JP4245267B2 - Flat lithium secondary battery - Google Patents

Flat lithium secondary battery Download PDF

Info

Publication number
JP4245267B2
JP4245267B2 JP2000306657A JP2000306657A JP4245267B2 JP 4245267 B2 JP4245267 B2 JP 4245267B2 JP 2000306657 A JP2000306657 A JP 2000306657A JP 2000306657 A JP2000306657 A JP 2000306657A JP 4245267 B2 JP4245267 B2 JP 4245267B2
Authority
JP
Japan
Prior art keywords
battery
lithium secondary
secondary battery
lithium
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000306657A
Other languages
Japanese (ja)
Other versions
JP2002117896A (en
Inventor
隆男 西谷
完二 漆原
章仁 田中
実 藤本
利朗 古橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000306657A priority Critical patent/JP4245267B2/en
Publication of JP2002117896A publication Critical patent/JP2002117896A/en
Application granted granted Critical
Publication of JP4245267B2 publication Critical patent/JP4245267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、扁平形リチウム二次電池に関し、特にリフロー法等の高温条件下で表面実装を行うことが可能な扁平形リチウム二次電池に関する。
【0002】
【従来の技術】
近年、扁平形のリチウム二次電池は、携帯電話等の携帯端末のメモリバックアップ用電源として利用されるようになった。この場合、電池は、プリント基板に表面実装される。表面実装の方法としては、生産性の観点から、基板上にハンダ(融点:186℃程度)および接続リード端子を取り付けた電池を載置した状態で、部品(端子)温度が200℃以上になるように設定したリフロー炉内を通過させる方法(リフロー法)を用いることが望ましい。
【0003】
ところで、従来より、リチウム二次電池の負極には、リチウム−アルミニウム合金等が用いられ、正極には、例えば、特開昭63−114064号公報に開示されているようにリチウム含有マンガン複合酸化物等が用いられる。このような電池は、高温下に保存されるとリチウム含有マンガン複合酸化物と電解液とが反応して正極側でガスが発生することが知られており、耐熱温度は60℃程度である。
【0004】
したがって、従来のリチウム二次電池をリフロー炉内の高温環境に晒すと、ガスが激しく発生して、電池の内部抵抗が大きく上昇してしまうため、これまで以上の耐熱性を備え、リフロー法を適用できるリチウム二次電池の開発が強く求められていた。
【0005】
【発明が解決しようとする課題】
本発明は、上記の事情に鑑みなされたものであり、その目的は、リフロー法等によって200℃を超える高温環境下に晒されても電池の内部抵抗が大きく上昇せず、良好な電池特性を維持できる扁平形リチウム二次電池を提供することにある。
【0006】
【課題を解決するための手段】
上記の課題を解決するため、請求項1に記載の発明は、正極と負極とをセパレータを介して対向させてなる電極体と、非水電解液と、前記電極体と非水電解液とを収納する電池外装缶と、前記電池外装缶の開口部を封口する電池封口缶とを有する扁平形リチウム二次電池において、前記正極は、BET法により測定した比表面積が2.0m2 /g以下のスピネル構造を有するリチウム含有マンガン複合酸化物を活物質とすることを特徴とする200℃を超える高温条件下でリフロー処理される扁平形リチウム二次電池である。
【0007】
リチウム含有金属酸化物としては、例えば前記特開昭63−114064号公報に開示のリチウム含有マンガン複合酸化物が知られているが、これは、図1に示すように、外形が略球形であって、表面から内部に向かって延びる空隙部1を有する形状をしている。このため、比表面積が大きいものは空隙部が多く、このようなものを用いた電池をリフロー法で表面実装すると、電解液との接触面積が大きく、しかも高温に晒されることになるので多量にガスが発生する。そのため、電池内部の圧力が上昇して電池外装缶や電池封口缶が変形し、その結果として正極および負極との接触不良によって内部抵抗の上昇を引き起こす。これに対して、比表面積が2.0m2 /g以下であるものは、電解液との接触面積が小さいので、多量にガスが発生せず、電池外装缶や電池封口缶の変形が起こらないため、内部抵抗が大きく上昇することはない。よって、200℃を超える高温条件下でリフロー処理されたとしても、良好な電池特性を維持した扁平形リチウム二次電池となる。
しかし、リチウム二次電池の正極活物質として従来から用いられているリチウム含有金属酸化物、例えば前記特開昭63−114064号公報に開示のリチウム含有マンガン複合酸化物は、500℃を超える温度で焼成を行うと、結晶構造を保持できないので、比表面積を2.0m 2 /g以下にするのは困難である。これに対して、スピネル構造を有するリチウム含有マンガン複合酸化物は、850℃で焼成を行ってもその結晶構造を維持できるため、比表面積を2.0m 2 /g 以下にすることは容易である。また、スピネル構造を有するリチウム含有マンガン複合酸化物は、比表面積を小さくしても電池容量が大きく低下しないという特徴を有する。よって、正極活物質としてスピネル構造を有するリチウム含有マンガン複合酸化物を用いれば、簡便にリフロー対応の扁平型リチウム二次電池を提 供できる。また、スピネル構造を有するリチウム含有マンガン複合酸化物は2.0〜3.2Vの電圧で使用可能であるため、従来から使用されている電池とは電 池電圧で互換性を有する電池を提供できるという利点もある。
【0008】
ここで、本発明において、BET法とは、窒素吸着によるB.E.T1点法をいう。
【0011】
請求項に記載の発明は、請求項に記載の発明において、前記非水電解液が、溶媒として少なくともカーボネート系有機溶媒を含むものであることを特徴とする。
【0012】
カーボネート系有機溶媒は、リチウム含有マンガン酸化物と反応して、多量のガス(二酸化炭素)が発生するので、この溶媒を含んだ非水電解液であれば、本発明による改善効果が高い。
【0013】
請求項に記載の発明は、請求項1又は2に記載の発明において、前記電池外装缶と電池封口缶とが、電池外装缶の内側縁部に配置された絶縁ガスケットを介してかしめ固定されており、かつ、前記セパレータと前記絶縁ガスケットとが耐熱樹脂からなり、前記非水電解液が、溶媒として少なくとも沸点が150℃以上の有機溶媒を含むとともに、溶質としてLiCF3 SO3、LiN(CF3 SO2 2、LiN(C2 5 SO2 2からなる群から選択される少なくとも1種のリチウム塩を含むものであることを特徴とする。
請求項4に記載の発明は、請求項1又は2に記載の発明において、前記電池外装缶と電池封口缶とが、レーザ溶接されることにより封口されており、かつ、前記セパレータが耐熱樹脂からなり、前記非水電解液が、溶媒として少なくとも沸点が150℃以上の有機溶媒を含むとともに、溶質としてLiCF 3 SO 3 、LiN(CF 3 SO 2 2 、LiN(C 2 5 SO 2 2 からなる群から選択される少なくとも1種のリチウム塩を含むものであることを特徴とする
【0014】
上記のような、セパレータ、絶縁ガスケット、非水電解液を用いれば、リフロー法を適用するのに最適な扁平形リチウム二次電池となる。
【0015】
【発明の実施の形態】
本発明の実施の形態を、扁平形のリチウム二次電池を例として、図面を用いて説明する。図2は、この電池の構成を示す断面図である。
【0016】
図2に示すように、この電池は、外観が扁平形状であって、ステンレス製の電池外装缶(正極缶)2を有しており、この正極缶2内には、スピネル構造を有するリチウム含有マンガン複合酸化物(BET法による比表面積:0.4m2 /g)を活物質とする正極3と、リチウム−アルミニウム合金を活物質とする負極4と、両極を離間するポリフェニレンサルファイド不織布からなるセパレータ5とから構成される電極体6が収容されている。なお、上記セパレータ5には、プロピレンカーボネートとジエチレングリコールジメチルエーテルとを体積比で3:7で配合してなる混合溶媒に、LiN(CF3 SO22を0.5M(モル/リットル)の割合で溶かしてなる電解液が含浸されている。そして、上記正極缶2の開口部には、リング形状の絶縁ガスケット7を介して、ステンレスとアルミニウムとからなるクラッド材製の電池封口缶(負極キャップ)8がかしめ固定され、封口されている。
【0017】
上記構造のリチウム二次電池を、以下のようにして作製した。
【0018】
〔正極の作製〕
まず、二酸化マンガンと水酸化リチウムとをモル比で2:1で混合した後、空気中にて850℃で15時間焼成して、比表面積が0.4m2 /gであるリチウム含有マンガン複合酸化物を得た。つぎに、得られたリチウム含有マンガン複合酸化物と、導電剤としての炭素系導電剤(アセチレンブラック)と、結着剤としてのフッ素樹脂(PVdF)とを、92.1:6.4:1.5の質量比で混合し、混練して、正極合剤を得た。そして、この正極合剤を、9ton/cm2の圧力により加圧成形して、直径9mmで厚み0.15mmの円板状の正極を作製した。
【0019】
〔電池の作製〕
ステンレス板とアルミニウム板とを貼り合わせ、内面がアルミニウム板になるようにしたクラッド材製の電池封口缶(負極キャップ)を準備し、内面のアルミニウム板の表面に金属リチウム板を圧着して、直径9mmで厚み0.04mmの円板状の負極を作製した。なお、アルミニウム板表面に圧着した金属リチウム板は、電池封口後に合金化反応が起こるので、負極活物質は、リチウム−アルミニウム合金である。つぎに、この負極上に、ポリフェニレンサルファイド不織布からなるセパレータを載置し、そのセパレータに対して電解液を注液した。その後、その上に、前記正極を載置し、さらにポリフェニレンサルファイド製の絶縁ガスケットを介して、ステンレス製の正極缶を被せかしめることにより、電池径(直径)12mmで厚み0.6mmのリチウム二次電池を製造した。
【0020】
〔その他の事項〕
なお、上記実施の形態においては、正極活物質として、比表面積0.4m2 /gであるスピネル構造を有するリチウム含有マンガン複合酸化物を用いたが、これに限定するものではない。スピネル構造を有するリチウム含有マンガン複合酸化物マンガンの一部を他の元素で置換した酸化物であってもよい。ただし、これらはBET法により測定した比表面積が2.0m2 /g以下である必要がある。比表面積が2.0m2 /gを超えると、発生するガスによって電池性能の低下を招くからである。なお、比表面積が小さすぎると、電池反応が不充分になるおそれがあるため、比表面積の好適な範囲は、0.2〜2.0m2 /gである。なお、比表面積は、焼成温度や焼成時間等を調節することによって所望の値に設定することができる。例えば、焼成温度を高めるかあるいは焼成時間を長くすれば比表面積を小さくできる。
【0021】
また、負極活物質としては、金属リチウム、リチウム−アルミニウム合金等を用いることができる。
【0022】
さらに、非水電解液の溶質としては、上記LiN(CF3SO22の他に、例えば、熱分解温度が高い、LiCF3SO3、LiN(C25SO22 等が好適に用いられる。これらは単独であるいは2種以上併せて用いてもよい。また、溶媒としては、上記で用いたものの他に、例えば、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等のカーボネート系有機溶媒や、トリエチレングリコールジメチルエーテル等の高沸点エーテル系有機溶媒を用いることができる。ここで、本発明において、高沸点とは、沸点が150℃以上をいい、特に200℃以上が好適である。これらは単独であるいは2種以上併せて用いられる。
【0023】
また、上記の例では、セパレータや絶縁ガスケットの形成材料として、ポリフェニレンサルファイドを用いたが、これに限定するものではない。例えば、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアリレート等の荷重たわみ温度(1.82MPa荷重時、JIS K 7191に準拠)が100℃以上の耐熱樹脂が好適である。なお、ガスケットについては、強度を高めるため、チタン酸カリウム繊維、アルミナ繊維、炭化ケイ素繊維、窒化ケイ素繊維、ジルコニア繊維等のセラミックス系繊維や、ガラス繊維、炭素繊維等の無機繊維を添加してもよい。ここで、セパレータと絶縁ガスケットは、互いに同一の耐熱樹脂材料で成形されたものであってもよいし、異なる材料で成形されたものであってもよい。
【0024】
本発明は、上記のような絶縁ガスケットを用いて封口した電池に限定するものではなく、例えばレーザー溶接等で封口した電池にも適用することができる。
【0025】
【実施例】
つぎに、本発明について、実施例および比較例に基づいてさらに詳細に説明するが、本発明は下記の実施例に限定されるものではない。
【0026】
(実施例1)
実施例1としては、上記発明の実施の形態に示す方法と同様の方法にて作製したリチウム二次電池を用いた。
【0027】
(実施例2)
正極活物質として、BET法により測定した比表面積が2.0m2 /gであるスピネル構造を有するリチウム含有マンガン複合酸化物を用いた他は、実施例1と同様にして、リチウム二次電池を製造した。
【0028】
(実施例3)
正極活物質として、BET法により測定した比表面積が0.2m2 /gであるスピネル構造を有するリチウム含有マンガン複合酸化物を用いた他は、実施例1と同様にして、リチウム二次電池を製造した。
【0029】
(比較例1)
正極活物質として、BET法により測定した比表面積が7.6m2 /gであるスピネル構造を有するリチウム含有マンガン複合酸化物を用いた他は、実施例1と同様にして、リチウム二次電池を製造した。
【0030】
(比較例2)
正極活物質として、BET法により測定した比表面積が14.7m2 /gであるスピネル構造を有するリチウム含有マンガン複合酸化物を用いた他は、実施例1と同様にして、リチウム二次電池を製造した。
【0031】
(比較例3)
正極活物質として、BET法により測定した比表面積が19.7m2 /gであるスピネル構造を有するリチウム含有マンガン複合酸化物を用いた他は、実施例1と同様にして、リチウム二次電池を製造した。
【0032】
このようにして得られたリチウム二次電池について、下記に示す実験1、2、3を行った。
【0033】
(実験1)
各リチウム二次電池に用いたスピネル構造を有するリチウム含有マンガン複合酸化物10mgと、プロピレンカーボネート5mgとを混合した後、235℃で5分間加熱して、二酸化炭素発生量を測定した。その結果を、図3に示す。
【0034】
(実験2)
各リチウム二次電池を、電池表面温度が最大240℃となるように設定した炉内に投入し、電池全体が200℃以上で約40秒間晒される条件で高温処理を行った。この高温処理を2回行った後、内部抵抗を測定した。その結果を、図4に示す。なお、高温処理前の電池は、全て50〜60Ωの範囲内であった。
【0035】
(実験3)
各リチウム二次電池について、実験2の高温処理を行わない電池と高温処理を行った電池の放電容量を測定した。測定は、室温(約20℃)にて150kΩの定抵抗放電を行い、電池電圧が2.0Vになるまでの放電容量を求めた。その結果を表1に示す。
【0036】
【表1】

Figure 0004245267
【0037】
実験1、2の結果から、内部抵抗の上昇とガス発生との間に相関関係があることが確認できた。また、比表面積が2.0m2 /g以下であるスピネル構造を有するリチウム含有マンガン複合酸化物を用いた電池(実施例1〜3)は、それよりも大きい比表面積を有するスピネル構造を有するリチウム含有マンガン複合酸化物を用いた電池(比較例1〜3)に比べ、ガス発生量は少なく、内部抵抗もかなり小さかったことがわかった。具体的には、実施例1〜3の各電池は、内部抵抗が200Ω以下であったのに対し、比較例1〜3の各電池は、200Ωを超えていた。一般に内部抵抗が200Ωを超える電池は、実使用に耐えることができない。
【0038】
また、実験3の結果から、スピネル構造を有するリチウム含有マンガン複合酸化物の比表面積が小さくなっても、高温処理前の放電容量が大きく減少しないことがわかった。また、比表面積が2.0m2 /gより大きいスピネル構造を有するリチウム含有マンガン複合酸化物を用いた電池は、高温処理後の放電容量が大きく低下したのに対し、2.0m2 /g以下の比表面積のものを用いた電池は、高温処理後の放電容量の低下が極めて小さかったことがわかった。
【0039】
以上より、比較例1〜3の各電池はリフロー法等の200℃を超える高温処理に耐えられない電池であるが、実施例1〜3の電池はリフロー法等に適用可能な電池であることがわかった。
【0040】
【発明の効果】
本発明は、正極活物質であるリチウム含有金属酸化物の比表面積を規制した点に特徴を有するが、このような本発明によると、リフロー法等の200℃を超えるような高温環境下で表面実装を行っても特に内部抵抗が大きく上昇せず、良好な電池特性を維持できる扁平形リチウム二次電池を提供できる。
【図面の簡単な説明】
【図1】リチウム含有金属酸化物の粒子形状を模式的に示す断面図である。
【図2】本発明の一例である扁平形リチウム二次電池を模式的に示す断面図である。
【図3】二酸化炭素発生量と比表面積との関係を示すグラフ図である。
【図4】内部抵抗と比表面積との関係を示すグラフ図である。
【符号の説明】
1 空隙部
2 電池外装缶(正極缶)
3 正極
4 負極
5 セパレータ
6 電極体
7 絶縁ガスケット
8 電池封口缶(負極キャップ)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flat lithium secondary battery, and more particularly to a flat lithium secondary battery capable of surface mounting under high temperature conditions such as a reflow method.
[0002]
[Prior art]
In recent years, flat lithium secondary batteries have come to be used as a memory backup power source for mobile terminals such as mobile phones. In this case, the battery is surface-mounted on the printed board. As a surface mounting method, from the viewpoint of productivity, the component (terminal) temperature becomes 200 ° C. or higher with a battery (soldering point: about 186 ° C.) and a connection lead terminal mounted on the substrate. It is desirable to use a method (reflow method) of passing through the reflow furnace set as described above.
[0003]
Conventionally, a lithium-aluminum alloy or the like has been used for a negative electrode of a lithium secondary battery, and a lithium-containing manganese composite oxide as disclosed in, for example, JP-A-63-114064. Etc. are used. Such a battery is known to generate gas on the positive electrode side when the lithium-containing manganese composite oxide and the electrolyte react when stored at high temperatures, and the heat-resistant temperature is about 60 ° C.
[0004]
Therefore, if a conventional lithium secondary battery is exposed to a high-temperature environment in a reflow furnace, gas is generated vigorously and the internal resistance of the battery is greatly increased. There was a strong demand for the development of applicable lithium secondary batteries.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and the purpose thereof is to achieve good battery characteristics because the internal resistance of the battery does not increase greatly even when exposed to a high temperature environment exceeding 200 ° C. by a reflow method or the like. An object of the present invention is to provide a flat lithium secondary battery that can be maintained.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 includes an electrode body in which a positive electrode and a negative electrode are opposed to each other via a separator, a non-aqueous electrolyte, and the electrode body and the non-aqueous electrolyte. In a flat lithium secondary battery having a battery outer can to be stored and a battery sealing can for sealing an opening of the battery outer can, the positive electrode has a specific surface area of 2.0 m 2 / g or less measured by the BET method. A flat lithium secondary battery that is reflow-treated under a high-temperature condition exceeding 200 ° C., characterized in that a lithium-containing manganese composite oxide having a spinel structure is used as an active material.
[0007]
As a lithium-containing metal oxide, for example, a lithium-containing manganese composite oxide disclosed in JP-A-63-114064 is known, which has a substantially spherical outer shape as shown in FIG. And it has the shape which has the space | gap part 1 extended toward the inside from the surface. For this reason, those with a large specific surface area have many voids, and if a battery using such a surface is surface-mounted by the reflow method, the contact area with the electrolytic solution is large, and moreover, it will be exposed to high temperatures. Gas is generated. As a result, the internal pressure of the battery rises and the battery outer can and the battery sealing can are deformed. As a result, the internal resistance increases due to poor contact with the positive electrode and the negative electrode. On the other hand, those having a specific surface area of 2.0 m 2 / g or less have a small contact area with the electrolytic solution, so that a large amount of gas is not generated, and the battery outer can and the battery sealing can are not deformed. Therefore, the internal resistance does not increase greatly. Therefore, even if the reflow treatment is performed under a high temperature condition exceeding 200 ° C., a flat lithium secondary battery maintaining good battery characteristics is obtained.
However, lithium-containing metal oxides conventionally used as a positive electrode active material for lithium secondary batteries, such as the lithium-containing manganese composite oxide disclosed in JP-A-63-114064, can be obtained at temperatures exceeding 500 ° C. When firing, the crystal structure cannot be maintained, so it is difficult to make the specific surface area 2.0 m 2 / g or less. On the other hand, since the lithium-containing manganese composite oxide having a spinel structure can maintain its crystal structure even when baked at 850 ° C., it is easy to make the specific surface area 2.0 m 2 / g or less. . In addition, the lithium-containing manganese composite oxide having a spinel structure has a feature that the battery capacity is not greatly reduced even if the specific surface area is reduced. Therefore, when a lithium-containing manganese composite oxide having a spinel structure is used as the positive electrode active material, a flat lithium secondary battery that can handle reflow can be provided easily. Moreover, since the lithium-containing manganese composite oxide having a spinel structure can be used at a voltage of 2.0 to 3.2 V, it is possible to provide a battery that is compatible with a conventionally used battery at a battery voltage. There is also an advantage.
[0008]
Here, in the present invention, the BET method means B.I. E. This is the T1 point method.
[0011]
The invention according to claim 2 is characterized in that, in the invention according to claim 1 , the non-aqueous electrolyte contains at least a carbonate organic solvent as a solvent.
[0012]
Since the carbonate-based organic solvent reacts with the lithium-containing manganese oxide to generate a large amount of gas (carbon dioxide), the improvement effect of the present invention is high if it is a non-aqueous electrolyte containing this solvent.
[0013]
The invention according to claim 3 is the invention according to claim 1 or 2 , wherein the battery outer can and the battery sealing can are caulked and fixed via an insulating gasket arranged at an inner edge of the battery outer can. And the separator and the insulating gasket are made of a heat-resistant resin, and the non-aqueous electrolyte contains an organic solvent having a boiling point of at least 150 ° C. as a solvent and LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2, at least one lithium salt selected from the group consisting of
The invention according to claim 4 is the invention according to claim 1 or 2, wherein the battery outer can and the battery sealing can are sealed by laser welding, and the separator is made of a heat resistant resin. The non-aqueous electrolyte contains an organic solvent having a boiling point of at least 150 ° C. as a solvent, and LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 as solutes. It contains at least one lithium salt selected from the group consisting of .
[0014]
If a separator, an insulating gasket, or a non-aqueous electrolyte as described above is used, a flat lithium secondary battery that is optimal for applying the reflow method is obtained.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings, taking a flat lithium secondary battery as an example. FIG. 2 is a cross-sectional view showing the configuration of this battery.
[0016]
As shown in FIG. 2, this battery has a flat outer appearance and has a battery outer can (positive electrode can) 2 made of stainless steel. The positive electrode can 2 has a lithium-containing spinel structure. Separator made of a positive electrode 3 using a manganese composite oxide (specific surface area by BET method: 0.4 m 2 / g) as an active material, a negative electrode 4 using a lithium-aluminum alloy as an active material, and a polyphenylene sulfide non-woven fabric separating both electrodes 5 is housed. The separator 5 is mixed with propylene carbonate and diethylene glycol dimethyl ether in a volume ratio of 3: 7, and LiN (CF 3 SO 2 ) 2 is added at a ratio of 0.5 M (mol / liter). The molten electrolyte is impregnated. A battery sealing can (negative electrode cap) 8 made of stainless steel and aluminum is caulked and fixed to the opening of the positive electrode can 2 via a ring-shaped insulating gasket 7 and sealed.
[0017]
The lithium secondary battery having the above structure was produced as follows.
[0018]
[Production of positive electrode]
First, manganese dioxide and lithium hydroxide were mixed at a molar ratio of 2: 1 and then calcined in air at 850 ° C. for 15 hours to obtain a lithium-containing manganese composite oxide having a specific surface area of 0.4 m 2 / g. I got a thing. Next, the obtained lithium-containing manganese composite oxide, a carbon-based conductive agent (acetylene black) as a conductive agent, and a fluororesin (PVdF) as a binder are 92.1: 6.4: 1. The mixture was mixed at a mass ratio of 0.5 and kneaded to obtain a positive electrode mixture. And this positive electrode mixture was pressure-molded by the pressure of 9 ton / cm < 2 >, and the disk-shaped positive electrode of diameter 9mm and thickness 0.15mm was produced.
[0019]
[Production of battery]
Prepare a battery sealing can (negative electrode cap) made of a clad material by bonding a stainless steel plate and an aluminum plate so that the inner surface becomes an aluminum plate, and crimping a metal lithium plate onto the surface of the inner aluminum plate. A disc-shaped negative electrode having a thickness of 9 mm and a thickness of 0.04 mm was produced. In addition, since a metal lithium plate press-bonded to the aluminum plate surface undergoes an alloying reaction after battery sealing, the negative electrode active material is a lithium-aluminum alloy. Next, a separator made of a polyphenylene sulfide non-woven fabric was placed on the negative electrode, and an electrolytic solution was injected into the separator. Thereafter, the positive electrode is mounted thereon, and further covered with a stainless steel positive electrode can through an insulating gasket made of polyphenylene sulfide, whereby a lithium secondary battery having a battery diameter (diameter) of 12 mm and a thickness of 0.6 mm is obtained. A secondary battery was manufactured.
[0020]
[Other matters]
Although the lithium-containing manganese composite oxide having a spinel structure with a specific surface area of 0.4 m 2 / g is used as the positive electrode active material in the above embodiment, the present invention is not limited to this. An oxide obtained by substituting a part of manganese of the lithium-containing manganese composite oxide having a spinel structure with another element may be used. However, they need to have a specific surface area measured by the BET method of 2.0 m 2 / g or less. This is because when the specific surface area exceeds 2.0 m 2 / g, the generated gas causes a decrease in battery performance. In addition, since there exists a possibility that battery reaction may become inadequate when a specific surface area is too small, the suitable range of a specific surface area is 0.2-2.0 m < 2 > / g. The specific surface area can be set to a desired value by adjusting the firing temperature, firing time, and the like. For example, the specific surface area can be reduced by increasing the firing temperature or increasing the firing time.
[0021]
As the negative electrode active material, metallic lithium, a lithium-aluminum alloy, or the like can be used.
[0022]
Further, as the solute of the non-aqueous electrolyte, in addition to the above LiN (CF 3 SO 2 ) 2 , for example, LiCF 3 SO 3 , LiN (C 2 F 5 SO 2 ) 2 or the like having a high thermal decomposition temperature is suitable. Used for. These may be used alone or in combination of two or more. In addition to the solvents used above, for example, carbonate organic solvents such as ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, and high-boiling ether organic compounds such as triethylene glycol dimethyl ether A solvent can be used. Here, in the present invention, the high boiling point means that the boiling point is 150 ° C. or higher, and particularly preferably 200 ° C. or higher. These may be used alone or in combination of two or more.
[0023]
In the above example, polyphenylene sulfide is used as a material for forming the separator and the insulating gasket, but the material is not limited to this. For example, a heat-resistant resin having a deflection temperature under load (1.82 MPa load, conforming to JIS K 7191) such as polyether ether ketone, polyether ketone, polyethylene terephthalate, polybutylene terephthalate, polyarylate, or the like is preferable. For gaskets, ceramic fibers such as potassium titanate fibers, alumina fibers, silicon carbide fibers, silicon nitride fibers and zirconia fibers, and inorganic fibers such as glass fibers and carbon fibers may be added to increase the strength. Good. Here, the separator and the insulating gasket may be molded from the same heat-resistant resin material, or may be molded from different materials.
[0024]
The present invention is not limited to a battery sealed using an insulating gasket as described above, and can also be applied to a battery sealed by, for example, laser welding.
[0025]
【Example】
Next, the present invention will be described in more detail based on examples and comparative examples, but the present invention is not limited to the following examples.
[0026]
Example 1
As Example 1, a lithium secondary battery manufactured by a method similar to the method described in the embodiment of the present invention was used.
[0027]
(Example 2)
A lithium secondary battery was prepared in the same manner as in Example 1 except that a lithium-containing manganese composite oxide having a spinel structure with a specific surface area measured by the BET method of 2.0 m 2 / g was used as the positive electrode active material. Manufactured.
[0028]
(Example 3)
A lithium secondary battery was prepared in the same manner as in Example 1 except that a lithium-containing manganese composite oxide having a spinel structure with a specific surface area measured by the BET method of 0.2 m 2 / g was used as the positive electrode active material. Manufactured.
[0029]
(Comparative Example 1)
A lithium secondary battery was prepared in the same manner as in Example 1 except that a lithium-containing manganese composite oxide having a spinel structure with a specific surface area measured by the BET method of 7.6 m 2 / g was used as the positive electrode active material. Manufactured.
[0030]
(Comparative Example 2)
A lithium secondary battery was prepared in the same manner as in Example 1 except that a lithium-containing manganese composite oxide having a spinel structure with a specific surface area measured by the BET method of 14.7 m 2 / g was used as the positive electrode active material. Manufactured.
[0031]
(Comparative Example 3)
A lithium secondary battery was prepared in the same manner as in Example 1 except that a lithium-containing manganese composite oxide having a spinel structure with a specific surface area measured by the BET method of 19.7 m 2 / g was used as the positive electrode active material. Manufactured.
[0032]
The lithium secondary battery thus obtained was subjected to the following experiments 1, 2, and 3.
[0033]
(Experiment 1)
After mixing 10 mg of lithium-containing manganese composite oxide having a spinel structure used for each lithium secondary battery and 5 mg of propylene carbonate, the mixture was heated at 235 ° C. for 5 minutes, and the amount of carbon dioxide generated was measured. The result is shown in FIG.
[0034]
(Experiment 2)
Each lithium secondary battery was put into a furnace set so that the maximum battery surface temperature was 240 ° C., and high temperature treatment was performed under conditions where the entire battery was exposed to 200 ° C. or higher for about 40 seconds. After performing this high temperature treatment twice, the internal resistance was measured. The result is shown in FIG. In addition, all the batteries before a high temperature process were in the range of 50-60 (ohm).
[0035]
(Experiment 3)
About each lithium secondary battery, the discharge capacity of the battery which did not perform the high temperature process of Experiment 2, and the battery which performed the high temperature process was measured. In the measurement, a constant resistance discharge of 150 kΩ was performed at room temperature (about 20 ° C.), and the discharge capacity until the battery voltage reached 2.0 V was obtained. The results are shown in Table 1.
[0036]
[Table 1]
Figure 0004245267
[0037]
From the results of Experiments 1 and 2, it was confirmed that there was a correlation between the increase in internal resistance and gas generation. Further, the batteries (Examples 1 to 3) using the lithium-containing manganese composite oxide having a spinel structure having a specific surface area of 2.0 m 2 / g or less are lithium having a spinel structure having a larger specific surface area. It was found that the amount of gas generated was small and the internal resistance was considerably small as compared with the batteries (Comparative Examples 1 to 3) using the manganese composite oxide. Specifically, each battery of Examples 1 to 3 had an internal resistance of 200Ω or less, whereas each battery of Comparative Examples 1 to 3 exceeded 200Ω. In general, a battery having an internal resistance exceeding 200Ω cannot withstand actual use.
[0038]
Further, from the results of Experiment 3, it was found that even when the specific surface area of the lithium-containing manganese composite oxide having a spinel structure is reduced, the discharge capacity before the high temperature treatment is not greatly reduced. In addition, in the battery using the lithium-containing manganese composite oxide having a spinel structure having a specific surface area larger than 2.0 m 2 / g, the discharge capacity after high-temperature treatment is greatly reduced, whereas the battery is 2.0 m 2 / g or less. It was found that the battery using the specific surface area had a very small decrease in discharge capacity after high-temperature treatment.
[0039]
From the above, each battery of Comparative Examples 1 to 3 is a battery that cannot withstand high temperature processing exceeding 200 ° C. such as the reflow method, but the batteries of Examples 1 to 3 are batteries applicable to the reflow method and the like. I understood.
[0040]
【The invention's effect】
The present invention is characterized in that the specific surface area of the lithium-containing metal oxide that is the positive electrode active material is regulated. According to the present invention, the surface is used in a high-temperature environment exceeding 200 ° C. such as a reflow method. A flat lithium secondary battery capable of maintaining good battery characteristics without significantly increasing the internal resistance even when mounted can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing the particle shape of a lithium-containing metal oxide.
FIG. 2 is a cross-sectional view schematically showing a flat lithium secondary battery which is an example of the present invention.
FIG. 3 is a graph showing the relationship between the amount of carbon dioxide generated and the specific surface area.
FIG. 4 is a graph showing the relationship between internal resistance and specific surface area.
[Explanation of symbols]
1 void 2 battery outer can (positive electrode can)
3 Positive electrode 4 Negative electrode 5 Separator 6 Electrode body 7 Insulating gasket 8 Battery sealing can (negative electrode cap)

Claims (4)

正極と負極とをセパレータを介して対向させてなる電極体と、非水電解液と、前記電極体と非水電解液とを収納する電池外装缶と、前記電池外装缶の開口部を封口する電池封口缶とを有する扁平形リチウム二次電池において、
前記正極は、BET法により測定した比表面積が2.0m2 /g以下のスピネル構造を有するリチウム含有マンガン複合酸化物を活物質とする、
ことを特徴とする200℃を超える高温条件下でリフロー処理される扁平形リチウム二次電池。
An electrode body having a positive electrode and a negative electrode facing each other with a separator interposed therebetween, a non-aqueous electrolyte, a battery outer can containing the electrode body and the non-aqueous electrolyte, and an opening of the battery outer can are sealed. In a flat lithium secondary battery having a battery sealing can,
The positive electrode uses, as an active material , a lithium-containing manganese composite oxide having a spinel structure with a specific surface area of 2.0 m 2 / g or less measured by the BET method.
A flat lithium secondary battery that is reflow-treated under a high temperature condition exceeding 200 ° C.
前記非水電解液が、溶媒として少なくともカーボネート系有機溶媒を含むものである、
請求項記載の扁平形リチウム二次電池。
The non-aqueous electrolyte contains at least a carbonate organic solvent as a solvent.
The flat lithium secondary battery according to claim 1 .
前記電池外装缶と電池封口缶とが、電池外装缶の内側縁部に配置された絶縁ガスケットを介してかしめ固定されており、かつ、
前記セパレータと前記絶縁ガスケットとが耐熱樹脂からなり、前記非水電解液が、溶媒として少なくとも沸点が150℃以上の有機溶媒を含むとともに、溶質としてLiCF3 SO3、LiN(CF3 SO2 2、LiN(C2 5 SO2 2からなる群から選択される少なくとも1種のリチウム塩を含むものである、
請求項1又は2に記載の扁平形リチウム二次電池。
The battery outer can and the battery sealing can are caulked and fixed via an insulating gasket disposed on the inner edge of the battery outer can, and
The separator and the insulating gasket are made of a heat-resistant resin, and the non-aqueous electrolyte includes an organic solvent having a boiling point of 150 ° C. or higher as a solvent, and LiCF 3 SO 3 and LiN (CF 3 SO 2 ) 2 as solutes. , Containing at least one lithium salt selected from the group consisting of LiN (C 2 F 5 SO 2 ) 2 ,
The flat lithium secondary battery according to claim 1 or 2 .
前記電池外装缶と電池封口缶とが、レーザ溶接されることにより封口されており、かつ、The battery outer can and the battery sealing can are sealed by laser welding, and
前記セパレータが耐熱樹脂からなり、前記非水電解液が、溶媒として少なくとも沸点が150℃以上の有機溶媒を含むとともに、溶質としてLiCFThe separator is made of a heat-resistant resin, and the non-aqueous electrolyte contains an organic solvent having a boiling point of 150 ° C. or higher as a solvent and LiCF as a solute. 3 Three SOSO 3Three 、LiN(CF, LiN (CF 3 Three SOSO 2 2 ) 22 、LiN(C, LiN (C 2 2 F 5 Five SOSO 2 2 ) 22 からなる群から選択される少なくとも1種のリチウム塩を含むものである、Comprising at least one lithium salt selected from the group consisting of:
請求項1又は2に記載の扁平形リチウム二次電池。The flat lithium secondary battery according to claim 1 or 2.
JP2000306657A 2000-10-05 2000-10-05 Flat lithium secondary battery Expired - Fee Related JP4245267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000306657A JP4245267B2 (en) 2000-10-05 2000-10-05 Flat lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000306657A JP4245267B2 (en) 2000-10-05 2000-10-05 Flat lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2002117896A JP2002117896A (en) 2002-04-19
JP4245267B2 true JP4245267B2 (en) 2009-03-25

Family

ID=18787308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000306657A Expired - Fee Related JP4245267B2 (en) 2000-10-05 2000-10-05 Flat lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4245267B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4194332B2 (en) * 2002-09-30 2008-12-10 三洋電機株式会社 Lithium battery
JP4326201B2 (en) * 2002-09-30 2009-09-02 三洋電機株式会社 Heat-resistant lithium battery
JP5095088B2 (en) 2004-09-03 2012-12-12 パナソニック株式会社 Lithium primary battery
JP5928591B2 (en) * 2012-07-26 2016-06-01 Tdk株式会社 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP2002117896A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP3703667B2 (en) Nonaqueous electrolyte secondary battery
EP1788657B1 (en) Cylindrical lithium secondary battery
JP3885327B2 (en) Flat rectangular non-aqueous electrolyte secondary battery
EP1760820A1 (en) Rectangular lithium secondary battery
JP2005078800A (en) Positive active material powder of nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery using this
EP2299532B1 (en) Electrode assembly and secondary battery including the same
JP2008066040A (en) Battery and its manufacturing method
JP4245933B2 (en) Non-aqueous electrolyte secondary battery for reflow soldering
JP4761725B2 (en) Method for producing non-aqueous electrolyte battery
JP4281329B2 (en) Non-aqueous electrolyte battery
CN112913050A (en) Button type secondary battery
JP4245267B2 (en) Flat lithium secondary battery
JP2004327282A (en) Nonaqueous electrolyte secondary battery
JP4746846B2 (en) Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery
JP2013073794A (en) Nonaqueous electrolyte secondary battery
JP3627359B2 (en) Sealed non-aqueous secondary battery
JP4179536B2 (en) Coin-type non-aqueous electrolyte secondary battery for reflow soldering
JP4945074B2 (en) Nonaqueous electrolyte secondary battery
JP2004327305A (en) Manufacturing method of lithium secondary battery
JP2001043892A (en) Lithium battery
JPH1186824A (en) Nonaqueous electrolyte secondary battery
JP2003257415A (en) Nonaqueous electrolyte secondary battery
JP4194332B2 (en) Lithium battery
JP3697812B2 (en) Method for manufacturing lithium secondary battery
CN112889179A (en) Circuit substrate assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

R151 Written notification of patent or utility model registration

Ref document number: 4245267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees