gf/25mm、屈折率は1.46、硬度は25、膜厚は20μm)を用意した。2本の光ファイバF2のうちの1本について、当該粘着性接続部材シートに当接させ、押し破ることによって端部に粘着性接続部材層を設けてからメカニカルスプライスへ挿入した。それ以外は比較例1と同様にして比較例2の光学接続構造を作製した。実施例および比較例の主な条件を表1に示す。
<Comparative Example 2>
An adhesive connecting member sheet (adhesive strength was 30 gf / 25 mm, refractive index was 1.46, hardness was 25, and film thickness was 20 μm) was prepared in advance. One of the two optical fibers F2 was brought into contact with the adhesive connecting member sheet, and an adhesive connecting member layer was provided at the end portion by pushing and then inserted into the mechanical splice. Otherwise, the optical connection structure of Comparative Example 2 was produced in the same manner as Comparative Example 1. Table 1 shows the main conditions of Examples and Comparative Examples.

Figure 2009244556
Figure 2009244556

<接続に要する時間>
まず、実施例および比較例の光学接続構造について、メカニカルスプライスが組み立てられた状態から接続に要する時間を測定した。具体的には、実施例1および比較例1については光ファイバF2を挿入する時間を測定した。比較例2については、端部に粘着性接続部材層を設けて光ファイバF2を挿入する時間を測定した。なお、接続に要する時間は300秒以上だと実用上問題がある。
<Time required for connection>
First, for the optical connection structures of Examples and Comparative Examples, the time required for connection was measured from the state where the mechanical splice was assembled. Specifically, for Example 1 and Comparative Example 1, the time for inserting the optical fiber F2 was measured. For Comparative Example 2, the time for inserting the optical fiber F2 with the adhesive connecting member layer provided at the end was measured. Note that there is a practical problem if the time required for connection is 300 seconds or more.

<接続損失>
次に、実施例および比較例の光学接続構造について接続損失の評価を行った。
[基準実験]
まず、接続箇所がない状態で接続損失0の標準状態を示すために基準実験を行った。図5は、基準実験の回路図である。
符号100は光パワーメータ(ADVANTEST社製、商品名:OPTICAL MULTI POWER METER 「Q8221」)、CはFCコネクタ、F1は両端にFCコネクタを有する石英系シングルモードの光ファイバ(住友電工社製、FCコネクタ付光ファイバ250μm心線、長さ1m)である。なお、光パワーメータ100は、センサーユニットとして「Q82208」、1.55μmLDユニットとして「Q81212」を用いた。
<Connection loss>
Next, connection loss was evaluated about the optical connection structure of the Example and the comparative example.
[Reference experiment]
First, a reference experiment was performed in order to show a standard state with zero connection loss in the absence of a connection point. FIG. 5 is a circuit diagram of the reference experiment.
Reference numeral 100 represents an optical power meter (trade name: OPTICAL MULTI POWER METER “Q8221” manufactured by ADVANTEST), C represents an FC connector, F1 represents a silica-based single mode optical fiber having an FC connector at both ends (manufactured by Sumitomo Electric Industries, FC Optical fiber with connector 250 μm core wire, length 1 m). The optical power meter 100 uses “Q82208” as the sensor unit and “Q81212” as the 1.55 μmL D unit.

光ファイバF1の両端のFCコネクタを、それぞれ光パワーメータ100の入射用端子および出射用端子に接続した。この状態で波長1550nmの光を入射用端子から5回入射させ、出射用端子から出射された光パワーを測定した。そして、5回の平均値を基準値とした。   The FC connectors at both ends of the optical fiber F1 were connected to the incident terminal and the emission terminal of the optical power meter 100, respectively. In this state, light having a wavelength of 1550 nm was incident from the incident terminal five times, and the optical power emitted from the emission terminal was measured. And the average value of 5 times was made into the reference value.

[実施例および比較例の評価]
次に実施例および比較例の光学接続構造について接続損失を評価した。図6は、実施例および比較例の回路図である。符号F2は、一端にFCコネクタを有する石英系シングルモードの光ファイバである。
[Evaluation of Examples and Comparative Examples]
Next, connection loss was evaluated about the optical connection structure of the Example and the comparative example. FIG. 6 is a circuit diagram of an example and a comparative example. Reference numeral F2 is a quartz single-mode optical fiber having an FC connector at one end.

まず、実施例1の光学接続構造について、2つのFCコネクタをそれぞれ光パワーメータ100の入射用端子および出射用端子に接続した。この状態で波長1550nmの光を入射用端子から5回入射させ、出射用端子から出射された光パワーを測定した。そして、5回の平均値と基準値との差異を実施例1の接続損失とした。その後、組み立て冶具を用いてメカニカルスプライスを分解し、再度そのメカニカルスプライスを組み立てて再接続させた。この状態で波長1550nmの光を入射用端子から5回入射させ、出射用端子から出射された光パワーを測定し、5回の平均値と基準値との差異を実施例1の再接続損失とした。そして、比較例1および比較例2の光学接続構造についても同様に評価した。なお、接続損失は、0.25dB以上だと実用上問題があり、0.15dB未満だと特に優れている。結果を表2に示す。   First, regarding the optical connection structure of Example 1, two FC connectors were connected to the incident terminal and the emission terminal of the optical power meter 100, respectively. In this state, light having a wavelength of 1550 nm was incident from the incident terminal five times, and the optical power emitted from the emission terminal was measured. And the difference between the average value of 5 times and the reference value was defined as the connection loss of Example 1. Thereafter, the mechanical splice was disassembled using an assembly jig, and the mechanical splice was reassembled and reconnected. In this state, light having a wavelength of 1550 nm is incident from the incident terminal five times, the optical power emitted from the output terminal is measured, and the difference between the average value of the five times and the reference value is determined as the reconnection loss of Example 1. did. The optical connection structures of Comparative Example 1 and Comparative Example 2 were similarly evaluated. The connection loss is practically problematic when it is 0.25 dB or more, and particularly excellent when it is less than 0.15 dB. The results are shown in Table 2.

Figure 2009244556
Figure 2009244556

[評価結果]
表2から明らかなように、実施例1の光学接続構造は接続に要する時間、接続損失、再接続損失のいずれも実用上問題なく、接続損失は特に優れている。これに対し、比較例1の光学接続構造は、接続に要する時間は実用上問題ないが、接続損失、再接続損失は実用上問題がある。また、比較例2の光学接続構造は、接続損失、再接続損失は実用上問題ないが、接続に要する時間は実用上問題がある。
[Evaluation results]
As is apparent from Table 2, the optical connection structure of Example 1 has practically no problems in connection time, connection loss, and reconnection loss, and the connection loss is particularly excellent. On the other hand, the optical connection structure of Comparative Example 1 has practically no problem with the time required for connection, but there are practical problems with connection loss and reconnection loss. Further, in the optical connection structure of Comparative Example 2, there is no practical problem in connection loss and reconnection loss, but the time required for connection has a practical problem.

メカニカルスプライス構造を示す斜視図である。It is a perspective view which shows a mechanical splice structure. 本発明の光学接続構造を示す断面図である。It is sectional drawing which shows the optical connection structure of this invention. 光伝送媒体の端部に接続媒体を設ける方法の一例を示す模式図である。It is a schematic diagram which shows an example of the method of providing a connection medium in the edge part of an optical transmission medium. 光伝送媒体の端部に接続媒体を設ける方法の他の例を示す模式図である。It is a schematic diagram which shows the other example of the method of providing a connection medium in the edge part of an optical transmission medium. 基準実験の回路図である。It is a circuit diagram of a reference experiment. 実施例および比較例の回路図である。It is a circuit diagram of an example and a comparative example.

符号の説明Explanation of symbols

1…メカニカルスプライス、11…押さえ基板、12…V溝基板、13…溝、
14…クランプスプリング、21…光伝送媒体、22…被覆部、23…仲介光伝送媒体、
3…粘着性接続部材、100…光パワーメータ、C…FCコネクタ、
F1…両端にFCコネクタを有する光ファイバ、
F2…一端にFCコネクタを有する光ファイバ
DESCRIPTION OF SYMBOLS 1 ... Mechanical splice, 11 ... Holding substrate, 12 ... V-groove substrate, 13 ... Groove,
14 ... Clamp spring, 21 ... Optical transmission medium, 22 ... Covering part, 23 ... Intermediary optical transmission medium,
3 ... Adhesive connection member, 100 ... Optical power meter, C ... FC connector,
F1 ... an optical fiber having FC connectors at both ends,
F2: Optical fiber having an FC connector at one end

Claims (4)

光伝送媒体がメカニカルスプライスの両端からそれぞれ挿入され上記光伝送媒体同士が互いに光学的に接続されている光学接続構造であって、
上記メカニカルスプライスは、内部に仲介光伝送媒体を備え、
上記仲介光伝送媒体は、その両端に粘着性接続部材を備え、
上記各光伝送媒体は、それぞれ上記粘着性接続部材に当接して接続されていることを特徴とする光学接続構造。
An optical connection structure in which optical transmission media are inserted from both ends of the mechanical splice, and the optical transmission media are optically connected to each other,
The mechanical splice includes an intermediary optical transmission medium inside,
The intermediary light transmission medium includes an adhesive connection member at both ends thereof.
Each of the optical transmission media is in contact with and connected to the adhesive connecting member.
前記粘着性接続部材は、硬度がJIS(A型)5〜100であることを特徴とする請求項1に記載の光学接続構造。   The optical connection structure according to claim 1, wherein the adhesive connection member has a hardness of JIS (A type) 5 to 100. 前記粘着性接続部材は、二層構造であることを特徴とする請求項1に記載の光学接続構造。   The optical connection structure according to claim 1, wherein the adhesive connection member has a two-layer structure. 光伝送媒体をメカニカルスプライスの両端からそれぞれ挿入して上記光伝送媒体同士を互いに光学的に接続する光学接続方法であって、
仲介光伝送媒体の両端に粘着性接続部材を設け、
上記仲介伝送媒体を上記メカニカルスプライスの内部に挟持させ、
上記光伝送媒体を上記メカニカルスプライスの両端から挿入して上記粘着性接続部材に当接させることを特徴とする光学接続方法。
An optical connection method for optically connecting the optical transmission media to each other by inserting optical transmission media from both ends of the mechanical splice,
Adhesive connection members are provided at both ends of the intermediary light transmission medium,
The intermediate transmission medium is sandwiched inside the mechanical splice,
An optical connection method, wherein the optical transmission medium is inserted from both ends of the mechanical splice and brought into contact with the adhesive connection member.
JP2008090408A 2008-03-31 2008-03-31 Optical connection structure and method Pending JP2009244556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008090408A JP2009244556A (en) 2008-03-31 2008-03-31 Optical connection structure and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008090408A JP2009244556A (en) 2008-03-31 2008-03-31 Optical connection structure and method

Publications (1)

Publication Number Publication Date
JP2009244556A true JP2009244556A (en) 2009-10-22

Family

ID=41306518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008090408A Pending JP2009244556A (en) 2008-03-31 2008-03-31 Optical connection structure and method

Country Status (1)

Country Link
JP (1) JP2009244556A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047071A (en) * 1998-05-27 2000-02-18 Sharp Corp Optical signal transmission and reception module, optical signal transmission and reception repeater and optical signal transmission and reception system using them
JP2005274839A (en) * 2004-03-24 2005-10-06 Tomoegawa Paper Co Ltd Optical connection structure and manufacturing method thereof, and end face processing method of optical transmission medium
JP2007093647A (en) * 2005-09-27 2007-04-12 Tomoegawa Paper Co Ltd Optical connecting structure and method
JP2007107011A (en) * 2006-11-29 2007-04-26 Nitto Denko Corp Bonding method facilitating dismantlement, adhesive member therefor and method for producing the same
JP2008070545A (en) * 2006-09-13 2008-03-27 Hitachi Cable Ltd Mechanical splice

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047071A (en) * 1998-05-27 2000-02-18 Sharp Corp Optical signal transmission and reception module, optical signal transmission and reception repeater and optical signal transmission and reception system using them
JP2005274839A (en) * 2004-03-24 2005-10-06 Tomoegawa Paper Co Ltd Optical connection structure and manufacturing method thereof, and end face processing method of optical transmission medium
JP2007093647A (en) * 2005-09-27 2007-04-12 Tomoegawa Paper Co Ltd Optical connecting structure and method
JP2008070545A (en) * 2006-09-13 2008-03-27 Hitachi Cable Ltd Mechanical splice
JP2007107011A (en) * 2006-11-29 2007-04-26 Nitto Denko Corp Bonding method facilitating dismantlement, adhesive member therefor and method for producing the same

Similar Documents

Publication Publication Date Title
EP1686402B1 (en) Optical connection structure and optical connection method
KR100997816B1 (en) Cohesive connection member, optical connection structure using the same and sticking jig having cohesive connection member
JP4332490B2 (en) Optical connection structure and optical connection method thereof
JP2006221031A (en) Optical connection structure
JP5574960B2 (en) Optical transmission medium, ferrule and optical terminal connector
JP2007093647A (en) Optical connecting structure and method
JP4109653B2 (en) Optical connector, and split sleeve for connection, support member and adapter used therefor
JP4043448B2 (en) OPTICAL CONNECTION STRUCTURE AND METHOD FOR MANUFACTURING THE SAME
JP5228037B2 (en) Rubber member, adhesive connection member and optical connection structure
JP2009265243A (en) Optical connection structure and optical connection method
JP5150201B2 (en) Adhesive connection member and optical connection structure using the same
JP2007225722A (en) Optical connector
JP2009244545A (en) Optical connection structure and optical connection method
JP4167498B2 (en) Optical transmission component connection structure and optical connection method
JP4252884B2 (en) Optical connection structure and optical connection method
JP4872551B2 (en) Mechanical splice
JP2009244556A (en) Optical connection structure and method
JP2009271312A (en) Optical connection structure and optical connection method
JP2007225743A (en) Optical connector
JP2011064779A (en) Ferrule with optical fiber and optical connector using the same
JP2011033784A (en) Ferrule with optical fiber, and optical connector employing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120202