JP2001043892A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JP2001043892A
JP2001043892A JP11214846A JP21484699A JP2001043892A JP 2001043892 A JP2001043892 A JP 2001043892A JP 11214846 A JP11214846 A JP 11214846A JP 21484699 A JP21484699 A JP 21484699A JP 2001043892 A JP2001043892 A JP 2001043892A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
layer
lithium battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11214846A
Other languages
Japanese (ja)
Inventor
Hiromitsu Mishima
洋光 三島
Shinji Umagome
伸二 馬込
Toshihiko Kamimura
俊彦 上村
Nobuyuki Kitahara
暢之 北原
Toru Hara
亨 原
Makoto Osaki
誠 大崎
Hisashi Higuchi
永 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11214846A priority Critical patent/JP2001043892A/en
Publication of JP2001043892A publication Critical patent/JP2001043892A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium battery cleared of a problem carried by a conventional lithium battery that safety is impaired by the low heat resistance of battery component materials. SOLUTION: This lithium battery is made by interposing an electrolyte layer 2 between a positive-electrode layer 1 and a negative-electrode layer 3 and sealing them in a battery jar comprising a positive-electrode battery jar 4 and a negative-electrode battery jar 5. The positive-electrode layer 1 and the negative-electrode layer 3 are each formed of an active material and an inorganic solid electrolyte, the electrolyte layer 2 is formed of an inorganic solid electrolyte, the positive-electrode battery jar 4 and the negative-electrode battery jar 5 are each formed of a sheet made of metal, and peripheral parts of the positive-electrode battery jar 4 and of the negative-electrode battery jar 5 are airtightly sealed with insulating ceramics provided with a metallized part on its surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム電池に関
し、特に電極層や電解質層が無機物から成るリチウム電
池に関する。
The present invention relates to a lithium battery, and more particularly to a lithium battery in which an electrode layer and an electrolyte layer are made of an inorganic material.

【0002】[0002]

【従来技術および発明が解決しようとする課題】携帯電
話やパーソナルコンピュータに代表される携帯機器の近
年の目覚しい発達に伴い、その電源としての電池の需要
も急速に増加している。特に、リチウム電池は原子量が
小さく、かつイオン化エネルギーが大きなリチウムを使
う電池であることから、高エネルギー密度を得ることが
できる電池として盛んに研究され、現在では携帯機器の
電源をはじめとして広範囲に用いられるに至っている。
2. Description of the Related Art With the recent remarkable development of portable devices typified by portable telephones and personal computers, demand for batteries as power sources has been rapidly increasing. In particular, lithium batteries are batteries that use lithium, which has a small atomic weight and a large ionization energy, and are therefore being actively studied as batteries capable of obtaining high energy densities. Has been reached.

【0003】これらのリチウム電池には、大きく分けて
円筒型と角型があるが、いずれも正極と負極がセパレー
タを介して捲回された極群を電槽缶内に挿入し、そこに
有機電解液を注入して封口した構造となっている。
[0003] These lithium batteries are roughly classified into a cylindrical type and a rectangular type. In both cases, a positive electrode and a negative electrode are wound into a battery case with a positive electrode and a negative electrode wound through a separator. The structure is such that the electrolyte is injected and sealed.

【0004】リチウム電池では、正極活物質としてコバ
ルト酸リチウム(LiCoO2 )やマンガン酸リチウム
(LiMn2 4 )が一般的に用いられている。負極活
物質には、コークスや炭素繊維などの炭素材料が用いら
れている。このLiCoO2やLiMn2 4 の充放電
電圧は約4Vである。これに対して炭素材料の充放電電
圧は0V付近である。したがって、これらの正極活物質
と負極活物質を組み合わせることでリチウム電池は公称
電圧3.5V以上の高電圧を達成している。
In a lithium battery, lithium cobalt oxide (LiCoO 2 ) or lithium manganate (LiMn 2 O 4 ) is generally used as a positive electrode active material. Carbon materials such as coke and carbon fiber are used for the negative electrode active material. The charge and discharge voltage of LiCoO 2 and LiMn 2 O 4 is about 4V. On the other hand, the charge / discharge voltage of the carbon material is around 0V. Therefore, the lithium battery achieves a high voltage of 3.5 V or more by combining these positive electrode active materials and negative electrode active materials.

【0005】しかしながら、これらのリチウム電池は電
解質に可燃性の高い低沸点有機溶媒を使用しているた
め、作動温度範囲が狭く、特に60℃を超える高温では
使用できないという問題がある。さらに、過充電や短絡
といった異常時に急激な発熱が起こると発煙や破裂や発
火に至る危険性を内在している。
However, since these lithium batteries use a highly flammable low-boiling organic solvent for the electrolyte, there is a problem that the operating temperature range is narrow, and particularly, they cannot be used at high temperatures exceeding 60 ° C. In addition, there is a danger that smoke, rupture, or ignition will occur if sudden heat generation occurs during abnormal conditions such as overcharging or short-circuiting.

【0006】そこで、これら安全上の問題を解決するた
めに、不燃性の無機固体材料で構成される無機固体電解
質を用いた耐熱性、信頼性に優れた全固体リチウム電池
の開発が進められている。電解質に無機固体電解質を用
いたリチウム電池の例としては、例えば特開平11−7
942号公報に開示されるように、固体電解質として硫
化物ガラスを用いたものがある。
Therefore, in order to solve these safety problems, the development of an all-solid lithium battery excellent in heat resistance and reliability using an inorganic solid electrolyte composed of a nonflammable inorganic solid material has been promoted. I have. An example of a lithium battery using an inorganic solid electrolyte as an electrolyte is disclosed in, for example, JP-A-11-7.
As disclosed in Japanese Unexamined Patent Publication No. 942, there is one using sulfide glass as a solid electrolyte.

【0007】しかしながら、特開平11−7942号公
報で開示される全固体リチウム電池は外装に従来の封口
部で樹脂製のガスケットを介してかしめ封口されるコイ
ン型やボタン型の電池ケースを用いており、これらは決
して耐熱性が高いとはいえず、固体電解質を用いた電池
の特長である広い動作温度範囲と安全性を確保すること
はできない。
[0007] However, the all-solid lithium battery disclosed in Japanese Patent Application Laid-Open No. 11-7942 uses a coin-type or button-type battery case that is sealed to the exterior with a conventional sealing portion through a resin gasket. Therefore, they cannot be said to have high heat resistance and cannot secure a wide operating temperature range and safety, which are characteristics of a battery using a solid electrolyte.

【0008】また、フィルム電池やカード電池では、例
えば特開平7−6743号公報や特開平8−83596
号公報に開示されるように、熱融着性樹脂を介して金属
製電槽を接着して封口することが提案されているが、こ
れではガスケット以上に耐熱性が低下してしまう。
In the case of a film battery or a card battery, for example, JP-A-7-6743 and JP-A-8-83596
As disclosed in Japanese Patent Application Laid-Open Publication No. H11-157, it has been proposed to seal a metal battery case with a heat-fusible resin interposed therebetween, but this results in lower heat resistance than a gasket.

【0009】本発明は上述のような従来のリチウム電池
の問題点に鑑みてなされたものであり、電池構成材料の
耐熱性が低いために安全性が低いという従来のリチウム
電池の問題点を解消したリチウム電池を提供することを
目的とする。
The present invention has been made in view of the above-mentioned problems of the conventional lithium battery, and solves the problem of the conventional lithium battery in that the heat resistance of the battery constituent materials is low and the safety is low. It is an object of the present invention to provide a lithium battery.

【0010】[0010]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明のリチウム電池は、正極層と負極層との間
に電解質層を介在させて正極電槽と負極電槽とで構成さ
れる電槽内に封入したリチウム電池において、前記正極
層と負極層とを活物質と無機固体電解質で形成し、前記
電解質層を無機固体電解質で形成し、前記正極電槽と負
極電槽とを金属製薄板で形成すると共に、この正極電槽
と負極電槽との周縁部を表面に金属化部を設けた絶縁性
セラミックスを介して気密封止した。
In order to achieve the above object, a lithium battery according to the present invention comprises a positive electrode case and a negative electrode case with an electrolyte layer interposed between a positive electrode layer and a negative electrode layer. In a lithium battery sealed in a container to be formed, the positive electrode layer and the negative electrode layer are formed of an active material and an inorganic solid electrolyte, the electrolyte layer is formed of an inorganic solid electrolyte, and the positive electrode container and the negative electrode container. Was formed from a thin metal plate, and the peripheral portions of the positive electrode container and the negative electrode container were hermetically sealed via an insulating ceramic provided with a metallized portion on the surface.

【0011】上記リチウム電池では、前記正極活物質お
よび負極活物質が遷移金属酸化物から成ることが望まし
い。
In the above lithium battery, it is preferable that the positive electrode active material and the negative electrode active material are made of a transition metal oxide.

【0012】また、上記リチウム電池では、前記金属製
薄板がステンレス、アルミニウム、ニッケル、銅、コバ
ール、42アロイ、チタンあるいはアルミニウム合金の
いずれかから成ることが望ましい。
In the above-mentioned lithium battery, it is desirable that the metal thin plate is made of any one of stainless steel, aluminum, nickel, copper, Kovar, 42 alloy, titanium and an aluminum alloy.

【0013】また、上記リチウム電池では、前記正極電
槽および/または負極電槽の電極層との対峙部が凹状に
形成されていることが望ましい。
In the above-mentioned lithium battery, it is desirable that a portion of the positive electrode container and / or the negative electrode container facing the electrode layer is formed in a concave shape.

【0014】[0014]

【作用】上記のように、電槽を金属製薄板で形成して絶
縁性セラミックスを介して気密封止すると、構成材料全
てが耐熱性と不燃性を有することとなり、急激な発熱に
よっても発煙や破裂や発火に至ることがなく、安全性が
確保される。
As described above, when the battery case is formed of a thin metal plate and hermetically sealed with insulating ceramics, all the constituent materials have heat resistance and nonflammability, and smoke or smoke is generated even by sudden heat generation. Safety is ensured without rupture or ignition.

【0015】また、正極活物質と負極活物質を遷移金属
酸化物とすると、電池が過充電された場合にも金属リチ
ウムの析出が起こらず、電池の信頼性が向上する。
Further, when the positive electrode active material and the negative electrode active material are transition metal oxides, even when the battery is overcharged, no lithium metal precipitates, and the reliability of the battery is improved.

【0016】さらに、電槽とする金属薄板にステンレ
ス、アルミニウム、ニッケル、銅、コバール、42アロ
イ、チタンあるいはアルミニウム合金を用い、加えて極
群収納部の金属板を凹状に成形すると、封止時に溶接に
よって加熱されたときに、電槽が過度の変形を起こすこ
とがなく、封止部にかかる残留応力を緩和して封止部の
信頼性を向上させることができる。
Further, stainless steel, aluminum, nickel, copper, Kovar, 42 alloy, titanium or an aluminum alloy is used for a metal thin plate used as a battery case, and the metal plate of the pole group storage portion is formed into a concave shape. When heated by welding, the battery case is not excessively deformed, the residual stress applied to the sealing portion is reduced, and the reliability of the sealing portion can be improved.

【0017】[0017]

【発明の実施の形態】以下、本発明のリチウム電池の実
施形態について説明する。図1は、本発明に係るリチウ
ム電池の構成例を示す断面図である。図1において、1
は正極層、2は電解質層、3は負極層、4は正極電槽、
5は負極電槽、6は封止部である。図2は、本発明に係
るリチウム電池の封止部の拡大断面図である。図2にお
いて、7は絶縁性セラミックス、8は金属化部、9はニ
ッケルメッキ層、10は銀ろう層、11はシールフレー
ムである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the lithium battery of the present invention will be described. FIG. 1 is a sectional view showing a configuration example of the lithium battery according to the present invention. In FIG. 1, 1
Is a positive electrode layer, 2 is an electrolyte layer, 3 is a negative electrode layer, 4 is a positive electrode container,
Reference numeral 5 denotes a negative electrode container, and 6 denotes a sealing portion. FIG. 2 is an enlarged sectional view of a sealing portion of the lithium battery according to the present invention. In FIG. 2, 7 is an insulating ceramic, 8 is a metallized portion, 9 is a nickel plating layer, 10 is a silver brazing layer, and 11 is a seal frame.

【0018】正極層1および負極層3は主として活物質
と無機固体電解質とで構成される。正極層1および負極
層3に用いる活物質としては、次のような遷移金属酸化
物が挙げられる。例えば、リチウムマンガン複合酸化
物、二酸化マンガン、リチウムニッケル複合酸化物、リ
チウムコバルト複合酸化物、リチウムニッケルコバルト
複合酸化物、リチウムバナジウム複合酸化物、リチウム
チタン複合酸化物、酸化チタン、酸化ニオブ、酸化バナ
ジウム、酸化タングステンなどとそれらの誘導体が挙げ
られる。ここで、正極活物質と負極活物質には明確な区
別はなく、2種類の遷移金属酸化物の充放電電位を比較
してより貴な電位を示すものを正極に、より卑な電位を
示すものを負極にそれぞれ用いて任意の電圧の電池を構
成することができる。正極活物質と負極活物質に遷移金
属酸化物を用いると、電池が過充電された場合にも金属
リチウムの析出が起こらず、電池の信頼性が向上する。
The positive electrode layer 1 and the negative electrode layer 3 are mainly composed of an active material and an inorganic solid electrolyte. Examples of the active material used for the positive electrode layer 1 and the negative electrode layer 3 include the following transition metal oxides. For example, lithium manganese composite oxide, manganese dioxide, lithium nickel composite oxide, lithium cobalt composite oxide, lithium nickel cobalt composite oxide, lithium vanadium composite oxide, lithium titanium composite oxide, titanium oxide, niobium oxide, vanadium oxide , Tungsten oxide, and derivatives thereof. Here, there is no clear distinction between the positive electrode active material and the negative electrode active material, and those showing a more noble potential by comparing the charge and discharge potentials of the two types of transition metal oxides show a more negative potential on the positive electrode. A battery having an arbitrary voltage can be formed by using each of them as a negative electrode. When a transition metal oxide is used for the positive electrode active material and the negative electrode active material, deposition of metallic lithium does not occur even when the battery is overcharged, and the reliability of the battery is improved.

【0019】正極層1、負極層3および電解質層2に用
いられる無機固体電解質には、例えばLi1.3 Al0.3
Ti1.7 (PO4 3 やLi3.6 Ge0.6 0.4 4
どの結晶質固体電解質、30LiI−41Li2 O−2
9P2 5 や40Li2 O−35B2 3-25LiNb
3 、10Li2 O−25B2 3 −15SiO2 −5
0ZnOなどの酸化物系非晶質固体電解質、45LiI
−37Li2 S−18P2 5 やLi3 PO4 −63L
2 S−36SiS2 などの硫化物系非晶質固体電解質
などを挙げることができる。
The inorganic solid electrolyte used for the positive electrode layer 1, the negative electrode layer 3, and the electrolyte layer 2 includes, for example, Li 1.3 Al 0.3
Ti 1.7 (PO 4) 3 and Li 3.6 Ge 0.6 V 0.4 O 4 crystalline solid electrolyte such as, 30LiI-41Li 2 O-2
9P 2 O 5 and 40Li 2 O-35B 2 O 3 -25LiNb
O 3, 10Li 2 O-25B 2 O 3 -15SiO 2 -5
Oxide-based amorphous solid electrolyte such as 0ZnO, 45LiI
-37Li 2 S-18P 2 S 5 and Li 3 PO 4 -63L
A sulfide-based amorphous solid electrolyte such as i 2 S-36SiS 2 can be used.

【0020】正極層1は、正極活物質と無機固体電解質
に成形助剤を加えて加圧成形して熱処理した多孔質体あ
るいは緻密体から成り、負極層3は、正極層1中の正極
活物質の充放電電位よりも卑な充放電電位を有する遷移
金属酸化物を活物質とした多孔質体あるいは緻密体から
なる。
The positive electrode layer 1 is made of a porous or dense body which is formed by adding a forming aid to a positive electrode active material and an inorganic solid electrolyte and heat-treating the mixture by pressure molding. It is made of a porous or dense body using a transition metal oxide having a charge / discharge potential lower than the charge / discharge potential of the substance as an active material.

【0021】正極層1および負極層3を作製するには、
(1)活物質と無機固体電解質を成形助剤を溶解させた
水もしくは溶剤に分散させてスラリーを調製し、このス
ラリーを基材フィルム上に塗布して乾燥した後、加圧成
形して裁断したものを熱処理する方法、あるいは(2)
活物質と無機固体電解質の混合物を直接あるいは成形助
剤を加えて造粒して金型に投入し、プレス機で加圧成形
した後、熱処理する方法、(3)造粒した混合物をロー
ルプレス機で加圧成形してシート状に加工した後、その
シートを裁断して熱処理する方法などが用いられる。
(2)、(3)の造粒は、(1)の方法で述べたスラリ
ーから造粒する湿式造粒であっても溶剤を用いない乾式
造粒であっても構わない。
To form the positive electrode layer 1 and the negative electrode layer 3,
(1) A slurry is prepared by dispersing an active material and an inorganic solid electrolyte in water or a solvent in which a molding aid is dissolved, and the slurry is coated on a base film, dried, and then molded under pressure and cut. Heat treatment of the heat-treated material, or (2)
A method in which a mixture of an active material and an inorganic solid electrolyte is granulated directly or with the addition of a molding aid, and then granulated and poured into a mold, followed by pressure molding with a press machine, followed by heat treatment. (3) Roll-pressing the granulated mixture A method is used in which a sheet is formed by press molding in a machine, and then the sheet is cut and heat-treated.
The granulation of (2) and (3) may be wet granulation that granulates from the slurry described in the method of (1) or dry granulation without using a solvent.

【0022】電解質層2は、上記製法(1)〜(3)と
同様にして無機固体電解質と成形助剤のみから成形体を
作製し、熱処理することによって作製することができ
る。
The electrolyte layer 2 can be prepared by preparing a molded body only from the inorganic solid electrolyte and the molding aid in the same manner as in the above-mentioned production methods (1) to (3) and subjecting it to a heat treatment.

【0023】上述の正極層1、負極層3および電解質層
2を積層してなる極群を作製する方法としては、個別に
熱処理して多孔質体あるいは緻密体とした各層を所定量
積層する方法や、熱処理後の正極層1と負極層3を熱処
理前の電解質層2を介して所定量積層して熱処理する方
法や、熱処理前の各層を所定量積層して一括して熱処理
する方法などが考えられる。
As a method for producing an electrode group formed by laminating the above-described positive electrode layer 1, negative electrode layer 3 and electrolyte layer 2, a method of laminating a predetermined amount of each of the porous or dense layers by individually heat-treating the layers. A method of laminating a predetermined amount of the positive electrode layer 1 and the negative electrode layer 3 after the heat treatment via the electrolyte layer 2 before the heat treatment and performing a heat treatment, a method of laminating a predetermined amount of each layer before the heat treatment, and performing a heat treatment collectively, and the like. Conceivable.

【0024】いずれにしても、ここで使用可能な成形助
剤としては、例えばポリテトラフルオロエチレン、ポリ
アクリル酸、カルボキシメチルセルロース、ポリフッ化
ビニリデン、ポリビニルアルコール、ジアセチルセルロ
ース、ヒドロキシプロピルセルロース、ポリブチラー
ル、ポリビニルクロライド、ポリビニルピロリドンなど
の1種もしくは2種以上の混合物が挙げられる。
In any case, examples of the molding aid usable here include polytetrafluoroethylene, polyacrylic acid, carboxymethyl cellulose, polyvinylidene fluoride, polyvinyl alcohol, diacetyl cellulose, hydroxypropyl cellulose, polybutyral, polyvinyl One or a mixture of two or more of chloride, polyvinylpyrrolidone and the like can be mentioned.

【0025】基材フィルムとしては、例えばポリエチレ
ンテレフタレート、ポリプロピレン、ポリエチレン、ポ
リテトラフルオロエチレンなどの樹脂フィルム、アルミ
ニウム、ステンレス、銅などの金属箔などが使用可能で
ある。
As the substrate film, for example, resin films such as polyethylene terephthalate, polypropylene, polyethylene, and polytetrafluoroethylene, and metal foils such as aluminum, stainless steel, and copper can be used.

【0026】正極電槽4と負極電槽5に用いる金属製薄
板は、ステンレス、アルミニウム、ニッケル、銅、コバ
ール、42アロイ、チタンあるいはアルミニウム合金で
あればよく、製造方法や純度には特に限定されない。ま
た、熱膨張係数の整合性がとれ、絶縁性セラミックス7
を介して気密封止可能であれば正極電槽と負極電槽に用
いる金属薄板の種類が異なっても問題はない。板厚は、
電池のエネルギー密度の観点から薄いものを用いるのが
望ましいが、ピンホールの有無や外装材としての強度の
面から適当な厚みが選択されるべきである。例えばコバ
ールの場合、30μm以上とすることが望ましい。一
方、厚いほうでは、封止方法による制約や封止部の接合
強度やエネルギー密度の観点から500μm以下とする
のが好ましい。
The metal thin plate used for the positive electrode case 4 and the negative electrode case 5 may be stainless steel, aluminum, nickel, copper, Kovar, 42 alloy, titanium or an aluminum alloy, and the production method and purity are not particularly limited. . In addition, the coefficient of thermal expansion can be matched, and the insulating ceramics 7
There is no problem even if the types of thin metal plates used for the positive electrode container and the negative electrode container are different, as long as they can be hermetically sealed through the seal. The board thickness is
It is desirable to use a thin battery from the viewpoint of the energy density of the battery, but an appropriate thickness should be selected from the viewpoint of the presence or absence of pinholes and the strength as an exterior material. For example, in the case of Kovar, the thickness is desirably 30 μm or more. On the other hand, in the case of the thicker one, the thickness is preferably 500 μm or less from the viewpoint of the restriction by the sealing method and the joining strength and energy density of the sealing part.

【0027】正極電槽4の電極層との対峙部を凹状に成
形してもよく、この凹状の成形方法には既存の従来技術
を用いることができる。例えば成形金型によるプレス加
工が一般的である。形状は、極群収納部から見て凹状で
あれば良く、深さや寸法は特に限定されないが、極群の
厚みと絶縁性セラミックス7の厚みを考慮して極群と電
槽4が面で接触できる寸法、形状にすべきである。ま
た、成形方法によっては成形する際に凹状の極群収納部
が台形となったり、屈曲部に曲面を設けたほうが好都合
な場合があり、成形方法に適した任意の設計とすること
で何ら問題はない。
The portion of the positive electrode case 4 that faces the electrode layer may be formed in a concave shape, and an existing conventional technique can be used for the concave forming method. For example, press working with a molding die is common. The shape is not particularly limited as long as it is concave when viewed from the electrode group storage portion, and the depth and dimensions are not particularly limited. The size and shape should be as large as possible. Also, depending on the molding method, there may be cases where it is more convenient to form a concave pole group storage portion in a trapezoidal shape during molding, or to provide a curved surface at the bent portion, and any design suitable for the molding method causes no problems. There is no.

【0028】本発明にかかる絶縁性セラミックス7とし
ては、アルミナ、ステアタイト、ムライト、ジルコン、
ガラスセラミック、窒化アルミニウムなどを用いること
ができるが、価格と電気的性質、機械的性質などを考慮
すると酸化アルミニウム(Al2 3 )を主成分とする
純度90%以上のアルミナが好適である。
As the insulating ceramics 7 according to the present invention, alumina, steatite, mullite, zircon,
Glass ceramic, aluminum nitride, or the like can be used, but in consideration of price, electrical properties, mechanical properties, and the like, alumina having a purity of 90% or more and containing aluminum oxide (Al 2 O 3 ) as a main component is preferable.

【0029】表面に金属化部8を設けた絶縁性セラミッ
クス7を作製するには、まずアルミナ原料から環状のア
ルミナ焼結体を作製し、次にMo、Mnをメタライズし
て、その表面にニッケルメッキを施し、電槽4、5と溶
接可能な金属を銀ろう付けする方法を用いることができ
る。
In order to manufacture the insulating ceramics 7 having the metallized portion 8 on the surface, first, a ring-shaped alumina sintered body is formed from an alumina raw material, then Mo and Mn are metallized, and nickel A method can be used in which plating is performed and a metal that can be welded to the battery cases 4 and 5 is brazed with silver.

【0030】アルミナ原料から環状のアルミナ焼結体7
を作製するには、(1)アルミナ原料粉を成形助剤を溶
解させた水もしくは溶剤に分散させてスラリーを調製
し、このスラリーを基材フィルム上に塗布して乾燥した
後、環状に裁断したものを焼結する方法、あるいは
(2)アルミナ原料を直接あるいは成形助剤を加えて造
粒して金型に投入し、プレス機で加圧成形した後、焼結
する方法、(3)造粒した混合物をロールプレス機で加
圧成形してシート状に加工した後、そのシートを環状に
裁断して焼結する方法などが用いられる。(2)、
(3)の造粒は、(1)の方法で述べたスラリーから造
粒する湿式造粒であっても溶剤を用いない乾式造粒であ
っても構わない。
Annular alumina sintered body 7 from alumina raw material
(1) A slurry is prepared by dispersing an alumina raw material powder in water or a solvent in which a molding aid is dissolved, and then applying the slurry on a base film, drying the slurry, and cutting into a ring. Or (2) a method of granulating the alumina raw material directly or with the addition of a molding aid, charging the resulting mixture into a mold, press-molding with a press machine, and sintering; (3) A method in which the granulated mixture is pressure-formed by a roll press machine, processed into a sheet shape, and the sheet is cut into an annular shape and sintered. (2),
The granulation of (3) may be wet granulation of granulating from the slurry described in the method of (1) or dry granulation without using a solvent.

【0031】次に、上述のアルミナ焼結体7の両面を金
属化するにはMoとMnの微粉末を用い、両者をよく混
合し、バインダーを加えてペースト状とし、予め表面研
磨および表面処理を施したアルミナ焼結体表面に塗布
し、加湿雰囲気の水素炉中で高温焼成してメタライズ層
(金属化部)8を形成させる方法を用いることができ
る。
Next, in order to metallize both surfaces of the above-mentioned alumina sintered body 7, Mo and Mn fine powders are used, both are mixed well, a binder is added to form a paste, and surface polishing and surface treatment are performed in advance. Can be used to form a metallized layer (metallized portion) 8 by applying it to the surface of the alumina sintered body subjected to the above-mentioned step and baking it at a high temperature in a hydrogen furnace in a humid atmosphere.

【0032】ニッケルメッキ層9の形成には電解メッキ
法や無電解メッキ法を用いることができる。なお、ニッ
ケルメッキ層9を緻密化すると共に下地のメタライズ層
8との密着性を上げるためにシンタリングを行うのが好
ましい。
The nickel plating layer 9 can be formed by an electrolytic plating method or an electroless plating method. Note that it is preferable to perform sintering in order to densify the nickel plating layer 9 and increase the adhesion to the metallization layer 8 as a base.

【0033】金属から成るシールフレーム11とニッケ
ルメッキ層9との接合は、銀ろう層10を介してろう付
けすることで可能である。ただし、銀ろう層10は、シ
ールフレームに用いる金属の種類によって適当なろう材
が選定されるので必ずしも銀ろうとは限らない。
The joining between the seal frame 11 made of metal and the nickel plating layer 9 can be achieved by brazing via the silver brazing layer 10. However, the silver brazing layer 10 is not necessarily a silver brazing material because an appropriate brazing material is selected depending on the type of metal used for the seal frame.

【0034】表面に金属化部8を設けた絶縁性セラミッ
クス7を作製する方法には、上述のメタライズ法以外に
未焼成のアルミナ成形体にMoやWなどの高融点金属の
導体ペーストをスクリーン印刷し、一括して焼成する同
時焼成法や、アルミナ焼結体上にスクリーン印刷で金属
粉と低融点ガラスと有機バインダーから成る導体ペース
トを厚く印刷した後に焼成して有機物を除去し、低融点
ガラスによって金属を固着させる厚膜法や、真空蒸着や
スパッタリングなどの物理蒸着法によって金属層を形成
させる物理蒸着法がある。
In order to manufacture the insulating ceramics 7 having the metallized portions 8 on the surface, in addition to the above-described metallization method, a conductor paste of a high melting point metal such as Mo or W is screen-printed on an unfired alumina molded body. Or a simultaneous firing method of firing all at once, or printing a thick conductive paste consisting of metal powder, low-melting glass and an organic binder on an alumina sintered body by screen printing, and then firing to remove organic substances, There is a physical vapor deposition method in which a metal layer is formed by a physical vapor deposition method such as vacuum vapor deposition or sputtering.

【0035】シールフレーム11と電槽との溶接には、
既存のCO2 ガスレーザやYAGレーザなどのレーザ溶
接法や、抵抗溶接法の一種であるマイクロパラレルシー
ム接合法や、Pb‐Sn系、Au‐Sn系の合金を使用
したろう付け法が適用可能である。
For welding the seal frame 11 and the battery case,
Laser welding methods such as existing CO 2 gas lasers and YAG lasers, micro parallel seam joining, a type of resistance welding, and brazing using alloys of Pb-Sn and Au-Sn are applicable. is there.

【0036】本発明のリチウム電池は、無機固体材料か
らなる正極層1、電解質層2および負極層3が積層され
た極群が絶縁性セラミックス7を介して封止された金属
製薄板電槽に収納された構造であればよく、一次電池で
あっても二次電池であっても差し支えない。また、電解
質はイオン伝導性を有する無機固体材料であればよいほ
か、電池形状はカード型、フィルム型および扁平型など
の四角や三角、円形などいずれでもよい。
The lithium battery of the present invention is provided in a metal sheet container in which a positive electrode layer 1 made of an inorganic solid material, an electrolyte layer 2 and a negative electrode layer 3 are laminated with an insulating ceramic 7 sealed. Any structure may be used as long as it is housed, and it may be a primary battery or a secondary battery. The electrolyte may be any inorganic solid material having ionic conductivity, and the battery may have any shape such as a square, triangular or circular shape such as a card type, a film type and a flat type.

【0037】[0037]

【実施例】以下、本発明を実施例に基づいてさらに詳し
く説明する。
The present invention will be described below in more detail with reference to examples.

【0038】[実施例1]水酸化リチウムと二酸化マン
ガンをLiとMnのモル比が1:2となるように混合
し、この混合物を大気中、700℃で15時間加熱焼成
することによってリチウムマンガン複合酸化物(LiM
2 4 )を調製し、これを正極活物質とした。次に、
水酸化リチウムと二酸化チタンをLiとTiのモル比が
4:5となるように混合し、この混合物を大気中の75
0℃で15時間加熱焼成することによってリチウムチタ
ン複合酸化物(Li4 Ti5 12)を調製して負極活物
質とした。
[Example 1] Lithium hydroxide and manganese dioxide were mixed so that the molar ratio of Li and Mn was 1: 2, and this mixture was heated and calcined at 700 ° C for 15 hours in the air to obtain lithium manganese. Complex oxide (LiM
n 2 O 4 ) was prepared and used as a positive electrode active material. next,
Lithium hydroxide and titanium dioxide are mixed such that the molar ratio of Li and Ti is 4: 5, and this mixture is mixed with 75
Heating and sintering at 0 ° C. for 15 hours prepared a lithium-titanium composite oxide (Li 4 Ti 5 O 12 ) to obtain a negative electrode active material.

【0039】このLiMn2 4 とLi4 Ti5 12
それぞれと無機固体電解質、ここでは10Li2 O−2
5B2 3 −15SiO2 −50ZnOとを重量比8
0:20で乾式混合し混合粉とした。この混合粉100
に対して成形助剤のポリビニルブチラールが重量比で1
0となるように加え、さらにトルエンを加えてスラリー
を調製した。このスラリーをポリエチレンテレフタレー
ト(PET)フィルム上に塗布した後に乾燥させてシー
ト状に成形したものをロールプレスによって加圧圧縮成
形して、正極は厚み0.5mm、負極は厚み0.5mm
のシートとした。それぞれのシートを金型で打ち抜いて
20mm角のシート状の正極および負極成形体を得た。
Each of the LiMn 2 O 4 and Li 4 Ti 5 O 12 and an inorganic solid electrolyte, here 10 Li 2 O-2
5B 2 O 3 -15SiO 2 -50ZnO and a weight ratio of 8
At 0:20, dry mixing was performed to obtain a mixed powder. This mixed powder 100
To the weight ratio of polyvinyl butyral as a molding aid
It was added so as to be 0, and toluene was further added to prepare a slurry. The slurry was applied on a polyethylene terephthalate (PET) film, dried and formed into a sheet. The resulting sheet was press-compressed by a roll press to form a positive electrode having a thickness of 0.5 mm and a negative electrode having a thickness of 0.5 mm.
Sheet. Each sheet was punched out with a mold to obtain a 20 mm square sheet-shaped positive and negative electrode molded body.

【0040】次に、無機固体電解質と成形助剤のポリビ
ニルブチラールを重量比100:10で混合し、さらに
トルエンを加えてスラリーを調製し、PETフィルム上
に同じく成形して裁断することで、20mm角、厚み
0.2mmのシート状の成形体を作製した。
Next, an inorganic solid electrolyte and polyvinyl butyral, a molding aid, were mixed at a weight ratio of 100: 10, and toluene was further added to prepare a slurry. The slurry was similarly molded on a PET film, and cut into 20 mm. A sheet-shaped molded body having a corner and a thickness of 0.2 mm was produced.

【0041】上記正極層1と負極層3を電解質層2を介
して積層し、これを大気中、550℃で一括熱処理して
18mm角、厚み0.85mmの電解質層2を作製し
た。正極電槽4と負極電槽5にはニッケルメッキを施し
た同じ厚み0.1mmのコバール材を25mm角に裁断
した金属薄板を用いた。ただし、正極電槽には予めプレ
ス成形で極群収納部を凹状に成形したものを用いた。負
極電槽5には、予めコバール製のシールフレーム10を
メタライズ法によって銀ろう付けした幅5mm、厚み
0.3mmの環状の絶縁性セラミックス7をパラレルシ
ーム接合法によって溶接しておいたものを用いた。
The positive electrode layer 1 and the negative electrode layer 3 were laminated with the electrolyte layer 2 interposed therebetween, and this was subjected to batch heat treatment at 550 ° C. in the air to form an 18 mm square electrolyte layer 0.85 mm thick. For the positive electrode case 4 and the negative electrode case 5, a metal thin plate obtained by cutting a nickel-plated Kovar material having the same thickness of 0.1 mm into 25 mm square was used. However, the positive electrode case used was one in which the electrode group housing portion was formed into a concave shape by press molding in advance. For the negative electrode container 5, a ring-shaped insulative ceramics 7 having a width of 5 mm and a thickness of 0.3 mm, in which a Kovar seal frame 10 is brazed with silver by a metallizing method and welded by a parallel seam joining method, is used. Was.

【0042】負極電槽5の中央に極群を配置した後に正
極電槽4を被せて正極電槽4の周縁部をマイクロパラレ
ルシーム接合法によって封止して図1に示したカード型
リチウム電池を作製した。
After arranging the electrode group in the center of the negative electrode container 5, the positive electrode container 4 is covered, and the peripheral portion of the positive electrode container 4 is sealed by a micro parallel seam bonding method, and the card type lithium battery shown in FIG. Was prepared.

【0043】[実施例2]正極電槽4、負極電槽5およ
びシールフレーム11をステンレス304で作製したこ
と以外は実施例1と同様にしてカード型リチウム電池を
組み立てた。
Example 2 A card-type lithium battery was assembled in the same manner as in Example 1 except that the positive electrode case 4, the negative electrode case 5, and the seal frame 11 were made of stainless steel 304.

【0044】[比較例1]実施例1と同様にして作製し
た極群を電槽であるコバールとこのコバールに対して接
着性を有する環状に成形されたポリオレフィン樹脂によ
って囲まれた空間に収納し、140℃の熱板で加圧しな
がら加熱して電槽を封着してカード型リチウム電池を作
製した。
[Comparative Example 1] The electrode group produced in the same manner as in Example 1 was housed in a space surrounded by Kovar serving as a battery case and a polyolefin resin formed into an annular shape having adhesiveness to the Kovar. Then, the battery was sealed while being heated while pressurizing with a hot plate at 140 ° C. to produce a card-type lithium battery.

【0045】[比較例2]正極電槽に極群収納部を凹状
に加工していないコバール製金属薄板を用いたこと以外
は実施例1と同様にしてカード型リチウム電池を組み立
てた。
Comparative Example 2 A card-type lithium battery was assembled in the same manner as in Example 1 except that a thin metal plate made of Kovar, in which the electrode group storage portion was not formed in a concave shape, was used for the positive electrode battery case.

【0046】上記実施例1、2および比較例1、2で作
製した電池を用いて耐熱性を評価する目的で高温放置に
よる容量劣化を評価した。評価は、各電池を5個用意
し、まず室温で10時間率の電流値で2.9Vまで満充
電した後、100、125、150、175、200℃
の恒温槽内に100時間放置し、槽外に取り出して電池
の温度が室温になったことを確認した後、充電と同じ1
0時間率の電流値で1.5Vまで定電流放電して放電容
量を求め、先の充電容量に対する充放電効率を求める方
法で行った。その結果は、表1に示すとおりである。
The batteries produced in Examples 1 and 2 and Comparative Examples 1 and 2 were evaluated for capacity deterioration due to high temperature storage in order to evaluate heat resistance. The evaluation was performed by preparing five batteries and fully charging them to 2.9 V at a current value of 10 hours at room temperature, and then 100, 125, 150, 175 and 200 ° C.
After leaving it in a constant temperature bath for 100 hours, taking it out of the bath and confirming that the battery temperature has reached room temperature,
The discharge capacity was determined by discharging at a constant current of 1.5 V at a current value of 0 hour rate, and the charge / discharge efficiency for the previous charge capacity was determined. The results are as shown in Table 1.

【0047】[0047]

【表1】 [Table 1]

【0048】表1から明らかなように、比較例に対して
実施例では評価した200℃までの範囲において高温放
置による充放電効率の低下は全く見られず、本発明の効
果が顕著である。比較例1で150℃以上の範囲におい
て充放電効率が低下した原因は、樹脂の耐熱性が低いた
めに、高温放置中に樹脂が溶融して封着部から水分が電
池内に侵入して活物質中のリチウムと反応して不可逆な
容量劣化を引き起こしたものと推定される。また、比較
例2の容量低下は、電槽の極群収納部を凹状に成形して
いなかったために、封着部が加熱されたときに封着時の
残留応力に耐えられず、割れが生じて水分が電池内に侵
入したためと考えられる。ただし、極群の厚みが薄いか
電槽の金属薄板の厚みが薄い場合には、封着部に生じる
残留応力が小さくなるため、割れは発生しないと考えら
れる。
As is evident from Table 1, in the examples of the comparative example, no reduction in charge / discharge efficiency due to standing at high temperature was observed at all in the range up to 200 ° C., and the effect of the present invention was remarkable. The reason why the charge / discharge efficiency was lowered in the range of 150 ° C. or higher in Comparative Example 1 was that the resin was low in heat resistance, so that the resin melted during standing at a high temperature and water entered the sealed portion into the battery and activated. It is presumed that it reacted with lithium in the substance and caused irreversible capacity deterioration. In addition, the decrease in the capacity of Comparative Example 2 was caused by the fact that the electrode group housing portion of the battery case was not formed in a concave shape, so that when the sealing portion was heated, it could not withstand the residual stress at the time of sealing, and cracking occurred. It is considered that moisture entered the battery. However, when the thickness of the electrode group is small or the thickness of the metal sheet of the battery case is small, it is considered that no crack occurs because the residual stress generated in the sealing portion is small.

【0049】したがって、絶縁性セラミックスを介して
ピンホールのない金属薄板製から成る電槽を溶接するこ
とで水分の侵入を防止し、全固体リチウム電池本来の広
い動作温度範囲と高い安全性を実現できるものである。
なお、実施例ではコバール、ステンレス以外の金属、お
よびLiMn2 4 、Li4 Ti5 12以外の活物質の
実施例は記載しなかったが、いずれも既存の材料であ
り、同じ効果が得られることは明白である。
Therefore, by welding a battery case made of a thin metal plate without pinholes through insulating ceramics, the invasion of moisture is prevented, and a wide operating temperature range and high safety inherent in an all solid lithium battery are realized. You can do it.
In the examples, examples of metals other than Kovar and stainless steel, and active materials other than LiMn 2 O 4 and Li 4 Ti 5 O 12 were not described, but all were existing materials, and the same effects were obtained. It is clear that this is done.

【0050】[0050]

【発明の効果】以上のように、本発明に係るリチウム電
池では、正極層と負極層とを活物質と無機固体電解質で
形成し、電解質層を無機固体電解質で形成し、正極電槽
と負極電槽を金属製薄板で形成すると共に、この正極電
槽と負極電槽との周縁部を表面に金属化部を設けた絶縁
性セラミックスを介して封止したことから、電槽の封止
部の耐熱性が向上し、全固体リチウム電池本来の広い動
作温度範囲と高い安全性を実現できる。
As described above, in the lithium battery according to the present invention, the positive electrode layer and the negative electrode layer are formed of the active material and the inorganic solid electrolyte, and the electrolyte layer is formed of the inorganic solid electrolyte. Since the battery case was formed of a thin metal plate and the peripheral portions of the positive electrode case and the negative electrode case were sealed via insulating ceramics having a metallized portion on the surface, the sealing portion of the battery case was sealed. Has improved heat resistance, and can realize a wide operating temperature range and high safety inherent in an all-solid-state lithium battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るリチウム電池の断面図である。FIG. 1 is a sectional view of a lithium battery according to the present invention.

【図2】本発明に係るリチウム電池の封止部の拡大断面
図である。
FIG. 2 is an enlarged sectional view of a sealing portion of the lithium battery according to the present invention.

【符号の説明】[Explanation of symbols]

1…正極層、2…電解質層、3…負極層、4…正極電
槽、5…負極電槽、6…低融点ガラス、7…絶縁性セラ
ミックス、8…金属化部、9…ニッケルメッキ層、10
…銀ろう層、11…シールフレーム
DESCRIPTION OF SYMBOLS 1 ... Positive electrode layer, 2 ... Electrolyte layer, 3 ... Negative electrode layer, 4 ... Positive electrode container, 5 ... Negative electrode container, 6 ... Low melting glass, 7 ... Insulating ceramics, 8 ... Metallized part, 9 ... Nickel plating layer , 10
... Silver solder layer, 11 ... Seal frame

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北原 暢之 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 原 亨 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 大崎 誠 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 樋口 永 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 Fターム(参考) 5H024 AA02 AA03 BB14 CC04 CC06 DD01 DD02 DD03 EE01 5H029 AJ12 AK02 AK03 AL02 AL03 AM12 BJ04 CJ05 DJ02 DJ03 EJ01 EJ08  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nobuyuki Kitahara 3-5 Koikadai, Seika-cho, Soraku-gun, Kyoto Prefecture Inside the Central Research Laboratory, Kyocera Corporation (72) Inventor Toru Hara 3-chome Koikadai, Soraku-cho, Kyoto Prefecture 5 Kyocera Corporation Central Research Laboratory (72) Inventor Makoto Osaki 3-chome, Soka-cho, Soraku-gun, Kyoto Prefecture 5-5-2 Kyocera Corporation Central Research Laboratory (72) Inventor Ei Higuchi Seika-cho, Soraku-gun, Kyoto Prefecture 3-5-5 Kyocera Corporation Central Research Laboratory F-term (reference) 5H024 AA02 AA03 BB14 CC04 CC06 DD01 DD02 DD03 EE01 5H029 AJ12 AK02 AK03 AL02 AL03 AM12 BJ04 CJ05 DJ02 DJ03 EJ01 EJ08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極層と負極層との間に電解質層を介在
させて正極電槽と負極電槽とで構成される電槽内に封入
したリチウム電池において、前記正極層と負極層とを活
物質と無機固体電解質で形成し、前記電解質層を無機固
体電解質で形成し、前記正極電槽と負極電槽とを金属製
薄板で形成すると共に、この正極電槽と負極電槽との周
縁部を表面に金属化部を設けた絶縁性セラミックスを介
して気密封止したことを特徴とするリチウム電池。
1. A lithium battery sealed in a battery container comprising a positive electrode container and a negative electrode container with an electrolyte layer interposed between the positive electrode layer and the negative electrode layer, wherein the positive electrode layer and the negative electrode layer are Formed from an active material and an inorganic solid electrolyte, the electrolyte layer is formed from an inorganic solid electrolyte, the positive electrode container and the negative electrode container are formed from a thin metal plate, and the periphery of the positive electrode container and the negative electrode container is formed. A lithium battery in which a portion is hermetically sealed via an insulating ceramic provided with a metallized portion on the surface.
【請求項2】 前記正極活物質および負極活物質が遷移
金属酸化物であることを特徴とする請求項1に記載のリ
チウム電池。
2. The lithium battery according to claim 1, wherein the positive electrode active material and the negative electrode active material are transition metal oxides.
【請求項3】 前記金属製薄板がステンレス、アルミニ
ウム、ニッケル、銅、コバール、42アロイ、チタンあ
るいはアルミニウム合金のいずれかから成ることを特徴
とする請求項1または請求項2に記載のリチウム電池。
3. The lithium battery according to claim 1, wherein the metal thin plate is made of one of stainless steel, aluminum, nickel, copper, Kovar, 42 alloy, titanium, and an aluminum alloy.
【請求項4】 前記正極電槽および/または負極電槽の
前記電極層との対峙部が凹状に形成されていることを特
徴とする請求項1ないし請求項3に記載のリチウム電
池。
4. The lithium battery according to claim 1, wherein a portion of the positive electrode container and / or the negative electrode container facing the electrode layer is formed in a concave shape.
JP11214846A 1999-07-29 1999-07-29 Lithium battery Pending JP2001043892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11214846A JP2001043892A (en) 1999-07-29 1999-07-29 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11214846A JP2001043892A (en) 1999-07-29 1999-07-29 Lithium battery

Publications (1)

Publication Number Publication Date
JP2001043892A true JP2001043892A (en) 2001-02-16

Family

ID=16662523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11214846A Pending JP2001043892A (en) 1999-07-29 1999-07-29 Lithium battery

Country Status (1)

Country Link
JP (1) JP2001043892A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307737C (en) * 2002-05-02 2007-03-28 瓦尔达微电池有限责任公司 Electrochemical cell with thin electrode
JP2008103145A (en) * 2006-10-18 2008-05-01 Idemitsu Kosan Co Ltd Battery material manufacturing method and all-solid battery
US7998622B2 (en) 2004-12-02 2011-08-16 Kabushiki Kaisha Ohara All solid lithium ion secondary battery and a solid electrolyte therefor
JP2012186181A (en) * 2005-10-13 2012-09-27 Ohara Inc Method for producing lithium ion conductive solid electrolyte
CN112133861A (en) * 2020-10-12 2020-12-25 东莞市云帆电子科技有限公司 Power lithium battery module integrated configuration
US11018377B2 (en) 2017-09-19 2021-05-25 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
CN114342107A (en) * 2019-09-04 2022-04-12 株式会社村田制作所 Method for manufacturing solid-state battery and solid-state battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307737C (en) * 2002-05-02 2007-03-28 瓦尔达微电池有限责任公司 Electrochemical cell with thin electrode
US7998622B2 (en) 2004-12-02 2011-08-16 Kabushiki Kaisha Ohara All solid lithium ion secondary battery and a solid electrolyte therefor
JP2012186181A (en) * 2005-10-13 2012-09-27 Ohara Inc Method for producing lithium ion conductive solid electrolyte
US9580320B2 (en) 2005-10-13 2017-02-28 Ohara Inc. Lithium ion conductive solid electrolyte and method for manufacturing the same
JP2008103145A (en) * 2006-10-18 2008-05-01 Idemitsu Kosan Co Ltd Battery material manufacturing method and all-solid battery
US11018377B2 (en) 2017-09-19 2021-05-25 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
CN114342107A (en) * 2019-09-04 2022-04-12 株式会社村田制作所 Method for manufacturing solid-state battery and solid-state battery
CN112133861A (en) * 2020-10-12 2020-12-25 东莞市云帆电子科技有限公司 Power lithium battery module integrated configuration

Similar Documents

Publication Publication Date Title
JP5122154B2 (en) All solid state secondary battery
JP5717318B2 (en) All solid state secondary battery
JP6927289B2 (en) All-solid-state secondary battery
CN107180995A (en) Bipolar cascade type all solid lithium secondary battery and its manufacture method
WO2014020654A1 (en) All-solid ion secondary cell
WO2014132320A1 (en) All-solid ion secondary cell
JP2001126758A (en) Lithium battery
US20190157724A1 (en) Process for producing an electrochemical cell, and electrochemical cell produced by the process
JP2001185141A (en) Lithium battery
JP5773827B2 (en) Secondary battery
JP2020009619A (en) All-solid battery, and method for manufacturing the same
WO2014170998A1 (en) All-solid-state lithium-ion secondary battery
JP2001102056A (en) Lithium cell
JPWO2019189311A1 (en) All solid state battery
JP7183529B2 (en) LAMINATED GREEN SHEET, ALL-SOLID SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF
JP5849543B2 (en) Electrode body for lithium ion secondary battery, method for producing electrode body for lithium ion secondary battery, and lithium ion secondary battery
JP2001068150A (en) Method of manufacturing whole solid secondary battery
US20190157670A1 (en) Composite cathode layered structure for solid state batteries on a lithium basis and a method for manufacturing same
JP2000340255A (en) Lithium battery
JP2001043892A (en) Lithium battery
JP2000251938A (en) Manufacture of all solid lithium battery
JP2001126740A (en) Lithium cell
JP2001155763A (en) Solid electroltic cell
JP5902579B2 (en) Secondary battery and manufacturing method thereof
JP2001093535A (en) Solid electrolyte cell