JP4250953B2 - 6 boride particles, a dispersion in which the 6 boride particles are dispersed, and an article using the 6 boride particles or the dispersion - Google Patents

6 boride particles, a dispersion in which the 6 boride particles are dispersed, and an article using the 6 boride particles or the dispersion Download PDF

Info

Publication number
JP4250953B2
JP4250953B2 JP2002341814A JP2002341814A JP4250953B2 JP 4250953 B2 JP4250953 B2 JP 4250953B2 JP 2002341814 A JP2002341814 A JP 2002341814A JP 2002341814 A JP2002341814 A JP 2002341814A JP 4250953 B2 JP4250953 B2 JP 4250953B2
Authority
JP
Japan
Prior art keywords
hexaboride
hexaboride particles
dispersion
particles
treatment agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002341814A
Other languages
Japanese (ja)
Other versions
JP2003277045A (en
Inventor
広充 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002341814A priority Critical patent/JP4250953B2/en
Publication of JP2003277045A publication Critical patent/JP2003277045A/en
Application granted granted Critical
Publication of JP4250953B2 publication Critical patent/JP4250953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caの内から選択された1種類以上の元素(X)とホウ素(B)の化合物粒子(6ホウ化物粒子)とこの6ホウ化物粒子を液体媒質若しくは固体媒質中に分散させた6ホウ化物粒子の分散体に係り、特に、耐水性が改善された6ホウ化物粒子とこの6ホウ化物粒子の分散体および6ホウ化物粒子若しくはこの分散体を用いた物品に関するものである。
【0002】
【従来の技術】
【0003】
【特許文献1】
特開2000−169765号公報(請求項5〜10)
【0004】
LaB6等で代表される6ホウ化物粒子は、可視光領域における光の透過率は高くて反射率が低く、近赤外領域における光の透過率は低いといった特性を有しているため、近年、日射遮蔽材料として利用されている(特許文献1参照)。
【0005】
ところで、上記6ホウ化物粒子は空気中の水蒸気や水によって表面が分解されることが知られている。特に、微細粒子の状態で存在する場合には体積に対する表面積が増加しているため、6ホウ化物粒子表面は水蒸気や水分で分解し酸化物や水酸化物の化合物に変化する割合が多く、その結果、6ホウ化物本来の特性が徐々に低下してしまう現象が現れる。
【0006】
そして、6ホウ化物粒子を用いた塗膜等においてその光学特性を利用して近赤外領域における光を遮蔽するような用途に適用した場合、水蒸気や水の影響で200nm〜2600nm領域の透過率が上昇してしまい、日射遮蔽性能が徐々に劣化する問題があったがこれを防止する方法は未だ開発されていない。
【0007】
【発明が解決しようとする課題】
本発明はこの様な問題点に着目してなされたもので、その課題とするところは、耐水性が改善されて日射遮蔽材料として好適に利用される6ホウ化物粒子とこの6ホウ化物粒子が液体媒質若しくは固体媒質に分散された分散体、および、6ホウ化物粒子若しくはこの分散体を用いた物品を提供することにある。
【0008】
【課題を解決するための手段】
すなわち、請求項1に係る発明は、
Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caの内から選択された1種類以上の元素(X)の6ホウ化物粒子を前提とし、
上記6ホウ化物粒子の表面が、シラザン系処理剤から成る表面処理剤で物理的に被覆されているか、6ホウ化物粒子表面で6ホウ化物粒子と化学的に結合した上記表面処理剤で被覆されていることを特徴とするものである。
【0009】
また、請求項2に係る発明は、
Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caの内から選択された1種類以上の元素(X)の6ホウ化物粒子を前提とし、
上記6ホウ化物粒子の表面が、シラザン系処理剤、クロロシラン系処理剤、アルコキシ基を分子構造中に有する無機系処理剤、および、アルコキシ基を分子末端若しくは側鎖に有する有機系処理剤から選択されたケイ素を含有する表面処理剤で物理的に被覆されているか、6ホウ化物粒子表面で6ホウ化物粒子と化学的に結合した表面処理剤で被覆されており、かつ、上記表面処理剤による被覆前の6ホウ化物粒子と表面処理剤および溶媒を攪拌混合し、これを分散処理して分散液を得ると共に、分散液から溶媒を蒸発させて除去しかつ加熱乾燥させた後、粉砕して得られていることを特徴とし、
請求項3に係る発明は、
請求項1または2記載の発明に係る6ホウ化物粒子を前提とし、
上記6ホウ化物粒子が、ホウ化ランタンであることを特徴とし、
請求項4に係る発明は、
請求項1〜3のいずれかに記載の発明に係る6ホウ化物粒子を前提とし、
上記6ホウ化物粒子の粒子径が、10nm〜10μmであることを特徴とし、
請求項5に係る発明は、
請求項1〜4のいずれかに記載の発明に係る6ホウ化物粒子を前提とし、
表面処理剤の6ホウ化物粒子に対する比率が、表面処理剤に含まれるケイ素換算で6ホウ化物粒子1重量部に対して0.01〜100重量部であることを特徴とし、
請求項6に係る発明は、
上記6ホウ化物粒子を用いた物品を前提とし、
基材表面に請求項1〜5のいずれかに記載の6ホウ化物粒子群が直接積層されて6ホウ化物粒子群の被膜を有する物品を構成していることを特徴とするものである。
【0010】
次に、請求項7に係る発明は、
上記6ホウ化物粒子の分散体を前提とし、
請求項1〜5のいずれかに記載の6ホウ化物粒子が液体媒質若しくは固体媒質中に分散していることを特徴とし、
請求項8に係る発明は、
請求項7記載の発明に係る6ホウ化物粒子の分散体を前提とし、
上記液体媒質が、有機溶媒または/および水で構成されるか、樹脂および金属アルコキシドの少なくとも一方を溶解若しくは分散させた有機溶媒または/および水で構成されることを特徴し、
請求項9に係る発明は、
請求項7記載の発明に係る6ホウ化物粒子の分散体を前提とし、
上記固体媒質が、樹脂若しくはガラスのいずれかで構成されることを特徴とするものである。
【0011】
また、請求項10に係る発明は、
請求項7または9記載の発明に係る6ホウ化物粒子の分散体を前提とし、
固体媒質中に分散された上記6ホウ化物粒子の分散体が、基材表面に形成された被膜を構成していることを特徴とし、
請求項11に係る発明は、
請求項7または9記載の発明に係る6ホウ化物粒子の分散体を前提とし、
固体媒質中に分散された上記6ホウ化物粒子の分散体が、厚さ0.1μm〜50mmのフィルム若しくはボードを構成していることを特徴とし、
請求項12に係る発明は、
請求項7または9記載の発明に係る6ホウ化物粒子の分散体を前提とし、
固体媒質中に分散された上記6ホウ化物粒子の分散体が、粉砕処理されて粉状体を構成していることを特徴とし、
請求項13に係る発明は、
請求項12記載の発明に係る6ホウ化物粒子の分散体を前提とし、
粉砕処理された上記粉状体の粒子径が、10nm〜10μmであることを特徴とし、
また、請求項14に係る発明は、
6ホウ化物粒子の分散体を用いた物品を前提とし、
請求項10または11の分散体を用いたことを特徴とするものである。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0013】
上述したように6ホウ化物粒子は空気中の湿気等でその表面が酸化物や水酸化物に変化し6ホウ化物本来の特性が低下してしまう問題があったが、6ホウ化物粒子の表面が、表面処理剤で物理的に被覆されているか、6ホウ化物粒子表面で6ホウ化物粒子と化学的に結合した表面処理剤で被覆された場合、6ホウ化物粒子の耐水性を改善させることが可能となることを見出し本発明を完成させるに至っている。
【0014】
6ホウ化物粒子表面を被覆するものとしては上記表面処理剤であるが、この表面処理剤は6ホウ化物粒子表面と化学的に反応することで被覆してもよいし物理的に被覆するものであってもよい。6ホウ化物粒子表面を水蒸気の透過を防止する疎水性物質としての上記表面処理剤でコーティングすることにより、水蒸気や水が直接6ホウ化物粒子表面に接触することを妨げるため、結果的に6ホウ化物粒子の耐水性が向上したものと考えられる。
【0015】
そして、上記表面処理剤としては、シラザン系処理剤、クロロシラン系処理剤、アルコキシ基を分子構造中に有する無機系処理剤、および、アルコキシ基を分子末端若しくは側鎖に有する有機系処理剤から選択されたケイ素を含有する表面処理剤が挙げられる。
【0016】
上記シラザン系処理剤は6ホウ化物粒子との反応性が強く、6ホウ化物粒子と粒子表面で共有結合して6ホウ化物表面を覆うことが可能となる。更に、シラザンは親油性で、分子構造が小さいため、緻密に粒子表面を覆い最外殻は疎水性となり耐水性向上に有効である。具体的には、ヘキサメチルジシラザン、サイクリックシラザン、N,N−ビス(トリメチルシリル)ウレア、N−トリメチルシリルアセトアミド、ジメチルトリメチルシリルアミン、ジエチルトリメチルシリルアミン、トリメチルシリルイミダゾール、N−トリメチルシリルフェニルウレア等が挙げられ、かつ、これ等の加水分解物若しくはその重合物の適用も可能である。
【0017】
また、上記クロロシラン系処理剤はそのクロル基が6ホウ化物粒子と粒子表面で共有結合を形成する。これによって粒子表面はクロロシラン系処理剤に覆われ、耐水性が向上する。クロロシラン系処理剤の代表的なものは、メチルトリクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン、トリフロロプロピルトリクロロシラン、ヘプタデカフロロデシルトリクロロシラン、ビニルトリクロルシラン等が挙げられ、かつ、これ等の加水分解物若しくはその重合物の適用も可能である。
【0018】
次に、アルコキシ基を分子構造中に有する無機系処理剤はそのアルコキシ基が6ホウ化物粒子と粒子表面で共有結合を形成する。これによって粒子表面はこの表面処理剤で覆われ、また、最外殻は無機系処理剤、無機系処理剤の親油性基若しくは疎水基で覆われ耐水性が向上する。代表的なものとしては、シラン系カップリング剤等が挙げられる。具体的には、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、β―(3、4エポキシシクロヘキシル)エチルトリメトキシシラン、γ―グリシドキシプロピルトリメトキシシラン、γ―グリシドキシプロピルトリエトキシシラン、γ―グリシドキシプロピルメチルジエトキシシラン、γ―メタクリロキシプロピルメチルジメトキシシラン、γ―メタクリロキシプロピルトリエトキシシラン、N−β(アミノエチル)γ―アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ―アミノプロピルトリメトキシシラン、γ―アミノプロピルトリメトキシシラン、γ―アミノプロピルトリエトキシシラン、N−フェニルーγ―アミノプロピルトリメトキシシラン、γ―クロロプロピルトリメトキシシラン、γ―メルカプトプロピルトリメトキシシラン等が挙げられる。更に、アルコキシシラン表面処理剤として分類される以下の化合物、すなわち、テトラメトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリエトキシシラン、デシルトリメトキシシラン、トリウルオロプロピルトリメトキシシラン、ヘプタデカトリフルオロデシルトリメトキシシラン等が挙げられ、かつ、これ等の加水分解物若しくはその重合物の適用も可能である。
【0019】
また、アルコキシ基を分子末端若しくは側鎖に有し、主鎖がエポキシ、アクリル、ウレタン等の親油性高分子である有機系処理剤も有効である。アルコキシ基は6ホウ化物粒子表面で共有結合し、粒子の最外殻は、エポキシ、アクリル、ウレタン等の親油性高分子で覆われた状態になり耐水性が向上する。
【0020】
次に、6ホウ化物粒子表面に、シラザン系処理剤、クロロシラン系処理剤、アルコキシ基を分子構造中に有する無機系処理剤、および、アルコキシ基を分子末端若しくは側鎖に有する有機系処理剤から選択されたケイ素を含有する表面処理剤を被覆させる方法としては、6ホウ化物粒子表面が上記表面処理剤で被覆されていればよくその方法は特に限定されない。例えば、6ホウ化物粒子に表面処理剤の溶液を直接噴霧して被覆させ、かつ、乾燥させると共に加熱処理して物理的若しくは化学的に被覆してもよい。
【0021】
また、効率よく6ホウ化物粒子表面を表面処理剤で被覆する方法として、湿式法が挙げられる。この方法は、6ホウ化物粒子を適宜溶媒中に分散させその中に表面処理剤を添加して6ホウ化物粒子表面を被覆する方法である。上述した表面処理剤は溶媒中で効率良く6ホウ化物粒子表面を覆い、耐水性の向上した6ホウ化物粒子が得られる。尚、この湿式法において、6ホウ化物粒子と表面処理剤が分散した分散液から溶媒を蒸発させて除去し、かつ、加熱乾燥させた後、粉砕して6ホウ化物粒子表面を表面処理剤で被覆する手法を採ってもよい。この加熱乾燥処理により、溶媒中で単に被覆させる方法に較べて6ホウ化物粒子表面に形成される表面処理剤の被膜が緻密となり耐湿性が向上する。加熱乾燥温度は、6ホウ化物の耐熱温度や加熱雰囲気によって決定されるが、酸素が存在する雰囲気、特に大気中で6ホウ化物は600℃前後から酸化するため、600℃以下の熱処理が好ましい。また、酸素の存在しない不活性ガス雰囲気では加熱温度の上限は6ホウ化物の分解温度となるが、1000℃以上になると6ホウ化物粒子表面を被覆している表面処理剤(酸化物)の密度変化が実際には少なくなり(すなわち、加熱処理による緻密化作用の効果が小さくなる)、耐湿、耐水性への効果が飽和する傾向を示す。よって工業的な観点からその上限は1000℃程度とすることが好ましい。
【0022】
そして、表面処理剤で被覆された6ホウ化物粒子は、例えば、日射遮蔽製品の原料として粒子状態のまま、あるいは液体媒質若しくは固体媒質に分散された状態で利用される。
【0023】
ここで、6ホウ化物粒子の粒子径は、利用される応用目的によって10nm〜10μmの範囲内で適宜粒子径に設定される。例えば、光学的選択透過膜(可視光領域の光を透過させ近赤外領域の光を遮蔽させる上述の膜)に応用する場合は粒子による散乱を考慮する必要がある。透明性を重視したとき、6ホウ化物粒子の粒子径は200nm以下、好ましくは100nm以下がよい。この理由は、微粒子の粒子径が200nmを超えて大きいと、幾何学散乱若しくはミー散乱によって380nm〜780nmの可視光線領域の光を散乱して曇りガラスのようになり、鮮明な透明性が達成できないからである。粒子径が200nm以下になると、上記散乱が低減しレイリー散乱領域になる。レイリー散乱領域では、散乱光は粒子径の6乗に反比例して低減するため、粒子径の減少に伴い散乱が低減し透明性が向上する。更に100nm以下になると散乱光は非常に少なくなり好ましい。但し、利用される応用目的によってはこの様な透明性が要求されない分野もあり、10nm〜10μmの範囲内で適宜設定される。
【0024】
尚、粒子径が例えば200nm以下となる微細粒子の表面処理を行う場合は、微細粒子の凝集体を液体中でほぐし、均一に分散させた液体中に上記表面処理剤を添加して粒子表面に作用させるか、液体中でほぐすときに上記表面処理剤を同時に添加して粒子表面を被覆する方法が好ましい。そして、微細粒子を液体中でほぐす方法として、超音波照射や媒体攪拌ミル等が挙げられるがこれらに限定されるわけではない。更に、6ホウ化物粒子を液体中で均一に分散させた状態で保持する場合、上記表面処理剤を添加したスラリーを、超音波照射や媒体攪拌ミル等で分散処理してもよい。このとき、表面処理剤は粒子表面に作用し、微細粒子を均一に液体中に分散保持するのにも効果的である。
【0025】
次に、表面処理剤で被覆された6ホウ化物粒子を液体媒質に分散させた状態で利用する場合、この媒質として、例えば、アルコール等の有機溶剤や水等の液体媒質、あるいは、樹脂、金属アルコキシド等を含む有機溶剤や水等の液体媒質が挙げられる。尚、表面処理剤で被覆された6ホウ化物粒子が液体媒質に分散された分散体を得るには、上述の湿式法等によって得られた表面処理剤で被覆された6ホウ化物粒子をアルコール等の有機溶剤や水等の液体媒質、あるいは、樹脂、金属アルコキシド等を含む有機溶剤や水等の液体媒質に添加して得る方法が挙げられ、また、被覆処理と同時に得る方法を採ってもよい。すなわち、表面処理前の6ホウ化物粒子と表面処理剤をアルコール等の有機溶剤や水等の液体媒質に分散させ、被覆処理と同時に表面処理剤で被覆された6ホウ化物粒子が分散された分散体を得る方法を採用してもよい。
【0026】
また、表面処理剤で被覆された上記6ホウ化物粒子はそのまま適用されて例えば日射遮蔽製品等を構成する場合、あるいは、樹脂若しくはガラス等の固体媒質に分散された状態で日射遮蔽製品等を構成しまたは粉砕されて日射遮蔽製品用の原料を構成したりする場合がある。
【0027】
前者の場合としては、例えば、表面処理剤で被覆された6ホウ化物粒子をアルコール等の有機溶剤や水等の液体媒質にそのまま分散させた分散体を適宜基材表面に塗布した後、上記有機溶剤や水等の液体媒質を加熱処理して除去し、表面処理剤で被覆された6ホウ化物粒子群が基材表面に直接積層された日射遮蔽製品等が例示される。尚、この様な利用が可能となる6ホウ化物粒子は適用されている表面処理剤が単独で基材に対し熱接着性を具備する場合である。従って、表面処理剤の接着力が弱い場合には、6ホウ化物粒子群を基材表面に積層させた後、樹脂等のバインダー成分を含んだ塗液を塗布し、かつ、塗液中の溶媒成分を除去して樹脂被覆した日射遮蔽製品等を得てもよい。
【0028】
他方、後者の場合としては、表面処理剤で被覆された6ホウ化物粒子を、樹脂、金属アルコキシド等を含む有機溶剤や水等の液体媒質に分散させた分散体を適宜基材の表面に塗布し、有機溶剤や水等の溶媒を蒸発させると共に、樹脂や金属アルコキシド等を硬化させることで6ホウ化物粒子が固体媒質に分散した分散体(表面処理剤で被覆された6ホウ化物粒子が分散された樹脂若しくはガラス被膜)を簡単に作製することができる。尚、樹脂成分としては、用途に合わせて選択可能であり、紫外線硬化樹脂、熱硬化樹脂、常温硬化樹脂、熱可塑樹脂等が挙げられる。また、樹脂等の成分を含まない液体媒質が適用された分散体を用いた場合は、6ホウ化物粒子群を基材表面に積層させた後に、樹脂等の成分を含む液体媒質を塗布しても上述したように同様の分散体を得ることができる。
【0029】
ここで、表面処理剤で被覆された6ホウ化物粒子が固体媒体中に分散した膜は、熱処理しても良く、熱処理することで耐湿性が向上する。特に、表面処理剤について事前の熱処理を施していない6ホウ化物粒子が適用されている場合には、この熱処理により表面処理剤の被膜が緻密となり耐湿性が更に向上する。そして、加熱温度は、上述したように6ホウ化物の耐熱温度や加熱雰囲気によって決定されるが、酸素が存在する雰囲気、特に大気中で6ホウ化物は600℃前後から酸化するため600℃以下の熱処理が好ましい。また、酸素の存在しない不活性ガス雰囲気では加熱温度の上限は6ホウ化物の分解温度となるが、1000℃以上になると被覆している被膜(酸化物)の密度変化が少なくなり、耐湿、耐水性への効果が飽和する。よって工業的な観点から上限は1000℃とすることが好ましい。
【0030】
また、表面処理剤で被覆された6ホウ化物粒子が、樹脂、金属アルコキシド等を含む有機溶剤や水等の液体媒質に分散された分散体について、上述したように適宜基材表面に塗布し被膜を形成して日射遮蔽製品等として利用してもよいし、表面処理剤で被覆された6ホウ化物粒子が、樹脂、金属アルコキシド等を含む有機溶剤や水等の液体媒質に分散された分散体について、これを乾燥かつ加熱処理すると共に粉砕処理して粉末状の日射遮蔽製品用原料として適用してもよい。すなわち、6ホウ化物粒子が固体媒質に分散された粉末状の分散体について、これを、再度、液体媒質中に分散させ、日射遮蔽製品用の分散液として使用しても良いし、後述するように樹脂中に練り込んで使用しても良い。尚、粉砕処理された粉末状の上記分散体の粒径についても、利用される応用目的によって10nm〜10μmの範囲内で適宜粒子径に設定される。
【0031】
また、6ホウ化物粒子が固体媒質に分散した分散体は、上述した基材表面に膜状で存在する6ホウ化物粒子の分散体、あるいは、粉末状の分散体に限らず、例えば、厚さ0.1μm〜50mmのフィルム若しくはボードを構成する形態であってもよい。そして、樹脂に練り込み、フィルムやボードに成形する場合、表面処理剤で被覆されかつ目的に合った粒子径を有する上記6ホウ化物粒子を直接樹脂に練り込むことが可能であり、また、上記6ホウ化物粒子が液体媒質に分散した分散体と樹脂を混合することも、あるいは、6ホウ化物粒子が固体媒質に分散された粉末状の分散体を液体媒質に添加しかつ樹脂と混合することも可能である。一般的に、樹脂に練り込むとき、樹脂の融点付近の温度(200〜300℃前後)で加熱混合する。更に、樹脂に混合後ペレット化し、各方式でフィルムやボードを形成することが可能である。例えば、押し出し成形法、インフレーション成形法、溶液流延法、キャスティング法等により形成可能である。この時のフィルムやボードの厚さは、使用目的によって適宜設定すればよく、樹脂に対するフィラー量(すなわち、6ホウ化物粒子の配合量)は、基材の厚さや必要とされる光学特性、機械特性に応じて可変であるが、一般的に樹脂に対して50重量%以下が好ましい。
【0032】
また、フィルムやボードの母体となる樹脂は、特に限定されるものではなく用途に合わせて選択可能であるが、耐候性を考慮するとフッ素樹脂が有効である。さらに、フッ素樹脂に較べて、低コストで透明性が高く汎用性の広い樹脂としては、PET樹脂、アクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、ポリカーボネート樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂等が挙げられる。
【0033】
次に、上記表面処理剤の6ホウ化物粒子に対する添加量(すなわち比率)は原則として任意であるが、可能なら表面処理剤に含まれるケイ素換算で6ホウ化物粒子1重量部に対して0.01〜100重量部であること望ましい。0.01重量部未満だと表面を被覆する効果が小さく耐水性向上の効果が十分でない場合があり、また、100重量部を超えると表面被覆による耐水性の向上がみられず被覆効果が小さい場合があるからである。
【0034】
そして、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caの内から選ばれた1種類以上の元素(X)の6ホウ化物粒子を適用して光学フィルターを構成した場合(すなわち、本発明に係る分散体を用いた物品が光学フィルターの場合)、1000nm付近の光を反射吸収して遮蔽し、380nm〜780nmの光を透過する特性を具備させることが可能となる。この様な特性は、6ホウ化物特有の電子構造に由来するもので、特に、1000nm付近に自由電子のプラズモン共鳴があるため、この領域の光をブロードに吸収反射する。
【0035】
更に、380nm〜780nmの可視光領域の吸収が少ないため、上記光学フィルターの用途に限らず、可視光線領域を透過し近赤外線を遮蔽する他の用途にも適している。例えば、本発明に係る6ホウ化物粒子若しくはその分散体を用いた物品として、住宅や自動車の窓材、温室等に応用すれば、太陽光線の1000nm付近の近赤外線を遮蔽し、高い断熱効果が得られると同時に視認性が確保される利点を有する。
【0036】
尚、上記光学フィルターや窓材等の物品に対する6ホウ化物粒子の使用量は、その求められる特性によって適宜変更可能である。そして、可視光線領域を透過し近赤外線を遮蔽する断熱用光学フィルターの場合、例えば、LaB6においては1m2当たりのフィラー量が0.01g以上で有効な断熱効果が得られる。上限は求める光学特性にもよるが1m2当たり0.1gで約50%の太陽光線の熱エネルギーを吸収遮蔽することが可能であり単位重量における断熱効率が高い。
【0037】
【実施例】
以下、本発明の実施例について具体的に説明するが、本発明は以下の実施例に限定されるわけではない。
【0038】
また、実施例中の可視光透過率とは、波長380nm〜780nmの領域の光の透過量を人の目の視感度で規格化した透過光量の積算値で、人の目の感じる明るさを意味する値である。以下の実施例ではJISA 5759に準ずる方法で測定を行っている(但し、ガラスに貼付せずフィルムのみで測定を行っている)。
【0039】
また、膜のヘーズ値は、JIS K 7105に基づいた測定を行なった。平均分散粒子径は動的光散乱法を用いた測定装置[大塚電子株式会社製 ELS−800]により測定した平均値とした。
【0040】
また、耐水性の評価方法は、60℃で湿度90%の環境に4日間放置したとき、可視光透過率68%〜75%の試料において、透過率の上昇が5ポイント以下のものを良好とし、5ポイントを越えるものは耐水性が不良とした。
【0041】
参考例1
6ホウ化ランタン20gとシランカップリング剤であるγ―グリシドキシプロピルトリエトキシシラン8gとトルエン72gを攪拌混合し、これを媒体攪拌ミルで分散処理して平均分散粒子径100nmの分散液を調製した。
【0042】
この液2gと紫外線硬化樹脂UV3701[東亞合成(株)社製]5gを混合し、塗布液とした。基材に50μm厚のPETフィルムを使用し、バーコーターを用いて上記塗布液をPETフィルム上に成膜した。これを70℃で1分間乾燥し、溶媒を蒸発させた後、高圧水銀ランプを用いて紫外線を照射し、膜を硬化させた。この時の膜の可視光透過率は70%で、ヘーズは0.9%だった。
【0043】
これを、60℃で湿度90%の環境に4日間放置後、可視光透過率を測定したところ、可視光透過率は71.3%で透過率の上昇は1.3ポイントであり、被膜の耐水性は良好であった。
【0044】
[比較例1]
6ホウ化ランタン20gとトルエン80gを攪拌混合し、これを分散処理して平均分散粒子径300nmの分散液を作製した。この液2gと紫外線硬化樹脂UV3701[東亞合成(株)社製]5gを混合し、塗布液とした。
【0045】
基材に50μm厚のPETフィルムを使用し、バーコーターを用いて塗布液をPETフィルム上に成膜した。これを70℃で1分間乾燥し、溶媒を蒸発させた後、高圧水銀ランプを用いて紫外線を照射し、膜を硬化させた。この時の膜の可視光透過率は69.2%で、ヘーズは2.5%だった。
【0046】
これを、60℃で湿度90%の環境に4日間放置後、可視光透過率を測定したところ、可視光透過率は75.6%で透過率の上昇は6.4ポイントであり、被膜の耐水性は不良であった。
【0047】
[実施例2]
6ホウ化セリウム20gとヘキサメチルジシラザン8gとトルエン72gを攪拌混合し、これを分散処理して平均分散粒子径100nmの分散液を調製した。
【0048】
この液2gと紫外線硬化樹脂UV3701[東亞合成(株)社製]5gを混合し、塗布液とした。
【0049】
基材に50μm厚のPETフィルムを使用し、バーコーターを用いて塗布液をPETフィルム上に成膜した。これを70℃で1分間乾燥し、溶媒を蒸発させた後、高圧水銀ランプを用いて紫外線を照射し、膜を硬化させた。この時の膜の可視光透過率は71.7%で、ヘーズは1.0%だった。
【0050】
これを、60℃で湿度90%の環境に4日間放置後、可視光透過率を測定したところ、可視光透過率は72.9%で透過率の上昇は1.2ポイントであり、被膜の耐水性は良好であった。
【0051】
参考例3
6ホウ化ランタン10gとメチルトリメトキシシラン45gとエタノール25gと水20gを攪拌混合し、これを分散処理して平均分散粒子径100nmの分散液を調製した。
【0052】
この液3gと紫外線硬化樹脂UV3701[東亞合成(株)社製]4gを混合し、塗布液とした。
【0053】
基材に50μm厚のPETフィルムを使用し、バーコーターを用いて塗布液をPETフィルム上に成膜した。これを70℃で1分間乾燥し、溶媒を蒸発させた後、高圧水銀ランプを用いて紫外線を照射し、膜を硬化させた。この時の膜の可視光透過率は72.0%で、ヘーズは0.9%だった。
【0054】
これを、60℃で湿度90%の環境に4日間放置後、可視光透過率を測定したところ、可視光透過率は72.5%で透過率の上昇は0.5ポイントであり、被膜の耐水性は良好であった。
【0055】
[参考例4]
6ホウ化ランタン20gとメチルトリメトキシシラン8.2gとエタノール51.8gと水20gを攪拌混合し、これを分散処理して平均分散粒子径100nmの分散液を調製した。
【0056】
この液3gと紫外線硬化樹脂UV3701[東亞合成(株)社製]4gを混合し、塗布液とした。
【0057】
基材に50μm厚のPETフィルムを使用し、バーコーターを用いて塗布液をPETフィルム上に成膜した。これを70℃で1分間乾燥し、溶媒を蒸発させた後、高圧水銀ランプを用いて紫外線を照射し、膜を硬化させた。この時の膜の可視光透過率は68.0%で、ヘーズは0.9%だった。
【0058】
これを、60℃で湿度90%の環境に4日間放置後、可視光透過率を測定したところ、可視光透過率は68.5%で透過率の上昇は0.5ポイントであり、被膜の耐水性は良好であった。
【0059】
[実施例5]
6ホウ化ランタン20gとメチルトリメトキシシラン8.2gとエタノール51.8gと水20gを攪拌混合し、これを分散処理して平均分散粒子径100nmの分散液を調製した。
【0060】
この分散液を真空乾燥し、溶媒を蒸発させた後、400℃で2時間加熱処理して粉末を得た。この粉末を乾式粉砕し平均粒子径約1〜2μmの粉状体を得た。
【0061】
この粉状体を20gと有機分散剤8gとトルエン72gを混合し、分散処理を行い平均分散粒子径100nmの分散液を調整した。
【0062】
この液3gと紫外線硬化樹脂UV3701[東亞合成(株)社製]4gを混合し、塗布液とした。
【0063】
基材に50μm厚のPETフィルムを使用し、バーコーターを用いて塗布液をPETフィルム上に成膜した。これを70℃で1分間乾燥し、溶媒を蒸発させた後、高圧水銀ランプを用いて紫外線を照射し、膜を硬化させた。この時の膜の可視光透過率は72.1%で、ヘーズは0.9%だった。
【0064】
これを、60℃で湿度90%の環境に4日間放置後、可視光透過率を測定したところ、可視光透過率は72.2%で透過率の上昇は0.1ポイントであり、被膜の耐水性は良好であった。
【0065】
[実施例6]
6ホウ化ランタン20gとメチルトリメトキシシラン8.2gとエタノール51.8gと水20gを攪拌混合し、これを分散処理して平均分散粒子径100nmの分散液を調製した。
【0066】
この分散液を真空乾燥し、溶媒を蒸発させた後、200℃で2時間加熱処理して粉末を得た。この粉末を乾式粉砕し平均粒子径約1〜2μmの粉状体を得た。
【0067】
この粉状体を20gと有機分散剤8gとトルエン72gを混合し、分散処理を行い平均分散粒子径100nmの分散液を調整した。
【0068】
この液3gと紫外線硬化樹脂UV3701[東亞合成(株)社製]4gを混合し、塗布液とした。
【0069】
基材に50μm厚のPETフィルムを使用し、バーコーターを用いて塗布液をPETフィルム上に成膜した。これを70℃で1分間乾燥し、溶媒を蒸発させた後、高圧水銀ランプを用いて紫外線を照射し、膜を硬化させた。この時の膜の可視光透過率は71.1%で、ヘーズは0.9%だった。
【0070】
これを、60℃で湿度90%の環境に4日間放置後、可視光透過率を測定したところ、可視光透過率は71.4%で透過率の上昇は0.3ポイントであり、被膜の耐水性は良好であった。
【0071】
[実施例7]
6ホウ化ランタン20gとメチルトリメトキシシラン8.2gとエタノール51.8gと水20gを攪拌混合し、これを分散処理して平均分散粒子径100nmの分散液を調製した。
【0072】
この分散液を真空乾燥し、溶媒を蒸発させた後、400℃で2時間加熱処理して粉末を得た。この粉末を乾式粉砕し平均粒子径約1〜2μmの粉状体を得た。得られた粉状体を更に湿式粉砕して平均粒径約300nmとし、溶媒を蒸発させ粉状体とした。
【0073】
この粉状体0.01kgとETFE(テトラフルオロエチレン−エチレン共重合体)樹脂8.7kgをVブレンダーにて乾式混合後、樹脂の溶融温度付近である320℃で十分に密閉混合を行い、この混合物を320℃にて押出して、約50μmのフィルムに成形した。このときの可視光透過率は71.8%、ヘーズは9.8%だった。
【0074】
これを、60℃で湿度90%の環境に4日間放置後、可視光透過率を測定したところ可視光透過率は71.8%で透過率の上昇は0ポイントであり、フィルムの耐水性は極めて良好であった。
【0075】
[実施例8]
6ホウ化ランタン20gとメチルトリメトキシシラン8.2gとエタノール51.8gと水20gを攪拌混合し、これを分散処理して平均分散粒子径100nmの分散液を調製した。
【0076】
この分散液を真空乾燥し、溶媒を蒸発させた後、400℃で2時間加熱処理して粉末を得た。この粉末を乾式粉砕し平均粒子径約1〜2μmの粉状体を得た。得られた粉状体を更に湿式粉砕して平均粒径約150nmとし、溶媒を蒸発させ粉状体とした。
【0077】
この粉状体0.01kgとPET樹脂8.7kgをVブレンダーにて乾式混合後、樹脂の溶融温度付近である300℃で十分に密閉混合を行い、この混合物を300℃にて押出して、約50μmのフィルムに成形した。このときの可視光透過率は70.0%、ヘーズは1.2%だった。
【0078】
これを、60℃で湿度90%の環境に4日間放置後、可視光透過率を測定したところ可視光透過率は70.0%で透過率の上昇は0ポイントであり、フィルムの耐水性は極めて良好であった。
【0079】
[比較例2]
6ホウ化ランタンを20g、トルエン80gを混合し、分散処理を行い、平均分散粒子径320nmの分散液を調製した。
【0080】
この分散液を50℃にて、真空乾燥機で溶剤成分を除去し粉末とした。この粉末0.01kgとETFE(テトラフルオロエチレン−エチレン共重合体)樹脂8.7kgをVブレンダーにて乾式混合後、樹脂の溶融温度付近である320℃で十分に密閉混合を行い、この混合物を320℃にて押出して、約50μmのフィルムに成形した。この時の可視光透過率は69.9%でヘーズは14.8%だった。
【0081】
これを、60℃で湿度90%の環境に4日間放置後、可視光透過率を測定したところ可視光透過率は75.1%で透過率の上昇は5.2ポイントであり、フィルムの耐水性は不良であった。
【0082】
【発明の効果】
請求項1〜5記載の発明に係る6ホウ化物粒子、この6ホウ化物粒子が分散された請求項7〜13記載の発明に係る分散体、および、6ホウ化物粒子若しくは分散体を用いた請求項6または請求項14記載の発明に係る物品によれば、
6ホウ化物粒子の表面が、シラザン系処理剤、クロロシラン系処理剤、アルコキシ基を分子構造中に有する無機系処理剤、および、アルコキシ基を分子末端若しくは側鎖に有する有機系処理剤から選択されたケイ素を含有する表面処理剤で物理的に被覆されているか、6ホウ化物粒子表面で6ホウ化物粒子と化学的に結合した上記表面処理剤で被覆されているため、6ホウ化物粒子の耐水性を向上させることが可能となり、耐水性に優れた6ホウ化物粒子とその分散体、フィルムやボード等の物品を提供することができる効果を有する。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to one or more elements selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, and Ca (X ) And boron (B) compound particles (6 boride particles) and a dispersion of hexaboride particles in which the hexaboride particles are dispersed in a liquid medium or a solid medium, and in particular, water resistance is improved. The present invention relates to hexaboride particles, a dispersion of the hexaboride particles, and an article using the hexaboride particles or the dispersion.
[0002]
[Prior art]
[0003]
[Patent Document 1]
JP 2000-169765 A (Claims 5 to 10)
[0004]
LaB6The hexaboride particles represented by the above have the characteristics that the light transmittance in the visible light region is high, the reflectance is low, and the light transmittance in the near infrared region is low. It is used as a shielding material (see Patent Document 1).
[0005]
By the way, it is known that the surface of the hexaboride particles is decomposed by water vapor or water in the air. In particular, since the surface area relative to the volume is increased when it exists in the form of fine particles, the surface of the hexaboride particles has a high ratio of being decomposed by water vapor or moisture and changing to oxides or hydroxide compounds. As a result, a phenomenon occurs in which the original characteristics of hexaboride gradually deteriorate.
[0006]
And when it applies to the use which shields the light in a near-infrared area | region using the optical characteristic in the coating film etc. which used hexaboride particle | grains, the transmittance | permeability of 200 nm-2600 nm area | region under the influence of water vapor | steam or water However, there has been a problem that the solar shading performance gradually deteriorates, but a method for preventing this has not been developed yet.
[0007]
[Problems to be solved by the invention]
The present invention has been made paying attention to such problems, and the problem is that the hexaboride particles having improved water resistance and suitably used as a solar shading material and the hexaboride particles are used. It is to provide a dispersion dispersed in a liquid medium or a solid medium, and hexaboride particles or an article using the dispersion.
[0008]
[Means for Solving the Problems]
  That is, the invention according to claim 1
  6 elements of one or more elements (X) selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, and Ca Premised on chemical particles,
  The surface of the hexaboride particles isSurface treatment agent consisting of silazane treatment agentOr is coated with the surface treatment agent chemically bonded to the hexaboride particles on the surface of the hexaboride particles.
[0009]
  The invention according to claim 2
  6 elements of one or more elements (X) selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, and Ca Premised on chemical particles,
The surface of the hexaboride particles is selected from a silazane-based treating agent, a chlorosilane-based treating agent, an inorganic-based treating agent having an alkoxy group in the molecular structure, and an organic-based treating agent having an alkoxy group at the molecular end or side chain. A silicon-containing surface treatment agent, or a surface treatment agent chemically bonded to the hexaboride particles on the surface of the hexaboride particles, andAfter the hexaboride particles before coating with the surface treatment agent, the surface treatment agent and the solvent are stirred and mixed, this is subjected to a dispersion treatment to obtain a dispersion, and after removing the solvent from the dispersion by evaporation and drying by heating. , Characterized by being crushed,
  The invention according to claim 3
  Based on the hexaboride particles according to the invention of claim 1 or 2,
  The hexaboride particles are lanthanum boride, characterized in that
  The invention according to claim 4
  Presupposing hexaboride particles according to any one of claims 1 to 3,
  The hexaboride particles have a particle size of 10 nm to 10 μm,
  The invention according to claim 5
  Based on the hexaboride particles according to any one of claims 1 to 4,
  The ratio of the surface treatment agent to hexaboride particles is 0.01 to 100 parts by weight with respect to 1 part by weight of hexaboride particles in terms of silicon contained in the surface treatment agent,
  The invention according to claim 6
  Assuming an article using the above hexaboride particles,
  The hexaboride particle group according to any one of claims 1 to 5 is directly laminated on the substrate surface to constitute an article having a film of the hexaboride particle group.
[0010]
Next, the invention according to claim 7 provides:
Based on the above hexaboride particle dispersion,
The hexaboride particles according to any one of claims 1 to 5 are dispersed in a liquid medium or a solid medium,
The invention according to claim 8 provides:
Assuming a dispersion of hexaboride particles according to the invention of claim 7,
The liquid medium is composed of an organic solvent or / and water, or is composed of an organic solvent or / and water in which at least one of a resin and a metal alkoxide is dissolved or dispersed,
The invention according to claim 9 is:
Assuming a dispersion of hexaboride particles according to the invention of claim 7,
The solid medium is composed of either resin or glass.
[0011]
The invention according to claim 10 provides
Assuming a dispersion of hexaboride particles according to the invention of claim 7 or 9,
The dispersion of hexaboride particles dispersed in a solid medium constitutes a coating formed on the surface of the substrate,
The invention according to claim 11 is:
Assuming a dispersion of hexaboride particles according to the invention of claim 7 or 9,
The dispersion of hexaboride particles dispersed in a solid medium constitutes a film or board having a thickness of 0.1 μm to 50 mm,
The invention according to claim 12
Assuming a dispersion of hexaboride particles according to the invention of claim 7 or 9,
The dispersion of hexaboride particles dispersed in a solid medium is pulverized to form a powder,
The invention according to claim 13 is:
Assuming a dispersion of hexaboride particles according to the invention of claim 12,
The particle size of the pulverized powder is 10 nm to 10 μm,
The invention according to claim 14 is
Assuming an article using a dispersion of hexaboride particles,
The dispersion according to claim 10 or 11 is used.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0013]
As described above, the hexaboride particles have a problem that the surface of the hexaboride particles deteriorates due to moisture in the air and the like, and the original properties of the hexaboride deteriorate. Improves the water resistance of hexaboride particles when they are physically coated with a surface treatment agent or coated with a surface treatment agent chemically bonded to the hexaboride particles on the surface of the hexaboride particles As a result, the present invention has been completed.
[0014]
The surface treatment agent described above is used to coat the surface of the hexaboride particles, but this surface treatment agent may be coated by physically reacting with the surface of the hexaboride particles or physically coated. There may be. By coating the surface of the hexaboride particles with the above surface treatment agent as a hydrophobic substance that prevents the permeation of water vapor, water and water are prevented from coming into direct contact with the surface of the hexaboride particles. It is thought that the water resistance of the compound particles was improved.
[0015]
The surface treatment agent is selected from a silazane treatment agent, a chlorosilane treatment agent, an inorganic treatment agent having an alkoxy group in the molecular structure, and an organic treatment agent having an alkoxy group at the molecular end or side chain. The surface treatment agent containing the made silicon is mentioned.
[0016]
The silazane-based treatment agent has a strong reactivity with hexaboride particles, and can be covalently bonded to the hexaboride particles and the particle surface to cover the hexaboride surface. Furthermore, since silazane is lipophilic and has a small molecular structure, it covers the particle surface densely and the outermost shell becomes hydrophobic, which is effective for improving water resistance. Specific examples include hexamethyldisilazane, cyclic silazane, N, N-bis (trimethylsilyl) urea, N-trimethylsilylacetamide, dimethyltrimethylsilylamine, diethyltrimethylsilylamine, trimethylsilylimidazole, N-trimethylsilylphenylurea and the like. In addition, application of these hydrolysates or polymers thereof is also possible.
[0017]
In the chlorosilane-based treating agent, the chloro group forms a covalent bond with the hexaboride particles on the particle surface. As a result, the particle surface is covered with the chlorosilane-based treatment agent, and the water resistance is improved. Typical chlorosilane treatment agents are methyltrichlorosilane, methyldichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, diphenyldichlorosilane, trifluoropropyltrichlorosilane, heptadecafluorodecyltrichlorosilane, vinyltrichlorosilane. In addition, these hydrolyzates or polymers thereof can also be applied.
[0018]
Next, in the inorganic processing agent having an alkoxy group in the molecular structure, the alkoxy group forms a covalent bond with the hexaboride particles on the particle surface. As a result, the particle surface is covered with the surface treatment agent, and the outermost shell is covered with the inorganic treatment agent, the lipophilic group or the hydrophobic group of the inorganic treatment agent, and the water resistance is improved. Typical examples include silane coupling agents. Specifically, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, β- (3,4 epoxy cyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxy Silane, γ-glycidoxypropylmethyldiethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β ( Aminoethyl) γ-aminopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptop Examples include propyltrimethoxysilane. Further, the following compounds classified as alkoxysilane surface treatment agents: tetramethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldi Ethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, decyltriethoxysilane, decyltrimethoxysilane, triuropropyltrimethoxysilane, heptadecatrifluorodecyltrimethoxysilane, etc. In addition, these hydrolysates or polymers thereof can also be applied.
[0019]
An organic processing agent having an alkoxy group at the molecular end or side chain and a main chain of an oleophilic polymer such as epoxy, acrylic or urethane is also effective. The alkoxy group is covalently bonded on the surface of the hexaboride particle, and the outermost shell of the particle is covered with an oleophilic polymer such as epoxy, acrylic, urethane, and the water resistance is improved.
[0020]
Next, on the surface of hexaboride particles, a silazane-based treatment agent, a chlorosilane-based treatment agent, an inorganic-type treatment agent having an alkoxy group in the molecular structure, and an organic-type treatment agent having an alkoxy group at the molecular end or side chain The method for coating the selected silicon-containing surface treatment agent is not particularly limited as long as the surface of the hexaboride particles is coated with the surface treatment agent. For example, the hexaboride particles may be coated by spraying a solution of the surface treatment agent directly, and dried and heat-treated for physical or chemical coating.
[0021]
Moreover, a wet method is mentioned as a method of efficiently covering the surface of the hexaboride particles with the surface treatment agent. In this method, hexaboride particles are appropriately dispersed in a solvent, and a surface treatment agent is added thereto to coat the surface of the hexaboride particles. The surface treatment agent described above efficiently covers the hexaboride particle surface in a solvent, so that hexaboride particles having improved water resistance can be obtained. In this wet method, the solvent is evaporated and removed from the dispersion in which the hexaboride particles and the surface treatment agent are dispersed, and after heating and drying, pulverization is performed to treat the surface of the hexaboride particles with the surface treatment agent. You may take the method of coat | covering. By this heat drying treatment, the coating of the surface treatment agent formed on the surface of the hexaboride particles becomes denser and moisture resistance is improved as compared with a method of simply coating in a solvent. The heating and drying temperature is determined by the heat resistance temperature of the hexaboride and the heating atmosphere, but since the hexaboride is oxidized from around 600 ° C. in an oxygen-existing atmosphere, particularly in the air, heat treatment at 600 ° C. or less is preferable. In an inert gas atmosphere in which oxygen is not present, the upper limit of the heating temperature is the decomposition temperature of hexaboride, but when the temperature is 1000 ° C. or higher, the density of the surface treatment agent (oxide) covering the surface of the hexaboride particles. The change actually decreases (that is, the effect of densification by heat treatment becomes smaller), and the effect on moisture resistance and water resistance tends to be saturated. Therefore, the upper limit is preferably about 1000 ° C. from an industrial viewpoint.
[0022]
And the hexaboride particle | grains coat | covered with the surface treating agent are utilized in the state which is a particle | grain state, or was disperse | distributed to the liquid medium or the solid medium, for example as a raw material of solar radiation shielding products.
[0023]
Here, the particle diameter of the hexaboride particles is appropriately set within the range of 10 nm to 10 μm depending on the application purpose to be used. For example, when applied to an optical selective transmission film (the above-described film that transmits light in the visible light region and shields light in the near infrared region), it is necessary to consider scattering by particles. When importance is attached to the transparency, the particle diameter of the hexaboride particles is 200 nm or less, preferably 100 nm or less. The reason for this is that if the particle size of the fine particles exceeds 200 nm, the light in the visible light region of 380 nm to 780 nm is scattered by geometrical scattering or Mie scattering to become a frosted glass, and clear transparency cannot be achieved. Because. When the particle diameter is 200 nm or less, the scattering is reduced and a Rayleigh scattering region is obtained. In the Rayleigh scattering region, the scattered light decreases in inverse proportion to the sixth power of the particle diameter, so that the scattering is reduced and the transparency is improved as the particle diameter decreases. Further, when the thickness is 100 nm or less, the scattered light is preferably very small. However, depending on the application purpose used, there is a field where such transparency is not required, and the thickness is appropriately set within a range of 10 nm to 10 μm.
[0024]
In addition, when performing the surface treatment of fine particles having a particle size of, for example, 200 nm or less, the above-mentioned surface treatment agent is added to the uniformly dispersed liquid by loosening agglomerates of fine particles in the liquid. A method of coating the particle surface by adding the above-mentioned surface treatment agent at the time of acting or loosening in a liquid is preferable. Examples of methods for loosening fine particles in a liquid include, but are not limited to, ultrasonic irradiation and a medium stirring mill. Further, when the hexaboride particles are held in a state of being uniformly dispersed in the liquid, the slurry to which the surface treatment agent is added may be subjected to a dispersion treatment by ultrasonic irradiation, a medium stirring mill or the like. At this time, the surface treatment agent acts on the particle surface and is also effective for uniformly dispersing and holding fine particles in the liquid.
[0025]
Next, when the hexaboride particles coated with the surface treatment agent are used in a state of being dispersed in a liquid medium, the medium may be, for example, an organic solvent such as alcohol, a liquid medium such as water, or a resin or metal. A liquid medium such as an organic solvent containing alkoxide or the like or water can be used. In addition, in order to obtain a dispersion in which hexaboride particles coated with a surface treatment agent are dispersed in a liquid medium, the hexaboride particles coated with the surface treatment agent obtained by the above-described wet method or the like are mixed with alcohol or the like. And a method obtained by adding to a liquid medium such as an organic solvent or water, or an organic solvent containing resin, metal alkoxide, or the like, or a liquid medium such as water. . That is, the hexaboride particles and the surface treatment agent before the surface treatment are dispersed in an organic solvent such as alcohol or a liquid medium such as water, and the hexaboride particles coated with the surface treatment agent are dispersed simultaneously with the coating treatment. You may employ | adopt the method of obtaining a body.
[0026]
Further, when the hexaboride particles coated with the surface treatment agent are applied as they are to constitute, for example, a solar shading product, etc., or the solar shading product or the like is dispersed in a solid medium such as resin or glass. Or may be ground to form a raw material for solar shading products.
[0027]
In the former case, for example, after applying a dispersion in which hexaboride particles coated with a surface treatment agent are dispersed as they are in an organic solvent such as alcohol or a liquid medium such as water on the surface of the substrate, the organic Examples thereof include a solar shading product in which a liquid medium such as a solvent or water is removed by heat treatment, and a hexaboride particle group coated with a surface treatment agent is directly laminated on the substrate surface. In addition, the hexaboride particles that can be used in this way are cases where the applied surface treatment agent alone has thermal adhesion to the substrate. Therefore, when the adhesive strength of the surface treatment agent is weak, after the hexaboride particles are laminated on the surface of the substrate, a coating liquid containing a binder component such as a resin is applied, and the solvent in the coating liquid You may obtain the solar shading product etc. which removed the component and were resin-coated.
[0028]
On the other hand, in the latter case, a dispersion in which hexaboride particles coated with a surface treatment agent are dispersed in a liquid medium such as an organic solvent or water containing a resin, a metal alkoxide, or the like is appropriately applied to the surface of the substrate. A dispersion in which hexaboride particles are dispersed in a solid medium by evaporating a solvent such as an organic solvent or water and curing a resin, metal alkoxide, or the like (a dispersion of hexaboride particles coated with a surface treatment agent is dispersed. Resin or glass coating) can be easily produced. In addition, as a resin component, it can select according to a use, and ultraviolet curable resin, thermosetting resin, normal temperature curable resin, a thermoplastic resin etc. are mentioned. In addition, in the case of using a dispersion to which a liquid medium not containing a resin or the like is applied, a liquid medium containing a component such as a resin is applied after the hexaboride particles are laminated on the substrate surface. As described above, a similar dispersion can be obtained.
[0029]
Here, the film in which the hexaboride particles coated with the surface treatment agent are dispersed in the solid medium may be heat-treated, and the moisture resistance is improved by the heat-treatment. In particular, when hexaboride particles that have not been subjected to a prior heat treatment are applied to the surface treatment agent, the surface treatment agent film becomes dense by this heat treatment, and the moisture resistance is further improved. The heating temperature is determined by the heat resistance temperature of the hexaboride and the heating atmosphere as described above. Since the hexaboride is oxidized from around 600 ° C. in an oxygen-existing atmosphere, particularly in the air, the heating temperature is 600 ° C. or less. Heat treatment is preferred. In an inert gas atmosphere where oxygen is not present, the upper limit of the heating temperature is the decomposition temperature of hexaboride. However, when the temperature exceeds 1000 ° C., the density change of the coated film (oxide) decreases, and the moisture and water resistance is reduced. The effect on sex is saturated. Therefore, the upper limit is preferably set to 1000 ° C. from an industrial viewpoint.
[0030]
In addition, as described above, a coating in which hexaboride particles coated with a surface treatment agent are dispersed in a liquid medium such as an organic solvent containing water, a resin, a metal alkoxide, or the like is appropriately applied to the surface of the substrate as described above. May be used as a solar shading product, etc., or a dispersion in which hexaboride particles coated with a surface treatment agent are dispersed in a liquid medium such as an organic solvent or water containing a resin, a metal alkoxide, or the like May be dried and heat-treated and pulverized to be applied as a powdery raw material for sunscreen products. That is, a powdery dispersion in which hexaboride particles are dispersed in a solid medium may be dispersed again in a liquid medium and used as a dispersion for solar shading products, as will be described later. Or kneaded into a resin. The particle size of the pulverized powdery dispersion is appropriately set within the range of 10 nm to 10 μm depending on the application purpose to be used.
[0031]
Further, the dispersion in which hexaboride particles are dispersed in a solid medium is not limited to the above-described dispersion of hexaboride particles existing in the form of a film on the surface of the base material, or a dispersion in powder form. The form which comprises a 0.1 micrometer-50 mm film or board may be sufficient. Then, when kneaded into a resin and molded into a film or board, the hexaboride particles coated with a surface treatment agent and having a particle size suitable for the purpose can be directly kneaded into the resin, Mixing a dispersion in which hexaboride particles are dispersed in a liquid medium and the resin, or adding a powdery dispersion in which hexaboride particles are dispersed in a solid medium to the liquid medium and mixing with the resin Is also possible. Generally, when kneading into a resin, it is heated and mixed at a temperature near the melting point of the resin (around 200 to 300 ° C.). Furthermore, it is possible to form a film or a board by each method after mixing with resin and pelletizing. For example, it can be formed by an extrusion molding method, an inflation molding method, a solution casting method, a casting method, or the like. The thickness of the film or board at this time may be set as appropriate depending on the purpose of use, and the amount of filler relative to the resin (that is, the amount of hexaboride particles) depends on the thickness of the substrate, the required optical characteristics, the machine Although it is variable depending on the characteristics, it is generally preferably 50% by weight or less based on the resin.
[0032]
In addition, the resin used as a base of the film or board is not particularly limited and can be selected according to the use. However, in consideration of weather resistance, a fluororesin is effective. Furthermore, compared to fluororesins, low-cost, highly transparent and versatile resins include PET resins, acrylic resins, polyamide resins, vinyl chloride resins, polycarbonate resins, olefin resins, epoxy resins, polyimide resins, etc. It is done.
[0033]
Next, the amount (namely, ratio) of the surface treatment agent to hexaboride particles is in principle arbitrary, but if possible, it is preferably 0. 1 part by weight of 6 boride particles in terms of silicon contained in the surface treatment agent. It is desirable that it is 01-100 weight part. If the amount is less than 0.01 part by weight, the effect of covering the surface is small and the effect of improving the water resistance may not be sufficient. If the amount exceeds 100 parts by weight, the improvement of the water resistance due to the surface coating is not seen and the covering effect is small. Because there are cases.
[0034]
And one or more elements (X) selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, and Ca. When an optical filter is configured by applying hexaboride particles (that is, when an article using the dispersion according to the present invention is an optical filter), it reflects and absorbs light around 1000 nm and shields it from 380 nm to 780 nm. It is possible to provide the property of transmitting light. Such a characteristic is derived from the electronic structure peculiar to hexaboride. In particular, since there is plasmon resonance of free electrons near 1000 nm, light in this region is broadly absorbed and reflected.
[0035]
Furthermore, since there is little absorption in the visible light region of 380 nm to 780 nm, it is suitable not only for the use of the optical filter but also for other uses that transmit the visible light region and shield near infrared rays. For example, as an article using hexaboride particles or a dispersion thereof according to the present invention, if applied to a window material of a house or a car, a greenhouse, etc., the near infrared ray near 1000 nm of sunlight is shielded, and a high heat insulating effect is obtained. At the same time, it has the advantage of ensuring visibility.
[0036]
In addition, the usage-amount of hexaboride particle | grains with respect to articles, such as the said optical filter and window material, can be suitably changed with the characteristic calculated | required. In the case of an adiabatic optical filter that transmits the visible light region and shields near infrared rays, for example, LaB6In 1m2An effective heat insulation effect is obtained when the amount of the filler per unit is 0.01 g or more. The upper limit is 1m depending on the desired optical properties2It is possible to absorb and shield about 50% of the heat energy of solar rays at 0.1 g per unit, and the heat insulation efficiency in unit weight is high.
[0037]
【Example】
Examples of the present invention will be specifically described below, but the present invention is not limited to the following examples.
[0038]
  In addition, the visible light transmittance in the examples is an integrated value of the transmitted light amount obtained by normalizing the light transmission amount in the wavelength region of 380 nm to 780 nm with the visibility of the human eye, and the brightness perceived by the human eye. Meaning value. Examples belowetcTherefore, the measurement is performed by a method according to JISA 5759 (however, the measurement is performed only with a film without being attached to glass).
[0039]
The haze value of the film was measured based on JIS K 7105. The average dispersed particle size was an average value measured with a measuring device [ELS-800 manufactured by Otsuka Electronics Co., Ltd.] using a dynamic light scattering method.
[0040]
In addition, the water resistance evaluation method is that a sample with a visible light transmittance of 68% to 75%, when left in an environment of 90% humidity at 60 ° C. for 4 days, has a good increase in transmittance of 5 points or less. Water resistance exceeded 5 points.
[0041]
  [Reference example 1]
  20 g of lanthanum hexaboride, 8 g of γ-glycidoxypropyltriethoxysilane, which is a silane coupling agent, and 72 g of toluene are stirred and mixed, and this is dispersed in a medium stirring mill to prepare a dispersion having an average dispersed particle size of 100 nm. did.
[0042]
2 g of this solution and 5 g of UV curable resin UV3701 [manufactured by Toagosei Co., Ltd.] were mixed to obtain a coating solution. A PET film having a thickness of 50 μm was used as the substrate, and the coating solution was formed on the PET film using a bar coater. This was dried at 70 ° C. for 1 minute to evaporate the solvent, and then irradiated with ultraviolet rays using a high-pressure mercury lamp to cure the film. At this time, the visible light transmittance of the film was 70%, and the haze was 0.9%.
[0043]
When the visible light transmittance was measured after being left in an environment of 90% humidity at 60 ° C. for 4 days, the visible light transmittance was 71.3% and the increase in transmittance was 1.3 points. The water resistance was good.
[0044]
[Comparative Example 1]
20 g of lanthanum hexaboride and 80 g of toluene were mixed with stirring, and this was dispersed to prepare a dispersion having an average dispersed particle size of 300 nm. 2 g of this solution and 5 g of UV curable resin UV3701 [manufactured by Toagosei Co., Ltd.] were mixed to obtain a coating solution.
[0045]
A 50 μm-thick PET film was used as the substrate, and a coating solution was formed on the PET film using a bar coater. This was dried at 70 ° C. for 1 minute to evaporate the solvent, and then irradiated with ultraviolet rays using a high-pressure mercury lamp to cure the film. At this time, the visible light transmittance of the film was 69.2%, and the haze was 2.5%.
[0046]
When the visible light transmittance was measured after being left in an environment of 90% humidity at 60 ° C. for 4 days, the visible light transmittance was 75.6% and the increase in transmittance was 6.4 points. The water resistance was poor.
[0047]
[Example 2]
20 g of cerium hexaboride, 8 g of hexamethyldisilazane, and 72 g of toluene were mixed with stirring, and this was dispersed to prepare a dispersion having an average dispersed particle size of 100 nm.
[0048]
2 g of this solution and 5 g of UV curable resin UV3701 [manufactured by Toagosei Co., Ltd.] were mixed to obtain a coating solution.
[0049]
A 50 μm-thick PET film was used as the substrate, and a coating solution was formed on the PET film using a bar coater. This was dried at 70 ° C. for 1 minute to evaporate the solvent, and then irradiated with ultraviolet rays using a high-pressure mercury lamp to cure the film. At this time, the visible light transmittance of the film was 71.7%, and the haze was 1.0%.
[0050]
When the visible light transmittance was measured after leaving it in an environment of 90% humidity at 60 ° C. for 4 days, the visible light transmittance was 72.9% and the increase in transmittance was 1.2 points. The water resistance was good.
[0051]
  [Reference example 3]
  10 g of lanthanum hexaboride, 45 g of methyltrimethoxysilane, 25 g of ethanol and 20 g of water were mixed with stirring, and this was dispersed to prepare a dispersion having an average dispersed particle size of 100 nm.
[0052]
3 g of this liquid and 4 g of UV curable resin UV3701 [manufactured by Toagosei Co., Ltd.] were mixed to obtain a coating liquid.
[0053]
A 50 μm-thick PET film was used as the substrate, and a coating solution was formed on the PET film using a bar coater. This was dried at 70 ° C. for 1 minute to evaporate the solvent, and then irradiated with ultraviolet rays using a high-pressure mercury lamp to cure the film. At this time, the visible light transmittance of the film was 72.0%, and the haze was 0.9%.
[0054]
When the visible light transmittance was measured after being left in an environment of 90% humidity at 60 ° C. for 4 days, the visible light transmittance was 72.5% and the increase in transmittance was 0.5 points. The water resistance was good.
[0055]
  [Reference example 4]
  20 g of lanthanum hexaboride, 8.2 g of methyltrimethoxysilane, 51.8 g of ethanol and 20 g of water were mixed with stirring, and this was dispersed to prepare a dispersion having an average dispersed particle size of 100 nm.
[0056]
3 g of this liquid and 4 g of UV curable resin UV3701 [manufactured by Toagosei Co., Ltd.] were mixed to obtain a coating liquid.
[0057]
A 50 μm-thick PET film was used as the substrate, and a coating solution was formed on the PET film using a bar coater. This was dried at 70 ° C. for 1 minute to evaporate the solvent, and then irradiated with ultraviolet rays using a high-pressure mercury lamp to cure the film. At this time, the visible light transmittance of the film was 68.0%, and the haze was 0.9%.
[0058]
When the visible light transmittance was measured after being left in an environment of 90% humidity at 60 ° C. for 4 days, the visible light transmittance was 68.5% and the increase in transmittance was 0.5 points. The water resistance was good.
[0059]
[Example 5]
20 g of lanthanum hexaboride, 8.2 g of methyltrimethoxysilane, 51.8 g of ethanol and 20 g of water were mixed with stirring, and this was dispersed to prepare a dispersion having an average dispersed particle size of 100 nm.
[0060]
This dispersion was vacuum dried to evaporate the solvent and then heat-treated at 400 ° C. for 2 hours to obtain a powder. This powder was dry pulverized to obtain a powdery material having an average particle size of about 1 to 2 μm.
[0061]
20 g of this powder, 8 g of an organic dispersant, and 72 g of toluene were mixed and subjected to a dispersion treatment to prepare a dispersion having an average dispersed particle size of 100 nm.
[0062]
3 g of this liquid and 4 g of UV curable resin UV3701 [manufactured by Toagosei Co., Ltd.] were mixed to obtain a coating liquid.
[0063]
A 50 μm-thick PET film was used as the substrate, and a coating solution was formed on the PET film using a bar coater. This was dried at 70 ° C. for 1 minute to evaporate the solvent, and then irradiated with ultraviolet rays using a high-pressure mercury lamp to cure the film. At this time, the visible light transmittance of the film was 72.1%, and the haze was 0.9%.
[0064]
When the visible light transmittance was measured after being left in an environment of 90% humidity at 60 ° C. for 4 days, the visible light transmittance was 72.2% and the increase in transmittance was 0.1 point. The water resistance was good.
[0065]
[Example 6]
20 g of lanthanum hexaboride, 8.2 g of methyltrimethoxysilane, 51.8 g of ethanol and 20 g of water were mixed with stirring, and this was dispersed to prepare a dispersion having an average dispersed particle size of 100 nm.
[0066]
This dispersion was vacuum dried to evaporate the solvent, and then heat-treated at 200 ° C. for 2 hours to obtain a powder. This powder was dry pulverized to obtain a powdery material having an average particle size of about 1 to 2 μm.
[0067]
20 g of this powder, 8 g of an organic dispersant, and 72 g of toluene were mixed and subjected to a dispersion treatment to prepare a dispersion having an average dispersed particle size of 100 nm.
[0068]
3 g of this liquid and 4 g of UV curable resin UV3701 [manufactured by Toagosei Co., Ltd.] were mixed to obtain a coating liquid.
[0069]
A 50 μm-thick PET film was used as the substrate, and a coating solution was formed on the PET film using a bar coater. This was dried at 70 ° C. for 1 minute to evaporate the solvent, and then irradiated with ultraviolet rays using a high-pressure mercury lamp to cure the film. At this time, the visible light transmittance of the film was 71.1%, and the haze was 0.9%.
[0070]
When the visible light transmittance was measured after being left in an environment of 90% humidity at 60 ° C. for 4 days, the visible light transmittance was 71.4% and the increase in transmittance was 0.3 points. The water resistance was good.
[0071]
[Example 7]
20 g of lanthanum hexaboride, 8.2 g of methyltrimethoxysilane, 51.8 g of ethanol and 20 g of water were mixed with stirring, and this was dispersed to prepare a dispersion having an average dispersed particle size of 100 nm.
[0072]
This dispersion was vacuum dried to evaporate the solvent and then heat-treated at 400 ° C. for 2 hours to obtain a powder. This powder was dry pulverized to obtain a powdery material having an average particle size of about 1 to 2 μm. The obtained powder was further wet pulverized to an average particle size of about 300 nm, and the solvent was evaporated to obtain a powder.
[0073]
After 0.01 kg of this powdery substance and 8.7 kg of ETFE (tetrafluoroethylene-ethylene copolymer) resin are dry-mixed in a V blender, sufficient hermetic mixing is performed at 320 ° C. near the melting temperature of the resin. The mixture was extruded at 320 ° C. to form a film of about 50 μm. At this time, the visible light transmittance was 71.8%, and the haze was 9.8%.
[0074]
When the visible light transmittance was measured after standing in an environment of 90% humidity at 60 ° C. for 4 days, the visible light transmittance was 71.8% and the increase in transmittance was 0 point. It was very good.
[0075]
[Example 8]
20 g of lanthanum hexaboride, 8.2 g of methyltrimethoxysilane, 51.8 g of ethanol and 20 g of water were mixed with stirring, and this was dispersed to prepare a dispersion having an average dispersed particle size of 100 nm.
[0076]
This dispersion was vacuum dried to evaporate the solvent and then heat-treated at 400 ° C. for 2 hours to obtain a powder. This powder was dry pulverized to obtain a powdery material having an average particle size of about 1 to 2 μm. The obtained powder was further wet pulverized to an average particle size of about 150 nm, and the solvent was evaporated to obtain a powder.
[0077]
After 0.01 kg of this powdery substance and 8.7 kg of PET resin are dry-mixed in a V blender, the mixture is sufficiently sealed and mixed at 300 ° C., which is near the melting temperature of the resin, and this mixture is extruded at 300 ° C. The film was formed into a 50 μm film. At this time, the visible light transmittance was 70.0%, and the haze was 1.2%.
[0078]
When the visible light transmittance was measured after being left in an environment of 90% humidity at 60 ° C. for 4 days, the visible light transmittance was 70.0% and the increase in transmittance was 0 point. It was very good.
[0079]
[Comparative Example 2]
20 g of lanthanum hexaboride and 80 g of toluene were mixed and dispersed to prepare a dispersion having an average dispersed particle size of 320 nm.
[0080]
This dispersion was powdered at 50 ° C. by removing the solvent component with a vacuum dryer. After 0.01 kg of this powder and 8.7 kg of ETFE (tetrafluoroethylene-ethylene copolymer) resin are dry-mixed in a V blender, the mixture is sufficiently sealed and mixed at 320 ° C., which is near the melting temperature of the resin. Extruded at 320 ° C. to form a film of about 50 μm. At this time, the visible light transmittance was 69.9% and haze was 14.8%.
[0081]
When the visible light transmittance was measured after leaving it in an environment of 90% humidity at 60 ° C. for 4 days, the visible light transmittance was 75.1% and the increase in transmittance was 5.2 points. Sex was poor.
[0082]
【The invention's effect】
Claims using the hexaboride particles according to the invention according to claims 1 to 5, the dispersion according to the invention according to claims 7 to 13 in which the hexaboride particles are dispersed, and the hexaboride particles or the dispersion. According to the article of the invention according to item 6 or claim 14,
The surface of the hexaboride particles is selected from a silazane-based treating agent, a chlorosilane-based treating agent, an inorganic-based treating agent having an alkoxy group in the molecular structure, and an organic-based treating agent having an alkoxy group at the molecular end or side chain. It is either physically coated with a surface treatment agent containing silicon or coated with the above surface treatment agent chemically bonded to the hexaboride particles on the surface of the hexaboride particles. It is possible to improve the property, and it is possible to provide articles such as hexaboride particles excellent in water resistance and dispersions thereof, films and boards.

Claims (14)

Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caの内から選択された1種類以上の元素(X)の6ホウ化物粒子において、
上記6ホウ化物粒子の表面が、シラザン系処理剤から成る表面処理剤で物理的に被覆されているか、6ホウ化物粒子表面で6ホウ化物粒子と化学的に結合した上記表面処理剤で被覆されていることを特徴とする6ホウ化物粒子。
6 elements of one or more elements (X) selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, and Ca In the chemical particles,
The surface of the hexaboride particles is physically coated with a surface treatment agent comprising a silazane-based treatment agent or coated with the surface treatment agent chemically bonded to the hexaboride particles on the surface of the hexaboride particles. Hexaboride particles characterized in that
Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caの内から選択された1種類以上の元素(X)の6ホウ化物粒子において、
上記6ホウ化物粒子の表面が、シラザン系処理剤、クロロシラン系処理剤、アルコキシ基を分子構造中に有する無機系処理剤、および、アルコキシ基を分子末端若しくは側鎖に有する有機系処理剤から選択されたケイ素を含有する表面処理剤で物理的に被覆されているか、6ホウ化物粒子表面で6ホウ化物粒子と化学的に結合した表面処理剤で被覆されており、かつ、上記表面処理剤による被覆前の6ホウ化物粒子と表面処理剤および溶媒を攪拌混合し、これを分散処理して分散液を得ると共に、分散液から溶媒を蒸発させて除去しかつ加熱乾燥させた後、粉砕して得られていることを特徴とする6ホウ化物粒子。
6 elements of one or more elements (X) selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, and Ca In the chemical particles,
The surface of the hexaboride particles is selected from a silazane-based treating agent, a chlorosilane-based treating agent, an inorganic-based treating agent having an alkoxy group in the molecular structure, and an organic-based treating agent having an alkoxy group at the molecular end or side chain. It is physically coated with a surface treatment agent containing silicon, or is coated with a surface treatment agent chemically bonded to the hexaboride particles on the surface of the hexaboride particles, and by the surface treatment agent The hexaboride particles before coating, the surface treatment agent and the solvent are mixed by stirring, and this is dispersed to obtain a dispersion. The solvent is evaporated from the dispersion and removed by heating, followed by pulverization. Hexaboride particles characterized in that they are obtained.
上記6ホウ化物粒子が、ホウ化ランタンであることを特徴とする請求項1または2記載の6ホウ化物粒子。  The hexaboride particles according to claim 1 or 2, wherein the hexaboride particles are lanthanum boride. 上記6ホウ化物粒子の粒子径が、10nm〜10μmであることを特徴とする請求項1〜3のいずれかに記載の6ホウ化物粒子。  The hexaboride particles according to any one of claims 1 to 3, wherein the hexaboride particles have a particle diameter of 10 nm to 10 µm. 表面処理剤の6ホウ化物粒子に対する比率が、表面処理剤に含まれるケイ素換算で6ホウ化物粒子1重量部に対して0.01〜100重量部であることを特徴とする請求項1〜4のいずれかに記載の6ホウ化物粒子。  The ratio of the surface treatment agent to hexaboride particles is 0.01 to 100 parts by weight with respect to 1 part by weight of hexaboride particles in terms of silicon contained in the surface treatment agent. The hexaboride particles according to any one of the above. 基材表面に請求項1〜5のいずれかに記載の6ホウ化物粒子群が直接積層されて6ホウ化物粒子群の被膜を有する物品を構成していることを特徴とする6ホウ化物粒子を用いた物品。  A hexaboride particle comprising a hexaboride particle group according to any one of claims 1 to 5 directly laminated on a substrate surface to form an article having a film of the hexaboride particle group. The article used. 請求項1〜5のいずれかに記載の6ホウ化物粒子が液体媒質若しくは固体媒質中に分散していることを特徴とする6ホウ化物粒子の分散体。  A hexaboride particle dispersion, wherein the hexaboride particles according to any one of claims 1 to 5 are dispersed in a liquid medium or a solid medium. 上記液体媒質が、有機溶媒または/および水で構成されるか、樹脂および金属アルコキシドの少なくとも一方を溶解若しくは分散させた有機溶媒または/および水で構成されることを特徴とする請求項7に記載の6ホウ化物粒子の分散体。  The liquid medium is composed of an organic solvent and / or water, or is composed of an organic solvent or / and water in which at least one of a resin and a metal alkoxide is dissolved or dispersed. A dispersion of hexaboride particles. 上記固体媒質が、樹脂若しくはガラスのいずれかで構成されることを特徴とする請求項7に記載の6ホウ化物粒子の分散体。  The dispersion of hexaboride particles according to claim 7, wherein the solid medium is made of either resin or glass. 固体媒質中に分散された上記6ホウ化物粒子の分散体が、基材表面に形成された被膜を構成していることを特徴とする請求項7または9に記載の6ホウ化物粒子の分散体。  The dispersion of hexaboride particles according to claim 7 or 9, wherein the dispersion of hexaboride particles dispersed in a solid medium constitutes a film formed on the surface of the substrate. . 固体媒質中に分散された上記6ホウ化物粒子の分散体が、厚さ0.1μm〜50mmのフィルム若しくはボードを構成していることを特徴とする請求項7または9に記載の6ホウ化物粒子の分散体。  The hexaboride particles according to claim 7 or 9, wherein the dispersion of hexaboride particles dispersed in a solid medium constitutes a film or board having a thickness of 0.1 µm to 50 mm. Dispersion. 固体媒質中に分散された上記6ホウ化物粒子の分散体が、粉砕処理されて粉状体を構成していることを特徴とする請求項7または9に記載の6ホウ化物粒子の分散体。  The dispersion of hexaboride particles according to claim 7 or 9, wherein the dispersion of hexaboride particles dispersed in a solid medium is pulverized to form a powdery body. 粉砕処理された上記粉状体の粒子径が、10nm〜10μmであることを特徴とする請求項12に記載の6ホウ化物粒子の分散体。  The dispersion of hexaboride particles according to claim 12, wherein a particle size of the pulverized powder is 10 nm to 10 µm. 請求項10または11の分散体を用いたことを特徴とする物品。  An article using the dispersion according to claim 10 or 11.
JP2002341814A 2002-01-18 2002-11-26 6 boride particles, a dispersion in which the 6 boride particles are dispersed, and an article using the 6 boride particles or the dispersion Expired - Lifetime JP4250953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002341814A JP4250953B2 (en) 2002-01-18 2002-11-26 6 boride particles, a dispersion in which the 6 boride particles are dispersed, and an article using the 6 boride particles or the dispersion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002010775 2002-01-18
JP2002-10775 2002-01-18
JP2002341814A JP4250953B2 (en) 2002-01-18 2002-11-26 6 boride particles, a dispersion in which the 6 boride particles are dispersed, and an article using the 6 boride particles or the dispersion

Publications (2)

Publication Number Publication Date
JP2003277045A JP2003277045A (en) 2003-10-02
JP4250953B2 true JP4250953B2 (en) 2009-04-08

Family

ID=29253026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002341814A Expired - Lifetime JP4250953B2 (en) 2002-01-18 2002-11-26 6 boride particles, a dispersion in which the 6 boride particles are dispersed, and an article using the 6 boride particles or the dispersion

Country Status (1)

Country Link
JP (1) JP4250953B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244376B2 (en) * 2004-01-26 2007-07-17 Sumitomo Metal Mining Co., Ltd. Hexaboride particles, hexaboride particle dispersion, and article making use of hexaboride particles or hexaboride particle dispersion
US7625627B2 (en) 2005-12-30 2009-12-01 E.I. Du Pont De Nemours And Company Decorative polyvinyl butyral solar control laminates
JP5102969B2 (en) 2006-04-14 2012-12-19 出光興産株式会社 Polycarbonate resin composition and molded plate thereof
US20070248809A1 (en) * 2006-04-19 2007-10-25 Steven Vincent Haldeman Interlayers Comprising Stable Infrared Absorbing Agents
JP4929835B2 (en) * 2006-05-19 2012-05-09 住友金属鉱山株式会社 Method for producing surface-coated hexaboride particles
CN100348484C (en) * 2006-05-26 2007-11-14 华南理工大学 Praseodymium boride nano line, and its preparing method and use
CN100348483C (en) * 2006-05-26 2007-11-14 华南理工大学 Europium boride nano line, nano tube and its preparing method
JP5061665B2 (en) * 2007-03-13 2012-10-31 住友金属鉱山株式会社 Masterbatch, method for producing the same, molded body using the masterbatch, and laminate using the molded body
JP5087783B2 (en) * 2007-10-19 2012-12-05 住友金属鉱山株式会社 Method for producing surface-coated hexaboride particle precursor, surface-coated hexaboride particle precursor, surface-coated hexaboride particle and dispersion thereof, and structure and article using surface-coated hexaboride particles
ITRM20100228A1 (en) 2010-05-10 2011-11-10 Bayer Materialscience Ag POLYMER COMPOSITION WITH HEAT ABSORPTION CHARACTERISTICS AND IMPROVED COLOR CHARACTERISTICS.
ITRM20100225A1 (en) 2010-05-10 2011-11-10 Bayer Materialscience Ag COMPOSITION OF POLYMERS WITH HEAT-ABSORPTION CHARACTERISTICS AND IMPROVED COLOR CHARACTERISTICS.
ITRM20100227A1 (en) 2010-05-10 2011-11-10 Bayer Materialscience Ag POLYMER COMPOSITION WITH HIGH STABILITY HEAT ABSORPTION CHARACTERISTICS.
ITRM20100226A1 (en) 2010-05-10 2011-11-10 Bayer Materialscience Ag STABILIZING COMPOSITIONS.
ITRM20100670A1 (en) 2010-12-17 2012-06-18 Bayer Materialscience Ag ORGANIC COLORING AND COLORED POLYMER COMPOSITIONS WITH HIGH STABILITY TO THE ATMOSPHERIC AGENTS.
ITRM20100668A1 (en) 2010-12-17 2012-06-18 Bayer Materialscience Ag SUBSTRATO-LED WITH STABLE COLOR.
IT1403380B1 (en) 2010-12-17 2013-10-17 Bayer Materialscience Ag COMPOSITION OF POLYMERS WITH HIGH STABILITY HEAT ABSORPTION CHARACTERISTICS TO THE ATMOSPHERIC AGENTS.
ITRM20100667A1 (en) 2010-12-17 2012-06-18 Bayer Materialscience Ag COMPOSITION OF POLYMERS WITH HIGH STABILITY HEAT ABSORPTION CHARACTERISTICS TO THE ATMOSPHERIC AGENTS.
CN115232503B (en) * 2021-04-25 2023-04-25 亚士漆(上海)有限公司 Heat insulation composition, heat insulation coating, heat insulation glass and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04243913A (en) * 1991-01-25 1992-09-01 Sumitomo Metal Mining Co Ltd Production of fine boride powder
JP4096277B2 (en) * 1998-09-22 2008-06-04 住友金属鉱山株式会社 Solar shading material, coating liquid for solar shading film, and solar shading film
JP4096278B2 (en) * 1998-12-10 2008-06-04 住友金属鉱山株式会社 Solar shading film coating solution and solar shading film using the same

Also Published As

Publication number Publication date
JP2003277045A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
JP4250953B2 (en) 6 boride particles, a dispersion in which the 6 boride particles are dispersed, and an article using the 6 boride particles or the dispersion
US7244376B2 (en) Hexaboride particles, hexaboride particle dispersion, and article making use of hexaboride particles or hexaboride particle dispersion
CN101861365B (en) Process for producing fine particles of surface treated zinc oxide, fine particles of surface treated zinc oxide, dispersion liquid and dispersion solid of the fine particles of surface treated zinc oxide, and base material coated with fine particles
JP5818399B2 (en) Ceramic wall covering composite with electromagnetic shielding properties
EP2130797A1 (en) Silica porous body, laminate and composition for optical use, and method for producing silica porous body
US8815339B2 (en) Surface modifiers and process for surface modifications of particles of metal oxide using the same
JP2003054947A (en) Zinc oxide-based fine particle and its use
JP2006193376A (en) Surface-coated hexaboride particulate and method for producing the same
KR101523821B1 (en) Anti-reflection coating composition containing siloxane compound, anti-reflection film having controlled surface energy using the same
WO1995033688A1 (en) Fine zinc oxide particles, process for producing the same, and use thereof
CN105111483B (en) A kind of sun-proof thermal insulating automobile pad pasting and preparation method thereof
JP5018025B2 (en) Surface-modified zirconium oxide particle dispersion and transparent composite, optical member, composition for sealing light-emitting element, and light-emitting element
Sangermano et al. Preparation and characterization of nanostructured TiO2/epoxy polymeric films
US10807058B2 (en) Silica-titania composite aerogel particle, photocatalyst-forming composition, and photocatalyst
JP4026399B2 (en) Coated hexaboride particles and optical member using the same
JP2009035573A (en) Surface treatment method for metal oxide particle, dispersion liquid containing the surface treated metal oxide particle, coating liquid for forming transparent coating film, and substrate with transparent coating film
JP2017160117A (en) Silica particle and method for producing the same, photocatalyst forming composition, photocatalyst, and structure
JP4927363B2 (en) Composition containing fine particles
JP4409169B2 (en) Paint containing colored pigment particles, substrate with visible light shielding film
KR102284041B1 (en) Hydrophilic coating composition with excellent scratch resistance
JPWO2016068236A1 (en) Laminate
JP2011136871A (en) Phosphorus-containing metal oxide fine particle and method for producing the same, coating liquid for forming transparent coating film containing phosphorus-containing metal oxide fine particle, and substrate with transparent coating film
JP4929835B2 (en) Method for producing surface-coated hexaboride particles
JP2000287559A (en) Agricultural covering material having excellent antifogging persistence and excellent durability
JP2019066839A (en) Liquid composition for infrared shield film formation, manufacturing method of infrared shield film using the same, and infrared shield film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

R150 Certificate of patent or registration of utility model

Ref document number: 4250953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

EXPY Cancellation because of completion of term