JP4761725B2 - Method for producing non-aqueous electrolyte battery - Google Patents

Method for producing non-aqueous electrolyte battery Download PDF

Info

Publication number
JP4761725B2
JP4761725B2 JP2004131496A JP2004131496A JP4761725B2 JP 4761725 B2 JP4761725 B2 JP 4761725B2 JP 2004131496 A JP2004131496 A JP 2004131496A JP 2004131496 A JP2004131496 A JP 2004131496A JP 4761725 B2 JP4761725 B2 JP 4761725B2
Authority
JP
Japan
Prior art keywords
zeolite
positive electrode
active material
battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004131496A
Other languages
Japanese (ja)
Other versions
JP2005317266A (en
Inventor
誠二 森田
信博 西口
悟 成瀬
勝之 喜田
将之 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004131496A priority Critical patent/JP4761725B2/en
Publication of JP2005317266A publication Critical patent/JP2005317266A/en
Application granted granted Critical
Publication of JP4761725B2 publication Critical patent/JP4761725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、水分の混入による電池性能の劣化防止、耐熱性の向上及び電池容量の低下の抑制を目的とした、非水電解質電池の電極製造方法の改良に関する。  The present invention relates to an improvement in a method for producing an electrode for a non-aqueous electrolyte battery for the purpose of preventing deterioration of battery performance due to moisture mixing, improving heat resistance, and suppressing reduction in battery capacity.

非水電解質電池は、活物質として水と反応しやすいリチウムを用いるが、電池保存時に電池内部に水分が混入するおそれがあり、混入水分とリチウムとが反応して、電池性能を劣化させるという問題がある。  Non-aqueous electrolyte batteries use lithium, which is easy to react with water, as the active material, but there is a risk of moisture mixing inside the battery when the battery is stored, and the mixed water and lithium react to degrade battery performance. There is.

また、非水電解質電池は約85℃までの温度環境であれば使用可能であるが、自動車の電装部品(タイヤ空気圧計、自動料金収受システムの車載器等)やFA(ファクトリーオートメーション)機器などに組み込まれた電池は、しばしば100℃〜150℃を超える過酷な温度環境に晒される。   Non-aqueous electrolyte batteries can be used in a temperature environment up to about 85 ° C. However, they can be used for automobile electrical components (tire pressure gauges, automatic toll collection systems, etc.) and FA (factory automation) equipment. Built-in batteries are often exposed to harsh temperature environments above 100 ° C to 150 ° C.

さらに、非水電解質電池の電子機器への実装に際しては、生産効率を高めるためにリフローはんだ付け法が用いられているが、この方法によると短時間ではあるが、電池温度が200〜260℃にまで達する。  Furthermore, when mounting a non-aqueous electrolyte battery on an electronic device, a reflow soldering method is used to increase production efficiency. According to this method, the battery temperature is increased to 200 to 260 ° C. for a short time. Reach up to.

このように、電池が高温雰囲気に晒されると、正極活物質と電解液とが反応し、電解液が分解してガスが発生する。このガスによって電池が膨れ、また電極と電極外部端子との密着性が低下して、内部抵抗の増大を招くという問題がある。  Thus, when the battery is exposed to a high temperature atmosphere, the positive electrode active material and the electrolytic solution react, and the electrolytic solution is decomposed to generate gas. The gas swells due to this gas, and there is a problem that the adhesion between the electrode and the electrode external terminal is lowered, leading to an increase in internal resistance.

ここで、電池内に水分子等を吸着するゼオライトを添加する技術が提案されている(例えば、特許文献1、2参照。)。   Here, a technique of adding zeolite that adsorbs water molecules or the like in the battery has been proposed (see, for example, Patent Documents 1 and 2).

特開2003−323916号公報(段落0006−0014)JP 2003-323916 A (paragraphs 0006-0014) 特開2001−229975号公報(段落0007−0026)JP 2001-229975 (paragraphs 0007-0026)

上記文献1に記載の技術は、電池ケース内に、水分子の進入を許容する一方前記水分子より大きな分子の進入を規制可能な孔径を有する細孔が形成された多孔質体(ゼオライト)を備える技術である。この技術によると、水分子はゼオライトの細孔内に進入できるが、水分子よりも嵩高い非水溶媒分子は細孔内に進入できないので、非水溶媒分子が細孔内に吸着されることにより水の吸着が妨害されることを回避できる。これにより多孔質体に効率よく水を吸着させることができ、電池の劣化を抑制できるとされる。   In the technique described in the above-mentioned document 1, a porous body (zeolite) in which pores having pore sizes that allow entry of water molecules and restrict entry of molecules larger than the water molecules are formed in the battery case. It is a technology to prepare. According to this technology, water molecules can enter the pores of the zeolite, but non-aqueous solvent molecules that are bulkier than water molecules cannot enter the pores, so that non-aqueous solvent molecules are adsorbed in the pores. This prevents the water adsorption from being hindered. Thereby, it is said that water can be efficiently adsorbed to the porous body and deterioration of the battery can be suppressed.

上記文献2の技術は、正極、負極、非水電解質の少なくとも一個所に、表面を樹脂被覆したゼオライトを配置する技術である。この技術によると、電解質の高温保存時のガス発生を抑制できるので、且つ低温特性及びサイクル特性を向上させることができるとされる。   The technique of the above-mentioned document 2 is a technique in which a zeolite whose surface is coated with a resin is disposed in at least one of a positive electrode, a negative electrode, and a nonaqueous electrolyte. According to this technique, gas generation during high temperature storage of the electrolyte can be suppressed, and low temperature characteristics and cycle characteristics can be improved.

ところが、ゼオライトと、導電剤と、を活物質に混合して電極を作製すると、活物質量が同一であっても、放電容量が大幅に低下するという問題があった。  However, when an electrode is produced by mixing zeolite and a conductive agent in an active material, there is a problem that the discharge capacity is greatly reduced even if the amount of the active material is the same.

また、非水電解質中にゼオライト加えるには、アクリロニトリル−酢酸ビニル共重合体と、LiPF6と、ゼオライトと、エチレンカーボネートと、プロピレンカーボネートと、を混合した後、140℃で10分間加熱した後、ガラス上にキャストし、上からもう一枚のガラス板で挟み、−20℃、一昼夜保存する(特許文献2、段落0022)という煩雑な工程を必要とする。 To add zeolite to the non-aqueous electrolyte, acrylonitrile-vinyl acetate copolymer, LiPF 6 , zeolite, ethylene carbonate, and propylene carbonate are mixed, heated at 140 ° C. for 10 minutes, This requires a complicated process of casting on glass, sandwiching it with another glass plate from above, and storing it at −20 ° C. for a whole day and night (Patent Document 2, paragraph 0022).

本発明者らは、電極にゼオライトを添加することによる電池容量の低下について鋭意研究を行ったところ、活物質の表面が、リチウムイオンを導電せず、且つ絶縁性であるゼオライトに覆われることによって、活物質が充放電に寄与できなくなり、これにより電池容量の低下が引き起こされていることを知った。そして、特定の順序で、ゼオライトと導電剤と活物質とを添加・混合することにより、上記問題が解消することを見いだした。  The inventors of the present invention conducted intensive research on the reduction in battery capacity by adding zeolite to the electrode. As a result, the surface of the active material was not covered with lithium ions and was covered with an insulating zeolite. The active material can no longer contribute to charging and discharging, which has led to a decrease in battery capacity. And it discovered that the said problem was eliminated by adding and mixing a zeolite, a electrically conductive agent, and an active material in a specific order.

本発明は以上の知見に基づいて完成されたものであり、長期保存信頼性、耐熱性に優れ、且つ電池容量の低下を防止し得た非水電解質電池を提供することを目的とする。  The present invention has been completed based on the above findings, and an object of the present invention is to provide a nonaqueous electrolyte battery that is excellent in long-term storage reliability and heat resistance and that can prevent a decrease in battery capacity.

上記課題を解決するための第一の態様の本発明は、五酸化二ニオブ・モリブデン酸化物(MoO 2≦x≦3)及び二酸化マンガンからなる群より選択される1種以上の化合物からなる正極活物質とゼオライトと導電剤とを含む正極と、負極と、非水電解質と、を有する非水電解質電池の製造方法であって、前記ゼオライトと前記導電剤とを、両者の分布が均一となるまで混合する第一工程と、前記第一工程の後、前記ゼオライトと導電剤との混合物に前記正極活物質を加えて再度混合する第二工程とを備えることを特徴とする。 The first aspect of the present invention for solving the above-mentioned problems comprises one or more compounds selected from the group consisting of niobium pentoxide / molybdenum oxide (MoO x 2 ≦ x ≦ 3) and manganese dioxide. A method for producing a nonaqueous electrolyte battery comprising a positive electrode comprising a positive electrode active material, a zeolite, and a conductive agent, a negative electrode, and a nonaqueous electrolyte, wherein the zeolite and the conductive agent are distributed uniformly. And a second step of adding the positive electrode active material to the mixture of the zeolite and the conductive agent and mixing again after the first step.

上記課題を解決するための第二の態様の本発明は、リチウムマンガン酸化物・スピネル型マンガン酸リチウム・五酸化二ニオブ・モリブデン酸化物(MoOA second aspect of the present invention for solving the above problems is lithium manganese oxide, spinel type lithium manganate, niobium pentoxide, molybdenum oxide (MoO). xx 2≦x≦3)及び二酸化マンガンからなる群より選択される1種以上の化合物からなる正極活物質とゼオライトと導電剤とを含む正極と、リチウム合金からなる負極活物質を有する負極と、非水電解質と、を有するリフロー用非水電解質電池の製造方法であって、前記ゼオライトと前記導電剤とを、両者の分布が均一となるまで混合する第一工程と、前記第一工程の後、前記ゼオライトと導電剤との混合物に前記正極活物質を加えて再度混合する第二工程と、を備えることを特徴とする。  2 ≦ x ≦ 3) and a positive electrode active material made of one or more compounds selected from the group consisting of manganese dioxide, a positive electrode containing a zeolite and a conductive agent, a negative electrode having a negative electrode active material made of a lithium alloy, A non-aqueous electrolyte battery for reflow having a water electrolyte, the first step of mixing the zeolite and the conductive agent until the distribution of both is uniform, after the first step, And a second step of adding the positive electrode active material to the mixture of the zeolite and the conductive agent and mixing again.

ここで、前記リチウムマンガン酸化物とは、リチウム含有二酸化マンガンのことを意味し、このリチウムマンガン酸化物は、リチウム源と、マンガン源とを、Li:Mnのモル比が1:2となるように混合した後、空気中で350〜400℃で焼成することにより得られる。   Here, the lithium manganese oxide means lithium-containing manganese dioxide, and the lithium manganese oxide has a lithium source and a manganese source in a molar ratio of Li: Mn of 1: 2. And then calcining at 350 to 400 ° C. in air.

また、前記スピネル型マンガン酸リチウムとは、化学式がLiMn24で表され、スピネル型の結晶構造を有する化合物のことを意味し、このスピネル型マンガン酸リチウムは、リチウム源と、マンガン源とを、Li:Mnのモル比が1:2となるように混合した後、空気中で1500〜2000℃で焼成することにより得られる。 The spinel-type lithium manganate means a compound having a chemical formula represented by LiMn 2 O 4 and having a spinel-type crystal structure. The spinel-type lithium manganate includes a lithium source, a manganese source, Is mixed at a molar ratio of Li: Mn of 1: 2, and then fired at 1500 to 2000 ° C. in the air.

上記課題を解決するための第三の態様の本発明は、正極と、負極活物質とゼオライトと導電剤とを含む負極と、非水電解質と、を有する非水電解質電池の製造方法において、前記ゼオライトと前記導電剤とを、両者の分布が均一となるまで混合する第一工程と、前記第一工程の後、前記ゼオライトと導電剤との混合物に前記負極活物質を加えて再度混合する第二工程とを備えることを特徴とする。 In a third aspect of the present invention for solving the above-described problems, the present invention provides a method for producing a non-aqueous electrolyte battery comprising a positive electrode, a negative electrode containing a negative electrode active material, a zeolite, and a conductive agent, and a non-aqueous electrolyte. A first step of mixing the zeolite and the conductive agent until the distribution of both becomes uniform, and after the first step, the negative electrode active material is added to the mixture of the zeolite and the conductive agent and mixed again. It comprises two steps.

上記第三の態様の本発明においては、負極活物質として酸化錫やチタン酸リチウム、酸化タングステン、シリコン酸化物等の金属化合物、黒鉛等の炭素材料を用いることができる。 In the present invention of the third aspect, a metal compound such as tin oxide, lithium titanate, tungsten oxide, silicon oxide, or a carbon material such as graphite can be used as the negative electrode active material.

上記第一及び第二の態様の本発明に係る製造方法では、正極活物質と混合する前に、図2に示すようにゼオライトと導電剤とを予め分布が均一となるまで混合する第一工程を行った後、正極活物質を加えて再度混合する。この製造方法によると、正極活物質の表面はゼオライトに覆われてしまうことがなくなる。これにより、正極活物質が充放電に寄与しなくなるという弊害を解消でき、電池容量の低下を防止できる。 In the production method according to the first and second aspects of the present invention, before mixing with the positive electrode active material, the first step of mixing the zeolite and the conductive agent in advance until the distribution becomes uniform as shown in FIG. Then, the positive electrode active material is added and mixed again. According to this manufacturing method, the surface of the positive electrode active material is not covered with zeolite. As a result, it is possible to eliminate the negative effect that the positive electrode active material does not contribute to charge / discharge, and to prevent a decrease in battery capacity.

ここで、上記第一工程においては、ゼオライトと導電剤とを、両者の分布が均一となるまで混合することが必要である。なぜなら、ゼオライトと導電剤との混合が不十分であると、その後正極活物質と混合した場合に、正極活物質がゼオライトに覆われてしまうという問題が生じるためである。   Here, in said 1st process, it is necessary to mix a zeolite and a electrically conductive agent until both distribution becomes uniform. This is because if the mixing of the zeolite and the conductive agent is insufficient, there is a problem that the positive electrode active material is covered with the zeolite when mixed with the positive electrode active material.

また、ゼオライトは水分を吸着するので、電池を長期保存しても、混入水分による電池性能の劣化を抑制できる。   In addition, since zeolite adsorbs moisture, deterioration of battery performance due to mixed moisture can be suppressed even if the battery is stored for a long period of time.

また、ゼオライトはリフロー等の高温条件に晒されることによって発生するガスを吸着するので、電池の膨れやこれに伴う内部抵抗の増大を抑制できる。   Moreover, since zeolite adsorbs gas generated by exposure to high temperature conditions such as reflow, it is possible to suppress swelling of the battery and increase in internal resistance associated therewith.

ここで、リフロー用非水電解質二次電池に係る第二の態様の本発明では、正極活物質として熱安定性の面から、リチウムマンガン酸化物・スピネル型マンガン酸リチウム・五酸化二ニオブ・モリブデン酸化物(MoOx 2≦x≦3)及び二酸化マンガンからなる群より選択される1種以上の化合物を用い、且つ、負極活物質としてリチウム合金を用いるHere, in the second aspect of the present invention relating to the non-aqueous electrolyte secondary battery for reflow, as the positive electrode active material , from the viewpoint of thermal stability, lithium manganese oxide, spinel type lithium manganate, niobium pentoxide One or more compounds selected from the group consisting of molybdenum oxide (MoO x 2 ≦ x ≦ 3) and manganese dioxide are used, and a lithium alloy is used as the negative electrode active material.

また、上記第三の態様の本発明に係る製造方法においても、負極活物質がゼオライトに覆われることによって負極活物質が充放電に寄与しなくなるという弊害を解消できる。 Moreover, also in the manufacturing method according to the present invention of the third aspect, the negative effect that the negative electrode active material does not contribute to charging / discharging when the negative electrode active material is covered with zeolite can be solved.

本発明を実施するための最良の形態を、コイン型の非水電解質電池を例として、説明する。図1は、この電池の全体構成を示す断面図である。   The best mode for carrying out the present invention will be described by taking a coin-type non-aqueous electrolyte battery as an example. FIG. 1 is a cross-sectional view showing the overall configuration of this battery.

図1に示すように、電池外装缶(正極缶)1内には、正極2と、リチウム―アルミニウム合金を活物質とする負極3と、両極を離間するセパレータ4とから構成される電極体が収容されている。そして、このセパレータ4には、電解液が含浸されている。この電池は、正極缶2の開口部と電池封口缶(負極キャップ)6とが、リング形状の絶縁ガスケット5を介して、かしめ固定され封止されている。   As shown in FIG. 1, in a battery outer can (positive electrode can) 1, an electrode body composed of a positive electrode 2, a negative electrode 3 using a lithium-aluminum alloy as an active material, and a separator 4 separating both electrodes is provided. Contained. The separator 4 is impregnated with an electrolytic solution. In this battery, an opening of the positive electrode can 2 and a battery sealing can (negative electrode cap) 6 are caulked and sealed through a ring-shaped insulating gasket 5.

このような本発明に係る非水電解質電池の詳細を実施例によりさらに具体的に説明する。   The details of the nonaqueous electrolyte battery according to the present invention will be described more specifically with reference to examples.

(実施例1)
〈正極の作製〉
水酸化リチウムと、二酸化マンガンとを、Li:Mnのモル比が1:2となるように混合した後、空気中で375℃、20時間焼成することにより、正極活物質であるリチウムマンガン酸化物粉末を得た。
Example 1
<Preparation of positive electrode>
Lithium hydroxide and manganese dioxide are mixed so that the molar ratio of Li: Mn is 1: 2, and then calcined in air at 375 ° C. for 20 hours, whereby lithium manganese oxide as a positive electrode active material A powder was obtained.

上記正極活物質の作製と並行して、ゼオライト(Aldrich製:Molecular sieves、5A、69912-79-4)20質量部と、カーボンからなる導電剤5質量部とを分布が均一となるまで十分に混合した。この後、前記ゼオライトと導電剤との混合物25質量部に前記正極活物質74質量部を加えて再度混合した。この後、ポリテトラフルオロエチレンからなる結着剤1質量部とを混合し、正極合剤となした。この混合物を5トン/cm2で加圧成形し、直径2mm、厚み0.7mmの円板状の正極ペレットを得た。この正極ペレットを200℃で2時間真空乾燥して、正極2を作製した。 In parallel with the production of the positive electrode active material, 20 parts by mass of zeolite (manufactured by Aldrich: Molecular sieves, 5A, 69912-79-4) and 5 parts by mass of a conductive agent made of carbon are sufficiently obtained until the distribution is uniform. Mixed. Thereafter, 74 parts by mass of the positive electrode active material was added to 25 parts by mass of the mixture of zeolite and conductive agent and mixed again. Thereafter, 1 part by mass of a binder composed of polytetrafluoroethylene was mixed to obtain a positive electrode mixture. This mixture was pressure-molded at 5 ton / cm 2 to obtain a disk-shaped positive electrode pellet having a diameter of 2 mm and a thickness of 0.7 mm. This positive electrode pellet was vacuum-dried at 200 ° C. for 2 hours to produce a positive electrode 2.

〈負極の作製〉
ステンレス板とアルミニウム板とを貼り合わせ、内面がアルミニウム板になるようにしたクラッド材製の負極キャップを用いた。この負極キャップ内面のアルミニウム板の表面に直径2mm、厚み0.2mmの円板状の金属リチウム板を圧着して、負極を作製した。上記クラッド材のアルミニウムと金属リチウム板は、電池封口後に行われる充放電により合金化反応が起こるため、この負極の活物質はリチウム−アルミニウム合金となる。
<Preparation of negative electrode>
A negative electrode cap made of a clad material in which a stainless steel plate and an aluminum plate were bonded together so that the inner surface was an aluminum plate was used. A disc-shaped metallic lithium plate having a diameter of 2 mm and a thickness of 0.2 mm was pressure-bonded to the surface of the aluminum plate on the inner surface of the negative electrode cap to produce a negative electrode. Since the alloying reaction occurs between the aluminum clad material and the metal lithium plate after charging and discharging after the battery is sealed, the active material of the negative electrode is a lithium-aluminum alloy.

〈電解液の作製〉
プロピレンカーボネートとジエチレングリコールジメチルエーテルとを体積比1:1で混合した混合溶媒に、溶質としてのLiN(CF3SO22を1.0M(モル/リットル)の割合で溶解し、電解液を作製した。
<Preparation of electrolyte>
LiN (CF 3 SO 2 ) 2 as a solute was dissolved at a ratio of 1.0 M (mol / liter) in a mixed solvent in which propylene carbonate and diethylene glycol dimethyl ether were mixed at a volume ratio of 1: 1 to prepare an electrolytic solution. .

〈電池の作製〉
前記負極3上に、ポリフェニレンスルフィド(PPS)製の不織布からなるセパレータ4を載置させ、このセパレータ4に前記電解液を注液した。その後、セパレータ上に前記正極2を載置させ、さらにその上にステンレス製の正極缶1(厚み0.15mm)を被せた。この正極缶1と前記負極キャップ6とを、ポリフェニレンスルフィド(PPS)製の絶縁ガスケット5を介してかしめ封口し、電池径(直径)4.8mmで厚み1.4mmの実施例1に係る非水電解質電池を作製した。なお、PPSは耐熱性の高い樹脂である(融点:PPS、約280℃)。
<Production of battery>
A separator 4 made of a non-woven fabric made of polyphenylene sulfide (PPS) was placed on the negative electrode 3, and the electrolyte solution was injected into the separator 4. Then, the said positive electrode 2 was mounted on the separator, and also the stainless steel positive electrode can 1 (thickness 0.15 mm) was covered on it. The positive electrode can 1 and the negative electrode cap 6 are caulked and sealed through an insulating gasket 5 made of polyphenylene sulfide (PPS), and the nonaqueous solution according to Example 1 having a battery diameter (diameter) of 4.8 mm and a thickness of 1.4 mm is used. An electrolyte battery was produced. PPS is a resin having high heat resistance (melting point: PPS, about 280 ° C.).

(実施例2)
リチウムマンガン酸化物のかわりに、炭酸リチウムと二酸化マンガンをLi:Mnのモル比が1:2になるように混合し、1800℃で18時間焼成して得たスピネル型マンガン酸リチウムを用いて正極2を作製したこと以外は、上記実施例1と同様にして、実施例2に係る電池を作製した。
(Example 2)
Instead of lithium manganese oxide, lithium carbonate and manganese dioxide were mixed so that the molar ratio of Li: Mn was 1: 2, and fired at 1800 ° C. for 18 hours to use a spinel type lithium manganate. A battery according to Example 2 was produced in the same manner as in Example 1 except that 2 was produced.

(実施例3)
リチウムマンガン酸化物のかわりに、五酸化二ニオブを用いて正極2を作製したこと以外は、上記実施例1と同様にして、実施例3に係る電池を作製した。
(Example 3)
A battery according to Example 3 was produced in the same manner as in Example 1 except that the positive electrode 2 was produced using niobium pentoxide instead of lithium manganese oxide.

(実施例4)
リチウムマンガン酸化物のかわりに、三酸化モリブデン(MoO3)を用いて正極2を作製したこと以外は、上記実施例1と同様にして、実施例4に係る電池を作製した。
Example 4
A battery according to Example 4 was produced in the same manner as in Example 1 except that the positive electrode 2 was produced using molybdenum trioxide (MoO 3 ) instead of lithium manganese oxide.

(比較例1)
前記リチウムマンガン酸化物74質量部と、ゼオライト20質量部と、導電剤5質量部を同時に混合したこと以外は、上記実施例1と同様にして、比較例1に係る電池を作製した。
(Comparative Example 1)
A battery according to Comparative Example 1 was produced in the same manner as in Example 1 except that 74 parts by mass of the lithium manganese oxide, 20 parts by mass of zeolite, and 5 parts by mass of the conductive agent were mixed at the same time.

(比較例2)
ゼオライトを用いなかったこと以外は、上記比較例1と同様にして、比較例2に係る電池を作製した(リチウムマンガン酸化物94質量部、導電剤5質量部、結着剤1質量部)。
(Comparative Example 2)
A battery according to Comparative Example 2 was produced in the same manner as Comparative Example 1 except that no zeolite was used (94 parts by mass of lithium manganese oxide, 5 parts by mass of a conductive agent, and 1 part by mass of a binder).

上記で作製した実施例1〜4、比較例1、2について下記の試験を行った。   The following test was done about Examples 1-4 produced above and Comparative Examples 1 and 2.

〈耐リフロー試験〉
電池の表面温度が、最大で240℃となるように設定したリフロー炉内に各電池を2回投入した。このリフロー前後の各電池について、電池全高及び1kHzの交流内部抵抗値を測定した。
また、リフロー後内部抵抗÷リフロー前内部抵抗を、内部抵抗変化率とした。なお、検体数は20である。
ここで、リフロー炉に2回投入したのは、両面実装基板において、表裏面で2回のはんだ付けを行うことを考慮に入れたものである。
<Reflow resistance test>
Each battery was loaded twice into a reflow furnace set so that the surface temperature of the battery was 240 ° C. at maximum. About each battery before and after this reflow, the battery total height and the alternating current internal resistance value of 1 kHz were measured.
Further, the internal resistance after reflow ÷ the internal resistance before reflow was defined as the rate of change in internal resistance. The number of specimens is 20.
Here, the reason why the reflow furnace was charged twice is that the soldering is performed twice on the front and back surfaces of the double-sided mounting board.

〈放電容量の測定〉
耐リフロー試験後の各電池を、一度放電した後、室温で保護抵抗3kΩ、3Vで30時間充電し、その後室温で300kΩの固定抵抗で放電し、その放電容量(放電容量は電池電圧が2.0Vになるまでの値である)を測定した。なお、検体数は2である。
ここで、リフロー後に放電を行ったのは、リフローによって正・負極表面に形成された電解液の分解生成物である被膜を電極から脱離させて、電池を活性化するためである。
<Measurement of discharge capacity>
Each battery after the reflow resistance test was discharged once, then charged at room temperature with a protective resistance of 3 kΩ and 3 V for 30 hours, and then discharged with a fixed resistance of 300 kΩ at room temperature. It is a value until it becomes 0V). Note that the number of specimens is two.
Here, the discharge was performed after the reflow because the coating, which is a decomposition product of the electrolytic solution formed on the positive and negative electrode surfaces by the reflow, is detached from the electrode to activate the battery.

〈低温放電容量の測定〉
耐リフロー試験後の各電池を、一度放電した後、室温で保護抵抗3kΩ、3Vで30時間充電し、その後−20℃で300kΩの固定抵抗で放電し、その放電容量(放電容量は電池電圧が2.0Vになるまでの値である)を測定した。なお、検体数は2である。
<Measurement of low-temperature discharge capacity>
Each battery after the reflow resistance test was discharged once, then charged at room temperature with a protective resistance of 3 kΩ and 3 V for 30 hours, and then discharged at −20 ° C. with a fixed resistance of 300 kΩ. It is a value up to 2.0V). Note that the number of specimens is two.

〈ハイレート放電容量の測定〉
耐リフロー試験後の各電池を、一度放電した後、室温で保護抵抗3kΩ、3Vで30時間充電し、その後室温で20μAで放電し、その放電容量(放電容量は電池電圧が2.0Vになるまでの値である)を測定した。なお、検体数は2である。
<Measurement of high-rate discharge capacity>
Each battery after the reflow resistance test was discharged once, and then charged at room temperature with a protective resistance of 3 kΩ and 3 V for 30 hours, and then discharged at room temperature at 20 μA, and its discharge capacity (the battery capacity becomes 2.0 V). Is a value up to). Note that the number of specimens is two.

上記各試験結果(全て平均値)を、下記表1に示す。  The test results (all average values) are shown in Table 1 below.

上記表1から、初回放電時にゼオライトを含まない比較例2では、リフロー後の電池厚みが1.42mmと、実施例1〜4の1.39mmよりも大きく膨れていることがわかる。
また、リフロー前の内部抵抗が182Ω、リフロー後の内部抵抗が359Ωと、実施例1〜4の159〜171Ω、251〜286Ωよりもそれぞれ大きくなっていることがわかる。
また、内部抵抗変化率が、比較例2では1.97と、実施例1〜4の1.52〜1.74よりも大きいことがわかる。
From Table 1 above, it can be seen that in Comparative Example 2 that does not contain zeolite during the first discharge, the battery thickness after reflow is 1.42 mm, which is larger than 1.39 mm in Examples 1 to 4.
Moreover, it turns out that the internal resistance before reflow is 182 Ω, and the internal resistance after reflow is 359 Ω, which is larger than 159 to 171 Ω and 251 to 286 Ω in Examples 1 to 4, respectively.
Moreover, it turns out that internal resistance change rate is larger than 1.52 in Comparative Example 2 and 1.52-1.74 of Examples 1-4.

このことは、次のように考えられる。
実施例1〜4では、電池作製時に混入した水分がゼオライトに吸着される。他方、ゼオライトを含まない比較例2では、電池作製時に混入した水分とリチウムとが反応して電池を劣化させるので、比較例2のリフロー前の内部抵抗が大きくなる。
This is considered as follows.
In Examples 1 to 4, moisture mixed during battery production is adsorbed to zeolite. On the other hand, in Comparative Example 2 that does not contain zeolite, moisture mixed during the battery production and lithium react to deteriorate the battery, so that the internal resistance before reflow of Comparative Example 2 increases.

また、リフローを行うと、正極と電解質とが反応してガスが発生するが、実施例1〜4ではこのガスをゼオライトが吸収する。他方、ゼオライトを含まない比較例2では、このガスによって電池が膨張して電池厚みが大きくなり、また正極2と正極缶1との密着性が低下して、リフロー後の内部抵抗及び内部抵抗変化率が大きくなる。  Moreover, when reflow is performed, the positive electrode and the electrolyte react to generate gas. In Examples 1 to 4, this gas is absorbed by the zeolite. On the other hand, in Comparative Example 2 that does not contain zeolite, the gas expands due to this gas and the thickness of the battery increases, and the adhesion between the positive electrode 2 and the positive electrode can 1 decreases, and the internal resistance and internal resistance change after reflowing. The rate increases.

また、ゼオライトと導電剤とを混合した後に正極活物質を混合した実施例1〜4は、放電容量が0.260〜0.291mAh、低温放電容量が0.077〜0.095mAh、20μA放電容量が0.141〜0.150mAhと、ゼオライトと導電剤と正極活物質とを同時に混合した比較例1の0.131mAh、0.026mAh、0.087mAhよりもそれぞれ大きくなっていることがわかる。  In Examples 1 to 4, in which the positive electrode active material was mixed after mixing the zeolite and the conductive agent, the discharge capacity was 0.260 to 0.291 mAh, the low temperature discharge capacity was 0.077 to 0.095 mAh, and the 20 μA discharge capacity. Is 0.141 to 0.150 mAh, and is larger than 0.131 mAh, 0.026 mAh, and 0.087 mAh of Comparative Example 1 in which zeolite, a conductive agent, and a positive electrode active material are simultaneously mixed.

このことは、次のように考えられる。
ゼオライトは絶縁性であり、且つリチウムイオンの導電性がないため、単純にゼオライトと正極活物質とを混合した場合には、ゼオライトが正極活物質粒子の表面を覆い、当該活物質粒子表面でのリチウムイオンの移動を阻害するように作用する。この結果、充放電に寄与できない正極活物質量が増大して、放電容量が低下する。
This is considered as follows.
Since zeolite is insulative and does not have lithium ion conductivity, when zeolite and the positive electrode active material are simply mixed, the zeolite covers the surface of the positive electrode active material particles, and the surface of the active material particles It acts to inhibit the movement of lithium ions. As a result, the amount of the positive electrode active material that cannot contribute to charge / discharge increases, and the discharge capacity decreases.

他方、予めゼオライトと導電剤とを均一に混合し、しかる後に正極活物質と混合すると、正極活物質は導電剤を介してゼオライト接触するようになり、ゼオライトが正極活物質表面でのリチウムイオンの移動を阻害することがない。このため、放電容量の低下を防止できる。  On the other hand, when the zeolite and the conductive agent are uniformly mixed in advance, and then mixed with the positive electrode active material, the positive electrode active material comes into contact with the zeolite through the conductive agent, and the zeolite is charged with lithium ions on the surface of the positive electrode active material. There is no hindrance to movement. For this reason, a reduction in discharge capacity can be prevented.

また、実施例1〜4の結果から、正極活物質としてリチウムマンガン酸化物・スピネル型マンガン酸リチウム・五酸化二ニオブ・モリブデン酸化物(MoOx 2≦x≦3)を用いれば、良好な性能を有する非水電解質二次電池が得られることがわかる。 Further, from the results of Examples 1 to 4, good performance can be obtained by using lithium manganese oxide, spinel type lithium manganate, niobium pentoxide, and molybdenum oxide (MoO x 2 ≦ x ≦ 3) as the positive electrode active material. It can be seen that a non-aqueous electrolyte secondary battery having the following can be obtained.

〔その他の事項〕
なお、上記実施例では正極合剤100質量部中に占めるゼオライトの質量を20質量部としたが、この値に限定されることはない。しかし、ゼオライトの量が過小であると本発明の効果を十分に得られず、過大であると正極合剤中に占める正極活物質量が少なくなるので電池容量の低下を招く。従って、ゼオライトの添加量は、好ましくは5質量部以上40質量部以下とし、さらに好ましくは10質量部以上30質量部以下とする。
[Other matters]
In addition, although the mass of the zeolite which occupies in 100 mass parts of positive electrode mixtures was 20 mass parts in the said Example, it is not limited to this value. However, if the amount of zeolite is too small, the effect of the present invention cannot be obtained sufficiently, and if it is too large, the amount of the positive electrode active material in the positive electrode mixture decreases, leading to a decrease in battery capacity. Therefore, the amount of zeolite added is preferably 5 parts by mass or more and 40 parts by mass or less, and more preferably 10 parts by mass or more and 30 parts by mass or less.

また、正極活物質として二酸化マンガンを用いてもよい。
また、本発明を高温条件に晒される電池ではなく、長期保存用の電池に用いる場合には、正極活物質には熱安定性が要求されないので、コバルト酸リチウム、ニッケル酸リチウム等を用いることができる。また、負極活物質として、黒鉛等の炭素材料を用いることができる。
Further, manganese dioxide may be used as the positive electrode active material.
In addition, when the present invention is used for a battery for long-term storage rather than a battery exposed to high temperature conditions, the positive electrode active material is not required to have thermal stability, so that lithium cobaltate, lithium nickelate, or the like may be used. it can. A carbon material such as graphite can be used as the negative electrode active material.

また、本発明は、導電剤を含む負極を用いた電池にも適用することができる。この場合、負極活物質としては、酸化錫やチタン酸リチウム、酸化タングステン、シリコン酸化物等の金属化合物、黒鉛等の炭素材料を用いればよい。また、ゼオライトの添加量は、上記正極と同様でよい。   The present invention can also be applied to a battery using a negative electrode containing a conductive agent. In this case, as the negative electrode active material, a metal compound such as tin oxide, lithium titanate, tungsten oxide, or silicon oxide, or a carbon material such as graphite may be used. The amount of zeolite added may be the same as that of the positive electrode.

また、負極活物質としてはリチウム−アルミニウム合金を用いたが、これに限定されることはなく、リチウム−シリコン合金・リチウム−錫合金等の他のリチウム合金を用いてもよい。また、これらの合金に他の金属を微量含む合金であってもよい。   Moreover, although lithium-aluminum alloy was used as a negative electrode active material, it is not limited to this, You may use other lithium alloys, such as a lithium- silicon alloy and a lithium- tin alloy. Moreover, the alloy which contains trace amount of other metals in these alloys may be sufficient.

また、リフロー以外の耐熱用非水電解質電池において、正極活物質としてリチウムマンガン酸化物やコバルト酸リチウム等のリチウムを含む化合物を用いる場合には、放電によって電池を活性化させる必要がないため、リチウム合金ではなく、リチウムと合金化する金属(アルミニウム・シリコン等)を用いることができる。   Further, in a heat-resistant non-aqueous electrolyte battery other than reflow, when a compound containing lithium such as lithium manganese oxide or lithium cobaltate is used as the positive electrode active material, it is not necessary to activate the battery by discharge. Instead of an alloy, a metal (aluminum, silicon, or the like) alloyed with lithium can be used.

また、リチウムマンガン酸化物を作製する際に用いるリチウムとしては、水酸化リチウム以外に、炭酸リチウム、硝酸リチウム、酸化リチウム、またはこれらの混合物等を用いてもよい。また、スピネル型マンガン酸リチウムの作製においても同様に、上記リチウム化合物を用いることができる。   In addition to lithium hydroxide, lithium carbonate, lithium nitrate, lithium oxide, a mixture thereof, or the like may be used as lithium used when producing the lithium manganese oxide. Similarly, the lithium compound can be used in the production of spinel type lithium manganate.

また、電解質塩としては、LiN(CF3SO22以外にLiN(C25SO22、LiPF6、LiBF4、LiClO4等を用いることができる。またこれらの混合物であってもよい。中でも、高温条件に晒される非水電解質電池においては、熱安定性に優れることから、LiN(CF3SO22、LiN(C25SO22を用いることが好ましい。 In addition to LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiPF 6 , LiBF 4 , LiClO 4 and the like can be used as the electrolyte salt. A mixture thereof may also be used. Among these, in a nonaqueous electrolyte battery exposed to high temperature conditions, it is preferable to use LiN (CF 3 SO 2 ) 2 or LiN (C 2 F 5 SO 2 ) 2 because of excellent thermal stability.

また、上記実施例では非水電解質二次電池を例として説明したが、本発明を非水電解質一次電池に適用しても同様の優れた効果が得られる。この場合、正極活物質として、二酸化マンガン、フッ化黒鉛、二硫化鉄、硫化鉄等を用いることができるが、高温条件に晒される非水電解質一次電池においては、熱安定性の点から二酸化マンガンの使用が好ましい。
また、負極活物質としては、リチウム金属やリチウム合金を用いることが好ましい。
Moreover, although the said Example demonstrated the nonaqueous electrolyte secondary battery as an example, even if it applies this invention to a nonaqueous electrolyte primary battery, the same outstanding effect is acquired. In this case, manganese dioxide, fluorinated graphite, iron disulfide, iron sulfide, or the like can be used as the positive electrode active material. However, in a nonaqueous electrolyte primary battery exposed to high temperature conditions, manganese dioxide is used from the viewpoint of thermal stability. Is preferred.
Moreover, it is preferable to use lithium metal or a lithium alloy as the negative electrode active material.

また、上記実施例では、電池外装缶の開口部を封止するために、ガスケットを用いたカシメ封止法を用いたが、この方法以外にもレーザー照射による封止方法、樹脂からなる封止部材を熱溶着する方法等を用いてもよい。   In the above embodiment, a caulking sealing method using a gasket is used to seal the opening of the battery outer can, but besides this method, a sealing method by laser irradiation, a sealing made of resin You may use the method of heat-welding a member.

また、高温条件に晒される非水電解質電池に用いるセパレータの材質としては、その耐熱温度(融点・分解温度)が、150℃を超えて高いことが好ましく、リフローはんだの溶解温度(185℃)を超えて高いことがより好ましく、リフロー時の最低温度(200℃)を超えて高いことがさらに好ましく、リフロー時の最高温度(260℃)を超えて高いことが最も好ましい。   Moreover, as a material of the separator used for the nonaqueous electrolyte battery exposed to high temperature conditions, the heat-resistant temperature (melting point / decomposition temperature) is preferably higher than 150 ° C., and the reflow solder melting temperature (185 ° C.) is set. It is more preferably higher, more preferably higher than the minimum temperature (200 ° C.) during reflow, and most preferably higher than the maximum temperature (260 ° C.) during reflow.

このような耐熱性樹脂の具体例としては、上記ポリフェニレンスルフィド以外に、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリブチレンテレフタレート、セルロース等の耐熱性樹脂、または、樹脂素材にガラス繊維等のフィラーを添加してさらに耐熱温度を向上させた樹脂等が例示できる。  As a specific example of such a heat-resistant resin, in addition to the above polyphenylene sulfide, a heat-resistant resin such as polyether ether ketone, polyether ketone, polybutylene terephthalate, and cellulose, or a filler such as glass fiber is added to the resin material Thus, a resin having a further improved heat resistant temperature can be exemplified.

他方、高温条件に晒されない長期保存用の非水電解質電池に用いる場合には、ポリオレフィン系樹脂を用いることができる。  On the other hand, when used in a non-aqueous electrolyte battery for long-term storage that is not exposed to high temperature conditions, a polyolefin-based resin can be used.

また、ガスケットによるカシメ封止や樹脂を溶着する場合には、これらの材料として、上記セパレータで用いた材料を用いることができる。  Moreover, when crimping sealing with a gasket or welding a resin, the materials used in the separator can be used as these materials.

また、上記実施例ではコイン型の電池を作製したが、円筒形、角型、ラミネート外装体等の他の形状の電池にも適用できる。   Moreover, although the coin-type battery was produced in the said Example, it can apply also to batteries of other shapes, such as a cylindrical shape, a square shape, and a laminated exterior body.

また、上記実施例ではゼオライトと導電剤との混合物に正極活物質を加えて混合した後、結着剤を加えたが、ゼオライトと導電剤との混合物に、正極活物質と結着剤とを同時に加えて混合してもよい。   Further, in the above embodiment, the positive electrode active material was added to the mixture of zeolite and the conductive agent, and then the binder was added. However, the positive electrode active material and the binder were added to the mixture of zeolite and the conductive agent. You may add and mix simultaneously.

以上説明したように、本発明によると、水分による電池性能の劣化を防止でき、高温条件に晒されても電池が膨張せず、且つ電池容量の低下を抑制し得た非水電解質電池が得られる。従って産業上の利用可能性は大きい。   As described above, according to the present invention, it is possible to prevent the battery performance from being deteriorated due to moisture, to obtain a non-aqueous electrolyte battery that does not expand even when exposed to high temperature conditions, and that can suppress a decrease in battery capacity. It is done. Therefore, industrial applicability is great.

本発明に係るコイン型非水電解質電池を模式的に示す断面図である。1 is a cross-sectional view schematically showing a coin-type nonaqueous electrolyte battery according to the present invention. 本発明に係る第一工程後のゼオライトと導電剤との分布状態を示す顕微鏡写真である。It is a microscope picture which shows the distribution state of the zeolite after the 1st process which concerns on this invention, and a electrically conductive agent.

符号の説明Explanation of symbols

1 電池外装缶(正極缶)
2 正極
3 負極
4 セパレータ
5 絶縁ガスケット
6 電池封口缶(負極キャップ)

1 Battery outer can (positive electrode can)
2 Positive electrode 3 Negative electrode 4 Separator 5 Insulating gasket 6 Battery sealing can (negative electrode cap)

Claims (3)

五酸化二ニオブ・モリブデン酸化物(MoO 2≦x≦3)及び二酸化マンガンからなる群より選択される1種以上の化合物からなる正極活物質とゼオライトと導電剤とを含む正極と、負極と、非水電解質と、を有する非水電解質電池の製造方法であって
前記ゼオライトと前記導電剤とを、両者の分布が均一となるまで混合する第一工程と、
前記第一工程の後、前記ゼオライトと導電剤との混合物に前記正極活物質を加えて再度混合する第二工程と、
を備えることを特徴とする非水電解質電池の製造方法。
A positive electrode comprising a positive electrode active material comprising at least one compound selected from the group consisting of niobium pentoxide / molybdenum oxide (MoO x 2 ≦ x ≦ 3) and manganese dioxide , a zeolite and a conductive agent, and a negative electrode; a method of manufacturing a nonaqueous electrolyte battery having a nonaqueous electrolyte,
A first step of mixing the zeolite and the conductive agent until the distribution of both is uniform;
After the first step, a second step of adding the positive electrode active material to the mixture of the zeolite and the conductive agent and mixing again;
A method for producing a nonaqueous electrolyte battery, comprising:
リチウムマンガン酸化物・スピネル型マンガン酸リチウム・五酸化二ニオブ・モリブデン酸化物(MoOLithium manganese oxide, spinel type lithium manganate, niobium pentoxide, molybdenum oxide (MoO xx 2≦x≦3)及び二酸化マンガンからなる群より選択される1種以上の化合物からなる正極活物質とゼオライトと導電剤とを含む正極と、リチウム合金からなる負極活物質を有する負極と、非水電解質と、を有するリフロー用非水電解質電池の製造方法であって、  2 ≦ x ≦ 3) and a positive electrode active material made of one or more compounds selected from the group consisting of manganese dioxide, a positive electrode containing a zeolite and a conductive agent, a negative electrode having a negative electrode active material made of a lithium alloy, A method for producing a non-aqueous electrolyte battery for reflow comprising a water electrolyte,
前記ゼオライトと前記導電剤とを、両者の分布が均一となるまで混合する第一工程と、A first step of mixing the zeolite and the conductive agent until the distribution of both is uniform;
前記第一工程の後、前記ゼオライトと導電剤との混合物に前記正極活物質を加えて再度混合する第二工程と、After the first step, a second step of adding the positive electrode active material to the mixture of the zeolite and the conductive agent and mixing again;
を備えることを特徴とするリフロー用非水電解質電池の製造方法。A method for producing a non-aqueous electrolyte battery for reflow, comprising:
正極と、負極活物質とゼオライトと導電剤とを含む負極と、非水電解質と、を有する非水電解質電池の製造方法において、
前記ゼオライトと前記導電剤とを、両者の分布が均一となるまで混合する第一工程と、
前記第一工程の後、前記ゼオライトと導電剤との混合物に前記負極活物質を加えて再度混合する第二工程と、
を備えることを特徴とする非水電解質電池の製造方法。
In a method for producing a nonaqueous electrolyte battery having a positive electrode, a negative electrode containing a negative electrode active material, zeolite, and a conductive agent, and a nonaqueous electrolyte,
A first step of mixing the zeolite and the conductive agent until the distribution of both is uniform;
After the first step, a second step of adding the negative electrode active material to the mixture of the zeolite and the conductive agent and mixing again;
A method for producing a nonaqueous electrolyte battery, comprising:
JP2004131496A 2004-04-27 2004-04-27 Method for producing non-aqueous electrolyte battery Expired - Fee Related JP4761725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004131496A JP4761725B2 (en) 2004-04-27 2004-04-27 Method for producing non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004131496A JP4761725B2 (en) 2004-04-27 2004-04-27 Method for producing non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2005317266A JP2005317266A (en) 2005-11-10
JP4761725B2 true JP4761725B2 (en) 2011-08-31

Family

ID=35444472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004131496A Expired - Fee Related JP4761725B2 (en) 2004-04-27 2004-04-27 Method for producing non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4761725B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3009399A4 (en) * 2013-06-12 2016-12-14 Hitachi Chemical Co Ltd Aluminum silicate complex, conductive material, conductive material for lithium ion secondary cell, composition for forming lithium ion secondary cell negative electrode, composition for forming lithium ion secondary cell positive electrode, negative electrode for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8483304B2 (en) 2005-10-31 2013-07-09 Sharp Kabushiki Kaisha Radio transmitter, radio communication system, and radio transmission method
US8003258B2 (en) * 2006-01-19 2011-08-23 The Gillette Company Alkaline cell with improved anode
JP4797942B2 (en) * 2006-11-08 2011-10-19 トヨタ自動車株式会社 Power storage device and method of using the same
CN102064326B (en) * 2010-12-16 2016-01-06 东莞新能源电子科技有限公司 The agent of lithium ion battery plus-negative plate dispersion of materials
US20140203787A1 (en) * 2011-07-29 2014-07-24 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2013246960A (en) * 2012-05-25 2013-12-09 Acr Co Ltd Electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6398350B2 (en) * 2013-06-12 2018-10-03 日立化成株式会社 Conductive material
JP2015216089A (en) * 2014-04-23 2015-12-03 日立化成株式会社 Composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary, and lithium ion secondary battery
JP2016115552A (en) * 2014-12-16 2016-06-23 日立化成株式会社 Conducive material
JP6455123B2 (en) * 2014-12-16 2019-01-23 日立化成株式会社 Conductive material for lithium ion secondary battery, composition for forming negative electrode of lithium ion secondary battery, composition for forming positive electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary Secondary battery
JP6418250B2 (en) * 2014-12-17 2018-11-07 日立化成株式会社 Lithium ion secondary battery
JP6895988B2 (en) * 2016-11-15 2021-06-30 昭和電工マテリアルズ株式会社 Materials for lithium-ion secondary batteries, positive electrode mixture, positive electrodes for lithium-ion secondary batteries and lithium-ion secondary batteries
CN112889163A (en) * 2018-10-30 2021-06-01 日本碍子株式会社 Button type lithium secondary battery
CN113795955A (en) * 2021-03-30 2021-12-14 宁德新能源科技有限公司 Battery and electronic device using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134720A (en) * 1995-11-10 1997-05-20 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP3596578B2 (en) * 1997-03-26 2004-12-02 株式会社ユアサコーポレーション Non-aqueous electrolyte secondary battery
JPH11144734A (en) * 1997-11-04 1999-05-28 Hitachi Ltd Lithium secondary battery and manufacture of lithium secondary battery
JP2005174655A (en) * 2003-12-09 2005-06-30 Toyota Motor Corp Lithium battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3009399A4 (en) * 2013-06-12 2016-12-14 Hitachi Chemical Co Ltd Aluminum silicate complex, conductive material, conductive material for lithium ion secondary cell, composition for forming lithium ion secondary cell negative electrode, composition for forming lithium ion secondary cell positive electrode, negative electrode for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell

Also Published As

Publication number Publication date
JP2005317266A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
US9985262B2 (en) Battery
JP4625733B2 (en) Nonaqueous electrolyte secondary battery and battery pack
JP5049680B2 (en) Nonaqueous electrolyte battery and battery pack
KR100814560B1 (en) Secondary battery with terminal for surface mounting
JP4761725B2 (en) Method for producing non-aqueous electrolyte battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JP2009054319A (en) Nonaqueous electrolyte solution battery
JPH11191417A (en) Nonaqueous electrolytic secondary battery and manufacture thereof
CN101355146A (en) Anode, battery, and methods of manufacturing them
JP2013045759A (en) Nonaqueous electrolyte secondary battery and manufacturing method of the same
JP2008060033A (en) Positive-electrode active material, positive electrode using the same, nonaqueous electrolyte secondary battery, and positive-electrode active material manufacturing method
WO2020202844A1 (en) Lithium secondary battery
JP2008251480A (en) Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous secondary battery using it
JP2003208924A (en) Lithium secondary battery
JP2010231960A (en) Nonaqueous electrolyte battery
JP4911938B2 (en) Reflow heat-resistant lithium secondary battery
JP2005285545A (en) Lithium secondary battery
KR102191806B1 (en) Cathode active material for lithium secondary battery and methode of manufacturing the same
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP4439200B2 (en) Method for manufacturing lithium secondary battery
JP4326201B2 (en) Heat-resistant lithium battery
JP2005190953A (en) Lithium secondary battery
US10153486B2 (en) Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2006216450A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4761725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees