JP4238449B2 - Method and apparatus for producing silicon carbide single crystal - Google Patents

Method and apparatus for producing silicon carbide single crystal Download PDF

Info

Publication number
JP4238449B2
JP4238449B2 JP2000041426A JP2000041426A JP4238449B2 JP 4238449 B2 JP4238449 B2 JP 4238449B2 JP 2000041426 A JP2000041426 A JP 2000041426A JP 2000041426 A JP2000041426 A JP 2000041426A JP 4238449 B2 JP4238449 B2 JP 4238449B2
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
container
raw material
carbide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000041426A
Other languages
Japanese (ja)
Other versions
JP2001226198A (en
Inventor
宏行 近藤
幸樹 二ツ山
富佐雄 廣瀬
正一 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000041426A priority Critical patent/JP4238449B2/en
Publication of JP2001226198A publication Critical patent/JP2001226198A/en
Application granted granted Critical
Publication of JP4238449B2 publication Critical patent/JP4238449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体や発光ダイオードなどの素材に利用することができる炭化珪素(以下、SiCという)単結晶の製造方法及びその製造装置に関する。
【0002】
【従来の技術】
従来、SiC単結晶を成長させる方法として、昇華再結晶法が広く用いられている。この昇華再結晶法は、黒鉛製るつぼ内に配置した黒鉛台座に種結晶を接合すると共に、るつぼ底部に配したSiC原料を加熱昇華させ、その昇華ガスを種結晶に供給することによって種結晶上にSiC単結晶を成長させるものである。
【0003】
このような昇華再結晶法を用いたSiC単結晶の製造において、るつぼ構造や原料供給方法等を工夫することによりSiC単結晶の成長面の温度を安定化させる方法が種々提案されている。これらの方法により高い確率で高品質、長尺のSiC単結晶を得ることが可能である。
【0004】
【発明が解決しようとする課題】
しかしながら、るつぼ内部に配置されたSiC原料の昇華の状態が、SiC単結晶の成長過程で微妙に異なってくるために、得られたSiC単結晶がしばしば不良になるという問題がある。
【0005】
本発明は上記点に鑑みて、SiC原料の昇華の状態が一定にできるようにし、確実に高品質、長尺のSiC単結晶が製造できるようにすることを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成すべく、本発明者らは以下の検討を行なった。
【0007】
上記問題は、SiC原料の昇華の状態が経時変化等によって不安定になるために、SiCガスの過飽和度が不安定になり、それが原因となって発生すると考えられる。このため、SiC原料の昇華の状態を検出できるようにすれば、上記問題を解決することができると言える。
【0008】
そこで、本発明者らは、SiC原料の昇華の状態を検出する手段として、X線を用いることを見出した。
【0009】
SiC原料にX線を照射すると、SiC原料の昇華が進行した箇所の方が昇華していない箇所よりもX線が透過し易い。これは、昇華が進行した箇所ではSi成分が抜けたために、X線の吸収率が変化するからである。なお、昇華が進行した箇所を組成分析した結果、C成分はほとんど抜けていなかったことから、上記現象はSi成分の抜けが原因であると説明できる。
【0010】
X線を物質に照射して透過させる時、入射X線強度と透過X線強度との間には、次のような関係式が成り立つ。
【0011】
【数1】

Figure 0004238449
但し、Ixは透過X線強度、I0は入射X線強度、μは線吸収係数、ρは密度、xはX線が物質を透過した距離を表している。
【0012】
なお、μ/ρは質量吸収係数と呼ばれ、物質固有の値であり、次の関係式を満たす。
【0013】
【数2】
μ/ρ=ω1(μ/ρ)1+ω2(μ/ρ)2+…
【0014】
【数3】
μ/ρ=kλ33
但し、n(n=1、2…)を成分の種類とすると、ωnは成分nの重量比、(μ/ρ)nは成分nの重量吸収係数、kは定数、Zは原子番号、λはX線の波長を表している。
【0015】
これらの関係式、及び原子番号がC<Siであることから、X線の透過量がSi<SiC<Cとなることが判る。従って、X線を用いることにより、SiC原料の昇華状態をモニターすることができる。
【0016】
そこで、上記目的を達成するため、請求項1に記載の発明では、容器(1)内に、炭化珪素原料(2)と種結晶となる炭化珪素単結晶基板(3)を配置し、原料を加熱昇華させて炭化珪素単結晶基板上に炭化珪素単結晶(4)を成長させる炭化珪素単結晶の製造過程において、容器外部に備えたX線発生源(6)にてX線(8)を炭化珪素原料に照射し、容器外部に備えたX線検出器(7)により容器および炭化珪素原料を透過したX線を検出し、そのX線の透過量から炭化珪素原料の減少量をモニターし、該減少量が一定となるように容器内の温度を制御することを特徴としている。
【0017】
このように、X線を用いて炭化珪素原料の昇華状態をモニターし、炭化珪素原料の減少量が一定となるように容器内の温度を制御することにより、容器内の珪素/炭素比を安定化させることができ、確実に高品質、長尺な炭化珪素単結晶が得られるようにできる。
【0018】
請求項2に記載の発明においては、X線を炭化珪素原料の上部に照射し、そのX線の透過量が一定となるように容器内の温度を制御して、炭化珪素単結晶を成長させることを特徴としている。
【0019】
このように、X線の透過量が一定となるよう容器内の温度を制御すれば、容器内の珪素/炭素比を定常化することができ、請求項1と同様の効果が得られる。
【0020】
例えば、請求項5に示すように、容器内の温度の制御を行なう制御装置(10)による温度制御によって、X線の透過量を一定に制御することができる。なお、温度制御としては、請求項6に示すように容器内の温度分布を変化させる制御がある。
【0021】
請求項3に記載の発明においては、炭化珪素原料とは別に、容器の本体の底部における炭化珪素原料を挟んで炭化珪素単結晶基板と反対側に、容器内に少なくとも珪素を含む材料(11)を配置すると共に、該珪素を含む材料と炭化珪素原料との間を、珪素ガスを通過させることができる仕切板(10)で仕切り、珪素を含む材料から発生させた珪素ガスを仕切板を通じて炭化珪素単結晶基板に供給させるようにし、炭化珪素原料の上部にX線を照射し、そのX線の透過量が一定となるように容器内の温度を制御して、炭化珪素単結晶を成長させることを特徴としている。
【0022】
このように炭化珪素原料とは別に珪素を含む材料を配置し、X線の透過量が一定となるように容器内の温度を制御すれば、珪素を含む材料から珪素が供給され、容器内の珪素/炭素比を定常化させることができる。
【0023】
請求項4に記載の発明においては、容器として、上面が開口した本体(1a)と該本体の上面を塞ぐ蓋部(1b)および本体の底部に形成された開口部とを有したものを用いると共に、本体の底部に配置された炭化珪素原料を加熱昇華させて蓋部に配置された炭化珪素単結晶基板上に炭化珪素単結晶を成長させるようにし、炭化珪素原料とは別に、容器外に珪素を含む材料の供給源となる珪素導入部(12)を備え、容器に形成された開口部を通じて珪素導入部から珪素を含む材料の導入を行い、X線の透過量が一定となるように珪素を含む材料の導入量を制御することを特徴としている。
【0024】
このように容器外に珪素導入部を備え、この珪素導入部によって珪素を含む材料を供給するようにすれば、導入時間を適宜調整でき、例えば導入時間を長くすることによって長期に渡って容器内を適度な炭化珪素原料の昇華ガスで満たすことができる。
【0025】
なお、請求項7に示すように、容器の加熱にらせん形状高周波誘導コイル(13)を用いる場合には、コイルを挟んで一直線にX線発生源とX線検出器を配置し、X線発生源からのX線が、コイルを避けるように照射され、容器及び炭化珪素原料を透過してX線検出器に到達するようにすればよい。
【0026】
この場合、請求項8に示すように、コイルのらせんに沿って、X線発生源とX線検出器をらせん駆動させるようにすれば、容器に対して相対的にX線発生源とX線検出器とを上下に移動させることができるため、原料部全体の昇華状態を確認可能とすることができる。
【0027】
なお、請求項9乃至請求項1に記載の発明は、請求項1乃至8に記載の炭化珪素単結晶の製造方法の実施に使用する製造装置の発明である。
【0028】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【0029】
【発明の実施の形態】
(第1実施形態)
図1に本発明の第1実施形態で用いる結晶成長装置を示す。この結晶成長装置の容器として用いられる黒鉛製るつぼ1は、黒鉛製るつぼ1の底部に備えられたSiC原料粉末(SiC原料)2を熱処理によって昇華させ、種結晶であるSiC単結晶基板3上にSiC単結晶4を結晶成長させるものである。
【0030】
この黒鉛製るつぼ1は、上面が開口している略円筒状のるつぼ本体1aと、るつぼ本体1aの開口部を塞ぐ蓋材1bとを備えて構成されている。この黒鉛製るつぼ1を構成する蓋材1bを台座として、台座上にSiC単結晶基板3が接着剤5を介して接合されている。
【0031】
一方、黒鉛製るつぼ1の外部には、黒鉛製るつぼ1内に向かってX線8を照射するX線発生源6が配置されていると共に、黒鉛製るつぼ1内を透過してきたX線8を検出するためのX線検出器7が配置されている。
【0032】
また、X線検出器7には、制御装置8が接続されており、X線検出器7によるX線8の検出結果が制御装置9にフィードバックされ、制御装置9によって黒鉛製るつぼ1内の温度を制御できるように構成されている。
【0033】
なお、図示しないが、黒鉛製るつぼ1は、アルゴンガスが導入できる真空容器の中で加熱装置により、加熱できるようになっており、例えば、この加熱装置のパワーを調節することによって種結晶であるSiC単結晶基板3の温度がSiC原料粉末2の温度よりも100℃程度低温に保たれるようにすることができる。
【0034】
このように構成された結晶成長装置を用いたSiC単結晶の製造工程について説明する。
【0035】
まず、SiC原料粉末2の温度を2000〜2500℃に加熱する。そして、加熱装置の調節等により、SiC単結晶基板3の温度がSiC原料粉末2の温度よりも低くなるように、黒鉛製るつぼ1内に温度勾配を設ける。次に、黒鉛製るつぼ1内の圧力を13.3Pa〜26.7kPaとして、昇華法成長を開始すると、SiC原料粉末2が昇華して昇華ガスとなり、SiC単結晶3に到達し、SiC原料粉末2側よりも相対的に低温となるSiC単結晶基板3の表面上にSiC単結晶4が成長する。
【0036】
その際、SiC原料粉末2にるつぼ本体1の外部からX線8をX線発生源6を用いて照射し、SiC原料粉末2とるつぼ本体1を透過したX線8をX線検出器7で検出する。そうすることで、SiC原料粉末2の珪素成分は昇華により少なくなるが、炭素成分はそのまま残存することから、成長中にX線8の透過量が経時変化するので、SiC原料粉末2の減少量を確認することが可能となる。なお、X線検出器7に表示器を備え、X線8の透過量若しくは減少量を表示器で表示すれば、SiC原料粉末2の昇華状態を把握することも可能である。例えば、透過量若しくは減少量の検出値を数値化してもよく、SiC原料粉末2の状態を画像で表すことによって昇華状態がイメージしやすくなるようにしてもよい。
【0037】
そして、X線検出器7からの検出結果を制御装置9にフィードバックし、制御装置9にて黒鉛製るつぼ1内の温度を制御することによって、SiC原料粉末2の減少量が一定となるようにさせつつ、SiC単結晶4を結晶成長させる。例えば、加熱装置のパワーを調整することにより黒鉛製るつぼ1内の温度分布を調整することができる。
【0038】
このようにすることで、るつぼ1内の珪素/炭素比を安定化させることができ、SiC単結晶4を確実に高品質、長尺に形成することができる。
【0039】
(第2実施形態)
図2に、本発明の第2実施形態で用いる結晶成長装置を示す。以下、図2に基づいて本実施形態におけるSiC単結晶の製造について説明するが、装置構成及びSiC単結晶の製造工程については第1実施形態とほぼ同様であるため、異なる点についてのみ説明する。
【0040】
本実施形態では、黒鉛製るつぼ1内に配置されたSiC原料粉末2の上部にのみX線8を照射し、制御装置9によって透過したX線8の透過量が一定となるように黒鉛製るつぼ1内の温度を制御しながらSiC単結晶4を成長させた。このようにすれば、黒鉛製るつぼ1内の珪素/炭素比を定常化させることができ、SiC単結晶4を確実に高品質、長尺に形成することができる。
【0041】
(第3実施形態)
図3に、本発明の第3実施形態で用いる結晶成長装置を示す。以下、図3に基づいて本実施形態におけるSiC単結晶の製造について説明するが、装置構成及びSiC単結晶の製造工程については第1実施形態とほぼ同様であるため、異なる点についてのみ説明する。
【0042】
るつぼ本体1aの底部には、仕切板10が配置されており、この仕切板10によって、るつぼ本体1aは、SiC単結晶基板3が配置されている側のスペースと配置されていない側のスペースに仕切られている。そして、SiC単結晶基板3が配置されていない側のスペースには珪素を含む材料としての珪素粉末11が収容され、仕切板10で珪素粉末11が囲まれた状態となっている。また、SiC単結晶基板3が配置されている側には仕切板10を覆うようにSiC原料粉末2が充填されている。なお、珪素粉末11とSiC原料粉末2は仕切板10によって混合しないようになっている。具体的には、仕切板10はポーラスカーボン(多孔質黒鉛)で構成されており、珪素粉末11の蒸発ガスが通過できるようになっている。
【0043】
このような構成においても、SiC原料粉末2にX線8を照射し、制御装置9によって透過したX線8の透過量が一定となるように黒鉛製るつぼ1内の温度を制御することで、SiC原料粉末2及び珪素粉末11からの昇華状態を制御し、黒鉛製るつぼ1内の珪素/炭素比を定常化させることができる。これにより、SiC単結晶4を確実に高品質、長尺に形成することができる。
【0044】
(第4実施形態)
図4に、本発明の第4実施形態で用いる結晶成長装置を示す。以下、図4に基づいて本実施形態におけるSiC単結晶の製造について説明するが、装置構成及びSiC単結晶の製造工程については第1実施形態とほぼ同様であるため、異なる点についてのみ説明する。
【0045】
るつぼ本体1aの底部には開口部を設けてあり、この開口部を通じて珪素導入部12から黒鉛製るつぼ1内に珪素を含む材料が導入できるようになっている。この珪素を含む材料としては、例えば常温で珪素系化合物ガスや珪素系化合物の液体を用いることができる。また、珪素導入部12は制御装置9に接続されており、制御装置9によって珪素導入部12による珪素を含む材料の導入量を制御できるように構成されている。
【0046】
このような構成により、昇華によりSiC原料粉末2から抜けたSi成分を、珪素導入部12によって補うことができる。また、このように珪素導入部12を黒鉛製るつぼ1の外部に設けることによって、珪素を含む材料の導入時間を適宜調整でき、例えば導入時間を長くすることによって長期に渡って黒鉛製るつぼ1内を適度なSiC原料の昇華ガスで満たすことができる。
【0047】
このため、SiC原料粉末2にX線8を照射し、制御装置9によって透過したX線8の透過量が一定となるように珪素導入部12による珪素を含む材料の導入量を制御することにより、るつぼ1内の珪素/炭素比を定常化させることができる。これにより、高品質かつ長尺のSiC単結晶4を成長することができる。
【0048】
(他の実施形態)
上記実施形態で説明したように、黒鉛製るつぼ1は加熱装置で加熱されるが、例えば、図5に示すように、らせん形状高周波誘導コイル13を加熱装置として用いることができる。この場合、黒鉛製るつぼ1は、コイル13に囲まれるように配置されるため、コイル13によってX線8が遮られる。従って、このような場合には、コイル13を挟んで一直線にX線発生源6とX線検出器7とを配置し、X線8がコイル13を避けて照射されると共に黒鉛製るつぼ1及びSiC原料粉末2を透過してX線検出器7に到達するようにすればよい。また、X線発生源6とX線検出器7をらせん駆動する機構を備えれば、X線発生源6とX線検出器7を黒鉛製るつぼ1に対して相対的に上下に変位させることも可能である。このようならせん駆動機構を設ければ、X線8を照射できる範囲を超えてSiC原料粉末2が多量に配置されていても、SiC原料粉末2の全体の減少量を検出することができる。また、SiC原料粉末2の量の変化と共に、X線発生源6とX線検出器7を上下に変位させることもできる。
【0049】
また、第3実施形態で示した珪素粉末11は珪素基板などの固体の珪素でもよいし、窒化珪素、珪素系化合物を用いることもできる。
【図面の簡単な説明】
【図1】本発明の第1実施形態における結晶成長装置の構成を示す図である。
【図2】本発明の第2実施形態における結晶成長装置の構成を示す図である。
【図3】本発明の第3実施形態における結晶成長装置の構成を示す図である。
【図4】本発明の第4実施形態における結晶成長装置の構成を示す図である。
【図5】他の実施形態で示すらせん形状高周波誘導コイルを加熱装置として用いた場合の結晶成長装置の構成を示す図である。
【符号の説明】
1…黒鉛製るつぼ、1a…るつぼ本体、1b…蓋材、2…SiC原料粉末、
3…SiC単結晶基板、4…SiC単結晶、5…接着剤、6…X線発生源、
7…X線検出器、8…X線、9…制御装置、10…仕切板、11…珪素粉末、
12…珪素導入部、13…らせん形状高周波誘導コイル。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a silicon carbide (hereinafter referred to as SiC) single crystal that can be used as a material such as a semiconductor or a light emitting diode, and a manufacturing apparatus therefor.
[0002]
[Prior art]
Conventionally, a sublimation recrystallization method has been widely used as a method for growing a SiC single crystal. This sublimation recrystallization method involves joining a seed crystal to a graphite pedestal placed in a graphite crucible, heating and sublimating the SiC raw material arranged at the bottom of the crucible, and supplying the sublimation gas to the seed crystal. To grow a SiC single crystal.
[0003]
In the manufacture of SiC single crystals using such a sublimation recrystallization method, various methods have been proposed for stabilizing the temperature of the growth surface of the SiC single crystal by devising the crucible structure, the raw material supply method, and the like. By these methods, it is possible to obtain a high-quality, long SiC single crystal with high probability.
[0004]
[Problems to be solved by the invention]
However, since the sublimation state of the SiC raw material arranged inside the crucible is slightly different during the growth process of the SiC single crystal, there is a problem that the obtained SiC single crystal often becomes defective.
[0005]
In view of the above points, an object of the present invention is to make it possible to make the SiC sublimation state constant and to reliably manufacture a high-quality and long SiC single crystal.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have conducted the following studies.
[0007]
It is considered that the above problem occurs due to the supersaturation of the SiC gas becoming unstable because the sublimation state of the SiC raw material becomes unstable due to changes over time or the like. For this reason, it can be said that the above problem can be solved if the sublimation state of the SiC raw material can be detected.
[0008]
Therefore, the present inventors have found that X-rays are used as means for detecting the sublimation state of the SiC raw material.
[0009]
When the SiC raw material is irradiated with X-rays, the X-rays are more easily transmitted through the portion where the sublimation of the SiC raw material has progressed than the portion where the sublimation is not performed. This is because the absorptivity of X-rays changes because the Si component is lost at the location where sublimation has progressed. In addition, as a result of the compositional analysis of the location where the sublimation progressed, the C component was almost absent, so it can be explained that the above phenomenon is caused by the absence of the Si component.
[0010]
When X-rays are irradiated to a substance and transmitted, the following relational expression holds between the incident X-ray intensity and the transmitted X-ray intensity.
[0011]
[Expression 1]
Figure 0004238449
Here, I x is the transmitted X-ray intensity, I 0 is the incident X-ray intensity, μ is the linear absorption coefficient, ρ is the density, and x is the distance through which the X-ray passes through the substance.
[0012]
Note that μ / ρ is called a mass absorption coefficient and is a value specific to a substance, and satisfies the following relational expression.
[0013]
[Expression 2]
μ / ρ = ω 1 (μ / ρ) 1 + ω 2 (μ / ρ) 2 +
[0014]
[Equation 3]
μ / ρ = kλ 3 Z 3
Where n (n = 1, 2,...) Is the type of component, ω n is the weight ratio of component n, (μ / ρ) n is the weight absorption coefficient of component n, k is a constant, Z is an atomic number, λ represents the wavelength of X-rays.
[0015]
Since these relational expressions and atomic numbers are C <Si, it can be seen that the amount of X-ray transmission is Si <SiC <C. Therefore, the sublimation state of the SiC raw material can be monitored by using X-rays.
[0016]
Therefore, in order to achieve the above object, in the invention described in claim 1, a silicon carbide raw material (2) and a silicon carbide single crystal substrate (3) to be a seed crystal are disposed in a container (1), and the raw material is In the manufacturing process of the silicon carbide single crystal in which the silicon carbide single crystal (4) is grown on the silicon carbide single crystal substrate by heating and sublimation, the X-ray (8) is generated by the X-ray generation source (6) provided outside the container. The X-ray detector (7) provided on the outside of the container is irradiated with the silicon carbide raw material to detect the X-ray transmitted through the container and the silicon carbide raw material, and the decrease in the silicon carbide raw material is monitored from the amount of X-ray transmission. The temperature inside the container is controlled so that the amount of decrease is constant.
[0017]
In this way, the sublimation state of the silicon carbide raw material is monitored using X-rays, and the silicon / carbon ratio in the container is stabilized by controlling the temperature in the container so that the reduction amount of the silicon carbide raw material becomes constant. Thus, a high quality and long silicon carbide single crystal can be obtained with certainty.
[0018]
In the invention according to claim 2 , the silicon carbide single crystal is grown by irradiating the upper part of the silicon carbide raw material with X-rays and controlling the temperature in the container so that the amount of X-ray transmission is constant. It is characterized by that.
[0019]
Thus, by controlling the temperature in the container so that the amount of X-ray transmission is constant, the silicon / carbon ratio in the container can be made steady, and the same effect as in claim 1 can be obtained.
[0020]
For example, as shown in claim 5, the amount of X-ray transmission can be controlled to be constant by temperature control by a control device (10) for controlling the temperature in the container. In addition, as temperature control, there exists control which changes the temperature distribution in a container, as shown in Claim 6. FIG.
[0021]
In the invention according to claim 3, in addition to the silicon carbide raw material, a material containing at least silicon in the container on the opposite side of the silicon carbide single crystal substrate across the silicon carbide raw material at the bottom of the main body of the container (11) The silicon-containing material and the silicon carbide raw material are partitioned by a partition plate (10) through which silicon gas can pass, and silicon gas generated from the silicon-containing material is carbonized through the partition plate. The silicon carbide single crystal is grown by irradiating the upper portion of the silicon carbide raw material with X-rays and controlling the temperature in the container so that the amount of X-ray transmission is constant. It is characterized by that.
[0022]
Thus the silicon carbide raw material by placing the material separately containing silicon, lever to control the temperature in the container so that the amount of transmission of X-ray is constant, the silicon material containing silicon is supplied in a container The silicon / carbon ratio can be made steady.
[0023]
In the invention described in claim 4, as the container , a container having a main body (1a) whose upper surface is open, a lid (1b) for closing the upper surface of the main body, and an opening formed in the bottom of the main body is used. In addition, the silicon carbide raw material disposed at the bottom of the main body is heated and sublimated to grow a silicon carbide single crystal on the silicon carbide single crystal substrate disposed at the lid. A silicon introduction part (12) serving as a supply source of the material containing silicon is provided, and the material containing silicon is introduced from the silicon introduction part through the opening formed in the container so that the X-ray transmission amount becomes constant. The amount of introduction of a material containing silicon is controlled.
[0024]
Thus, if the silicon introduction part is provided outside the container and the silicon-containing material is supplied by this silicon introduction part, the introduction time can be adjusted as appropriate, for example, the inside of the container can be extended over a long period by increasing the introduction time. Can be filled with a sublimation gas of an appropriate silicon carbide raw material.
[0025]
In addition, as shown in claim 7, when the helical high frequency induction coil (13) is used for heating the container, the X-ray generation source and the X-ray detector are arranged in a straight line with the coil interposed therebetween to generate the X-ray. X-rays from the source may be irradiated so as to avoid the coil, pass through the container and the silicon carbide raw material, and reach the X-ray detector.
[0026]
In this case, if the X-ray generation source and the X-ray detector are helically driven along the spiral of the coil, the X-ray generation source and the X-ray are relatively disposed with respect to the container. Since the detector can be moved up and down, the sublimation state of the entire raw material part can be confirmed.
[0027]
The invention according to claims 9 to 15 is an invention of a manufacturing apparatus used for carrying out the method for manufacturing a silicon carbide single crystal according to claims 1 to 8.
[0028]
In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
FIG. 1 shows a crystal growth apparatus used in the first embodiment of the present invention. A graphite crucible 1 used as a container of this crystal growth apparatus is a method in which a SiC raw material powder (SiC raw material) 2 provided at the bottom of a graphite crucible 1 is sublimated by heat treatment, and is deposited on a SiC single crystal substrate 3 as a seed crystal. The SiC single crystal 4 is crystal-grown.
[0030]
The graphite crucible 1 includes a substantially cylindrical crucible body 1a having an open top surface and a lid 1b that closes the opening of the crucible body 1a. An SiC single crystal substrate 3 is bonded to the pedestal via an adhesive 5 using the lid 1b constituting the graphite crucible 1 as a pedestal.
[0031]
On the other hand, outside the graphite crucible 1, an X-ray generation source 6 that irradiates X-rays 8 toward the inside of the graphite crucible 1 is disposed, and X-rays 8 that have passed through the graphite crucible 1 are transmitted. An X-ray detector 7 for detection is arranged.
[0032]
A control device 8 is connected to the X-ray detector 7, and the detection result of the X-ray 8 by the X-ray detector 7 is fed back to the control device 9, and the temperature in the graphite crucible 1 is controlled by the control device 9. It can be controlled.
[0033]
Although not shown, the graphite crucible 1 can be heated by a heating device in a vacuum vessel into which argon gas can be introduced. For example, the graphite crucible 1 is a seed crystal by adjusting the power of the heating device. The temperature of the SiC single crystal substrate 3 can be maintained at a temperature lower by about 100 ° C. than the temperature of the SiC raw material powder 2.
[0034]
An SiC single crystal manufacturing process using the crystal growth apparatus configured as described above will be described.
[0035]
First, the temperature of SiC raw material powder 2 is heated to 2000-2500 degreeC. Then, a temperature gradient is provided in the graphite crucible 1 so that the temperature of the SiC single crystal substrate 3 becomes lower than the temperature of the SiC raw material powder 2 by adjusting the heating device or the like. Next, when the pressure in the graphite crucible 1 is set to 13.3 Pa to 26.7 kPa and the sublimation growth starts, the SiC raw material powder 2 sublimates to become a sublimation gas, reaches the SiC single crystal 3, and reaches the SiC raw material powder. SiC single crystal 4 grows on the surface of SiC single crystal substrate 3 which is at a relatively lower temperature than the two sides.
[0036]
At that time, X-rays 8 are irradiated from outside the crucible body 1 to the SiC raw material powder 2 using the X-ray generation source 6, and the X-rays 8 transmitted through the crucible main body 1 taking the SiC raw material powder 2 are irradiated by the X-ray detector 7. To detect. By doing so, the silicon component of the SiC raw material powder 2 is reduced by sublimation, but the carbon component remains as it is, so that the amount of transmission of the X-rays 8 changes with time during growth. Can be confirmed. In addition, if the X-ray detector 7 is provided with a display and the amount of transmission or decrease of the X-rays 8 is displayed on the display, the sublimation state of the SiC raw material powder 2 can be grasped. For example, the detected value of the transmission amount or the decrease amount may be digitized, and the state of the SiC raw material powder 2 may be represented by an image so that the sublimation state can be easily visualized.
[0037]
Then, the detection result from the X-ray detector 7 is fed back to the control device 9, and the temperature in the graphite crucible 1 is controlled by the control device 9, so that the reduction amount of the SiC raw material powder 2 becomes constant. Then, the SiC single crystal 4 is grown. For example, the temperature distribution in the graphite crucible 1 can be adjusted by adjusting the power of the heating device.
[0038]
By doing in this way, the silicon / carbon ratio in the crucible 1 can be stabilized, and the SiC single crystal 4 can be reliably formed in high quality and long.
[0039]
(Second Embodiment)
FIG. 2 shows a crystal growth apparatus used in the second embodiment of the present invention. Hereinafter, the production of the SiC single crystal in the present embodiment will be described with reference to FIG. 2, but the apparatus configuration and the production process of the SiC single crystal are substantially the same as those in the first embodiment, and only different points will be described.
[0040]
In this embodiment, only the upper part of the SiC raw material powder 2 disposed in the graphite crucible 1 is irradiated with the X-rays 8 and the transmission amount of the X-rays 8 transmitted by the control device 9 is constant. The SiC single crystal 4 was grown while controlling the temperature in 1. In this way, the silicon / carbon ratio in the graphite crucible 1 can be made steady, and the SiC single crystal 4 can be reliably formed with a high quality and a long length.
[0041]
(Third embodiment)
FIG. 3 shows a crystal growth apparatus used in the third embodiment of the present invention. Hereinafter, manufacturing of the SiC single crystal in the present embodiment will be described with reference to FIG. 3, but the apparatus configuration and the manufacturing process of the SiC single crystal are substantially the same as those in the first embodiment, and only different points will be described.
[0042]
A partition plate 10 is arranged at the bottom of the crucible main body 1a. With this partition plate 10, the crucible main body 1a is divided into a space on the side where the SiC single crystal substrate 3 is arranged and a space on the side where the SiC single crystal substrate 3 is not arranged. It is partitioned. And the silicon powder 11 as a material containing silicon is accommodated in the space on the side where the SiC single crystal substrate 3 is not disposed, and the silicon powder 11 is surrounded by the partition plate 10. Further, the SiC raw material powder 2 is filled on the side where the SiC single crystal substrate 3 is disposed so as to cover the partition plate 10. The silicon powder 11 and the SiC raw material powder 2 are not mixed by the partition plate 10. Specifically, the partition plate 10 is made of porous carbon (porous graphite) so that the evaporation gas of the silicon powder 11 can pass therethrough.
[0043]
Even in such a configuration, by irradiating the SiC raw material powder 2 with X-rays 8 and controlling the temperature in the graphite crucible 1 so that the amount of X-rays 8 transmitted by the control device 9 is constant, The sublimation state from the SiC raw material powder 2 and the silicon powder 11 can be controlled to stabilize the silicon / carbon ratio in the graphite crucible 1. Thereby, the SiC single crystal 4 can be reliably formed in high quality and long.
[0044]
(Fourth embodiment)
FIG. 4 shows a crystal growth apparatus used in the fourth embodiment of the present invention. Hereinafter, the manufacture of the SiC single crystal in the present embodiment will be described with reference to FIG. 4, but the apparatus configuration and the manufacturing process of the SiC single crystal are substantially the same as those in the first embodiment, and only different points will be described.
[0045]
An opening is provided at the bottom of the crucible main body 1a, and a material containing silicon can be introduced into the graphite crucible 1 from the silicon introduction part 12 through the opening. As the material containing silicon, for example, a silicon compound gas or a silicon compound liquid can be used at room temperature. Further, the silicon introduction unit 12 is connected to the control device 9 and is configured such that the introduction amount of the material containing silicon by the silicon introduction unit 12 can be controlled by the control device 9.
[0046]
With this configuration, the Si introduction part 12 can supplement the Si component released from the SiC raw material powder 2 by sublimation. In addition, by providing the silicon introduction part 12 outside the graphite crucible 1 in this manner, the introduction time of the material containing silicon can be adjusted as appropriate. For example, by increasing the introduction time, the inside of the graphite crucible 1 can be prolonged. Can be filled with a sublimation gas of an appropriate SiC raw material.
[0047]
Therefore, by irradiating the SiC raw material powder 2 with X-rays 8 and controlling the introduction amount of the material containing silicon by the silicon introduction part 12 so that the transmission amount of the X-rays 8 transmitted by the control device 9 becomes constant. The silicon / carbon ratio in the crucible 1 can be made steady. Thereby, the high quality and long SiC single crystal 4 can be grown.
[0048]
(Other embodiments)
As described in the above embodiment, the graphite crucible 1 is heated by a heating device. For example, as shown in FIG. 5, a helical high frequency induction coil 13 can be used as a heating device. In this case, since the graphite crucible 1 is disposed so as to be surrounded by the coil 13, the X-ray 8 is blocked by the coil 13. Therefore, in such a case, the X-ray generation source 6 and the X-ray detector 7 are arranged in a straight line with the coil 13 in between, and the X-ray 8 is irradiated avoiding the coil 13 and the graphite crucible 1 and What is necessary is to pass through the SiC raw material powder 2 and reach the X-ray detector 7. If a mechanism for helically driving the X-ray generation source 6 and the X-ray detector 7 is provided, the X-ray generation source 6 and the X-ray detector 7 can be displaced up and down relatively with respect to the graphite crucible 1. Is also possible. If such a helical drive mechanism is provided, even if the SiC raw material powder 2 is disposed in a large amount beyond the range in which the X-rays 8 can be irradiated, the total decrease amount of the SiC raw material powder 2 can be detected. Moreover, the X-ray generation source 6 and the X-ray detector 7 can be displaced up and down with the change in the amount of the SiC raw material powder 2.
[0049]
Further, the silicon powder 11 shown in the third embodiment may be solid silicon such as a silicon substrate, or silicon nitride or a silicon-based compound may be used.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a crystal growth apparatus according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a configuration of a crystal growth apparatus in a second embodiment of the present invention.
FIG. 3 is a diagram showing a configuration of a crystal growth apparatus in a third embodiment of the present invention.
FIG. 4 is a diagram showing a configuration of a crystal growth apparatus in a fourth embodiment of the present invention.
FIG. 5 is a diagram showing a configuration of a crystal growth apparatus when a helical high frequency induction coil shown in another embodiment is used as a heating apparatus.
[Explanation of symbols]
1 ... graphite crucible, 1a ... crucible body, 1b ... lid material, 2 ... SiC raw material powder,
3 ... SiC single crystal substrate, 4 ... SiC single crystal, 5 ... Adhesive, 6 ... X-ray generation source,
7 ... X-ray detector, 8 ... X-ray, 9 ... Control device, 10 ... Partition plate, 11 ... Silicon powder,
12 ... Silicon introduction part, 13 ... Spiral high frequency induction coil.

Claims (16)

容器(1)内に、炭化珪素原料(2)と種結晶となる炭化珪素単結晶基板(3)を配置し、前記炭化珪素原料を加熱昇華させて前記炭化珪素単結晶基板上に炭化珪素単結晶(4)を成長させる炭化珪素単結晶の製造過程において、
前記容器外部に備えたX線発生源(6)にてX線(8)を前記炭化珪素原料に照射し、前記容器外部に備えたX線検出器(7)により前記容器および前記炭化珪素原料を透過したX線を検出し、そのX線の透過量から前記炭化珪素原料の減少量をモニターし、該減少量が一定となるように前記容器内の温度を制御することを特徴とする炭化珪素単結晶の製造方法。
In a container (1), a silicon carbide raw material (2) and a silicon carbide single crystal substrate (3) to be a seed crystal are disposed, and the silicon carbide raw material is heated and sublimated to form a silicon carbide single crystal on the silicon carbide single crystal substrate. In the manufacturing process of the silicon carbide single crystal for growing the crystal (4),
The silicon carbide raw material is irradiated with an X-ray (8) from an X-ray generation source (6) provided outside the container, and the container and the silicon carbide raw material are detected by an X-ray detector (7) provided outside the container. And detecting the amount of reduction of the silicon carbide raw material from the amount of X-ray transmission, and controlling the temperature in the container so that the amount of reduction is constant. A method for producing a silicon single crystal.
容器(1)内に、炭化珪素原料(2)と種結晶となる炭化珪素単結晶基板(3)を配置し、前記炭化珪素原料を加熱昇華させて前記炭化珪素単結晶基板上に炭化珪素単結晶(4)を成長させる炭化珪素単結晶の製造過程において、
前記容器外部に備えたX線発生源(6)にてX線(8)を前記炭化珪素原料の上部に照射し、前記容器外部に備えたX線検出器(7)により前記容器および前記炭化珪素原料を透過したX線を検出し、そのX線の透過量が一定となるように前記容器内の温度を制御して、前記炭化珪素単結晶を成長させることを特徴とする炭化珪素単結晶の製造方法。
In a container (1), a silicon carbide raw material (2) and a silicon carbide single crystal substrate (3) to be a seed crystal are disposed, and the silicon carbide raw material is heated and sublimated to form a silicon carbide single crystal on the silicon carbide single crystal substrate. In the manufacturing process of the silicon carbide single crystal for growing the crystal (4),
The X-ray generation source (6) provided outside the container irradiates the silicon carbide raw material with X-rays (8), and the X-ray detector (7) provided outside the container causes the container and the carbonization to occur. A silicon carbide single crystal characterized by detecting X-rays transmitted through a silicon raw material and growing the silicon carbide single crystal by controlling the temperature in the container so that the amount of X-ray transmission is constant. Manufacturing method.
容器(1)内に、炭化珪素原料(2)と種結晶となる炭化珪素単結晶基板(3)を配置し、前記炭化珪素原料を加熱昇華させて前記炭化珪素単結晶基板上に炭化珪素単結晶(4)を成長させる炭化珪素単結晶の製造過程において、
前記容器として、上面が開口した本体(1a)と該本体の前記上面を塞ぐ蓋部(1b)を有したものを用いると共に、前記本体の底部に配置された前記炭化珪素原料を加熱昇華させて前記蓋部に配置された前記炭化珪素単結晶基板上に前記炭化珪素単結晶を成長させるようにし、
前記炭化珪素原料とは別に、前記本体の底部における前記炭化珪素原料を挟んで前記炭化珪素単結晶基板と反対側に、前記容器内に少なくとも珪素を含む材料(11)を配置すると共に、該珪素を含む材料と前記炭化珪素原料との間を、珪素ガスを通過させることができる仕切板(10)で仕切り、前記珪素を含む材料から発生させた珪素ガスを前記仕切板を通じて前記炭化珪素単結晶基板に供給させるようにし、
前記容器外部に備えたX線発生源(6)にてX線(8)を前記炭化珪素原料の上部に照射し、前記容器外部に備えたX線検出器(7)により前記容器および前記炭化珪素原料を透過したX線を検出し、そのX線の透過量が一定となるように前記容器内の温度を制御して、前記炭化珪素単結晶を成長させることを特徴とする炭化珪素単結晶の製造方法。
In a container (1), a silicon carbide raw material (2) and a silicon carbide single crystal substrate (3) to be a seed crystal are disposed, and the silicon carbide raw material is heated and sublimated to form a silicon carbide single crystal on the silicon carbide single crystal substrate. In the manufacturing process of the silicon carbide single crystal for growing the crystal (4),
As the container, a container having a main body (1a) whose upper surface is open and a lid (1b) that closes the upper surface of the main body is used, and the silicon carbide raw material disposed at the bottom of the main body is heated and sublimated. Growing the silicon carbide single crystal on the silicon carbide single crystal substrate disposed in the lid,
In addition to the silicon carbide raw material, a material (11) containing at least silicon is disposed in the container on the opposite side of the silicon carbide single crystal substrate across the silicon carbide raw material at the bottom of the main body, and the silicon The silicon carbide raw material and the silicon carbide raw material are partitioned by a partition plate (10) through which silicon gas can pass, and the silicon carbide single crystal generated from the silicon-containing material passes through the partition plate. To supply to the substrate,
The X-ray generation source (6) provided outside the container irradiates the silicon carbide raw material with X-rays (8), and the X-ray detector (7) provided outside the container causes the container and the carbonization to occur. A silicon carbide single crystal characterized by detecting X-rays transmitted through a silicon raw material and growing the silicon carbide single crystal by controlling the temperature in the container so that the amount of X-ray transmission is constant. Manufacturing method.
容器(1)内に、炭化珪素原料(2)と種結晶となる炭化珪素単結晶基板(3)を配置し、前記炭化珪素原料を加熱昇華させて前記炭化珪素単結晶基板上に炭化珪素単結晶(4)を成長させる炭化珪素単結晶の製造過程において、
前記容器として、上面が開口した本体(1a)と該本体の前記上面を塞ぐ蓋部(1b)および前記本体の底部に形成された開口部とを有したものを用いると共に、前記本体の底部に配置された前記炭化珪素原料を加熱昇華させて前記蓋部に配置された前記炭化珪素単結晶基板上に前記炭化珪素単結晶を成長させるようにし、
前記炭化珪素原料とは別に、前記容器外に珪素を含む材料の供給源となる珪素導入部(12)を備え、前記容器に形成された前記開口部を通じて前記珪素導入部から前記珪素を含む材料の導入を行い、
前記容器外部に備えたX線発生源(6)にてX線(8)を前記炭化珪素原料の上部に照射し、前記容器外部に備えたX線検出器(7)により前記容器および前記炭化珪素原料を透過したX線を検出し、そのX線の透過量が一定となるように前記珪素を含む材料の導入量を制御することを特徴とする炭化珪素単結晶の製造方法。
In a container (1), a silicon carbide raw material (2) and a silicon carbide single crystal substrate (3) to be a seed crystal are disposed, and the silicon carbide raw material is heated and sublimated to form a silicon carbide single crystal on the silicon carbide single crystal substrate. In the manufacturing process of the silicon carbide single crystal for growing the crystal (4),
As the container, a container having a main body (1a) whose upper surface is open, a lid (1b) that closes the upper surface of the main body, and an opening formed in the bottom of the main body is used. The silicon carbide single crystal is grown on the silicon carbide single crystal substrate disposed on the lid by heating and sublimating the silicon carbide raw material disposed,
Apart from the silicon carbide raw material, to the outside of the container, comprises silicon introduction part as a material supply source containing silicon (12) comprises said silicon from said silicon introducing portion through the opening formed in the container Introducing the materials,
The X-ray generation source (6) provided outside the container irradiates the silicon carbide raw material with X-rays (8), and the X-ray detector (7) provided outside the container causes the container and the carbonization to occur. A method for producing a silicon carbide single crystal, comprising: detecting an X-ray transmitted through a silicon raw material; and controlling an introduction amount of the material containing silicon so that the X-ray transmission amount is constant.
前記容器内の温度の制御を行なう制御装置(10)による温度制御によって、前記前記X線の透過量を一定に制御することを特徴とする請求項2乃至4に記載の炭化珪素単結晶の製造方法。  The silicon carbide single crystal production according to any one of claims 2 to 4, wherein the transmission amount of the X-ray is controlled to be constant by temperature control by a control device (10) for controlling the temperature in the container. Method. 前記制御装置による温度制御は、前記容器内の温度分布を変化させる制御であることを特徴とする請求項5に記載の炭化珪素単結晶の製造方法。  The method for producing a silicon carbide single crystal according to claim 5, wherein the temperature control by the control device is control for changing a temperature distribution in the container. 前記容器をらせん形状高周波誘導コイル(13)に囲まれるように配置し、該コイルによって前記容器内の温度を制御するようにし、
前記コイルを挟んで一直線にX線発生源と前記X線検出器を配置し、X線発生源からのX線が、前記コイルを避けるように照射され、前記容器及び前記炭化珪素原料を透過して前記X線検出器に到達するようにすることを特徴とする請求項1、5又は6に記載の炭化珪素単結晶の製造方法。
The container is disposed so as to be surrounded by a spiral-shaped high-frequency induction coil (13), and the temperature in the container is controlled by the coil,
The X-ray generation source and the X-ray detector are arranged in a straight line across the coil, and X-rays from the X-ray generation source are irradiated so as to avoid the coil, and pass through the container and the silicon carbide raw material. The method of manufacturing a silicon carbide single crystal according to claim 1, wherein the method reaches the X-ray detector.
前記コイルに沿って、前記X線発生源と前記X線検出器をらせん駆動させることを特徴とする請求項7に記載の炭化珪素単結晶の製造方法。  The method for producing a silicon carbide single crystal according to claim 7, wherein the X-ray generation source and the X-ray detector are spirally driven along the coil. 容器(1)内に、炭化珪素原料(2)と種結晶となる炭化珪素単結晶基板(3)を配置し、前記炭化珪素原料を加熱昇華させて前記炭化珪素単結晶基板上に炭化珪素単結晶(4)を成長させる炭化珪素単結晶の製造装置において、
前記容器外部に備えられ、前記容器内部に配置された前記炭化珪素原料に向かってX線(8)を照射するX線発生源(6)と、
前記容器外部に備えられ、前記炭化珪素原料を透過した前記X線の透過量を検出するX線検出器(7)と
前記X線検出器の検出結果が入力され、該検出結果に基づいて前記容器内の温度を制御できる制御装置(9)とを備えていることを特徴とする炭化珪素単結晶の製造装置。
In a container (1), a silicon carbide raw material (2) and a silicon carbide single crystal substrate (3) to be a seed crystal are disposed, and the silicon carbide raw material is heated and sublimated to form a silicon carbide single crystal on the silicon carbide single crystal substrate. In the silicon carbide single crystal manufacturing apparatus for growing the crystal (4),
An X-ray generation source (6) that is provided outside the container and irradiates the silicon carbide raw material disposed inside the container with X-rays (8);
An X-ray detector (7) that is provided outside the container and detects the amount of X-ray transmitted through the silicon carbide raw material ;
An apparatus for producing a silicon carbide single crystal, comprising: a control device (9) capable of receiving a detection result of the X-ray detector and controlling a temperature in the container based on the detection result .
前記制御装置は、前記X線の透過量から前記炭化珪素原料の減少量をモニターし、該減少量が一定となるように前記容器内の温度を制御するものであることを特徴とする請求項に記載の炭化珪素単結晶の製造装置。The said control apparatus monitors the amount of reduction | decrease of the said silicon carbide raw material from the transmission amount of the said X-ray, and controls the temperature in the said container so that this amount of reduction | decrease may become fixed. The manufacturing apparatus of the silicon carbide single crystal of 9 . 前記制御装置は、前記X線の透過量が一定となるように前記容器内の温度を制御することを特徴とする請求項に記載の炭化珪素単結晶の製造装置。The said control apparatus controls the temperature in the said container so that the permeation | transmission amount of the said X-ray may become fixed, The manufacturing apparatus of the silicon carbide single crystal of Claim 9 characterized by the above-mentioned. 前記容器は、上面が開口した本体(1a)と該本体の前記上面を塞ぐ蓋部(1b)および前記本体の底部に形成された開口部とを有し、前記本体の底部に前記炭化珪素原料を配置して加熱昇華させることにより前記蓋部に配置した前記炭化珪素単結晶基板上に前記炭化珪素単結晶を成長させられるように構成され、
さらに、前記炭化珪素原料とは別に、前記容器外に設けられ、珪素を含む材料を前記本体の前記開口部を通じて前記容器内に導入する珪素導入部(12)と、
前記X線検出器の検出結果が入力され、該検出結果に基づいて前記珪素導入部による前記珪素を含む材料の導入量を制御する制御装置(9)とを備えていることを特徴とする請求項9に記載の炭化珪素単結晶の製造装置。
The container has a main body (1a) whose upper surface is open, a lid (1b) that closes the upper surface of the main body, and an opening formed at the bottom of the main body, and the silicon carbide raw material at the bottom of the main body Is configured to grow the silicon carbide single crystal on the silicon carbide single crystal substrate disposed on the lid portion by disposing and heating and sublimating,
Further, separately from the silicon carbide raw material, a silicon introduction part (12) provided outside the container and introducing a material containing silicon into the container through the opening of the main body ,
And a control device (9) for inputting a detection result of the X-ray detector and controlling an introduction amount of the material containing silicon by the silicon introduction part based on the detection result. Item 10. An apparatus for producing a silicon carbide single crystal according to Item 9.
前記制御装置は、前記X線の透過量から前記炭化珪素原料の減少量をモニターし、該減少量が一定となるように前記珪素を含む材料の導入量を制御するものであることを特徴とする請求項12に記載の炭化珪素単結晶の製造装置。The control device monitors the amount of decrease in the silicon carbide raw material from the amount of X-ray transmission, and controls the amount of introduction of the material containing silicon so that the amount of decrease is constant. The apparatus for producing a silicon carbide single crystal according to claim 12 . 前記制御装置は、前記X線の透過量が一定となるように前記珪素を含む材料の導入量を制御することを特徴とする請求項12に記載の炭化珪素単結晶の製造装置。The apparatus for producing a silicon carbide single crystal according to claim 12 , wherein the control device controls an introduction amount of the material containing silicon so that a transmission amount of the X-ray is constant. 前記容器を囲むように配置され、前記容器の加熱を行なうらせん形状高周波誘導コイル(13)を有し、
前記X線発生源からのX線が、前記コイルを避けるように照射され、前記容器及び前記炭化珪素原料を透過して前記X線検出器に到達するように、前記コイルを挟んで一直線に前記X線発生源と前記X線検出器とが配置されており、
前記コイルに沿って、前記X線発生源と前記X線検出器をらせん駆動させる駆動機構が備えられていることを特徴とする請求項9乃至14のいずれか1つに記載の炭化珪素単結晶の製造装置。
A helical high frequency induction coil (13) arranged to surround the container and heating the container;
The X-rays from the X-ray generation source are irradiated so as to avoid the coil, and pass through the container and the silicon carbide raw material to reach the X-ray detector, so that the straight line is interposed between the coils. An X-ray generation source and the X-ray detector are disposed;
Along the coil, silicon carbide single crystal according to the X-ray detector and the X-ray source in any one of claims 9 to 14, characterized in that the driving mechanism for the helical drive is provided Manufacturing equipment.
容器(1)内に、炭化珪素原料(2)と種結晶となる炭化珪素単結晶基板(3)を配置し、前記炭化珪素原料を加熱昇華させて前記炭化珪素単結晶基板上に炭化珪素単結晶(4)を成長させる炭化珪素単結晶の製造過程において、
前記容器外部に備えたX線発生源(6)にてX線を前記炭化珪素原料に照射し、前記容器外部に備えたX線検出器(7)により前記容器および前記炭化珪素原料を透過したX線を検出し、そのX線の透過量から、前記炭化珪素原料の減少量をモニターする炭化珪素原料の昇華状態検出方法。
In a container (1), a silicon carbide raw material (2) and a silicon carbide single crystal substrate (3) to be a seed crystal are disposed, and the silicon carbide raw material is heated and sublimated to form a silicon carbide single crystal on the silicon carbide single crystal substrate. In the manufacturing process of the silicon carbide single crystal for growing the crystal (4),
The X-ray generation source (6) provided outside the container irradiates the silicon carbide raw material with X-rays, and the container and the silicon carbide raw material are transmitted through the X-ray detector (7) provided outside the container. A method for detecting a sublimation state of a silicon carbide raw material, wherein X-rays are detected and the amount of decrease in the silicon carbide raw material is monitored from the amount of transmitted X-rays.
JP2000041426A 2000-02-15 2000-02-15 Method and apparatus for producing silicon carbide single crystal Expired - Lifetime JP4238449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000041426A JP4238449B2 (en) 2000-02-15 2000-02-15 Method and apparatus for producing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000041426A JP4238449B2 (en) 2000-02-15 2000-02-15 Method and apparatus for producing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JP2001226198A JP2001226198A (en) 2001-08-21
JP4238449B2 true JP4238449B2 (en) 2009-03-18

Family

ID=18564671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000041426A Expired - Lifetime JP4238449B2 (en) 2000-02-15 2000-02-15 Method and apparatus for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP4238449B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101189372B1 (en) 2011-01-13 2012-10-09 엘지이노텍 주식회사 Holder-seed assembly and method for the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505202B2 (en) * 2002-09-19 2010-07-21 昭和電工株式会社 Method and apparatus for producing silicon carbide single crystal
KR102153519B1 (en) * 2017-06-23 2020-09-08 주식회사 엘지화학 Manufacturing apparatus for silicon carbide single crystal
KR102447492B1 (en) * 2020-07-15 2022-09-26 주식회사 쎄닉 Monitoring apparatus for monitoring inside of a reaction crucible and method for growing an ingot with a growth apparatus applied the same
CN116676662B (en) * 2023-07-31 2023-11-10 北京青禾晶元半导体科技有限责任公司 Bonding method and application of silicon carbide seed crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101189372B1 (en) 2011-01-13 2012-10-09 엘지이노텍 주식회사 Holder-seed assembly and method for the same

Also Published As

Publication number Publication date
JP2001226198A (en) 2001-08-21

Similar Documents

Publication Publication Date Title
US6336971B1 (en) Method and apparatus for producing silicon carbide single crystal
EP1803840A2 (en) Method for growing single crystal of silicon carbide
EP1026290B1 (en) Method and apparatus for producing silicon carbide single crystal
KR20020042682A (en) Method and apparatus for growing silicon carbide crystals
JPH11116398A (en) Production of silicon carbide single crystal
CN105734672B (en) A method of growing silicon carbide crystal with high quality under an oxygen-containing atmosphere
US6797060B2 (en) Method and apparatus for producing silicon carbide single crystal
JP4238449B2 (en) Method and apparatus for producing silicon carbide single crystal
JP2000264793A (en) Method and apparatus for producing silicon carbide single crystal
JP2008169111A (en) Method for producing silicon carbide single crystal
Hartmann et al. Homoepitaxial seeding and growth of bulk AlN by sublimation
WO2004027122A1 (en) Silicon carbide single crystal and method and apparatus for producing the same
KR102153519B1 (en) Manufacturing apparatus for silicon carbide single crystal
JP2009051702A (en) Method for producing silicon carbide single crystal
JPH06128094A (en) Production of silicon carbide single crystal
CN114411258B (en) Growth method and growth equipment of silicon carbide crystals
JP4505202B2 (en) Method and apparatus for producing silicon carbide single crystal
JP2007277089A (en) SYNTHETIC METHOD OF GaN SINGLE CRYSTAL
EP1158077A1 (en) Method and apparatus for producing single crystal of silicon carbide
JP2006096578A (en) Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal
JP2009051700A (en) Method for producing silicon carbide single crystal
JP2007137714A (en) Method and apparatus for manufacturing single crystal
JP2007145679A (en) Apparatus for and method of producing aluminum nitride single crystal
JP4222630B2 (en) Method for epitaxially growing objects and apparatus for performing such growth
WO2008023635A1 (en) SINGLE-CRYSTAL SiC AND PROCESS FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4238449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term