JP2006045442A - Preform for heat-resistant carbon fiber-reinforced composite material and method for producing heat-resistant carbon fiber-reinforced composite material - Google Patents

Preform for heat-resistant carbon fiber-reinforced composite material and method for producing heat-resistant carbon fiber-reinforced composite material Download PDF

Info

Publication number
JP2006045442A
JP2006045442A JP2004231781A JP2004231781A JP2006045442A JP 2006045442 A JP2006045442 A JP 2006045442A JP 2004231781 A JP2004231781 A JP 2004231781A JP 2004231781 A JP2004231781 A JP 2004231781A JP 2006045442 A JP2006045442 A JP 2006045442A
Authority
JP
Japan
Prior art keywords
carbon fiber
composite material
preform
reinforced composite
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004231781A
Other languages
Japanese (ja)
Inventor
Yoshinobu Suzuki
慶宜 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2004231781A priority Critical patent/JP2006045442A/en
Publication of JP2006045442A publication Critical patent/JP2006045442A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a preform which comprises carbon fibers and carbon or a ceramic as a matrix, is used for a carbon fiber-reinforced composite material, and is hardly deformed, when thermally decomposed, and to provide a method for producing the carbon fiber-reinforced composite material from the preform. <P>SOLUTION: This preform (shaped article) for the heat-resistant carbon fiber-reinforced composite material, prepared by impregnating carbon fibers with an organic polymer or inorganic polymer, is characterized in that the bulk density of the shaped article is 0.6 to 1.3 g/cm<SP>3</SP>, and a peak width ratio: (w<SB>1/6</SB>)/(w<SB>1/2</SB>) is 2.0 to 3.0, wherein (w<SB>1/6</SB>) is a width in a 1/6 height of a peak; (w<SB>1/2</SB>) is a width in a 1/2 height of the peak, in an image analysis gray scale distribution of a photograph obtained by photographing the end side of the shaped product by a photoreflection method. The preform is thermally treated to produce the heat-resistant carbon fiber-reinforced composite material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高温下で使用可能な炭素繊維強化複合材料用プリフォーム及びそれが熱処理されて得られる耐熱炭素繊維強化複合材料に関する。   The present invention relates to a preform for carbon fiber reinforced composite material that can be used at high temperatures and a heat resistant carbon fiber reinforced composite material obtained by heat-treating the preform.

炭素繊維強化複合材料は軽量かつ高強度であるため航空機やレーシングカー、スポーツ用品など広範囲にわたって使用されている。一方、炭素繊維自体は不活性雰囲気中では熱分解や結晶成長による強度低下が起こり難いため、炭素やセラミックスをマトリックスとする複合材料が耐熱高強度材料として用いられている。   Carbon fiber reinforced composite materials are lightweight and have high strength, so they are used in a wide range of aircraft, racing cars, sports equipment and so on. On the other hand, since carbon fibers themselves are unlikely to undergo strength reduction due to thermal decomposition or crystal growth in an inert atmosphere, composite materials using carbon or ceramics as a matrix are used as heat resistant and high strength materials.

これら炭素繊維を用いた耐熱高強度材料は、一般に炭素繊維を2次元若しくは3次元に配設することで所望の形状に賦形し、マトリックスの前駆体となる有機高分子や無機高分子を含浸、硬化、熱分解して炭素やセラミックス等の無機質に転換させることにより得られている。しかし、それら前駆体の熱分解に伴い発生するガスや、熱分解前のプリフォームに残存する応力の影響で変形を起こさずに無機質に転換することが難しい。この問題を避けるために、例えば特許文献1に開示された特定の温度域付近で昇温速度を著しく小さくする方法や、特許文献2及び特許文献3に開示された変形防止用治具を使用する等の方策を採用し、変形を抑制することが必要であった。
特許第3109928号公報 (請求項1) 特開平6−305831号公報 (特許請求の範囲) 特開平10−245275号公報 (特許請求の範囲)
These heat-resistant and high-strength materials using carbon fibers are generally shaped into a desired shape by arranging carbon fibers in two or three dimensions, and impregnated with organic or inorganic polymers that serve as matrix precursors. It is obtained by curing, pyrolysis, and conversion to inorganic materials such as carbon and ceramics. However, it is difficult to convert to an inorganic material without causing deformation under the influence of the gas generated with the thermal decomposition of these precursors and the stress remaining in the preform before the thermal decomposition. In order to avoid this problem, for example, a method of significantly reducing the rate of temperature increase in the vicinity of a specific temperature range disclosed in Patent Document 1 or a deformation preventing jig disclosed in Patent Document 2 and Patent Document 3 is used. It was necessary to adopt such measures as to suppress deformation.
Japanese Patent No. 3109928 (Claim 1) JP-A-6-305831 (Claims) JP-A-10-245275 (Claims)

本発明者は、上記問題を解決するため鋭意研究しているうちに、特にマトリックスの前駆体となる高分子が炭素繊維賦形体に含浸された炭素繊維強化複合材料用プリフォームの充填状態に着目した。即ち、プリフォームの嵩密度と端面写真の画像解析グレイスケール分布とが所定範囲内にある場合は、複合材料製造の際の熱処理時に誘発される応力開放を短時間に集中させることなく、変形し難いこと、並びに、その熱処理により得られる耐熱炭素繊維強化複合材料は高強度であることを知得し本発明を完成するに到った。   While the present inventor has eagerly studied to solve the above problems, particularly pay attention to a filling state of a preform for a carbon fiber reinforced composite material in which a polymer serving as a matrix precursor is impregnated in a carbon fiber shaped body. did. In other words, when the bulk density of the preform and the image analysis gray scale distribution of the end face photograph are within the predetermined range, the stress release induced at the time of heat treatment in the production of the composite material is deformed without being concentrated in a short time. It was found that the heat-resistant carbon fiber reinforced composite material obtained by the heat treatment was difficult, and the present invention was completed.

よって、本発明の目的とするところは、熱分解時に変形が起こり難い、炭素繊維を強化材とし、炭素やセラミックスをマトリックスとする炭素繊維複合材料用プリフォーム及びそれから得られる耐熱炭素繊維複合材料の製造方法を提供することにある。   Therefore, an object of the present invention is to provide a preform for carbon fiber composite material that is hardly deformed during pyrolysis, uses carbon fiber as a reinforcing material, and uses carbon or ceramics as a matrix, and a heat resistant carbon fiber composite material obtained therefrom. It is to provide a manufacturing method.

上記目的を達成する本発明は、以下に記載するものである。   The present invention for achieving the above object is described below.

〔1〕 炭素繊維に有機高分子又は無機高分子を含浸してなる賦形体であって、賦形体の嵩密度が0.6〜1.3g/cm3、かつ、賦形体の端面を光反射法により撮影した写真の画像解析グレイスケール分布におけるピーク高さ1/6の幅(w1/6)とピーク高さ1/2の幅(w1/2)とのピーク幅比[(w1/6)/(w1/2)]が2.0〜3.0である耐熱炭素繊維強化複合材料用プリフォーム。 [1] A shaped body obtained by impregnating a carbon fiber with an organic polymer or an inorganic polymer, the shaped body has a bulk density of 0.6 to 1.3 g / cm 3 , and the end face of the shaped body is reflected by light. Image analysis of a photograph taken by the method The peak width ratio [(w 1/6 ) of the peak height 1/6 width (w 1/6 ) and the peak height 1/2 width (w 1/2 ) [(w 1 / 6 ) / (w1 / 2 )] is a preform for a heat-resistant carbon fiber reinforced composite material of 2.0 to 3.0.

〔2〕 〔1〕に記載の耐熱炭素繊維強化複合材料用プリフォームを熱処理することを特徴とする耐熱炭素繊維強化複合材料の製造方法。   [2] A method for producing a heat resistant carbon fiber reinforced composite material, comprising heat-treating the preform for the heat resistant carbon fiber reinforced composite material according to [1].

〔3〕 形状が管状である〔2〕に記載の耐熱炭素繊維強化複合材料の製造方法。   [3] The method for producing a heat-resistant carbon fiber reinforced composite material according to [2], wherein the shape is tubular.

〔4〕 管状体の肉厚を示す外径/内径の直径比が1.5以上である〔3〕に記載の耐熱炭素繊維強化複合材料の製造方法。   [4] The method for producing a heat-resistant carbon fiber reinforced composite material according to [3], wherein an outer diameter / inner diameter ratio indicating a wall thickness of the tubular body is 1.5 or more.

本発明の耐熱炭素繊維強化複合材料用プリフォームは、その嵩密度と端面写真の画像解析グレイスケール分布とを上記範囲内にしているので、そのプリフォームは熱分解時に誘発される応力開放を短時間に集中させることなく、変形が起こりにくい。その結果、得られる耐熱炭素繊維強化複合材料は高強度である。   Since the preform for heat-resistant carbon fiber reinforced composite material of the present invention has the bulk density and the image analysis gray scale distribution of the end face photograph within the above ranges, the preform shortens the stress release induced during pyrolysis. Deformation is less likely to occur without concentrating on time. As a result, the resulting heat resistant carbon fiber reinforced composite material has high strength.

本発明によれば、プリフォームを無機化する前に、得られる無機化した製品の良否を予め判別できる。   According to the present invention, it is possible to determine in advance whether the obtained mineralized product is good before mineralizing the preform.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のプリフォームは、炭素繊維と前記炭素繊維に含浸させた有機高分子又は無機高分子とからなる賦形体である。   The preform of the present invention is a shaped body comprising carbon fiber and an organic polymer or inorganic polymer impregnated in the carbon fiber.

本発明で使用する炭素繊維は石油系ピッチ、石炭系ピッチ、リグニン系ピッチ及び芳香族系合成ピッチ等を原料とし、これらを等方性ピッチ化することにより得られる繊維、ポリアクリロニトリル(PAN)繊維、レーヨン繊維、フェノール樹脂繊維等から常法に従い誘導される炭素繊維である。   Carbon fibers used in the present invention are fibers obtained by using petroleum-based pitch, coal-based pitch, lignin-based pitch, aromatic synthetic pitch, and the like as isotropic pitches, and polyacrylonitrile (PAN) fibers. Carbon fiber derived from rayon fiber, phenol resin fiber or the like according to a conventional method.

炭素繊維の形態としては、フィラメント状若しくはステープル状の繊維である。また、フィラメント若しくはステープルの状態のままでも、シート状に加工したものでも使用可能であり、それらを適宜組み合わせて使用しても良い。   The form of the carbon fiber is a filament-like or staple-like fiber. Further, it can be used in the form of a filament or a staple, or can be processed into a sheet shape, and these may be used in appropriate combination.

プリフォームの形状としては、平板、ブロック状、管状等が例示できる。   Examples of the shape of the preform include a flat plate, a block shape, and a tubular shape.

平板若しくはブロック状のプリフォームを製造する際の一般的な賦形方法としては、レイアップ法がある。この方法は、フィラメントの織物、ステープルの紡績糸を編織したシート、フェルト等の不織布を所望の大きさに切断し、それを積み重ねていく方法である。これらのシートは積層前に予め樹脂を含浸(予備含浸)させたプリプレグとすることで、賦形時の取扱性を容易にすることが出来る。   As a general shaping method for producing a flat plate or block-shaped preform, there is a lay-up method. In this method, a nonwoven fabric such as a filament woven fabric, a sheet knitted with staple spun yarn, or a felt is cut into a desired size and stacked. These sheets can be made easy to handle at the time of shaping by forming a prepreg in which a resin is impregnated (pre-impregnated) in advance before lamination.

これに対し、予め樹脂を含浸させたプリプレグを経ずに積層する場合は、例えば、無機繊維糸で縫製し、後の樹脂含浸(後含浸)工程で形状が崩れるのを防止する必要がある。   On the other hand, when laminating without going through a prepreg impregnated with a resin in advance, it is necessary to sew with, for example, an inorganic fiber thread to prevent the shape from collapsing in a subsequent resin impregnation (post-impregnation) step.

無機繊維糸としては、炭素繊維、アルミナ繊維、炭化ケイ素繊維、ガラス繊維、ムライト繊維、玄武岩繊維、窒化ケイ素繊維、酸窒化ケイ素繊維、ボロン繊維、スチール繊維等を適宜使用することが出来る。   As the inorganic fiber yarn, carbon fiber, alumina fiber, silicon carbide fiber, glass fiber, mullite fiber, basalt fiber, silicon nitride fiber, silicon oxynitride fiber, boron fiber, steel fiber and the like can be appropriately used.

管状のプリフォームへの賦形方法としてはシートワインド法があり、フィラメントの織物、ステープルの紡績糸を編織したシート、フェルト等の不織布が用いられることが多い。これらのシートは賦形前に予め樹脂を含浸させたプリプレグシートを用いることで、巻回時に容易に取り扱うことが出来る。   As a method for forming the tubular preform, there is a sheet winding method, and a filament woven fabric, a sheet knitted with staple spun yarn, and a nonwoven fabric such as felt are often used. These sheets can be easily handled at the time of winding by using a prepreg sheet pre-impregnated with resin before shaping.

プリフォームの形状が管状である場合、管状体の肉厚を示す外径/内径の直径比は1.5以上が好ましい。   When the shape of the preform is tubular, the outer diameter / inner diameter ratio indicating the thickness of the tubular body is preferably 1.5 or more.

炭素繊維に含浸させる有機高分子としては例えば、エポキシ樹脂、フェノール樹脂、フラン樹脂、ビスマレイミド系樹脂等の熱硬化性樹脂、及び、ポリエーテルエーテルケトン、石油系或は石炭系のピッチなどの熱可塑性樹脂が使用できる。無機高分子としては例えば、ポリカルボシラン、ポリシラザン、ポリシロキサンなどが使用できる。これらの高分子を繊維中に含浸するには、溶剤法、ホットメルト法等が使用できる。   Examples of the organic polymer impregnated into the carbon fiber include thermosetting resins such as epoxy resins, phenol resins, furan resins, bismaleimide resins, and heat such as polyether ether ketone, petroleum-based or coal-based pitches. Plastic resin can be used. As the inorganic polymer, for example, polycarbosilane, polysilazane, polysiloxane and the like can be used. In order to impregnate the fibers with these polymers, a solvent method, a hot melt method, or the like can be used.

これらの樹脂は、プリフォームの嵩密度が0.6〜1.3g/cm3、好ましくは0.7〜1.2g/cm3となるように予備含浸又は後含浸しなければならない。 These resins must be pre-impregnated or post-impregnated so that the bulk density of the preform is 0.6 to 1.3 g / cm 3 , preferably 0.7 to 1.2 g / cm 3 .

樹脂が含浸されたプリフォームの嵩密度が0.6g/cm3未満の場合、後の無機化のための熱処理により樹脂成分が分解する際に、賦形体が崩壊することが多く、本発明には適さない。また、樹脂が含浸されたプリフォームの嵩密度が1.3g/cm3を超える場合は、無機化のための熱処理時に樹脂成分の分解により発生するガスにより、賦形体に大きなクラックや変形が起こりやすくなり、本発明には適さない。 When the bulk density of the preform impregnated with the resin is less than 0.6 g / cm 3 , the shaped body often collapses when the resin component is decomposed by heat treatment for subsequent mineralization, and the present invention Is not suitable. In addition, when the bulk density of the preform impregnated with the resin exceeds 1.3 g / cm 3 , large cracks and deformations occur in the shaped body due to the gas generated by the decomposition of the resin component during the heat treatment for mineralization. It becomes easy and is not suitable for this invention.

これらの樹脂は、後の熱処理により、有機高分子は炭素質のマトリックスに、前記無機高分子は炭化ケイ素、窒化ケイ素、酸化ケイ素に分解し、無機質のマトリックスに転換される。即ち、有機高分子は炭素化、無機高分子はセラミックス化、いわば何れの場合も無機化される。   In these resins, the organic polymer is decomposed into a carbonaceous matrix and the inorganic polymer is decomposed into silicon carbide, silicon nitride, and silicon oxide by a subsequent heat treatment, and converted into an inorganic matrix. That is, the organic polymer is carbonized, the inorganic polymer is ceramicized, and so to speak, it is mineralized.

また、賦形体中の繊維と樹脂の充填状態は、硬化させたプリフォーム端面の光反射法により撮影した写真を画像解析することにより評価できる。画像解析を行い、グレイスケール分布におけるピーク高さ1/6の幅(w1/6)とピーク高さ1/2の幅(w1/2)とのピーク幅比[(w1/6)/(w1/2)]が2.0〜3.0、より好ましくは2.2〜2.8になるものが、良好な耐熱炭素繊維強化複合材料を与える。 Moreover, the filling state of the fibers and the resin in the shaped body can be evaluated by image analysis of a photograph taken by the light reflection method of the cured end face of the preform. Image analysis is performed, and the peak width ratio [(w 1/6 ) between the width (w 1/6 ) of the peak height 1/6 and the width (w 1/2 ) of the peak height 1/2 in the gray scale distribution / (W 1/2 )] of 2.0 to 3.0, more preferably 2.2 to 2.8 gives a good heat resistant carbon fiber reinforced composite material.

樹脂含浸及び硬化温度、硬化の際の昇温速度、除熱の際の降温速度の制御、特に未硬化のプリフォームの硬化に際する昇温速度の精密な制御と除熱の際の降温速度の適正化等の操作を適宜施すことにより、上記プリフォームの嵩密度と端面写真の画像解析グレイスケール分布の範囲を満たすようにするものである。   Resin impregnation and curing temperature, temperature increase rate during curing, temperature decrease rate control during heat removal, especially temperature control rate during uncured preform curing and temperature decrease rate during heat removal By appropriately performing operations such as optimization of the above, the range of the bulk density of the preform and the image analysis gray scale distribution of the end face photograph is satisfied.

プリフォーム端面の画像解析グレイスケール分布におけるピーク幅比[(w1/6)/(w1/2)]が2.0〜3.0の場合は、無機化工程における熱分解時にマイクロクラックが発生する。このマイクロクラックは、熱分解時に誘発される応力開放を短時間に集中させることなく、変形を防止する。 When the peak width ratio [(w 1/6 ) / (w 1/2 )] in the image analysis gray scale distribution of the preform end face is 2.0 to 3.0, microcracks are generated during thermal decomposition in the mineralization process. appear. This microcrack prevents deformation without concentrating stress release induced during thermal decomposition in a short time.

プリフォーム端面の画像解析グレイスケール分布におけるピーク幅比[(w1/6)/(w1/2)]が2未満の場合は、無機化工程における熱分解時にマイクロクラックが殆ど発生しない。その結果、熱分解時に誘発される応力開放が短時間に集中するため、大きなクラックが発生し、変形しやすい。 When the peak width ratio [(w 1/6 ) / (w 1/2 )] in the image analysis gray scale distribution of the preform end face is less than 2, microcracks hardly occur during thermal decomposition in the mineralization process. As a result, stress release induced at the time of thermal decomposition concentrates in a short time, so that a large crack is generated and is easily deformed.

プリフォーム端面の画像解析グレイスケール分布におけるピーク幅比[(w1/6)/(w1/2)]が3を超える場合は、熱分解前からボイドや大きなクラックが多数存在し、熱分解時に変形しやすい。 When the peak width ratio [(w 1/6 ) / (w 1/2 )] in the image analysis grayscale distribution of the preform end face exceeds 3, there are many voids and large cracks before thermal decomposition, and thermal decomposition Sometimes easily deformed.

プリフォームの無機化工程における焼成温度は800〜1200℃が好ましい。   The firing temperature in the preform mineralization step is preferably 800 to 1200 ° C.

光の反射による濃淡の度数分布を観察することで、賦形体中の繊維と樹脂の充填状態を加熱分解をする前に知ることが出来る。賦形体への樹脂の含浸、硬化、炭素化を複数回繰返し炭素繊維強化複合材料を調製する場合、光反射法を使用すると、炭素繊維複合材料は製造面からは、最初の調製時には熱硬化性樹脂を用いることが好ましい。賦形体への樹脂の含浸、硬化、無機化が1回のみの場合は、熱硬化性樹脂を用いることが好ましい。   By observing the frequency distribution of light and shade due to reflection of light, it is possible to know the filling state of the fibers and the resin in the shaped body before thermal decomposition. When a carbon fiber reinforced composite material is prepared by repeatedly impregnating the resin into a shaped body, curing, and carbonizing a plurality of times, using a light reflection method, the carbon fiber composite material is thermosetting at the initial preparation from the manufacturing aspect. It is preferable to use a resin. When the shaped body is impregnated with resin, cured, and mineralized only once, it is preferable to use a thermosetting resin.

本発明のプリフォームを用いると、無機化終了後の耐熱炭素繊維複合材料中の繊維と無機質マトリックスの充填状態は、ほぼ均質となり、クラックやボイドによる変形が起こらない。同様に光反射法により撮影した写真を画像解析することにより評価できる。クラックやボイドがあると写真で容易に確認でき、また、画像解析グレイスケール分布においてもピークが2本以上となったり、或は、ピーク幅が広くなり、ピーク幅比[(w1/6)/(w1/2)]が3.0を超える。 When the preform of the present invention is used, the filling state of the fibers and the inorganic matrix in the heat-resistant carbon fiber composite material after completion of mineralization becomes almost uniform, and deformation due to cracks and voids does not occur. Similarly, it can be evaluated by analyzing an image of a photograph taken by the light reflection method. If there are cracks or voids, it can be easily confirmed with a photograph. Also, in the image analysis gray scale distribution, there are two or more peaks, or the peak width becomes wider, and the peak width ratio [(w 1/6 ) / (W 1/2 )] exceeds 3.0.

熱可塑性樹脂を最初の調製時に用いる際には、不融化処理が必要となる場合が多いので、最初の調製時に熱可塑性樹脂を用いるのは好ましくない。なお、最初の調製時以外の炭素繊維強化複合材料の調製時、即ち炭素繊維強化複合材料の緻密化時の含浸樹脂としては熱可塑性樹脂を用いても良い。   When a thermoplastic resin is used during the initial preparation, infusibilization is often required, so it is not preferable to use a thermoplastic resin during the initial preparation. A thermoplastic resin may be used as the impregnating resin when preparing the carbon fiber reinforced composite material other than the initial preparation, that is, when densifying the carbon fiber reinforced composite material.

以下、本発明の耐熱炭素繊維強化複合材料用プリフォーム及び耐熱炭素繊維強化複合材料等について実施例及び比較例を用いて説明するが、本発明はこれら実施例及び比較例に限定されるものではない。   Hereinafter, the preform for heat-resistant carbon fiber reinforced composite material and the heat-resistant carbon fiber reinforced composite material of the present invention will be described using Examples and Comparative Examples, but the present invention is not limited to these Examples and Comparative Examples. Absent.

これら実施例及び比較例において、プリフォームの嵩密度、並びにプリフォーム端面の光反射写真の画像濃淡度数分布に関する評価方法を以下に説明する。   In these examples and comparative examples, an evaluation method regarding the bulk density of the preform and the image density distribution of the light reflection photograph of the preform end face will be described below.

<プリフォームの嵩密度>
プリフォームの嵩密度は、下記の方法で測定した。
管状体の外径(cm)、内径(cm)をそれぞれ4点、長さ(cm)を8点測定し平均値を求め、その質量を測定し、数式(1)
D=W/[L×π×{(OD/2)2−(ID/2)2}] (1)
D:嵩密度(g/cm3)
W:プリフォームの質量(g)
L:長さの平均値(cm)
π:円周率
OD:外径(直径)の平均値(cm)
ID:内径(直径)の平均値(cm)
により算出した。
<Bulk density of preform>
The bulk density of the preform was measured by the following method.
The outer diameter (cm) and inner diameter (cm) of the tubular body were measured at 4 points and the length (cm) at 8 points, the average value was obtained, the mass was measured, and the formula (1)
D = W / [L × π × {(OD / 2) 2 − (ID / 2) 2 }] (1)
D: Bulk density (g / cm 3 )
W: Mass of preform (g)
L: Average length (cm)
π: Circumference ratio OD: Average value of outer diameter (diameter) (cm)
ID: Average value of inner diameter (diameter) (cm)
Calculated by

<プリフォーム端面の光反射写真の画像濃淡度数分布>
プリフォーム端面の光反射写真の画像濃淡度数分布は、Scion Corporation社製ソフトウェアScion Image beta Release 3bのPlot Histogram機能を使用した。
<Image intensity distribution of light reflection photograph of preform end face>
The Plot Histogram function of the software Scion Image beta Release 3b manufactured by Scion Corporation was used for the light intensity distribution of the light reflection photograph of the preform end face.

プリフォーム端面において、熱分解前後に発生したクラックの部分は光反射により検出することが可能である。   On the end face of the preform, a crack portion generated before and after thermal decomposition can be detected by light reflection.

すなわち、プリフォーム端面による反射の度合いを画像の濃淡で表し、度数分布表示することでクラック部分と正常な部分との分布の緻密さ、均一さを区別することが可能である。   That is, it is possible to distinguish the density and uniformity of the distribution between the cracked portion and the normal portion by expressing the degree of reflection by the preform end face by the shading of the image and displaying the frequency distribution.

プリフォーム中にクラック部分と正常な部分とが微細に且つ均一に分布すると、画像の濃淡の度数分布は正規分布に近く、ピーク高さ1/6の幅(w1/6)とピーク高さ1/2の幅(w1/2)とのピーク幅比[(w1/6)/(w1/2)]が小さくなる。 When cracks and normal parts are finely and uniformly distributed in the preform, the frequency distribution of the image density is close to the normal distribution, and the width (w 1/6 ) of the peak height 1/6 and the peak height 1/2 of the width (w 1/2) and peak width ratio of [(w 1/6) / (w 1/2)] decreases.

これに対し、プリフォーム中のクラックが大きくなったり、クラック部分と正常な部分との分布が不均一になると、画像の濃淡の度数分布が正規分布から外れたり、ピーク高さ1/6の幅(w1/6)とピーク高さ1/2の幅(w1/2)とのピーク幅比[(w1/6)/(w1/2)]が大きくなったりする。 On the other hand, if the cracks in the preform become large or the distribution between the cracked part and the normal part becomes non-uniform, the frequency distribution of the shading of the image deviates from the normal distribution or the peak height is 1/6 width. The peak width ratio [(w 1/6 ) / (w 1/2 )] between (w 1/6 ) and the peak height ½ width (w 1/2 ) may increase.

実施例1
繊維径7μmのPAN系炭素繊維(収束本数3000本、引張強度3920MPa、引張弾性率235GPa)からなる、厚さ0.1mm、目付200g/m2の平織物[東邦テナックス(株)製ベスファイトクロスW−3101]に、フェノール樹脂[昭和高分子(株)製BRL−240]を含浸させた後、シートワインド法で外径/内径の直径比2.43、嵩密度1.17g/cm3の管状プリフォームを作製した。
Example 1
A plain woven fabric made of PAN-based carbon fiber with a fiber diameter of 7 μm (having 3000 convergent fibers, tensile strength 3920 MPa, tensile elastic modulus 235 GPa) and having a thickness of 0.1 mm and a basis weight of 200 g / m 2 [Besfight cloth manufactured by Toho Tenax Co., Ltd. W-3101] was impregnated with a phenol resin [BRL-240 manufactured by Showa Polymer Co., Ltd.], and the outer diameter / inner diameter ratio was 2.43 and the bulk density was 1.17 g / cm 3 by a sheet winding method. A tubular preform was prepared.

プリフォーム端面の光反射光学顕微鏡写真は図1(a)に示す通りであり、同写真の画像濃淡度数分布は図1(b)に示す通りである。図1(b)におけるピーク幅比[(w1/6)/(w1/2)]は2.39であった。 The light reflection optical micrograph of the end face of the preform is as shown in FIG. 1 (a), and the image intensity distribution of the photograph is as shown in FIG. 1 (b). The peak width ratio [(w 1/6 ) / (w 1/2 )] in FIG. 1 (b) was 2.39.

このプリフォームを1000℃でHr焼成して外径/内径の直径比2.39の耐熱炭素繊維強化複合材料を得た。この耐熱炭素繊維強化複合材料は変形がなく、管状体の外面と内面はきれいな同心円状を保っていた。   This preform was fired at 1000 ° C. for Hr to obtain a heat resistant carbon fiber reinforced composite material having an outer diameter / inner diameter ratio of 2.39. This heat-resistant carbon fiber reinforced composite material was not deformed, and the outer surface and inner surface of the tubular body maintained a clean concentric shape.

耐熱炭素繊維強化複合材料端面の光反射光学顕微鏡写真は図2(a)に示す通りであり、同写真の画像濃淡度数分布は図2(b)に示す通りである。図2(b)におけるピーク幅比[(w1/6)/(w1/2)]は1.83であり、焼成前よりも均一なものとなった。 The light reflection optical micrograph of the end face of the heat resistant carbon fiber reinforced composite material is as shown in FIG. 2 (a), and the image intensity distribution of the photograph is as shown in FIG. 2 (b). The peak width ratio [(w 1/6 ) / (w 1/2 )] in FIG. 2 (b) was 1.83, which was more uniform than before firing.

実施例2
プリフォームの嵩密度を1.21g/cm3、硬化後のピーク幅比[(w1/6)/(w1/2)]を2.7とした以外は、実施例1と同様にプリフォームを作製した。
Example 2
The same procedure as in Example 1 was performed except that the preform had a bulk density of 1.21 g / cm 3 and a peak width ratio after curing [(w 1/6 ) / (w 1/2 )] of 2.7. A reform was made.

このプリフォームを1000℃で8Hr焼成して外径/内径の直径比2.30の耐熱炭素繊維強化複合材料を得た。この耐熱炭素繊維強化複合材料は変形がなく、管状体の外面と内面はきれいな同心円状を保っていた。   The preform was fired at 1000 ° C. for 8 hours to obtain a heat resistant carbon fiber reinforced composite material having an outer diameter / inner diameter ratio of 2.30. This heat-resistant carbon fiber reinforced composite material was not deformed, and the outer surface and inner surface of the tubular body maintained a clean concentric shape.

実施例3
PAN系耐炎繊維の紡績糸八枚朱子織物[東邦テナックス(株)製パイロメックスクロスW−0221]を不活性雰囲気中2000℃で焼成したPAN系炭素繊維紡績糸織物を用い、プリフォームの嵩密度を0.8g/cm3、硬化後のピーク幅比[(w1/6)/(w1/2)]を2.13とした以外は、実施例1と同様にプリフォームを作製した。
Example 3
Preliminary bulk density of PAN-based flame-resistant fiber using PAN-based carbon fiber spun woven fabric obtained by baking 8000 flame-resistant spun yarn woven fabric [Pyromex Cross W-0221 manufactured by Toho Tenax Co., Ltd.] at 2000 ° C. in an inert atmosphere. Was 0.8 g / cm 3 and the peak width ratio after curing [(w 1/6 ) / (w 1/2 )] was 2.13, a preform was prepared in the same manner as in Example 1.

このプリフォームを1000℃で8Hr焼成して外径/内径の直径比2.15の耐熱炭素繊維強化複合材料を得た。この耐熱炭素繊維強化複合材料は変形がなく、管状体の外面と内面はきれいな同心円状を保っていた。   This preform was fired at 1000 ° C. for 8 hours to obtain a heat resistant carbon fiber reinforced composite material having an outer diameter / inner diameter ratio of 2.15. This heat-resistant carbon fiber reinforced composite material was not deformed, and the outer surface and inner surface of the tubular body maintained a clean concentric shape.

実施例4
PAN系耐炎繊維の紡績糸八枚朱子織物[東邦テナックス(株)製パイロメックスクロスW−0221]を不活性雰囲気中2000℃で焼成したPAN系炭素繊維紡績糸織物と繊維径7μmのPAN系炭素繊維(収束本数3000本、引張強度3920MPa、引張弾性率235GPa)からなる、厚さ0.1mm、目付200g/m2、の平織物[東邦テナックス(株)製ベスファイトクロスW−3101]を交互に巻きつけ、プリフォームの嵩密度を1.1g/cm3、硬化後のピーク幅比[(w1/6)/(w1/2)]を2.25とした以外は、実施例1と同様にプリフォームを作製した。
Example 4
PAN-based carbon fiber spun woven fabric obtained by calcining PAN-based flame resistant fiber spun yarn eight-ply satin fabric [Pyromex Cross W-0221 manufactured by Toho Tenax Co., Ltd.] in an inert atmosphere at 2000 ° C. and PAN-based carbon having a fiber diameter of 7 μm Alternating plain woven fabric [Besfight cloth W-3101 manufactured by Toho Tenax Co., Ltd.] with a thickness of 0.1 mm and a basis weight of 200 g / m 2 made of fibers (3000 convergent fibers, tensile strength 3920 MPa, tensile elastic modulus 235 GPa) Example 1 except that the bulk density of the preform was 1.1 g / cm 3 and the peak width ratio [(w 1/6 ) / (w 1/2 )] after curing was 2.25. A preform was prepared in the same manner as described above.

このプリフォームを1000℃で8Hr焼成して外径/内径の直径比2.26の耐熱炭素繊維強化複合材料を得た。この耐熱炭素繊維強化複合材料は変形がなく、管状体の外面と内面はきれいな同心円状を保っていた。   This preform was fired at 1000 ° C. for 8 hours to obtain a heat resistant carbon fiber reinforced composite material having an outer diameter / inner diameter ratio of 2.26. This heat-resistant carbon fiber reinforced composite material was not deformed, and the outer surface and inner surface of the tubular body maintained a clean concentric shape.

比較例1
プリフォームの嵩密度を1.21g/cm3、硬化後のピーク幅比[(w1/6)/(w1/2)]を1.80とした以外は、実施例1と同様にプリフォームを作製した。
Comparative Example 1
The same procedure as in Example 1 was performed except that the preform had a bulk density of 1.21 g / cm 3 and a peak width ratio [(w 1/6 ) / (w 1/2 )] after curing of 1.80. A reform was made.

プリフォーム端面の光反射光学顕微鏡写真は図3(a)に示す通りであり、同写真の画像濃淡度数分布は図3(b)に示す通りである。図3(b)におけるピーク幅比[(w1/6)/(w1/2)]は1.8と小さいものであった。 A light reflection optical micrograph of the end face of the preform is as shown in FIG. 3 (a), and the image intensity distribution of the photograph is as shown in FIG. 3 (b). The peak width ratio [(w 1/6 ) / (w 1/2 )] in FIG. 3B was as small as 1.8.

このプリフォームを1000℃で8Hr焼成して外径の平均値/内径の平均値の直径比2.33の耐熱炭素繊維強化複合材料を得たが、この耐熱炭素繊維強化複合材料は変形が大きかった。   This preform was fired at 1000 ° C. for 8 hours to obtain a heat-resistant carbon fiber reinforced composite material having an average outer diameter / average inner diameter diameter ratio of 2.33. The heat-resistant carbon fiber reinforced composite material was greatly deformed. It was.

耐熱炭素繊維強化複合材料端面の光反射光学顕微鏡写真は図4(a)に示す通りであり、大きなクラックが見られる。同写真の画像濃淡度数分布は図4(b)に示す通り、親ピークから子ピークが分離しているのが見られる。また、図4(b)におけるピーク幅比[(w1/6)/(w1/2)]は3.43と大きなものになった。 A light reflection optical microscope photograph of the end face of the heat resistant carbon fiber reinforced composite material is as shown in FIG. As shown in FIG. 4B, the image intensity distribution of the photograph shows that the child peak is separated from the parent peak. In addition, the peak width ratio [(w 1/6 ) / (w 1/2 )] in FIG. 4B was as large as 3.43.

比較例2
プリフォームの嵩密度を0.85g/cm3、硬化後のピーク幅比[(w1/6)/(w1/2)]を3.2とした以外は、実施例3と同様にプリフォームを作製した。
Comparative Example 2
The same procedure as in Example 3 was performed except that the preform bulk density was 0.85 g / cm 3 and the peak width ratio after curing [(w 1/6 ) / (w 1/2 )] was 3.2. A reform was made.

このプリフォームを1000℃で8Hr焼成して外径の平均値/内径の平均値の直径比2.25の耐熱炭素繊維強化複合材料を得たが、この耐熱炭素繊維強化複合材料は変形が著しく大きかった。   This preform was fired at 1000 ° C. for 8 hours to obtain a heat-resistant carbon fiber reinforced composite material having a diameter ratio of 2.25 of the average value of the outer diameter / average value of the inner diameter. It was big.

比較例3
プリフォームの嵩密度を0.3g/cm3、硬化後のピーク幅比[(w1/6)/(w1/2)]を2.92とした以外は、実施例3と同様にプリフォームを作製した。
Comparative Example 3
The same procedure as in Example 3 was performed except that the preform had a bulk density of 0.3 g / cm 3 and a cured peak width ratio [(w 1/6 ) / (w 1/2 )] of 2.92. A reform was made.

このプリフォームを1000℃で8Hr焼成して外径の平均値/内径の平均値の直径比1.48の耐熱炭素繊維強化複合材料を得たが、この耐熱炭素繊維強化複合材料は変形が著しく大きかった。   This preform was fired at 1000 ° C. for 8 hours to obtain a heat-resistant carbon fiber reinforced composite material having a diameter ratio of 1.48 of the average value of the outer diameter / the average value of the inner diameter. It was big.

比較例4
プリフォームの嵩密度を1.5g/cm3、硬化後のピーク幅比[(w1/6)/(w1/2)]を3.12とした以外は、実施例1と同様にプリフォームを作製した。
Comparative Example 4
The same procedure as in Example 1 was performed except that the preform had a bulk density of 1.5 g / cm 3 and a peak width ratio after curing [(w 1/6 ) / (w 1/2 )] of 3.12. A reform was made.

このプリフォームを1000℃で8Hr焼成したところ、焼成中に生じたクラックのために取り出し時には割れていた。   When this preform was fired at 1000 ° C. for 8 hours, it was cracked when taken out due to cracks generated during firing.

(a)は実施例1における硬化プリフォーム端面を示す図面代用光反射光学顕微鏡写真であり、(b)は同写真の画像濃淡度数分布を示すグラフである。(A) is a drawing-substituting light-reflecting optical microscope photograph showing the end face of the cured preform in Example 1, and (b) is a graph showing the image intensity distribution of the photograph. (a)は実施例1における耐熱炭素繊維強化複合材料端面を示す図面代用光反射光学顕微鏡写真であり、(b)は同写真の画像濃淡度数分布を示すグラフである。(A) is a drawing-substitution light reflection optical micrograph showing the heat-resistant carbon fiber reinforced composite material end face in Example 1, and (b) is a graph showing the image intensity distribution of the photo. (a)は比較例1における硬化プリフォーム端面を示す図面代用光反射光学顕微鏡写真であり、(b)は同写真の画像濃淡度数分布を示すグラフである。(A) is a drawing-substituting light reflection optical micrograph showing a cured preform end face in Comparative Example 1, and (b) is a graph showing an image intensity distribution of the photograph. (a)は比較例1における耐熱炭素繊維強化複合材料端面を示す図面代用光反射光学顕微鏡写真であり、(b)は同写真の画像濃淡度数分布を示すグラフである。(A) is a drawing-substituting light reflection optical micrograph showing the heat-resistant carbon fiber reinforced composite material end face in Comparative Example 1, and (b) is a graph showing the image intensity distribution of the photo.

Claims (4)

炭素繊維に有機高分子又は無機高分子を含浸してなる賦形体であって、賦形体の嵩密度が0.6〜1.3g/cm3、かつ、賦形体の端面を光反射法により撮影した写真の画像解析グレイスケール分布におけるピーク高さ1/6の幅(w1/6)とピーク高さ1/2の幅(w1/2)とのピーク幅比[(w1/6)/(w1/2)]が2.0〜3.0である耐熱炭素繊維強化複合材料用プリフォーム。 A shaped body obtained by impregnating a carbon fiber with an organic polymer or an inorganic polymer, the shaped body has a bulk density of 0.6 to 1.3 g / cm 3 , and the end surface of the shaped body is photographed by a light reflection method. Image analysis of the photographed image In the gray scale distribution, the peak width ratio [(w 1/6 ) of the width (w 1/6 ) of the peak height 1/2 to the width (w 1/2 ) of the peak height 1/2 / (W 1/2 )] is a preform for a heat resistant carbon fiber reinforced composite material having a value of 2.0 to 3.0. 請求項1に記載の耐熱炭素繊維強化複合材料用プリフォームを熱処理することを特徴とする耐熱炭素繊維強化複合材料の製造方法。 A method for producing a heat resistant carbon fiber reinforced composite material, comprising heat-treating the preform for the heat resistant carbon fiber reinforced composite material according to claim 1. 形状が管状である請求項2に記載の耐熱炭素繊維強化複合材料の製造方法。 The method for producing a heat-resistant carbon fiber reinforced composite material according to claim 2, wherein the shape is tubular. 管状体の肉厚を示す外径/内径の直径比が1.5以上である請求項3に記載の耐熱炭素繊維強化複合材料の製造方法。 The method for producing a heat-resistant carbon fiber reinforced composite material according to claim 3, wherein a diameter ratio of an outer diameter / an inner diameter indicating a wall thickness of the tubular body is 1.5 or more.
JP2004231781A 2004-08-09 2004-08-09 Preform for heat-resistant carbon fiber-reinforced composite material and method for producing heat-resistant carbon fiber-reinforced composite material Pending JP2006045442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004231781A JP2006045442A (en) 2004-08-09 2004-08-09 Preform for heat-resistant carbon fiber-reinforced composite material and method for producing heat-resistant carbon fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004231781A JP2006045442A (en) 2004-08-09 2004-08-09 Preform for heat-resistant carbon fiber-reinforced composite material and method for producing heat-resistant carbon fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JP2006045442A true JP2006045442A (en) 2006-02-16

Family

ID=36024403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004231781A Pending JP2006045442A (en) 2004-08-09 2004-08-09 Preform for heat-resistant carbon fiber-reinforced composite material and method for producing heat-resistant carbon fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP2006045442A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245273A (en) * 1995-03-07 1996-09-24 Tokai Carbon Co Ltd Production of carbon fiber reinforced carbon composite material
JPH10101471A (en) * 1996-09-27 1998-04-21 Sumitomo Metal Ind Ltd Graphite crucible for pulling up monocrystal
JPH11255586A (en) * 1998-03-12 1999-09-21 Sumitomo Metal Ind Ltd Carbon-fiber reinforced carbonaceous material crucible for pulling single crystal and its production
JPH11343177A (en) * 1998-03-31 1999-12-14 Toho Rayon Co Ltd High temperature pressure molding furnace member consisting of carbon fiber reinforced carbon composite material and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245273A (en) * 1995-03-07 1996-09-24 Tokai Carbon Co Ltd Production of carbon fiber reinforced carbon composite material
JPH10101471A (en) * 1996-09-27 1998-04-21 Sumitomo Metal Ind Ltd Graphite crucible for pulling up monocrystal
JPH11255586A (en) * 1998-03-12 1999-09-21 Sumitomo Metal Ind Ltd Carbon-fiber reinforced carbonaceous material crucible for pulling single crystal and its production
JPH11343177A (en) * 1998-03-31 1999-12-14 Toho Rayon Co Ltd High temperature pressure molding furnace member consisting of carbon fiber reinforced carbon composite material and its production

Similar Documents

Publication Publication Date Title
US7871592B2 (en) Method for preparing a carbon/carbon composite
CA2960342C (en) Ceramic matrix composites having monomodal pore size distribution and low fiber volume fraction
EP1908740B1 (en) CARBON-FIBER-REINFORCED SiC COMPOSITE MATERIAL AND SLIDE MEMBER
US8899939B2 (en) Process for producing a ceramic matrix composite article and article formed thereby
EP2338934B1 (en) Slurry composition
JPH08226054A (en) Production of carbon primary molding and carbon/carbon composite material
JPH07172942A (en) Preparation of component prepared of composite material consisting of fiber-reinforced material solidified by liquid process
US20080176067A1 (en) Process for producing shaped bodies of carbon fiber reinforced carbon and shaped body produced by the process
JP2011046543A (en) Carbon fiber-reinforced carbon composite material and method for manufacturing the same
US20090239434A1 (en) Method for producing a fiber-reinforced carbide ceramic component and carbide ceramic component
JP4245725B2 (en) High temperature pressure molding furnace member made of carbon fiber reinforced carbon composite material and method for producing the same
ZHENG et al. Preparation and fracture behavior of carbon fiber/SiC composites by multiple impregnation and pyrolysis of polycarbosilane
JP2006045442A (en) Preform for heat-resistant carbon fiber-reinforced composite material and method for producing heat-resistant carbon fiber-reinforced composite material
JP2002255664A (en) C/c composite material and production method therefor
JP3288408B2 (en) Manufacturing method of general-purpose carbon fiber reinforced carbon material
JP4980524B2 (en) Carbon-ceramic composite, metal object transport roller, and molten aluminum stirring shaft
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JP2003012374A (en) Method of manufacturing carbon fiber reinforcing carbon material
JP4420371B2 (en) Manufacturing method of screw member made of C / C material
US10087519B1 (en) Preform and method of making a preform
JPH0532457A (en) Carbon fiber-reinforced carbon composite material and its production
JPH0255393B2 (en)
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JP3232498B2 (en) Carbon fiber reinforced carbon material with high thermal conductivity in one direction
JP2022067653A (en) Carbon fiber reinforced composite material and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070625

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615