JP4245300B2 - Method for producing biodegradable polyester stretch molded article - Google Patents

Method for producing biodegradable polyester stretch molded article Download PDF

Info

Publication number
JP4245300B2
JP4245300B2 JP2002100322A JP2002100322A JP4245300B2 JP 4245300 B2 JP4245300 B2 JP 4245300B2 JP 2002100322 A JP2002100322 A JP 2002100322A JP 2002100322 A JP2002100322 A JP 2002100322A JP 4245300 B2 JP4245300 B2 JP 4245300B2
Authority
JP
Japan
Prior art keywords
melt
temperature
molded product
stretching
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002100322A
Other languages
Japanese (ja)
Other versions
JP2003291209A (en
Inventor
和明 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2002100322A priority Critical patent/JP4245300B2/en
Publication of JP2003291209A publication Critical patent/JP2003291209A/en
Application granted granted Critical
Publication of JP4245300B2 publication Critical patent/JP4245300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、生分解性ポリエステルを主体とする延伸成形体の製造方法に関する。更に詳しくは、生分解性ポリエステルを主体とする、耐熱性、及び透明性に優れ包装材用途に好適な延伸成形体の製造方法に関するものである。
【0002】
【従来の技術】
食品や医薬品などの包装は、その内容物の輸送や分配の作業を容易にするものであると同時に、品質維持が特に重要な役割である。従って、包装材には、品質維持性能の高さが要求される。具体的には、長期保存時に内容物を保護する性能として、衝撃や突き刺しなどの外力に対する機械的強度や、外気酸素による内容物の酸化劣化や内容物の水分蒸発による劣化に対するガスバリア性、包装材自体が保存時や使用時に変性や変形しない耐油性や耐熱性などの安定性、包装材自体からの有害物質、異味、異臭の移行がない衛生性などが挙げられる。
また、包装材の要求特性としては、内容物の認識し易さや、購入者の購買意欲を促すディスプレイ効果により商品価値を高めるために、透明性も重要な因子である。
【0003】
従来から、これら包装材用途には、加工時や利用時の利便性からプラスチック製品が使用されていた。しかし、現在の消費社会では、その使用量は年々増加の一途をたどっており、同時にプラスチック廃棄物問題は年々深刻化している。プラスチック廃棄物は、多くは焼却や埋め立てにより処分されているが、近年は環境保全の観点から、回収して再びプラスチック製品の原料として用いるマテリアルリサイクルが提唱されている。
【0004】
しかし、上述のとおり、プラスチック製品の包装材としての要求性能は多岐にわたり、単一種類のプラスチックのみではこれら全ての要求を満たすことが出来ず、例えば多層化してガスバリア性フィルムや成形容器にするなど、一般に数種類のプラスチックを組み合わせて用いられている。この様な包装材は、各種樹脂への分別が非常に困難であり、コスト面などを考慮するとマテリアルリサイクルは不可能である。
【0005】
これに対し、例えば、特開平10−60136号公報には、融点が150℃以上、融解熱ΔHmが20J/g以上、無配向結晶化物の密度が1.50g/cm3以上である特定のポリグリコール酸を含有する熱可塑性樹脂材料を、融点〜255℃の温度範囲で溶融成形し、ガラス転移温度〜結晶化温度の温度範囲で少なくとも一軸方向に延伸したポリグリコール酸配向フィルムが、土中崩壊性を示し、且つ強靭性やバリア性に優れる包材として使用することが出来ると開示されている。
【0006】
しかしながら、上記特開平10−60135号公報の実施例では、ガラス転移温度近傍の42〜44℃で延伸している。このように比較的低い温度で延伸している為に得られる配向フィルムは結晶化が比較的低い場合があり、耐熱性などのフィルム物性を発現させるためには、延伸後の熱処理を比較的高い温度で行なわなければならないので、配向フィルムの透明性が悪化し易いという問題点があった。
【0007】
【発明が解決しようとする課題】
本発明の課題は、生分解性を有し、且つ耐熱性、透明性に優れた包装材用途に好適な生分解性ポリエステル延伸成形体を容易に製造することが可能である、該成形体の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者は、上記課題を達成する為に鋭意検討した結果、生分解性ポリエステルを主体とする溶融成形物が適度な結晶化速度となる特定の温度範囲に加熱しながら延伸することにより、生分解性を有し、且つ耐熱性、透明性に優れた包装材用途に好適な生分解性ポリエステル延伸成形体を容易に製造することができることを見出し、本発明に到達した。
【0009】
即ち、本発明は、
1.生分解性グリコール酸系重合体を主体とする溶融成形物を加熱しながら少なくとも一軸方向に延伸する生分解性ポリエステル延伸成形体の製造方法において、延伸時の加熱温度Ts(℃)が、該溶融成形物を試験片として加熱速度10℃/分で示差走査熱量測定(JIS K7121準拠)した際に求められるガラス転移温度Tg(℃)、及び冷結晶化温度Tc(℃)と下式(1)の関係にある温度で、延伸速度は10〜50000%/分、延伸倍率は少なくとも一軸方向に面積倍率2〜50倍の範囲から選ばれる延伸条件で延伸することを特徴とする生分解性ポリエステル延伸成形体の製造方法、
式(1)Tc−0.40(Tc−Tg)≦Ts≦Tc−0.05(Tc−Tg)
である。
【0010】
以下、本発明の生分解性ポリエステル延伸成形体の製造方法について詳細に説明する。
本発明の生分解性ポリエステル延伸成形体の製造方法は、生分解性ポリエステルを主体とする溶融成形物の延伸時の加熱温度Tsを、示差走査熱量測定で求められるガラス転移温度Tg、及び冷結晶化温度Tcに対して特定範囲とすることを特徴としており、本法によると該溶融成形物は適度な結晶化速度で結晶化し得る状況において延伸される為に、延伸中に過度に結晶化することなく、容易に所望の延伸倍率まで破断せずに延伸できる。更に得られる生分解性ポリエステル延伸成形体は、白化せずに透明性が非常に優れ、且つ適度に結晶化していることから耐熱性にも優れるものである。
【0011】
本発明でいう加熱温度Tsとは延伸時の溶融成形物の温度を指すが、例えば溶融成形物に熱風を吹き付けて加熱する場合には、溶融成形物は熱風と同等の温度に加熱されるので、熱風温度を加熱温度Tsに設定することとする。又、例えば溶融成形物を赤外線などで輻射加熱する場合には、溶融成形物の温度が加熱温度Tsになるように加熱装置を設定することとする。
本発明でいう延伸成形体とは、主として延伸フィルム及び延伸シートを指す。本発明において、フィルムとシートの区別は、単に厚みの違いによって異なる呼称を用いているものであり、フィルムとシートを総称して成形体と称する。尚、延伸ブロー成形体も、その溶融成形物であるプリフォームを適度な結晶化速度で結晶化し得る状況においてブロー成形することにより、本発明の製造方法を適用してもよいものとする。
【0012】
一般に、プラスチック成形体の成膜加工において、一軸延伸や二軸延伸によるフィルムの製造方法では、溶融成形物を「融点以下で、二次転移点(ガラス転移温度と同意)以上の温度に加熱しながら」(プラスチックフィルム研究会、プラスチックフィルム−加工と応用−、p.63、技報堂出版(1971))延伸を行なうのが通常の方法である。特に、ポリエステルの一種であるポリエチレンテレフタレートフィルムの製造方法では、「成膜条件は…80〜130℃で2.0〜4.0倍延伸」(プラスチックフィルム研究会、プラスチックフィルム−加工と応用−、p.81、技報堂出版(1971))するのが通常の方法である。
【0013】
一方、ポリエチレンテレフタレートの熱的特性は、ガラス転移温度が79℃、冷結晶化温度が128℃(日本分析化学会、新版 高分子分析ハンドブック、p.336、紀伊国屋書店(1995))である。従って、上記特開平10−60136号公報に規定されているガラス転移温度〜結晶化温度の温度範囲で延伸するフィルム製造方法は、ポリエチレンテレフタレートフィルムの製造方法における従来技術から容易に類推され得る温度範囲で延伸していると言える。
【0014】
本発明は、プラスチック成形体の成膜加工において延伸時の加熱温度条件について鋭意検討した結果、プラスチックの結晶化という自然現象を利用して、ガラス転移温度Tg〜結晶化温度Tcの間でも、格別に下式(1)に特定する温度範囲で延伸することにより、得られる成形体の結晶構造を制御できることを見出し到達したものである。尚、下式(1)は、変形して下式(2)で表すことができる。
式(1)Tc−0.40(Tc−Tg)≦Ts≦Tc−0.05(Tc−Tg)式(2)0.05≦(Tc−Ts)/(Tc−Tg)≦0.40
本発明における結晶化は、熱力学的非平衡状態にある、いわゆるガラス状態の溶融成形物を加熱する際に起こる結晶化現象で、慣用的に冷結晶化と呼ばれている現象である。この結晶化の度合いを把握する数値としては、具体的には結晶化度を求めることで可能であり、例えば熱分析法により試験片の結晶融解熱の理論融解熱に対する比から求めることができる。
【0015】
図1は、試験片の結晶化度の経時変化が、加熱温度によって異なることを示す実験図である。該図は、横軸に加熱時間(分)、縦軸に結晶化度(%)を各々目盛り、丸印(○)は加熱温度50℃の場合を、四角印(□)は加熱温度80℃の場合を、三角印(△)は加熱温度100℃の場合を各々示している。一方、この実験で用いた試験片を加熱速度10℃/分で示差走査熱量測定(JIS K7121準拠)した際に求められるガラス転移温度Tg(℃)、及び冷結晶化温度Tc(℃)は、各々ガラス転移温度Tgが11℃、冷結晶化温度Tcが103℃であった。図1の加熱温度を前出式(2)のTsとして代入すると、(Tc−Ts)/(Tc−Tg)の値は、各々丸印(○)の50℃では0.58、四角印(□)の80℃では0.25、三角印(△)の100℃では0.03となる。
【0016】
図1によると、前出式(2)の(Tc−Ts)/(Tc−Tg)の値が0.58である加熱温度50℃では試験片の結晶化は少ししか起こらないが、該値が0.25である加熱温度を80℃に設定すると試験片は適度に結晶化するようになり、該値が0.03である加熱温度100℃ではより高度に結晶化するようになることが判る。該図が示す結晶化度の経時変化は結晶化速度を表す指標になり、該図四角印(□)の加熱温度80℃で示される様な適度な結晶化速度となる温度では、延伸中に結晶化の進行度合いを制御することが可能で、過度に結晶化することなく延伸成形体を製造できることが判る。
【0017】
従って、本発明の延伸成形体の製造方法では、溶融成形物を延伸する際の加熱温度Ts(℃)は、該溶融成形物を試験片として加熱速度10℃/分で示差走査熱量測定(JIS K7121準拠)した際に求められるガラス転移温度Tg(℃)、及び冷結晶化温度Tc(℃)と式(1)の関係にある温度範囲に特定する。
式(1)Tc−0.40(Tc−Tg)≦Ts≦Tc−0.05(Tc−Tg)該Tsの値が(Tc−0.05(Tc−Tg))℃よりも高い場合は、用いる溶融成形物の結晶化速度が非常に速くなる為に、延伸中に非常に高度な結晶化が起こり所望の延伸倍率に達せず破断して成形体の製造工程が非常に煩雑になったり、破断しなかったとしても延伸時の加熱操作で白化し透明性が極度に劣る成形体しか得られなかったりする。一方、該Tsの値が(Tc−0.40(Tc−Tg))℃よりも低い場合は、用いる溶融成形物の結晶化速度が非常に遅くなる為に延伸中に十分結晶化が進まず、延伸後に熱固定しない成形体は結晶化度が低く耐熱性が劣るものとなったり、延伸後に熱固定した成形体は白化し透明性が極度に劣るものとなる。従って、該Tsの値は、上記式(1)の関係にある温度範囲から選ぶことになるが、より高い耐熱性とより高い透明性を兼備し、延伸中に破断することなくより容易に延伸成形体を製造する為には、下式(3)の関係にある温度範囲から選ぶことが好ましい。
式(3)Tc−0.30(Tc−Tg)≦Ts≦Tc−0.10(Tc−Tg)
【0018】
尚、本発明で用いる溶融成形物に、上記示差走査熱量測定においてガラス転移温度や冷結晶化温度が各々複数存在する場合、例えば後述する原料から少なくとも2種以上を用いて溶融混合した組成物からなる溶融成形物の場合には、該溶融成形物を試験片として加熱速度10℃/分で示差走査熱量測定(JIS K7122準拠)した際に求められる冷結晶化熱が大きい方の生分解性ポリエステルのガラス転移温度Tg(℃)、及び冷結晶化温度Tc(℃)を採用し、延伸時の加熱温度Ts(℃)を設定する。又、後述する原料からなる多層状溶融成形物の場合には、該溶融成形物を試験片として加熱速度10℃/分で示差走査熱量測定(JIS K7121準拠)した際に求められる融点が高い方の生分解性ポリエステル層のガラス転移温度Tg(℃)、及び冷結晶化温度Tc(℃)を採用し、延伸時の加熱温度Ts(℃)を設定する。
【0019】
次に、本発明の延伸成形体の製造方法で用いる溶融成形物について、詳細に説明する。該溶融成形物は、主として生分解性ポリエステルよりなる原料を、例えば溶融押出法、カレンダー法、溶融プレス成形法などの、特に限定されるものではなく従来公知の一般的な方法で溶融成形したシート状物やチューブ状物などである。
溶融成形物の原料である本発明で用いる生分解性ポリエステルとしては、例えばグリコール酸、及び乳酸や2−ヒドロキシイソ酪酸などを含む2−ヒドロキシ−2,2−ジアルキル酢酸類、3−ヒドロキシ酪酸、3−ヒドロキシ吉草酸、3−ヒドロキシヘキサン酸、4−ヒドロキシブタン酸などを含む脂肪族ヒドロキシカルボン酸類、その他公知のヒドロキシカルボン酸類の単量体を用いての直接脱水重縮合、例えばグリコール酸メチルなどを含むこれらヒドロキシカルボン酸類のエステル誘導体を用いての脱アルコール重縮合、若しくはこれらヒドロキシカルボン酸類の同種、異種の環状二量体である、例えばグリコリド(1,4−ジオキサ−2,5−ジオン)、ラクチド(3,6−ジメチル−1,4−ジオキサ−2,5−ジオン)などを用いての開環重合、β−ブチロラクトン、β−プロピオラクトン、ピバロラクトン、γ−ブチロラクトン、δ−バレロラクトン、β−メチル−δ−バレロラクトン、ε−カプロラクトンなどを含むラクトン類の単量体を用いての開環重合などにより得られる単独重合体、又はこれらより任意に選択した二種以上から得られる共重合体であるポリヒドロキシカルボン酸類、ポリラクトン類、及びこれらヒドロキシカルボン酸類やその環状二量体とラクトン類の共重合体であるポリ(ヒドロキシカルボン酸−コ−ラクトン)類、等モル量の多価アルコール類と多価カルボン酸類の組み合わせであって、多価アルコール類として、例えばエチレングリコール、プロピレングリコール、1,2−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、2,2−ジメチル−1,3−プロパンジオール、1,6−ヘキサンジオール、1,3−シクロヘキサノール、1,4−シクロヘキサノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノールなどの脂肪族ジオール、或いはこれら脂肪族ジオールが複数結合した、例えばジエチレングリコール、トリエチレングリコール、テトラエチレングリコールなどと、多価カルボン酸として、例えばマロン酸、コハク酸、グルタル酸、2,2−ジメチルグルタル酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン酸、セバシン酸、1,3−シクロペンタンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、ジグリコール酸などの脂肪族ジカルボン酸、テレフタル酸、イソフタル酸、1,4−ナフタリンジカルボン酸、2,6−ナフタリンジカルボン酸などの芳香族ジカルボン酸、これら脂肪族ジカルボン酸や芳香族ジカルボン酸のエステル誘導体、これら脂肪族ジカルボン酸の無水物などとから得られる多価アルコール類と多価カルボン酸が各々一種ずつの単独重合体、或いは多価アルコール類と多価カルボン酸のうち何れか一方が一種で他方が任意に選択した二種以上から得られる共重合体、又は多価アルコール類と多価カルボン酸の各々が任意に選択した二種以上から得られる共重合体である脂肪族ポリエステル類、上記ヒドロキシカルボン酸類などと多価アルコール類の組合せであって、例えば1,4−ジオキサ−2−オンなどを含むエステルとエーテル単位を有する環状化合物を用いての開環重合により得られるポリ(エステル−エーテル)類、上記ヒドロキシカルボン酸類などと多価アルコール類と多価カルボン酸類の組合せにより得られるポリエステル類などが挙げられる。
【0020】
これらの生分解性ポリエステルは、共重合体の場合は、その配列は特に限定されるものではなく、ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体などの何れでも良く、その共重合組成割合は特に限定されるものではなく、構成する単量体の二種以上を任意の割合で共重合させた共重合体である。更に、上記の単量体などが光学活性物質である場合には、L−体およびD−体の何れであってもよいし、D−体とL−体の混合割合が任意の混合組成物、D−体とL−体の共重合割合が任意の共重合体、或いはメソ体の何れであってもよい。
【0021】
更に、本発明で用いる生分解性ポリエステルとしては、上記の化学合成ポリエステルの他に、ポリ(3−ヒドロキシブチラート)、ポリ(3−ヒドロキシブチラート−コ−3−ヒドロキシバレレート)、ポリ(3−ヒドロキシブチラート−コ−4−ヒドロキシブチラート)、その他炭素数が12程度より少ないヒドロキシアルカン酸を単量体単位とした単独重合体、若しくは共重合体などの、微生物により合成される微生物生産ポリエステル類であっても良い。
【0022】
本発明で用いる生分解性ポリエステルは、包装材として利用する成形体に耐熱性を付与する為には、加熱速度10℃/分で示差走査熱量測定(JIS K7121準拠)した際に求められる融点が140℃以上210℃以下であることが望ましく、より望ましくは160℃以上205℃以下、最も望ましくは175℃以上200℃以下であり、前述した熱分析法により求めた結晶化度が、充分アニール処理して平衡状態となったもの(後述の物性測定法の項で規定している。)を試験片として10%以上70%以下であることが望ましく、より望ましくは15%以上60%以下、最も望ましくは20%以上50%以下である。また、成形体に包装材として要求される外力に対する機械的強度を付与する為に、或いは溶融成形物を厚み精度良く、且つより容易に得る為には、分子量は重量平均分子量で表すと8×104以上であることが望ましく、より望ましくは1×105以上である。分子量の上限は、可塑剤などの添加により溶融流動性を調節すれば良く特に限定されるものではないが、重量平均分子量で表すと8×105以下に留めることが望ましい。
【0023】
上記に例示した本発明で用いる生分解性ポリエステルのうち、より好ましい生分解性ポリエステルは脂肪族ヒドロキシカルボン酸系重合体であり、なかでも包装材として利用する成形体に耐熱性を付与するために比較的融点が高く、且つガスバリア性に優れるグリコール酸系重合体が最も好ましい生分解性ポリエステルである。
上記グリコール酸系重合体とは、主たる単量体単位がグリコール酸である重合体をいい、グリコール酸の環状二量体であるグリコリド(1,4−ジオキサ−2,5−ジオン)を用いての開環重合、又はグリコール酸を用いての直接脱水重縮合、グリコール酸メチルなどのグリコール酸エステル類を用いて脱アルコールしながらの重縮合などにより得られる重合体である。
【0024】
該重合体の製造方法は、従来公知の一般的な方法で行われ、例えば主たる単量体にグリコリドを用い開環重合してグリコール酸系重合体を得るには、Gildingらの方法(Polymer,vol.20,December(1979))などが挙げられるが、これに限定されるものではない。該重合体は、結晶化の進行度合いをより制御し易くする為に、単量体単位がグリコール酸とグリコール酸以外、例えば乳酸などよりなる共重合体であることが望ましく、例えば単量体単位としてグリコール酸の成分割合が78〜90mol%と乳酸の成分割合が22〜10mol%である開環重合により得られたグリコール酸−乳酸共重合体でが挙げられ、融点は175〜205℃、充分アニール処理して平衡状態となったものを試験片として熱分析法により求めた結晶化度は15〜40%である。但し、熱分析法による結晶化度の算出では、理論融解熱はグリコール酸単独重合体の値である207J/gを用いている(C.C.Chu,J.Appl.Poly.Sci.,Vol.26,p.1726(1981)、J.Brandrup,et al.,POLYMER HANDBOOK,3rd ed.,John Wiley & Sons(1989))。
【0025】
本発明で用いる溶融成形物は、その原料としては前述の生分解性ポリエステルを主体とするもの、即ち50wt%以上含有するものであり、該ポリエステルを単独で用いても良いし、該ポリエステルから二種以上を選び任意の混合割合で溶融混合した混合組成物で用いても良い。又、得られる延伸成形体の生分解性を阻害しない範囲で他の重合体との混合組成物で用いても良い。原料の一部として使用し得る他の重合体とは、上記生分解性ポリエステル以外の公知の生分解性プラスチックである、例えばデンプン系やセルロース系などの天然高分子類、ポリアスパラギン酸などのポリアミノ酸類、酢酸セルロースなどのセルロースエステル類、脂肪族ポリエステルカーボネート類、ポリビニルアルコール類、ポリエチレンオキサイドなどのポリエーテル類、低分子量のポリエチレン、ポリリンゴ酸等が挙げられる。
【0026】
又、得られる延伸成形体の生分解性を阻害しない範囲であれば、例えば、ポリオレフィン類、芳香族ポリエステル類、ポリアミド類、エチレン−ビニルアルコール系共重合体類、石油樹脂類やテルペン系樹脂類、その水素添加物、その他公知の熱可塑性樹脂などを混合しても良い。
本発明で用いる溶融成形物は、必要に応じて、その原料の一部として無機および/または有機化合物よりなる添加剤、例えば、可塑剤、滑剤、帯電防止剤、防曇剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、結晶核剤等が適宜混合されてもよい。
【0027】
使用される可塑剤の具体例としては、例えばジオクチルフタレートやジエチルフタレートなどのフタル酸エステル類、ラウリン酸エチルやオレイン酸ブチル、リノール酸オクチルなどの脂肪酸エステル類、ジオクチルアジペートやジブチルセバケートなどの脂肪族二塩基酸エステル類、アセチルクエン酸トリブチルやアセチルクエン酸トリエチルなどの脂肪族三塩基酸エステル類、グリセリンジアセテートラウレートやグリセリントリアセテートなどのグリセリン脂肪酸エステル類、ジグリセリンテトラアセテートやテトラグリセリンヘキサアセテートなどのポリグリセリン脂肪酸エステル類、リン酸ジオクチルなどのリン酸エステル類、エポキシ化大豆油やエポキシ化アマニ油などの変性植物油類、ポリブチレンセバケートなどのポリエステル系可塑剤などが挙げられ、安全衛生性の観点からグリセリン脂肪酸エステル類や脂肪族三塩基酸エステル類が特に望ましい。該溶融成形物は、これらから一種、または二種以上を選び、添加量が溶融成形物の原料中に40wt%未満含有する組成物からなるものである。
【0028】
又、使用される酸化防止剤としては、例えばフェノール系、フェニルアクリレート系、リン系、イオウ系などが挙げられる。該溶融成形物は、これらから一種、又は二種以上を選び、添加量が溶融成形物の原料中に10重量%未満含有する組成物からなるものである。本発明で用いる上記生分解性ポリエステルと、上記他の重合体や上記添加剤などとの組成物を用いる場合には、全部、或いは一部を単軸、又は二軸押出機、バンバリーミキサー、ミキシングロール、ニーダー等を使用して溶融混合させ用いるのが望ましい。
【0029】
次に、本発明により得られる延伸成形体について説明する。該成形体は、上記溶融成形物を加熱しながら少なくとも一軸方向に延伸する際に、加熱温度を前述の特定範囲に設定して延伸し得られる成形体である。該溶融成形物の製造方法やその延伸方法は、特に限定されるものではなく従来公知の一般的な方法で行われる。溶融成形物の製造方法としては、前述した溶融押出法、カレンダー法、溶融プレス成形法などが挙げられ、具体的には、例えば溶融押出法では、前述した原料を、事前に水分率が200wtppm以下になるまで乾燥させてから押出機に供給して、加熱溶融しながら押出機の先端に接続したダイスから押出し、その後冷却固化させることにより、シート状、若しくはチューブ状の溶融成形物として製造することができる。また、溶融プレス成形法では、前述した原料を、事前に水分率が200wtppm以下になるまで乾燥させてから金型に供給して、常圧或いは減圧雰囲気下で加熱溶融させプレスし、その後冷却固化させることにより、シート状の溶融成形物として製造することができる。これらの方法において、原料の加熱融解は、通常は(融点−5℃)〜(融点+65℃)の温度範囲から適宜選ばれる温度で行なわれる。又、冷却固化は、通常は結晶化温度以下まで3分以内で冷却して固化させる条件、望ましくはガラス転移温度以下まで2秒以内で急冷して非晶状態に固化させる条件にて行なわれる。
【0030】
その後の延伸方法としては、例えば一軸延伸の場合は、溶融押出法でTダイより溶融押出し、キャストロールで冷却したシート状溶融成形物を、ロール延伸機でシートの流れ方向に縦一軸延伸したり、該縦延伸倍率を極力抑えてテンターで横一軸延伸して製造する方法、或いは二軸延伸の場合は、溶融押出法でTダイより溶融押出し、キャストロールで冷却したシート状溶融成形物を、先ずロール延伸機で縦延伸してからテンターで横延伸する逐次二軸延伸や、テンターで縦横両方向に延伸する同時二軸延伸で製造する方法、溶融押出法でサーキュラーダイより溶融押出し、水冷リング等で冷却したチューブ状溶融成形物を、チューブラー延伸して製造する方法などがある。これらの場合、延伸の操作は、延伸時の加熱温度は前述した特定温度範囲から、延伸速度は10〜50000%/分から、延伸倍率は少なくとも一軸方向に面積倍率2〜50倍から適宜選ばれる延伸条件で行われる。尚、テンター延伸法やチューブラー延伸法などで延伸時の加熱温度を多段的に設定する場合には、延伸時に歪変化の始まる部分から歪変化率の最も大きい部分での加熱温度を、本発明における加熱温度Tsとする。
【0031】
この様にして得られた延伸成形体は、特に可塑剤を比較的多量添加し引張弾性率が4.0GPa未満である軟質から中質の延伸成形体は、ピロー包装、シュリンク包装、ストレッチ包装、ケーシング、家庭用ラップ等の包装材用途に好適である。熱収縮させながら包装するなどのシュリンク包装用途に利用する場合には、そのまま使用しても良いし、或いは熱収縮具合を調整する目的で熱処理やエージング処理を施しても良い。又、電子レンジなどで加熱され耐熱性が要求される包装材に利用する場合には、発熱した内容物からの熱による変形や溶融穿孔を防ぐ目的で熱処理を施すことが望ましい。更に、経時寸法安定性や物性安定性を向上させる目的で、エージング処理などを施すことが望ましい。熱処理は、通常は60〜160℃の温度範囲から適宜選ばれる温度で1秒〜3時間行われることが望ましく、エージング処理は、通常は25〜60℃の温度範囲から適宜選ばれる温度で3時間〜10日間程度行われることが望ましい。
【0032】
又、得られた延伸成形体は、そのまま家庭用ラップ等の包装材などとして使用しても良いが、必要に応じて帯電防止剤や防曇性を向上させる目的でコーティングやコロナ処理等の各種表面処理を施しても良いし、シール適性、防湿性、ガスバリア性、印刷適性などを向上させる目的でラミネート加工やコーティング加工、或いはアルミニウムなどの真空蒸着を施しても良い。更に、二次加工により、用途に応じた形状に成形して使用しても良い。二次加工品としては、例えば延伸フィルムの場合はピロー包装用途やウェルドタイプのケーシング包装用途などの包装材とするシール加工品があり、延伸シートの場合はプラグアシスト成形法やエアークッション成形法などの真空成形加工、圧空成形加工、雄雌型成形加工などを施してトレイやカップなどの容器、又はブリスターパッケージングシートなどがある。
【0033】
本発明における成形体の厚みは、その包装材としての用途により適宜選ばれ、通常は延伸フィルムでは0.5〜100μm程度、延伸シートでは0.1〜2mm程度であるが特に限定されるものではない。これら延伸フィルム、及び延伸シートは、その厚みにおける製造し易さを勘案すると、は延伸フィルムはチューブラー延伸法で、延伸シートはテンター延伸法で製造することが望ましい。但し、フィルムとシートの区別は、単に厚みの違いによって異なる呼称を用いているものであって、本発明の課題であるところの耐熱性、透明性に優れた生分解性ポリエステル延伸成形体を容易に製造することができることに何ら差は無い。従って、後述する実施例では、厚み約30μmの延伸フィルムをもって物性測定や評価を行なって本発明を詳細に説明した。
【0034】
【発明の実施の形態】
以下、実施例を挙げて本発明を更に詳細に説明する。但し、これらの具体例は本発明の範囲を限定するものではない。また、物性測定方法、評価方法と尺度を下記に示すが、サンプルは特に断りのない限り測定サンプル作製後に温度(23±2)℃、相対湿度(50±5)%の雰囲気下に1〜2日間保管したものを物性測定や評価に供した。
【0035】
[物性測定方法]
(1)溶融成形物の示差走査熱量測定
延伸に用いる溶融成形物のガラス転移温度Tg(℃)、及び冷結晶化温度Tc(℃)は、測定装置にセイコー電子工業(株)製DSC6200を使用し、JISK7121に準拠して測定した。サンプル溶融成形物を試験片として、試験片重量7.5mgを量り採り、先ず−30℃で3分間保持した後、加熱速度10℃/分で270℃まで加熱した。この1回目の昇温過程での示差走査熱量曲線におけるガラス転移温度Tg(℃)、及び結晶化ピーク温度として冷結晶化温度Tc(℃)を求めた。尚、温度と熱量の校正は、標準物質としてインジウムを用いて行った。
【0036】
(2)生分解性ポリエステルの示差走査熱量測定
生分解性ポリエステルの特性を表す融点Tm(℃)は、下記の条件で充分アニール処理して平衡状態となったサンプルシート状物を試験片として、上記示差走査熱量測定と同様にして得られた示差走査熱量曲線における融解ピーク温度として求めた。又、生分解性ポリエステルの特性を表す結晶化度Xc(%)は、上記装置を使用しJIS K7122に準拠して測定した結晶融解熱ΔHm(J/g)の、理論融解熱ΔHf(J/g)に対する比として下式(4)により算出した。結晶融解熱ΔHm(J/g)は、上記融点測定に用いたサンプルを試験片として、上記示差走査熱量測定と同様にして得られた示差走査熱量曲線における融解熱として求めた。理論融解熱ΔHf(J/g)は、サンプル生分解性ポリエステルを構成する主たる単量体単位の単独重合体として、前述したPOLYMER HANDBOOKなどの文献から引用した。尚、充分アニール処理した平衡状態とは、アニール処理する前のシート状物を試験片として示差走査熱量測定した際に求められる冷結晶化温度に設定した熱風循環恒温槽中でアニール処理し、処理時間が60分間隔での結晶化度変化が0.5%未満となった時のアニール処理状態をさす。
式(4)Xc=ΔHm/ΔHf×100
【0037】
(3)混合組成物の示差走査熱量測定
2種以上の生分解性ポリエステルを用いて溶融混合した組成物からなる溶融成形物であって、該溶融成形物の上記示差走査熱量曲線において、ガラス転移に起因するベースラインの階段状変化が複数存在する場合、及び/又は冷結晶化に起因する発熱ピークが複数存在する場合には、該溶融成形物を試験片として上記示差走査熱量測定と同様に測定(JIS K7122準拠)した際に求められる冷結晶化熱ΔHc(J/g)が大きい方の生分解性ポリエステルのガラス転移温度Tg(℃)、及び冷結晶化温度Tc(℃)を採用する。
【0038】
(4)多層状物の示差走査熱量測定
多層状の溶融成形物であって、該溶融成形物の上記示差走査熱量曲線において、ガラス転移に起因するベースラインの階段状変化が複数存在する場合、及び/又は冷結晶化に起因する発熱ピークが複数存在する場合には、該溶融成形物を試験片として上記示差走査熱量測定と同様に測定(JIS K7121準拠)した際に求められる融点Tm(℃)が高い方の生分解性ポリエステルのガラス転移温度Tg(℃)、及び冷結晶化温度Tc(℃)を採用する。該融点Tm(℃)は、該溶融成形物を試験片として、上記示差走査熱量測定と同様にして得られた示差走査熱量曲線における融解ピーク温度として求めた。
【0039】
[評価方法と尺度]
(1)透明性
透明性は、延伸成形体をサンプルとして、ヘーズを測定し評価した。ヘーズの測定は、測定装置に村上色彩技術研究所社製ヘーズ計HR−100を使用し、JIS K7105に準拠して測定した。厚み約30μmの延伸成形体サンプルを、一辺50mmの正方形に切り出し、これをホルダーにセットしサンプルのヘーズを測定した。ヘーズの測定結果は、サンプル数5個ずつ測定し、その平均値で示した。このヘーズを透明性の指標とした。
【0040】
<評価尺度>
ヘーズ 判 定 備 考
2%未満 ◎ 透明で視認性は非常に優れる
2%以上5%未満 ○ 若干白化する程度で視認性は優れる
5%以上10%未満 △ 白化し視認性が劣る
10%以上 × 著しく白化し視認性が非常に劣る
【0041】
(2)耐熱性
耐熱性は、延伸成形体をサンプルとして、耐荷重切断試験を行い評価した。耐荷重切断試験は、短冊状試験片に荷重30gをかけた状態で、一定温度に設定した熱風循環恒温槽中で1時間加熱し試験片の切断の有無を調べ、試験片が切断しない最高温度を測定した。厚み約30μmの延伸成形体を、縦140mm、横30mmの短冊状に切り出した。短冊状試験片の上下端25mmずつの部分に固定治具と荷重治具を各々取り付け、一定温度に設定した熱風循環恒温槽中で1時間加熱し試験片の切断の有無を調べた。短冊状試験片が切断しない場合は、新しい試験片で設定温度を5℃上げて前記手順を繰返し試験した。短冊状試験片が切断しない最高温度の測定結果は、この試験を各延伸成形体につき5回ずつ行い最頻値で示した。
【0042】
<評価尺度>
耐荷重切断試験 判 定 備 考
180℃以上 ◎ 耐熱性が非常に高く実用上問題はない
160〜175℃ ○ 耐熱性が高く用途により使用可
140〜155℃ △ 耐熱性が劣り用途が制限される
135℃以下 × 耐熱性は著しく低く実用に耐えない
【0043】
【実施例1】
[単量体の精製]
グリコリド1kgを、酢酸エチル3kgに75℃で溶解させた後、室温にて48時間放置し析出させた。濾取した析出物を、室温で約3kgの酢酸エチルを用いて洗浄を行った。再度この洗浄操作を繰返した後、洗浄物を真空乾燥機内に入れ、60℃で24時間真空乾燥を行った。この乾燥物を、窒素雰囲気下で6〜7mmHgに減圧し単蒸留にて133〜134℃の留出物として蒸留精製グリコリド480gを得た。
L−ラクチド1kgを、トルエン3kgに80℃で溶解させた後、室温にて48時間放置して析出させた。濾取した析出物を、室温で約3kgのトルエンを用いて洗浄を行った。再度この洗浄操作を繰返した後、洗浄物を真空乾燥機内に入れ60℃で24時間真空乾燥を行い、精製L−ラクチド560gを得た。
【0044】
[重合体の調製]
上記単量体の精製で得られたグリコリド420gとラクチド250g、及び触媒として2−エチルヘキサン酸すず0.2gとラウリルアルコール0.05gを、内面をガラスライニングしたジャケット付反応機に仕込み、窒素を吹き込みながら約1時間室温で乾燥した。次いで、窒素を吹き込みながら130℃に昇温し、40時間撹拌して重合を行った。重合操作の終了後、ジャケットに冷却水を通水して冷却し、反応機から取り出した塊状ポリマーを、粉砕機にて約3mm以下の細粒に粉砕した。この粉砕物を、テトラヒドロフランを用いて60時間ソックスレー抽出した後、ヘキサフルオロイソプロパノール3kgに50℃で溶解し、次いで7kgのメタノールで再沈殿させた。この再沈殿物を、130℃に設定した真空乾燥機内で60時間真空乾燥を行い、グリコール酸−乳酸共重合体520gを得た。
【0045】
得られた共重合体は、該共重合体70mgをトリフルオロ酢酸−D1mlに溶解して1H−NMRにより共重合成分割合を解析したところ、グリコール酸の成分割合が81mol%と乳酸の成分割合が19mol%であった。該共重合体のヘキサフルオロイソプロパノール0.5重量%溶液としてガスクロマトグラフィーにより残存する単量体を定量したところ、単量体であるグリコリドとラクチドの残量は両者の合計で340wtppmであった。該共重合体20mgを80mmol%のトリフルオロ酢酸ナトリウムを含むヘキサフルオロイソプロパノール3gに溶解してGPCにより分子量を測定したところ、ポリメチルメタクリレート換算で重量平均分子量は2×105であった。
【0046】
得られた共重合体を、130℃に設定した熱風循環恒温槽中で約2時間放置して乾燥操作を行った後、230℃に設定した加熱プレス機で5分間加熱加圧し、その後20℃に設定した冷却プレスで冷却して厚み200μmのシート状物を得た。このシート状物を、前述の生分解性ポリエステルの示差走査熱量測定方法に従って、先ずアニール処理を施す前に示差走査熱量測定したところ、冷結晶温度は131℃、冷結晶化熱は15J/g、融点は188℃、結晶融解熱は15J/gであった。その後、該シート状物を、131℃でアニール処理して示差走査熱量測定したところ、処理時間120分と処理時間180分の結晶化度変化が0.5%未満であったので、アニール処理時間120分におけるシート状物の示差走査熱量曲線から求めた該共重合体の融点Tmは188℃、結晶化度Xcは19%であった。尚、結晶化度Xcは、理論融解熱ΔHfを207J/gとして算出した。
【0047】
[シート状溶融成形物の作製]
上記重合体の調製で得られた共重合体を、130℃に設定した熱風循環恒温槽中で約2時間放置して乾燥操作を行ったところ、水分気化装置付きカールフィッシャー水分計により240℃で測定した水分量は158wtppmであった。この乾燥させた共重合体を、液体注入ポンプを備え、ストランドダイを先端に取り付けた押出機に窒素気流下で供給し、また可塑剤としてトリアセチンを添加量20wt%となるように液体注入ポンプから添加し、該共重合体とトリアセチンを230℃で溶融混合して、ストランドダイより押出し造粒した。この造粒した組成物を、再び130℃に設定した熱風循環恒温槽中で約2時間放置して乾燥操作を行った後、230℃に設定した加熱プレス機で5分間加熱加圧し、その後25℃に設定した冷却プレスで冷却し厚み350μmのシート状溶融成形物を得た。該溶融成形物をサンプルとして、前述の溶融成形物の示差走査熱量測定方法に従って示差走査熱量測定を行なったところ、該溶融成形物のガラス転移温度Tgは11℃、冷結晶化温度Tcは103℃であった。
【0048】
[延伸成形体の作製、及び評価]
上記シート状溶融成形物の作製で得られた溶融成形物の延伸は、東洋精機社製二軸延伸試験装置を使用して行った。該溶融成形物を、一辺90mmの正方形に切り出して、延伸時の加熱温度を80℃に設定したチャンバー内にクランプ間80mmのクランプに装着し、延伸速度50%/分で縦3.5倍、横3.5倍まで同時二軸延伸を行った。延伸操作の終了後、直ちに冷風を吹き付けて冷却し延伸成形体を得た。得られた延伸成形体を、金枠に固定して、90℃に設定した熱風循環恒温槽中で30秒間熱処理を行い厚み30μmの延伸成形体を得た。得られた延伸成形体をF1とする。該成形体F1をサンプルとして、前述の透明性と耐熱性の評価を行ったところ、ヘーズは1.1%、切断しない最高温度は180℃であり、判定は透明性が◎、耐熱性が◎、総合判定が◎であった。以上の評価結果から、得られた成形体F1は、耐熱性と透明性に優れ、包装材用途に好適であることが判る。
【0049】
【実施例2〜4、及び比較例1〜4】
次いで、延伸時の加熱温度を95℃とすることの他は上記実施例1と同じ実験を繰返し、得られた延伸成形体をF2とする。該成形体F2をサンプルとして、前述の透明性と耐熱性の評価を行ったところ、ヘーズは2.5%、切断しない最高温度は180℃であった(実施例2)。可塑剤トリアセチンと溶融混合せずに共重合体単体を用い、延伸時の加熱温度を120℃とすることの他は上記実施例1と同じ実験を繰返し、得られた延伸成形体をF3とする。ここで、延伸に用いた溶融成形物は、ガラス転移温度Tgが34℃、冷結晶化温度Tcが131℃であった。該成形体F3をサンプルとして、前述の透明性と耐熱性の評価を行ったところ、ヘーズは1.2%、切断しない最高温度は185℃であった(実施例3)。延伸時の加熱温度を100℃とすることの他は上記実施例3と同じ実験を繰返し、得られた延伸成形体をF4とする。該成形体F4をサンプルとして、前述の透明性と耐熱性の評価を行ったところ、ヘーズは1.0%、切断しない最高温度は175℃であった(実施例4)。延伸時の加熱温度を50℃とすることの他は上記実施例1と同じ実験を繰返し、得られた延伸成形体をF5とする。該成形体F5をサンプルとして、前述の透明性と耐熱性の評価を行ったところ、ヘーズは0.8%、切断しない最高温度は100℃であった(比較例1)。延伸時の加熱温度を65℃とすることの他は上記実施例1と同じ実験を繰返し、得られた延伸成形体をF6とする。該成形体F6をサンプルとして、前述の透明性と耐熱性の評価を行ったところ、ヘーズは0.9%、切断しない最高温度は140℃であった(比較例2)。延伸時の加熱温度を100℃とすることの他は上記実施例1と同じ実験を繰返し、得られた延伸成形体をF7とする。該成形体F7をサンプルとして、前述の透明性と耐熱性の評価を行ったところ、ヘーズは11.5%、切断しない最高温度は180℃であった(比較例3)。延伸時の加熱温度を65℃とすることの他は上記実施例3と同じ実験を繰返し、得られた延伸成形体をF8とする。該成形体F8をサンプルとして、前述の透明性と耐熱性の評価を行ったところ、ヘーズは0.8%、切断しない最高温度は120℃であった(比較例4)。
【0050】
これら延伸成形体のF1〜8について、延伸に用いた溶融成形物の示差走査熱量測定の測定結果、延伸時の加熱温度条件、該成形体の透明性と耐熱性の評価結果を表1、及び表2にまとめる。
【0051】
【表1】

Figure 0004245300
【0052】
【表2】
Figure 0004245300
【0053】
表1によると、前述式(1)に特定する温度範囲で延伸した実施例1〜4の延伸成形体の製造方法は、延伸中に過度に結晶化することが無いので白化することなく、所望の延伸倍率まで破断せず延伸でき、且つ適度に結晶化する為に延伸後に施す熱処理において熱処理条件をより緩く設定しても耐熱性の優れた延伸成形体を得ることができ、延伸成形体を容易に製造することが可能であることが判る。又、実施例1〜4の延伸成形体F1〜4は、耐熱性と透明性に優れ、包装材用途に好適であることが判る。なかでも、前述式(3)に特定する温度範囲で延伸した実施例1、及び実施例3の延伸成形体F1、及びF3は、耐熱性と透明性の両特性が著しく優れ、包装材用途に特に好適であることが判る。
【0054】
これらに対し、表2によると、延伸時の加熱温度Tsの値が(Tc−0.40(Tc−Tg))℃よりも低い温度で延伸した比較例1〜2、及び比較例4の延伸成形体の製造方法は、過度に結晶化することなく所望の延伸倍率まで破断せず延伸できるものの、得られた延伸成形体F5〜6、及びF8は、延伸後に上記実施例1〜4と同じ条件で熱処理を施しても、耐熱性が著しく劣るものであった。又、延伸時の加熱温度Tsの値が(Tc−0.05(Tc−Tg))℃よりも高い温度で延伸した比較例3の延伸成形体F7は、透明性が著しく劣り、包装材用途には適さないことが判る。
【0055】
【参考例】
この実験は、溶融成形物の結晶化度の経時変化が、加熱温度によって異なることを調べる為の実験である。従って、溶融成形物は原料、及び作製方法が同一のものを用いて、また加熱温度を除くその他の加熱条件は同一条件に設定して比較している。本発明の延伸成形体の製造方法として上記実施例1の加熱温度を擬似的に再現した場合、及び延伸時の加熱温度Tsの値が(Tc−0.40(Tc−Tg))℃よりも低い温度で延伸した上記比較例1の加熱温度を擬似的に再現した場合、延伸時の加熱温度Tsの値が(Tc−0.05(Tc−Tg))℃よりも高い温度で延伸した上記比較例3の加熱温度を擬似的に再現した場合について、溶融成形物を0〜5分間加熱した後の結晶化度を前述した示差走査熱量測定により求めて図1にまとめた。
【0056】
図1は、横軸に加熱時間(分)、縦軸に結晶化度(%)を各々目盛り、丸印(○)は加熱温度50℃の場合を、四角印(□)は加熱温度80℃の場合を、三角印(△)は加熱温度100℃の場合を各々示している。一方、この実験で用いた試験片を加熱速度10℃/分で示差走査熱量測定(JIS K7121準拠)した際に求められるガラス転移温度Tg(℃)、及び冷結晶化温度Tc(℃)は、各々ガラス転移温度Tgが11℃、冷結晶化温度Tcが103℃であった。図1の加熱温度を前出式(2)のTsとして代入すると、(Tc−Ts)/(Tc−Tg)の値は、各々丸印(○)の50℃では0.58、四角印(□)の80℃では0.25、三角印(△)の100℃では0.03となる。
【0057】
図1によると、前出式(2)の(Tc−Ts)/(Tc−Tg)の値が0.58である加熱温度50℃では試験片の結晶化は少ししか起こらないが、該値が0.25である加熱温度を80℃に設定すると試験片は適度に結晶化するようになり、該値が0.03である加熱温度100℃ではより高度に結晶化するようになることが判る。該図が示す結晶化度の経時変化は結晶化速度を表す指標になり、該図四角印(□)の加熱温度80℃で示される様な適度な結晶化速度となる温度では、延伸中に結晶化の進行度合いを制御することが可能で、過度に結晶化することなく延伸成形体を製造できることが判る。
【0058】
【発明の効果】
本発明によれば、生分解性ポリエステルを主体とする溶融成形物を用い、該溶融成形物が適度な結晶化速度となる特定の温度範囲に加熱しながら延伸することにより、生分解性を有し、且つ耐熱性、透明性に優れた包装材用途に好適な生分解性ポリエステル延伸成形体を容易に製造することが可能である。
【図面の簡単な説明】
【図1】溶融成形物の結晶化度の経時変化が、加熱温度によって異なることを、加熱温度50℃、80℃、100℃の場合で示したグラフ図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a stretch-molded body mainly composed of biodegradable polyester. More specifically, the present invention relates to a method for producing a stretch-molded body mainly composed of biodegradable polyester, which has excellent heat resistance and transparency and is suitable for packaging materials.
[0002]
[Prior art]
The packaging of food and pharmaceutical products facilitates the work of transporting and distributing the contents, and at the same time maintaining the quality is an especially important role. Therefore, the packaging material is required to have high quality maintenance performance. Specifically, as a performance to protect the contents during long-term storage, mechanical strength against external forces such as impact and stab, gas barrier properties against oxidative deterioration of contents due to outside oxygen and moisture evaporation of contents, packaging materials These include stability such as oil resistance and heat resistance that does not denature or deform itself during storage or use, and hygiene that does not transfer harmful substances, off-flavors, or off-flavors from the packaging material itself.
In addition, as a required characteristic of the packaging material, transparency is an important factor in order to increase the value of the product by the display effect that facilitates the recognition of the contents and the purchase intention of the purchaser.
[0003]
Conventionally, plastic products have been used for these packaging materials for convenience during processing and use. However, in the current consumer society, the amount of use has been increasing year by year, and at the same time, the plastic waste problem has become more serious every year. Most plastic waste is disposed of by incineration or landfill, but in recent years, from the viewpoint of environmental conservation, material recycling has been proposed for use as a raw material for plastic products.
[0004]
However, as described above, the required performance of plastic products as a packaging material is diverse, and it is not possible to satisfy all these requirements with only a single type of plastic. For example, it is possible to make a gas barrier film or a molded container by multilayering. In general, several types of plastics are used in combination. Such a packaging material is very difficult to be separated into various resins, and material recycling is impossible in consideration of cost and the like.
[0005]
On the other hand, for example, in Japanese Patent Application Laid-Open No. 10-60136, the melting point is 150 ° C. or higher, the heat of fusion ΔHm is 20 J / g or higher, and the density of the non-oriented crystallized material is 1.50 g / cm. Three The above-mentioned thermoplastic resin material containing a specific polyglycolic acid is melt-molded in a temperature range of a melting point to 255 ° C., and stretched in at least a uniaxial direction in a temperature range of a glass transition temperature to a crystallization temperature. It is disclosed that the film can be used as a packaging material exhibiting disintegration in the soil and excellent in toughness and barrier properties.
[0006]
However, in the Example of the said Unexamined-Japanese-Patent No. 10-60135, it extends | stretches at 42-44 degreeC of glass transition temperature vicinity. Since the oriented film obtained by stretching at such a relatively low temperature may have a relatively low crystallization, heat treatment after stretching is relatively high in order to develop film properties such as heat resistance. Since it must be performed at a temperature, there is a problem that the transparency of the oriented film tends to deteriorate.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to easily produce a biodegradable polyester stretch-molded body having biodegradability and suitable for packaging materials having excellent heat resistance and transparency. It is to provide a manufacturing method.
[0008]
[Means for Solving the Problems]
As a result of diligent studies to achieve the above-mentioned problems, the present inventors have found that a melt-molded product mainly composed of biodegradable polyester is stretched while being heated to a specific temperature range where an appropriate crystallization speed is obtained. The present inventors have found that a biodegradable polyester stretch-molded body having degradability and excellent in heat resistance and transparency suitable for packaging materials can be easily produced, and has reached the present invention.
[0009]
That is, the present invention
1. Biodegradable glycolic acid polymer In a method for producing a biodegradable polyester stretched molded body that is stretched at least in a uniaxial direction while heating a melt-molded product mainly composed of bismuth, a heating temperature Ts (° C.) during stretching is a heating rate using the melt-molded product as a test piece. The glass transition temperature Tg (° C.) required when differential scanning calorimetry (conforms to JIS K7121) at 10 ° C./min, and the temperature in the relationship of the following formula (1) with the cold crystallization temperature Tc (° C.) The stretching speed is 10 to 50000% / min, and the stretching ratio is a stretching condition selected from the range of an area ratio of 2 to 50 times in at least a uniaxial direction. A method for producing a biodegradable polyester stretch-molded article, characterized by stretching,
Formula (1) Tc-0.40 (Tc-Tg) <= Ts <= Tc-0.05 (Tc-Tg)
It is.
[0010]
Hereinafter, the manufacturing method of the biodegradable polyester stretch-molded article of the present invention will be described in detail.
The method for producing a stretchable molded body of the biodegradable polyester according to the present invention comprises a heating temperature Ts during stretching of a melt-molded product mainly composed of a biodegradable polyester, a glass transition temperature Tg determined by differential scanning calorimetry, and a cold crystal. It is characterized by having a specific range with respect to the crystallization temperature Tc. According to the present method, the melt-molded product is stretched in a state where it can be crystallized at an appropriate crystallization rate, and thus crystallizes excessively during stretching. Without stretching to a desired draw ratio without breaking. Furthermore, the obtained biodegradable polyester stretched molded article has excellent transparency without being whitened, and is excellent in heat resistance because it is appropriately crystallized.
[0011]
In the present invention, the heating temperature Ts refers to the temperature of the melt-formed product at the time of stretching. For example, when the melt-formed product is heated by blowing hot air, the melt-formed product is heated to a temperature equivalent to that of hot air. The hot air temperature is set to the heating temperature Ts. Further, for example, when the molten molded product is radiantly heated by infrared rays, the heating device is set so that the temperature of the molten molded product becomes the heating temperature Ts.
The stretched molded product as used in the present invention mainly refers to a stretched film and a stretched sheet. In the present invention, the film and the sheet are distinguished from each other simply by using different names depending on the difference in thickness. The film and the sheet are collectively referred to as a molded body. Note that the stretch blow-molded product may also be applied with the production method of the present invention by blow-molding the preform, which is a melt-molded product, in a situation where it can be crystallized at an appropriate crystallization speed.
[0012]
Generally, in the film forming process of a plastic molded body, in the method of producing a film by uniaxial stretching or biaxial stretching, the molten molded product is heated to a temperature not higher than the melting point and not lower than the secondary transition point (agreeing with the glass transition temperature). (Plastic Film Study Group, Plastic Films-Processing and Applications, p. 63, Gihodo Publishing (1971)) is the usual method. In particular, in a method for producing a polyethylene terephthalate film, which is a kind of polyester, “the film forming conditions are ... 80 to 130 ° C. and 2.0 to 4.0 times stretching” (Plastic Film Study Group, Plastic Films-Processing and Applications), p. 81, Gihodo Publishing (1971)) is the usual method.
[0013]
On the other hand, the thermal properties of polyethylene terephthalate are a glass transition temperature of 79 ° C. and a cold crystallization temperature of 128 ° C. (Japan Analytical Chemical Society, New Edition Polymer Analysis Handbook, p. 336, Kinokuniya (1995)). Therefore, the film production method of stretching in the temperature range of the glass transition temperature to the crystallization temperature specified in the above-mentioned JP-A-10-60136 is a temperature range that can be easily inferred from the prior art in the production method of polyethylene terephthalate film. It can be said that the film is stretched.
[0014]
As a result of intensive studies on the heating temperature condition during stretching in the film forming process of a plastic molded body, the present invention uses a natural phenomenon of plastic crystallization, and even between the glass transition temperature Tg and the crystallization temperature Tc. The inventors have found that the crystal structure of the obtained molded body can be controlled by stretching in the temperature range specified by the following formula (1). The following formula (1) can be modified and expressed by the following formula (2).
Formula (1) Tc−0.40 (Tc−Tg) ≦ Ts ≦ Tc−0.05 (Tc−Tg) Formula (2) 0.05 ≦ (Tc−Ts) / (Tc−Tg) ≦ 0.40
Crystallization in the present invention is a crystallization phenomenon that occurs when heating a so-called glass melt-formed product in a thermodynamic non-equilibrium state, and is a phenomenon conventionally called cold crystallization. The numerical value for grasping the degree of crystallization can be specifically obtained by obtaining the degree of crystallization, and can be obtained, for example, from the ratio of the heat of crystal fusion of the test piece to the theoretical heat of fusion by thermal analysis.
[0015]
FIG. 1 is an experimental diagram showing that the change over time in the crystallinity of the test piece varies depending on the heating temperature. In the figure, the horizontal axis indicates the heating time (minutes), the vertical axis indicates the degree of crystallinity (%), the circle (◯) indicates the heating temperature of 50 ° C, and the square mark (□) indicates the heating temperature of 80 ° C. The triangle mark (Δ) indicates the case where the heating temperature is 100 ° C. On the other hand, the glass transition temperature Tg (° C.) and the cold crystallization temperature Tc (° C.) required when the test piece used in this experiment was subjected to differential scanning calorimetry (based on JIS K7121) at a heating rate of 10 ° C./min. The glass transition temperature Tg was 11 ° C. and the cold crystallization temperature Tc was 103 ° C., respectively. When the heating temperature of FIG. 1 is substituted as Ts in the above equation (2), the value of (Tc−Ts) / (Tc−Tg) is 0.58 at 50 ° C. of a circle (◯), □) at 80 ° C., 0.25, and triangle mark (Δ) at 100 ° C., 0.03.
[0016]
According to FIG. 1, crystallization of the test piece occurs only slightly at a heating temperature of 50 ° C. where the value of (Tc−Ts) / (Tc−Tg) in the above equation (2) is 0.58. When the heating temperature is set to 80 ° C., the test piece will crystallize moderately, and at a heating temperature of 100 ° C. where the value is 0.03, it may crystallize more highly. I understand. The change over time in the degree of crystallinity shown in the figure serves as an index representing the crystallization rate, and at a temperature at an appropriate crystallization rate as shown by the heating temperature of 80 ° C. in the square in the figure (□), It can be seen that the degree of progress of crystallization can be controlled, and a stretch-molded body can be produced without excessive crystallization.
[0017]
Therefore, in the production method of the stretched molded product of the present invention, the heating temperature Ts (° C.) when stretching the melt-molded product is measured by differential scanning calorimetry (JIS) at a heating rate of 10 ° C./min using the melt-molded product as a test piece. The glass transition temperature Tg (° C.) and the cold crystallization temperature Tc (° C.) required in the case of K7121) are specified in the temperature range in the relationship of the formula (1).
Formula (1) Tc−0.40 (Tc−Tg) ≦ Ts ≦ Tc−0.05 (Tc−Tg) When the value of Ts is higher than (Tc−0.05 (Tc−Tg)) ° C. The crystallization speed of the melt-molded product to be used becomes very high, so that very high crystallization occurs during stretching, the desired stretching ratio is not reached, and the manufacturing process of the molded body becomes very complicated. Even if it does not break, it may be whitened by a heating operation at the time of stretching, or only a molded product having extremely poor transparency may be obtained. On the other hand, when the value of Ts is lower than (Tc-0.40 (Tc-Tg)) ° C, the crystallization rate of the melt-formed product to be used becomes very slow, so that crystallization does not proceed sufficiently during stretching. A molded product that is not heat-fixed after stretching has a low degree of crystallinity and poor heat resistance, and a molded product that is heat-set after stretching is whitened and has extremely poor transparency. Accordingly, the value of Ts is selected from the temperature range in the relationship of the above formula (1), but has higher heat resistance and higher transparency, and can be more easily stretched without breaking during stretching. In order to produce a molded body, it is preferable to select from the temperature range in the relationship of the following formula (3).
Formula (3) Tc-0.30 (Tc-Tg) <= Ts <= Tc-0.10 (Tc-Tg)
[0018]
In the case of a plurality of glass transition temperatures and cold crystallization temperatures in the differential scanning calorimetry described above, the melt-formed product used in the present invention includes, for example, a composition melt-mixed using at least two or more of the raw materials described later. In the case of a melt-molded product, a biodegradable polyester having a higher heat of cold crystallization required when differential scanning calorimetry (conforming to JIS K7122) is performed at a heating rate of 10 ° C./min using the melt-molded product as a test piece. The glass transition temperature Tg (° C.) and the cold crystallization temperature Tc (° C.) are adopted, and the heating temperature Ts (° C.) during stretching is set. In the case of a multilayered melt-molded product made of the raw material described later, the one having a higher melting point required when differential scanning calorimetry (conforming to JIS K7121) is performed with the melt-molded product as a test piece at a heating rate of 10 ° C / min. The glass transition temperature Tg (° C.) of the biodegradable polyester layer and the cold crystallization temperature Tc (° C.) are adopted, and the heating temperature Ts (° C.) during stretching is set.
[0019]
Next, the melt-formed product used in the method for producing a stretched molded product of the present invention will be described in detail. The melt-molded product is a sheet obtained by melt-molding a raw material mainly composed of biodegradable polyester by, for example, a melt-extruding method, a calendering method, a melt-press molding method and the like, and is not particularly limited. Or a tube-like object.
Examples of the biodegradable polyester used in the present invention that is a raw material of a melt-molded product include glycolic acid, 2-hydroxy-2,2-dialkylacetic acids including lactic acid and 2-hydroxyisobutyric acid, 3-hydroxybutyric acid, Direct dehydration polycondensation using aliphatic hydroxycarboxylic acids including 3-hydroxyvaleric acid, 3-hydroxyhexanoic acid, 4-hydroxybutanoic acid, and other known hydroxycarboxylic acid monomers, such as methyl glycolate Alcohol-free polycondensation using ester derivatives of these hydroxycarboxylic acids, or the same or different cyclic dimers of these hydroxycarboxylic acids, for example glycolide (1,4-dioxa-2,5-dione) , Lactide (3,6-dimethyl-1,4-dioxa-2,5-dione), etc. Lactone monomers including β-butyrolactone, β-propiolactone, pivalolactone, γ-butyrolactone, δ-valerolactone, β-methyl-δ-valerolactone, ε-caprolactone, etc. Polyhydroxycarboxylic acids and polylactones which are homopolymers obtained by ring-opening polymerization, etc., or copolymers obtained from two or more types arbitrarily selected from these, and these hydroxycarboxylic acids and cyclic dimers thereof Poly (hydroxycarboxylic acid-co-lactone) which is a copolymer of lactones and lactones, a combination of equimolar amounts of polyhydric alcohols and polycarboxylic acids, such as ethylene glycol, Propylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butane Diol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol, 1,6-hexanediol, 1,3-cyclohexanol, 1,4-cyclohexanol, 1,3-cyclohexanedimethanol , Aliphatic diols such as 1,4-cyclohexanedimethanol, or a combination of these aliphatic diols, such as diethylene glycol, triethylene glycol, tetraethylene glycol, and the like, and polyvalent carboxylic acids such as malonic acid, succinic acid, Glutaric acid, 2,2-dimethylglutaric acid, adipic acid, pimelic acid, speric acid, azelaic acid, sebacic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid Aliphatic di, such as diglycolic acid Aromatic dicarboxylic acids such as rubonic acid, terephthalic acid, isophthalic acid, 1,4-naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, ester derivatives of these aliphatic dicarboxylic acids and aromatic dicarboxylic acids, these aliphatic dicarboxylic acids Polyhydric alcohols and polycarboxylic acids obtained from the anhydrides, etc., each of which is a homopolymer, or any one of polyhydric alcohols and polyhydric carboxylic acids is one and the other is arbitrarily selected Copolymers obtained from two or more kinds, or aliphatic polyesters which are copolymers obtained from two or more kinds selected arbitrarily from polyhydric alcohols and polyvalent carboxylic acids, the above hydroxycarboxylic acids and the like A combination of monohydric alcohols, for example, a ring having an ester unit and an ether unit containing 1,4-dioxa-2-one, etc. Poly obtained by ring-opening polymerization of using the compound (ester - ether) s, etc. and polyhydric alcohols and polyesters obtained by a combination of polycarboxylic acids the hydroxycarboxylic acids and the like.
[0020]
In the case of a copolymer, the arrangement of these biodegradable polyesters is not particularly limited, and any of random copolymers, alternating copolymers, block copolymers, graft copolymers, etc. may be used. The copolymer composition ratio is not particularly limited, and is a copolymer obtained by copolymerizing two or more constituent monomers at an arbitrary ratio. Further, when the above-mentioned monomer or the like is an optically active substance, it may be either L-form or D-form, and a mixed composition in which the mixing ratio of D-form and L-form is arbitrary. The copolymerization ratio of D-form and L-form may be any copolymer or meso form.
[0021]
Furthermore, examples of the biodegradable polyester used in the present invention include poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3- (3-hydroxybutyrate-co-4-hydroxybutyrate), and other microorganisms synthesized by microorganisms, such as homopolymers or copolymers of hydroxyalkanoic acid having less than about 12 carbon atoms as monomer units Production polyesters may also be used.
[0022]
The biodegradable polyester used in the present invention has a melting point required when differential scanning calorimetry (based on JIS K7121) is performed at a heating rate of 10 ° C./min in order to impart heat resistance to a molded article used as a packaging material. It is preferably 140 ° C. or higher and 210 ° C. or lower, more preferably 160 ° C. or higher and 205 ° C. or lower, most preferably 175 ° C. or higher and 200 ° C. or lower. The crystallinity obtained by the thermal analysis method described above is sufficiently annealed. Thus, it is desirable that the sample is in an equilibrium state (specified in the physical property measurement method described later) as a test piece and is preferably 10% to 70%, more preferably 15% to 60%. Desirably, it is 20% or more and 50% or less. Further, in order to give the molded body mechanical strength against external force required as a packaging material, or to obtain a melt-molded product with good thickness accuracy and more easily, the molecular weight is expressed as 8 × 10 Four Or more, more preferably 1 × 10 Five That's it. The upper limit of the molecular weight is not particularly limited as long as the melt fluidity is adjusted by adding a plasticizer or the like. Five It is desirable to keep it below.
[0023]
Among the biodegradable polyesters used in the present invention exemplified above, a more preferable biodegradable polyester is an aliphatic hydroxycarboxylic acid polymer, and in particular, to impart heat resistance to a molded body used as a packaging material. A glycolic acid polymer having a relatively high melting point and excellent gas barrier properties is the most preferred biodegradable polyester.
The glycolic acid polymer refers to a polymer in which the main monomer unit is glycolic acid, and glycolide (1,4-dioxa-2,5-dione), which is a cyclic dimer of glycolic acid, is used. A polymer obtained by ring-opening polymerization, or direct dehydration polycondensation using glycolic acid, polycondensation while dealcoholizing using glycolic acid esters such as methyl glycolate, and the like.
[0024]
The polymer is produced by a conventionally known general method. For example, in order to obtain a glycolic acid polymer by ring-opening polymerization using glycolide as a main monomer, the method of Gilding et al. (Polymer, vol.20, December (1979)), etc., but is not limited thereto. In order to make it easier to control the degree of progress of crystallization, the polymer is preferably a copolymer in which the monomer unit is composed of, for example, lactic acid other than glycolic acid and glycolic acid. And glycolic acid-lactic acid copolymer obtained by ring-opening polymerization in which the proportion of glycolic acid is 78 to 90 mol% and the proportion of lactic acid is 22 to 10 mol%, and the melting point is 175 to 205 ° C. The degree of crystallinity obtained by thermal analysis using a sample that has been in an equilibrium state after annealing treatment is 15 to 40%. However, in the calculation of the degree of crystallinity by thermal analysis, the theoretical heat of fusion is 207 J / g, which is the value of glycolic acid homopolymer (CC Chu, J. Appl. Poly. Sci., Vol. 26, p. 1726 (1981), J. Brandrup, et al., POLYMER HANDBOOK, 3rd ed., John Wiley & Sons (1989)).
[0025]
The melt-molded product used in the present invention is mainly composed of the above-described biodegradable polyester, that is, contains 50 wt% or more. The polyester may be used alone or from the polyester. You may use with the mixed composition which selected the seed | species or more and was melt-mixed by arbitrary mixing ratios. Moreover, you may use with a mixed composition with another polymer in the range which does not inhibit the biodegradability of the extending | stretching molded object obtained. Other polymers that can be used as a part of the raw material are known biodegradable plastics other than the above-described biodegradable polyester, for example, natural polymers such as starch and cellulose, and polyaspartic acid and other polymers. Examples include amino acids, cellulose esters such as cellulose acetate, aliphatic polyester carbonates, polyvinyl alcohols, polyethers such as polyethylene oxide, low molecular weight polyethylene, and polymalic acid.
[0026]
Moreover, as long as it does not inhibit the biodegradability of the obtained stretched molded product, for example, polyolefins, aromatic polyesters, polyamides, ethylene-vinyl alcohol copolymers, petroleum resins and terpene resins , Hydrogenated products thereof, and other known thermoplastic resins may be mixed.
The melt-molded product used in the present invention is optionally made of an additive comprising an inorganic and / or organic compound as a part of the raw material, for example, a plasticizer, a lubricant, an antistatic agent, an antifogging agent, an antioxidant, A heat stabilizer, a light stabilizer, an ultraviolet absorber, a colorant, a flame retardant, a crystal nucleating agent, and the like may be appropriately mixed.
[0027]
Specific examples of plasticizers used include, for example, phthalates such as dioctyl phthalate and diethyl phthalate, fatty acid esters such as ethyl laurate, butyl oleate, and octyl linoleate, and fats such as dioctyl adipate and dibutyl sebacate. Dibasic acid esters, aliphatic tribasic acid esters such as acetyl citrate tributyl and acetyl citrate triethyl, glycerin fatty acid esters such as glycerol diacetate laurate and glycerol triacetate, diglycerol tetraacetate and tetraglycerol hexaacetate Polyglycerol fatty acid esters such as dioctyl phosphate, modified vegetable oils such as epoxidized soybean oil and epoxidized linseed oil, and polyesters such as polybutylene sebacate Such as Le plasticizer and the like, safety and health of the viewpoint from glycerol fatty acid esters and aliphatic tribasic acid esters are particularly desirable. The melt-molded product is composed of a composition containing one or two or more of these, and an addition amount of less than 40 wt% in the raw material of the melt-molded product.
[0028]
Examples of the antioxidant used include phenol, phenyl acrylate, phosphorus, and sulfur. The melt-molded product is composed of a composition containing one or two or more of these, and an addition amount of less than 10% by weight in the raw material of the melt-molded product. When the composition of the biodegradable polyester used in the present invention and the other polymer or the additive is used, all or a part thereof is a single-screw or twin-screw extruder, a Banbury mixer, a mixing It is desirable to use it by melt mixing using a roll, a kneader or the like.
[0029]
Next, the stretched molded product obtained by the present invention will be described. The molded body is a molded body that can be stretched by setting the heating temperature in the above-mentioned specific range when stretching the melt-molded product in at least a uniaxial direction while heating. The method for producing the melt-formed product and the stretching method thereof are not particularly limited, and are performed by a conventionally known general method. Examples of the method for producing a melt-molded product include the above-described melt extrusion method, calender method, melt press molding method, and the like. Specifically, in the melt extrusion method, for example, the above-described raw material has a moisture content of 200 wtppm or less in advance. It is dried until it is, then supplied to the extruder, extruded from a die connected to the tip of the extruder while being heated and melted, and then cooled and solidified to produce a sheet-shaped or tube-shaped melt-formed product Can do. In the melt press molding method, the above-mentioned raw materials are dried in advance until the moisture content becomes 200 wtppm or less, then supplied to the mold, heated and melted under normal or reduced pressure atmosphere, and then cooled and solidified. By making it, it can manufacture as a sheet-like melt-molded product. In these methods, the raw material is usually melted at a temperature appropriately selected from a temperature range of (melting point−5 ° C.) to (melting point + 65 ° C.). Further, the cooling and solidification is usually performed under conditions for cooling and solidifying within 3 minutes to below the crystallization temperature, preferably under conditions for rapidly cooling to below the glass transition temperature within 2 seconds and solidifying into an amorphous state.
[0030]
As a subsequent stretching method, for example, in the case of uniaxial stretching, a sheet-like melt-formed product melt-extruded from a T-die by a melt extrusion method and cooled by a cast roll is longitudinally uniaxially stretched in a sheet flow direction by a roll stretching machine. In the case of biaxial stretching, a sheet-like melt-molded product that has been melt-extruded from a T die by a melt extrusion method and cooled by a cast roll, First of all, continuous biaxial stretching in which the film is stretched longitudinally with a roll stretching machine and then laterally stretched with a tenter, simultaneous biaxial stretching with a tenter stretched in both the longitudinal and lateral directions, melt extrusion from a circular die by a melt extrusion method, water cooling ring, etc. For example, there is a method of producing a tubular melt-formed product cooled in (1) by tubular stretching. In these cases, the stretching operation is performed by appropriately selecting the heating temperature during stretching from the specific temperature range described above, the stretching speed from 10 to 50000% / min, and the stretching ratio from at least a uniaxial direction from 2 to 50 times the area ratio. Done on condition. In addition, when setting the heating temperature at the time of stretching by a tenter stretching method, a tubular stretching method, or the like, the heating temperature from the portion where the strain change starts at the time of stretching to the portion where the strain change rate is the largest is determined according to the present invention. The heating temperature is Ts.
[0031]
The stretched molded body thus obtained is a soft to medium stretched molded body having a relatively large amount of plasticizer and a tensile modulus of less than 4.0 GPa. Pillow packaging, shrink packaging, stretch packaging, Suitable for packaging materials such as casings and household wraps. When used for shrink wrapping such as packaging while heat shrinking, it may be used as it is, or heat treatment or aging treatment may be performed for the purpose of adjusting the heat shrinkage. In addition, when used in a packaging material that is heated in a microwave oven or the like and requires heat resistance, it is desirable to perform heat treatment for the purpose of preventing deformation or melt-drilling due to heat from the heated contents. Furthermore, it is desirable to perform an aging treatment or the like for the purpose of improving dimensional stability over time and physical property stability. The heat treatment is preferably performed at a temperature appropriately selected from a temperature range of 60 to 160 ° C. for 1 second to 3 hours, and the aging treatment is usually performed at a temperature appropriately selected from a temperature range of 25 to 60 ° C. for 3 hours. It is desirable to be performed for about 10 days.
[0032]
Further, the obtained stretched molded product may be used as it is as a packaging material for household wraps, etc., but various coatings, corona treatments, etc., for the purpose of improving antistatic agents and antifogging properties as necessary. Surface treatment may be applied, or lamination or coating, or vacuum deposition of aluminum or the like may be performed for the purpose of improving sealability, moisture resistance, gas barrier properties, printability, and the like. Furthermore, you may shape | mold and use it according to a use by the secondary process. Examples of secondary processed products include seal processed products that are used for packaging materials such as pillow packaging and weld-type casing packaging in the case of stretched films, and plug assist molding methods and air cushion molding methods in the case of stretched sheets. There are containers such as trays and cups, blister packaging sheets, etc. by performing vacuum forming processing, pressure forming processing, male / female molding processing, and the like.
[0033]
The thickness of the molded body in the present invention is appropriately selected depending on the use as the packaging material, and is usually about 0.5 to 100 μm for a stretched film and about 0.1 to 2 mm for a stretched sheet, but is not particularly limited. Absent. In consideration of the ease of production of these stretched films and stretched sheets, it is desirable that the stretched film is produced by the tubular stretching method and the stretched sheet is produced by the tenter stretching method. However, the distinction between film and sheet is simply using a different designation depending on the difference in thickness, and it is easy to obtain a biodegradable polyester stretch molded article excellent in heat resistance and transparency, which is the subject of the present invention. There is no difference in that it can be manufactured. Therefore, in the examples described later, the present invention was described in detail by measuring and evaluating physical properties of a stretched film having a thickness of about 30 μm.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to examples. However, these specific examples do not limit the scope of the present invention. The physical property measurement method, evaluation method, and scale are shown below. Samples are prepared under the atmosphere of temperature (23 ± 2) ° C. and relative humidity (50 ± 5)% after preparation of the measurement sample unless otherwise specified. What was stored for a day was subjected to physical property measurement and evaluation.
[0035]
[Physical property measurement method]
(1) Differential scanning calorimetry of melt-molded products
The glass transition temperature Tg (° C.) and the cold crystallization temperature Tc (° C.) of the melt-formed product used for stretching were measured according to JISK7121, using a DSC6200 manufactured by Seiko Denshi Kogyo Co., Ltd. as a measuring device. Using the sample melt-molded product as a test piece, a test piece weight of 7.5 mg was weighed, and first held at −30 ° C. for 3 minutes, and then heated to 270 ° C. at a heating rate of 10 ° C./min. The glass transition temperature Tg (° C.) in the differential scanning calorimetry curve during the first temperature raising process and the cold crystallization temperature Tc (° C.) as the crystallization peak temperature were determined. In addition, the calibration of temperature and heat quantity was performed using indium as a standard substance.
[0036]
(2) Differential scanning calorimetry of biodegradable polyester
The melting point Tm (° C.) representing the characteristics of the biodegradable polyester was obtained in the same manner as in the differential scanning calorimetry described above, using a sample sheet that was sufficiently annealed under the following conditions to reach an equilibrium state. It calculated | required as a melting peak temperature in a differential scanning calorific value curve. The crystallinity Xc (%) representing the characteristics of the biodegradable polyester is the theoretical melting heat ΔHf (J / g) of the crystal melting heat ΔHm (J / g) measured according to JIS K7122 using the above apparatus. The ratio to g) was calculated by the following formula (4). The crystal melting heat ΔHm (J / g) was determined as the heat of fusion in the differential scanning calorimetry curve obtained in the same manner as in the differential scanning calorimetry using the sample used for the melting point measurement as a test piece. The theoretical heat of fusion ΔHf (J / g) was quoted from documents such as the above-mentioned POLYMER HANDBOOK as a homopolymer of main monomer units constituting the sample biodegradable polyester. The equilibrium state after sufficient annealing treatment means that the sheet-like material before annealing treatment is annealed in a hot air circulation thermostat set to a cold crystallization temperature required when differential scanning calorimetry is measured as a test piece. An annealing treatment state when the change in crystallinity at an interval of 60 minutes is less than 0.5%.
Formula (4) Xc = ΔHm / ΔHf × 100
[0037]
(3) Differential scanning calorimetry of the mixed composition
A melt-molded product comprising a composition melt-mixed using two or more kinds of biodegradable polyester, wherein a plurality of baseline step-like changes due to glass transition occur in the differential scanning calorimetric curve of the melt-molded product. When present, and / or when there are a plurality of exothermic peaks due to cold crystallization, it is obtained when the melt-molded product is used as a test piece in the same manner as in the differential scanning calorimetry (based on JIS K7122). The glass transition temperature Tg (° C.) and the cold crystallization temperature Tc (° C.) of the biodegradable polyester having the larger cold crystallization heat ΔHc (J / g) are employed.
[0038]
(4) Differential scanning calorimetry of multilayered materials
A multi-layered melt-molded product, wherein in the differential scanning calorimetry curve of the melt-molded product, when there are a plurality of baseline step changes due to glass transition and / or exothermic peak due to cold crystallization Is present, a glass of a biodegradable polyester having a higher melting point Tm (° C.) required when the molten molded product is used as a test piece in the same manner as in the differential scanning calorimetry (based on JIS K7121). A transition temperature Tg (° C.) and a cold crystallization temperature Tc (° C.) are employed. The melting point Tm (° C.) was determined as a melting peak temperature in a differential scanning calorimetry curve obtained in the same manner as in the differential scanning calorimetry using the melt molded product as a test piece.
[0039]
[Evaluation method and scale]
(1) Transparency
Transparency was evaluated by measuring haze using a stretched molded product as a sample. The haze was measured according to JIS K7105 using a haze meter HR-100 manufactured by Murakami Color Research Laboratory Co., Ltd. as a measuring device. A stretched molded body sample having a thickness of about 30 μm was cut into a square with a side of 50 mm, and this was set in a holder, and the haze of the sample was measured. The haze measurement results were obtained by measuring the number of samples of 5 samples and showing the average value. This haze was used as an index of transparency.
[0040]
<Evaluation scale>
Haze judgment Remarks
Less than 2% ◎ Transparent and very good visibility
2% or more and less than 5% ○ Visibility is excellent with slight whitening
5% or more and less than 10% △ Whitening and poor visibility
10% or more × Remarkably whitened and very poor in visibility
[0041]
(2) Heat resistance
The heat resistance was evaluated by performing a load-resistant cutting test using the stretched molded body as a sample. In the load-resistant cutting test, with a load of 30 g applied to a strip-shaped test piece, the test piece is heated for 1 hour in a hot air circulating thermostat set at a constant temperature to check whether the test piece is cut or not. Was measured. A stretched molded body having a thickness of about 30 μm was cut into a strip shape having a length of 140 mm and a width of 30 mm. A fixing jig and a load jig were attached to each of the upper and lower ends of the strip-shaped test piece 25 mm, respectively, and heated for 1 hour in a hot air circulating thermostat set at a constant temperature to examine whether or not the test piece was cut. In the case where the strip-shaped test piece did not cut, the above procedure was repeated by increasing the set temperature by 5 ° C. with a new test piece. The measurement result of the maximum temperature at which the strip-shaped test piece was not cut was shown as a mode value by performing this test five times for each stretched molded body.
[0042]
<Evaluation scale>
Load-resistant cutting test Judgment Remarks
180 ° C or higher ◎ Very high heat resistance, no problem in practical use
160-175 ° C ○ High heat resistance, can be used depending on the application
140-155 ° C △ heat resistance is poor and uses are limited
135 ° C or less × Heat resistance is extremely low and cannot withstand practical use
[0043]
[Example 1]
[Purification of monomer]
1 kg of glycolide was dissolved in 3 kg of ethyl acetate at 75 ° C., and then allowed to stand at room temperature for 48 hours for precipitation. The precipitate collected by filtration was washed with about 3 kg of ethyl acetate at room temperature. After repeating this washing operation again, the washed product was placed in a vacuum dryer and vacuum dried at 60 ° C. for 24 hours. The dried product was decompressed to 6-7 mmHg under a nitrogen atmosphere, and 480 g of distilled and purified glycolide was obtained as a distillate at 133-134 ° C. by simple distillation.
1 kg of L-lactide was dissolved in 3 kg of toluene at 80 ° C. and then left to stand at room temperature for 48 hours to precipitate. The precipitate collected by filtration was washed with about 3 kg of toluene at room temperature. After repeating this washing operation again, the washed product was put in a vacuum dryer and vacuum dried at 60 ° C. for 24 hours to obtain 560 g of purified L-lactide.
[0044]
[Preparation of polymer]
420 g of glycolide and 250 g of lactide obtained by purification of the above monomer and 0.2 g of 2-ethylhexanoic acid tin and 0.05 g of lauryl alcohol as a catalyst were charged into a jacketed reactor whose inner surface was glass-lined, and nitrogen was added. It was dried at room temperature for about 1 hour while blowing. Next, the temperature was raised to 130 ° C. while blowing nitrogen, and the mixture was stirred for 40 hours for polymerization. After completion of the polymerization operation, cooling water was passed through the jacket for cooling, and the bulk polymer taken out from the reactor was pulverized into fine particles of about 3 mm or less by a pulverizer. This ground product was Soxhlet extracted with tetrahydrofuran for 60 hours, dissolved in 3 kg of hexafluoroisopropanol at 50 ° C., and then reprecipitated with 7 kg of methanol. This re-precipitate was vacuum-dried for 60 hours in a vacuum dryer set at 130 ° C. to obtain 520 g of a glycolic acid-lactic acid copolymer.
[0045]
The obtained copolymer was prepared by dissolving 70 mg of the copolymer in 1 ml of trifluoroacetic acid-D. 1 When the copolymerization component ratio was analyzed by H-NMR, the glycolic acid component ratio was 81 mol% and the lactic acid component ratio was 19 mol%. When the remaining monomer was quantitatively determined by gas chromatography as a 0.5% by weight solution of the copolymer in hexafluoroisopropanol, the residual amount of glycolide and lactide as monomers was 340 wtppm in total. When 20 mg of the copolymer was dissolved in 3 g of hexafluoroisopropanol containing 80 mmol% sodium trifluoroacetate and the molecular weight was measured by GPC, the weight average molecular weight in terms of polymethyl methacrylate was 2 × 10. Five Met.
[0046]
The obtained copolymer was allowed to stand for about 2 hours in a hot air circulating thermostat set at 130 ° C. for drying, and then heated and pressurized for 5 minutes with a heating press set at 230 ° C., and then 20 ° C. The sheet was cooled with a cooling press set to 2 to obtain a sheet-like material having a thickness of 200 μm. When the sheet was subjected to differential scanning calorimetry according to the above-described differential scanning calorimetry method of biodegradable polyester before annealing treatment, the cold crystallization temperature was 131 ° C., the cold crystallization heat was 15 J / g, The melting point was 188 ° C., and the heat of crystal fusion was 15 J / g. Thereafter, the sheet-like material was annealed at 131 ° C. and subjected to differential scanning calorimetry. As a result, the crystallinity change of the processing time of 120 minutes and the processing time of 180 minutes was less than 0.5%. The copolymer had a melting point Tm of 188 ° C. and a crystallinity Xc of 19%, as determined from the differential scanning calorimetry curve of the sheet-like material at 120 minutes. The crystallinity Xc was calculated with a theoretical heat of fusion ΔHf of 207 J / g.
[0047]
[Preparation of sheet-like melt-formed product]
The copolymer obtained by the preparation of the above polymer was allowed to stand for about 2 hours in a hot air circulating thermostat set at 130 ° C., and then dried. At 240 ° C. using a Karl Fischer moisture meter with a moisture vaporizer. The measured water content was 158 wtppm. This dried copolymer was supplied to an extruder equipped with a liquid injection pump with a strand die attached to the tip under a nitrogen stream, and triacetin was added as a plasticizer from the liquid injection pump so that the addition amount was 20 wt%. The copolymer and triacetin were melt-mixed at 230 ° C. and extruded and granulated from a strand die. This granulated composition was again left for about 2 hours in a hot air circulating thermostat set at 130 ° C. and dried, and then heated and pressurized for 5 minutes with a heating press set at 230 ° C., and then 25 It cooled with the cooling press set to ° C, and obtained the sheet-like melt-molded product of thickness 350micrometer. Using the melt molded product as a sample, differential scanning calorimetry was performed according to the above-described differential scanning calorimetry method of the melt molded product. As a result, the glass transition temperature Tg of the melt molded product was 11 ° C., and the cold crystallization temperature Tc was 103 ° C. Met.
[0048]
[Production and Evaluation of Stretched Molded Body]
The melt molded product obtained by the production of the sheet-like melt molded product was stretched using a biaxial stretching test apparatus manufactured by Toyo Seiki Co., Ltd. The melt-molded product is cut into a square having a side of 90 mm, and attached to a clamp having a clamp distance of 80 mm in a chamber in which the heating temperature during stretching is set to 80 ° C., and stretched at a stretch rate of 50% / min. Simultaneous biaxial stretching was performed up to 3.5 times the width. Immediately after the stretching operation was completed, cold air was blown to cool down to obtain a stretched molded body. The obtained stretched molded product was fixed to a metal frame and heat-treated for 30 seconds in a hot air circulating thermostat set at 90 ° C. to obtain a stretched molded product having a thickness of 30 μm. The obtained stretched molded product is designated as F1. The molded body F1 was used as a sample to evaluate the transparency and heat resistance. As a result, the haze was 1.1%, the maximum temperature at which cutting was not performed was 180 ° C., and the determination was transparency ◎ and heat resistance ◎. The overall judgment was ◎. From the above evaluation results, it can be seen that the obtained molded body F1 is excellent in heat resistance and transparency and is suitable for packaging materials.
[0049]
Examples 2 to 4 and Comparative Examples 1 to 4
Next, the same experiment as in Example 1 was repeated except that the heating temperature during stretching was 95 ° C., and the obtained stretched molded product was designated as F2. The molded body F2 was used as a sample to evaluate the transparency and heat resistance. As a result, the haze was 2.5% and the maximum temperature at which cutting was not performed was 180 ° C. (Example 2). The same experiment as in Example 1 above was repeated except that the copolymer alone was used without melting and mixing with the plasticizer triacetin, and the heating temperature during stretching was 120 ° C., and the obtained stretched molded product was designated as F3. . Here, the melt-formed product used for stretching had a glass transition temperature Tg of 34 ° C. and a cold crystallization temperature Tc of 131 ° C. When the molded body F3 was used as a sample and the above-described evaluation of transparency and heat resistance was performed, the haze was 1.2% and the maximum temperature at which cutting was not performed was 185 ° C. (Example 3). The same experiment as in Example 3 was repeated except that the heating temperature during stretching was 100 ° C., and the obtained stretched molded product was designated as F4. The molded body F4 was used as a sample to evaluate the transparency and heat resistance. As a result, the haze was 1.0% and the maximum temperature at which cutting was not performed was 175 ° C. (Example 4). The same experiment as in Example 1 was repeated except that the heating temperature during stretching was 50 ° C., and the obtained stretched molded product was designated as F5. The molded body F5 was used as a sample to evaluate the transparency and heat resistance. As a result, the haze was 0.8% and the maximum temperature at which cutting was not performed was 100 ° C. (Comparative Example 1). The same experiment as Example 1 was repeated except that the heating temperature during stretching was 65 ° C., and the obtained stretched molded product was designated as F6. When the molded body F6 was used as a sample to evaluate the transparency and heat resistance, the haze was 0.9% and the maximum temperature at which cutting was not performed was 140 ° C. (Comparative Example 2). The same experiment as in Example 1 was repeated except that the heating temperature during stretching was 100 ° C., and the obtained stretched molded product was designated as F7. The molded body F7 was used as a sample to evaluate the transparency and heat resistance. As a result, the haze was 11.5% and the maximum temperature at which cutting was not performed was 180 ° C. (Comparative Example 3). The same experiment as in Example 3 was repeated except that the heating temperature during stretching was 65 ° C., and the obtained stretched molded product was designated as F8. The molded body F8 was used as a sample to evaluate the transparency and heat resistance. As a result, the haze was 0.8% and the maximum temperature at which cutting was not performed was 120 ° C. (Comparative Example 4).
[0050]
Regarding F1 to 8 of these stretched molded products, Table 1 shows the measurement results of differential scanning calorimetry of the melt molded product used for stretching, the heating temperature conditions during stretching, and the evaluation results of the transparency and heat resistance of the molded products. Table 2 summarizes.
[0051]
[Table 1]
Figure 0004245300
[0052]
[Table 2]
Figure 0004245300
[0053]
According to Table 1, the manufacturing method of the stretch molded body of Examples 1 to 4 stretched in the temperature range specified in the above-described formula (1) is desired without whitening since it does not crystallize excessively during stretching. It can be stretched without breaking up to a stretching ratio of, and a stretch molded body with excellent heat resistance can be obtained even if the heat treatment conditions are set more loosely in the heat treatment performed after stretching in order to crystallize appropriately. It can be seen that it can be easily manufactured. Moreover, it turns out that the extending | stretching molded objects F1-4 of Examples 1-4 are excellent in heat resistance and transparency, and are suitable for a packaging material use. In particular, Example 1 and Example 3 of the stretched molded products F1 and F3 stretched in the temperature range specified by the above formula (3) are remarkably excellent in both heat resistance and transparency, and are suitable for packaging materials. It turns out that it is especially suitable.
[0054]
On the other hand, according to Table 2, the value of the heating temperature Ts at the time of extending | stretching of the comparative examples 1-2 and the comparative example 4 which extended | stretched at the temperature lower than (Tc-0.40 (Tc-Tg)) degreeC. Although the manufacturing method of a molded object can be stretched without breaking to a desired stretching ratio without excessive crystallization, the obtained stretched molded articles F5 to 6 and F8 are the same as the above Examples 1 to 4 after stretching. Even when heat treatment was performed under the conditions, the heat resistance was extremely inferior. In addition, the stretched molded product F7 of Comparative Example 3 stretched at a temperature higher than (Tc-0.05 (Tc-Tg)) ° C. at the time of stretching is extremely inferior in transparency and used as a packaging material. It turns out that it is not suitable for.
[0055]
[Reference example]
This experiment is an experiment for investigating that the change over time in the crystallinity of the melt-formed product varies depending on the heating temperature. Therefore, the melt-formed product is the same in raw material and production method, and other heating conditions except for the heating temperature are set to the same condition for comparison. When the heating temperature of Example 1 is simulated as a production method of the stretched molded product of the present invention, and the value of the heating temperature Ts during stretching is higher than (Tc-0.40 (Tc-Tg)) ° C. When the heating temperature of Comparative Example 1 stretched at a low temperature is reproduced in a pseudo manner, the value of the heating temperature Ts during stretching is stretched at a temperature higher than (Tc-0.05 (Tc-Tg)) ° C. When the heating temperature of Comparative Example 3 was simulated, the crystallinity after heating the melt-formed product for 0 to 5 minutes was determined by the above-described differential scanning calorimetry and summarized in FIG.
[0056]
In FIG. 1, the horizontal axis indicates the heating time (minutes), the vertical axis indicates the degree of crystallinity (%), the circle (◯) indicates the heating temperature of 50 ° C., and the square (□) indicates the heating temperature of 80 ° C. The triangle mark (Δ) indicates the case where the heating temperature is 100 ° C. On the other hand, the glass transition temperature Tg (° C.) and the cold crystallization temperature Tc (° C.) required when the test piece used in this experiment was subjected to differential scanning calorimetry (based on JIS K7121) at a heating rate of 10 ° C./min. The glass transition temperature Tg was 11 ° C. and the cold crystallization temperature Tc was 103 ° C., respectively. When the heating temperature of FIG. 1 is substituted as Ts in the above equation (2), the value of (Tc−Ts) / (Tc−Tg) is 0.58 at 50 ° C. of a circle (◯), □) at 80 ° C., 0.25, and triangle mark (Δ) at 100 ° C., 0.03.
[0057]
According to FIG. 1, crystallization of the test piece occurs only slightly at a heating temperature of 50 ° C. where the value of (Tc−Ts) / (Tc−Tg) in the above equation (2) is 0.58. When the heating temperature is set to 80 ° C., the test piece will crystallize moderately, and at a heating temperature of 100 ° C. where the value is 0.03, it may crystallize more highly. I understand. The change over time in the degree of crystallinity shown in the figure serves as an index representing the crystallization rate, and at a temperature at an appropriate crystallization rate as shown by the heating temperature of 80 ° C. in the square in the figure (□), It can be seen that the degree of progress of crystallization can be controlled, and a stretch-molded body can be produced without excessive crystallization.
[0058]
【The invention's effect】
According to the present invention, a melt-molded product mainly composed of a biodegradable polyester is used, and the melt-molded product is stretched while being heated to a specific temperature range where an appropriate crystallization speed is obtained. In addition, it is possible to easily produce a biodegradable polyester stretch-molded article suitable for packaging material applications having excellent heat resistance and transparency.
[Brief description of the drawings]
FIG. 1 is a graph showing the change over time in the degree of crystallinity of a melt-formed product depending on the heating temperature at heating temperatures of 50 ° C., 80 ° C., and 100 ° C.

Claims (1)

生分解性グリコール酸系重合体を主体とする溶融成形物を加熱しながら少なくとも一軸方向に延伸する生分解性ポリエステル延伸成形体の製造方法において、延伸時の加熱温度Ts(℃)が、該溶融成形物を試験片として加熱速度10℃/分で示差走査熱量測定(JIS K7121準拠)した際に求められるガラス転移温度Tg(℃)、及び冷結晶化温度Tc(℃)と下式(1)の関係にある温度で、延伸速度は10〜50000%/分、延伸倍率は少なくとも一軸方向に面積倍率2〜50倍の範囲から選ばれる延伸条件で延伸することを特徴とする生分解性ポリエステル延伸成形体の製造方法。
式(1) Tc−0.40(Tc−Tg)≦Ts≦Tc−0.05(Tc−Tg)
In a method for producing a biodegradable polyester stretched molded product in which a melt-molded product mainly composed of a biodegradable glycolic acid polymer is heated and stretched at least in a uniaxial direction, the heating temperature Ts (° C) during stretching is such that the melt The glass transition temperature Tg (° C.) and the cold crystallization temperature Tc (° C.) required when differential scanning calorimetry (based on JIS K7121) at a heating rate of 10 ° C./min with the molded product as a test piece and the following formula (1) A biodegradable polyester stretch characterized by stretching under a stretching condition selected from the range of a stretch rate of 10 to 50000% / min and a stretch ratio of at least a uniaxial direction in a range of 2 to 50 times the area ratio. Manufacturing method of a molded object.
Formula (1) Tc-0.40 (Tc-Tg) <= Ts <= Tc-0.05 (Tc-Tg)
JP2002100322A 2002-04-02 2002-04-02 Method for producing biodegradable polyester stretch molded article Expired - Fee Related JP4245300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002100322A JP4245300B2 (en) 2002-04-02 2002-04-02 Method for producing biodegradable polyester stretch molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002100322A JP4245300B2 (en) 2002-04-02 2002-04-02 Method for producing biodegradable polyester stretch molded article

Publications (2)

Publication Number Publication Date
JP2003291209A JP2003291209A (en) 2003-10-14
JP4245300B2 true JP4245300B2 (en) 2009-03-25

Family

ID=29241323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002100322A Expired - Fee Related JP4245300B2 (en) 2002-04-02 2002-04-02 Method for producing biodegradable polyester stretch molded article

Country Status (1)

Country Link
JP (1) JP4245300B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8036887B2 (en) 1996-11-07 2011-10-11 Panasonic Corporation CELP speech decoder modifying an input vector with a fixed waveform to transform a waveform of the input vector
CN110211602B (en) * 2019-05-17 2021-09-03 北京华控创为南京信息技术有限公司 Intelligent voice enhanced communication method and device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060736B2 (en) * 2006-04-13 2012-10-31 積水成型工業株式会社 Method for producing stretched polyolefin resin sheet
JP2010229243A (en) * 2009-03-26 2010-10-14 Kureha Corp Ultraviolet-screening material, and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8036887B2 (en) 1996-11-07 2011-10-11 Panasonic Corporation CELP speech decoder modifying an input vector with a fixed waveform to transform a waveform of the input vector
CN110211602B (en) * 2019-05-17 2021-09-03 北京华控创为南京信息技术有限公司 Intelligent voice enhanced communication method and device

Also Published As

Publication number Publication date
JP2003291209A (en) 2003-10-14

Similar Documents

Publication Publication Date Title
JP4363325B2 (en) Polylactic acid polymer composition, molded article thereof, and film
JP4704456B2 (en) Crystalline polyglycolic acid, polyglycolic acid composition, and methods for producing them
CN100379800C (en) Biodegradable resin film or sheet and process for producing the same
JP5239336B2 (en) Polyether-polylactic acid composition and polylactic acid film containing the same
JP4807544B2 (en) Polyester composition
JPH06500818A (en) Films containing polyhydroxy acids
JP3473714B2 (en) Heat-resistant sheet comprising lactic acid-based polymer and method for producing molded article
JP2007204727A (en) Polylactic acid composition and molded product composed of the composition
US6027677A (en) Films containing poly(hydroxy acid)s
JP5145695B2 (en) Method for producing polylactic acid resin film
JP3670913B2 (en) Polylactic acid-based shrink film or sheet
JP4245306B2 (en) Biodegradable polyester stretch molding
JP3182077B2 (en) Biodegradable film
JP4245300B2 (en) Method for producing biodegradable polyester stretch molded article
JP3670912B2 (en) Polylactic acid-based shrink film or sheet
JP4511099B2 (en) Lactic acid-based resin composition, sheet-like product thereof, and bag-like product
JP5396688B2 (en) Polyester film
JP2005139280A (en) Polyester resin composition and film
JP4790920B2 (en) Stretched molded product for packaging materials
JP2006335904A (en) Polylactic acid-based oriented film
JP4993238B2 (en) Molded body for packaging materials
JP4326828B2 (en) Composition of glycolic acid copolymer
JP4260521B2 (en) Glycolic acid polymer composition
JP3482743B2 (en) Shrink film composed of lactic acid-based polymer
JP4260526B2 (en) Composition of glycolic acid polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Effective date: 20070824

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090106

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090106

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20130116

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees