JP2001226198A - Method and device for producing silicon carbide single crystal - Google Patents

Method and device for producing silicon carbide single crystal

Info

Publication number
JP2001226198A
JP2001226198A JP2000041426A JP2000041426A JP2001226198A JP 2001226198 A JP2001226198 A JP 2001226198A JP 2000041426 A JP2000041426 A JP 2000041426A JP 2000041426 A JP2000041426 A JP 2000041426A JP 2001226198 A JP2001226198 A JP 2001226198A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
raw material
container
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000041426A
Other languages
Japanese (ja)
Other versions
JP4238449B2 (en
Inventor
Hiroyuki Kondo
宏行 近藤
Koki Futatsuyama
幸樹 二ツ山
Fusao Hirose
富佐雄 廣瀬
Shoichi Onda
正一 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000041426A priority Critical patent/JP4238449B2/en
Publication of JP2001226198A publication Critical patent/JP2001226198A/en
Application granted granted Critical
Publication of JP4238449B2 publication Critical patent/JP4238449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely produce a high quality, long size SiC single crystal by providing such a condition that the state of the sublimation of an SiC raw material is kept constant. SOLUTION: In the SiC single crystal production process where an SiC raw material powder 2 and an SiC single crystal substrate 3 being a seed crystal are arranged in a graphite crucible 1 and the SiC raw material powder 2 is heated and subliminated to grow an SiC single crystal 4 on the SiC single crystal substrate 3, the SiC raw material powder 2 is irradiated with X-ray 8 an X-ray generator 6 installed at the outside of the graphite crucible 1 and the X-ray transmitted the SiC raw material powder 2 is detected by an X-ray detector 7. Then, the decreased amount of the SiC raw material powder 2 is monitored by the transmitted amount of the X-ray 8 and the temperature in the graphite crucible 1 is controlled so that the decreasing amount of the SiC raw material powder 2 becomes constant. Thereby, it becomes possible to stabilize the ratio of silicon to carbon in the graphic crucible 1, and the high quality and long size SiC single crystal 4 is surely obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体や発光ダイ
オードなどの素材に利用することができる炭化珪素(以
下、SiCという)単結晶の製造方法及びその製造装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon carbide (hereinafter referred to as SiC) single crystal which can be used for a material such as a semiconductor or a light emitting diode, and a production apparatus therefor.

【0002】[0002]

【従来の技術】従来、SiC単結晶を成長させる方法と
して、昇華再結晶法が広く用いられている。この昇華再
結晶法は、黒鉛製るつぼ内に配置した黒鉛台座に種結晶
を接合すると共に、るつぼ底部に配したSiC原料を加
熱昇華させ、その昇華ガスを種結晶に供給することによ
って種結晶上にSiC単結晶を成長させるものである。
2. Description of the Related Art Conventionally, a sublimation recrystallization method has been widely used as a method for growing a SiC single crystal. In this sublimation recrystallization method, a seed crystal is joined to a graphite pedestal arranged in a graphite crucible, and the SiC raw material arranged at the bottom of the crucible is heated and sublimated, and the sublimation gas is supplied to the seed crystal to thereby form a seed crystal. For growing a SiC single crystal.

【0003】このような昇華再結晶法を用いたSiC単
結晶の製造において、るつぼ構造や原料供給方法等を工
夫することによりSiC単結晶の成長面の温度を安定化
させる方法が種々提案されている。これらの方法により
高い確率で高品質、長尺のSiC単結晶を得ることが可
能である。
In the production of a SiC single crystal using such a sublimation recrystallization method, various methods have been proposed for stabilizing the temperature of the growth surface of the SiC single crystal by devising a crucible structure, a raw material supply method, and the like. I have. By these methods, it is possible to obtain a high-quality, long SiC single crystal with a high probability.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、るつぼ
内部に配置されたSiC原料の昇華の状態が、SiC単
結晶の成長過程で微妙に異なってくるために、得られた
SiC単結晶がしばしば不良になるという問題がある。
However, since the state of sublimation of the SiC raw material disposed inside the crucible is slightly different during the growth process of the SiC single crystal, the obtained SiC single crystal often becomes defective. Problem.

【0005】本発明は上記点に鑑みて、SiC原料の昇
華の状態が一定にできるようにし、確実に高品質、長尺
のSiC単結晶が製造できるようにすることを目的とす
る。
SUMMARY OF THE INVENTION In view of the foregoing, it is an object of the present invention to make the state of sublimation of a SiC raw material constant and to surely produce a high-quality and long SiC single crystal.

【0006】[0006]

【課題を解決するための手段】上記目的を達成すべく、
本発明者らは以下の検討を行なった。
In order to achieve the above object,
The present inventors have conducted the following studies.

【0007】上記問題は、SiC原料の昇華の状態が経
時変化等によって不安定になるために、SiCガスの過
飽和度が不安定になり、それが原因となって発生すると
考えられる。このため、SiC原料の昇華の状態を検出
できるようにすれば、上記問題を解決することができる
と言える。
[0007] The above problem is considered to occur because the sublimation state of the SiC raw material becomes unstable due to aging or the like, so that the degree of supersaturation of the SiC gas becomes unstable. For this reason, it can be said that the above problem can be solved if the sublimation state of the SiC raw material can be detected.

【0008】そこで、本発明者らは、SiC原料の昇華
の状態を検出する手段として、X線を用いることを見出
した。
Therefore, the present inventors have found that X-rays are used as means for detecting the state of sublimation of the SiC raw material.

【0009】SiC原料にX線を照射すると、SiC原
料の昇華が進行した箇所の方が昇華していない箇所より
もX線が透過し易い。これは、昇華が進行した箇所では
Si成分が抜けたために、X線の吸収率が変化するから
である。なお、昇華が進行した箇所を組成分析した結
果、C成分はほとんど抜けていなかったことから、上記
現象はSi成分の抜けが原因であると説明できる。
When the SiC raw material is irradiated with X-rays, the X-rays are more likely to pass through the sublimated portion of the SiC raw material than in the non-sublimated portion. This is because the Si component escapes at the place where sublimation has progressed, so that the X-ray absorption rate changes. In addition, as a result of analyzing the composition of the portion where sublimation has progressed, the C component was hardly removed, and thus the above phenomenon can be explained as being caused by the loss of the Si component.

【0010】X線を物質に照射して透過させる時、入射
X線強度と透過X線強度との間には、次のような関係式
が成り立つ。
When irradiating a substance with X-rays for transmission, the following relational expression holds between the incident X-ray intensity and the transmitted X-ray intensity.

【0011】[0011]

【数1】 但し、Ixは透過X線強度、I0は入射X線強度、μは線
吸収係数、ρは密度、xはX線が物質を透過した距離を
表している。
(Equation 1) Here, I x is the transmitted X-ray intensity, I 0 is the incident X-ray intensity, μ is the line absorption coefficient, ρ is the density, and x is the distance that the X-ray has passed through the substance.

【0012】なお、μ/ρは質量吸収係数と呼ばれ、物
質固有の値であり、次の関係式を満たす。
Note that μ / ρ is called a mass absorption coefficient and is a value inherent to a substance, and satisfies the following relational expression.

【0013】[0013]

【数2】μ/ρ=ω1(μ/ρ)1+ω2(μ/ρ)2+…Μ / ρ = ω 1 (μ / ρ) 1 + ω 2 (μ / ρ) 2 + ...

【0014】[0014]

【数3】μ/ρ=kλ33 但し、n(n=1、2…)を成分の種類とすると、ωn
は成分nの重量比、(μ/ρ)nは成分nの重量吸収係
数、kは定数、Zは原子番号、λはX線の波長を表して
いる。
Μ / ρ = kλ 3 Z 3 where n (n = 1, 2,...) Is the type of component, and ω n
Is the weight ratio of component n, (μ / ρ) n is the weight absorption coefficient of component n, k is a constant, Z is the atomic number, and λ is the wavelength of X-rays.

【0015】これらの関係式、及び原子番号がC<Si
であることから、X線の透過量がSi<SiC<Cとな
ることが判る。従って、X線を用いることにより、Si
C原料の昇華状態をモニターすることができる。
These relational expressions and the atomic number C <Si
Therefore, it can be seen that the transmission amount of X-rays satisfies Si <SiC <C. Therefore, by using X-rays, Si
The sublimation state of the C raw material can be monitored.

【0016】そこで、上記目的を達成するため、請求項
1に記載の発明では、容器(1)内に、炭化珪素原料
(2)と種結晶となる炭化珪素単結晶基板(3)を配置
し、原料を加熱昇華させて炭化珪素単結晶基板上に炭化
珪素単結晶(4)を成長させる炭化珪素単結晶の製造過
程において、容器外部に備えたX線発生源(6)にてX
線(8)を炭化珪素原料に照射し、容器外部に備えたX
線検出器(7)により容器および炭化珪素原料を透過し
たX線を検出し、そのX線の透過量から炭化珪素原料の
減少量をモニターし、該減少量が一定となるように容器
内の温度を制御することを特徴としている。
Therefore, in order to achieve the above object, according to the first aspect of the present invention, a silicon carbide raw material (2) and a silicon carbide single crystal substrate (3) serving as a seed crystal are arranged in a container (1). In the process of producing a silicon carbide single crystal in which a raw material is heated and sublimated to grow a silicon carbide single crystal (4) on a silicon carbide single crystal substrate, X-rays are generated by an X-ray source (6) provided outside the container.
The silicon carbide raw material is irradiated with the wire (8), and X
X-rays transmitted through the container and the silicon carbide raw material are detected by the X-ray detector (7), and the amount of reduction of the silicon carbide raw material is monitored based on the amount of transmitted X-rays. It is characterized by controlling the temperature.

【0017】このように、X線を用いて炭化珪素原料の
昇華状態をモニターし、炭化珪素原料の減少量が一定と
なるように容器内の温度を制御することにより、容器内
の珪素/炭素比を安定化させることができ、確実に高品
質、長尺な炭化珪素単結晶が得られるようにできる。
As described above, the sublimation state of the silicon carbide raw material is monitored using X-rays, and the temperature in the container is controlled so that the amount of reduction of the silicon carbide raw material becomes constant, whereby the silicon / carbon in the container is reduced. The ratio can be stabilized, and a high-quality, long silicon carbide single crystal can be reliably obtained.

【0018】請求項2に記載の発明においては、X線を
炭化珪素原料の上部に照射し、そのX線の透過量が一定
となるようにしつつ炭化珪素単結晶を成長させることを
特徴としている。
According to a second aspect of the present invention, a silicon carbide single crystal is grown while irradiating an X-ray to an upper portion of a silicon carbide raw material so as to make the amount of transmission of the X-ray constant. .

【0019】このように、X線の透過量が一定となるよ
うにすれば、容器内の珪素/炭素比を定常化することが
でき、請求項1と同様の効果が得られる。
As described above, if the amount of transmitted X-rays is made constant, the silicon / carbon ratio in the container can be stabilized, and the same effect as in claim 1 can be obtained.

【0020】例えば、請求項5に示すように、容器内の
温度の制御を行なう制御装置(10)による温度制御に
よって、X線の透過量を一定に制御することができる。
なお、温度制御としては、請求項6に示すように容器内
の温度分布を変化させる制御がある。
For example, the amount of X-rays transmitted can be controlled to be constant by temperature control by a control device (10) for controlling the temperature in the container.
As the temperature control, there is control for changing the temperature distribution in the container as described in claim 6.

【0021】請求項3に記載の発明においては、炭化珪
素原料とは別に、容器内に少なくとも珪素を含む材料
(11)を配置すると共に、該珪素を含む材料と炭化珪
素原料との間を、珪素ガスを通過させることができる仕
切板(10)で仕切り、珪素を含む材料から発生させた
珪素ガスを仕切板を通じて炭化珪素単結晶基板に供給さ
せるようにし、炭化珪素原料の上部にX線を照射し、そ
のX線の透過量が一定となるようにしつつ炭化珪素単結
晶を成長させることを特徴としている。
According to the third aspect of the present invention, a material (11) containing at least silicon is disposed in a container separately from the silicon carbide raw material, and the space between the silicon-containing material and the silicon carbide raw material is Partitioning is performed by a partition plate (10) through which silicon gas can pass, and a silicon gas generated from a material containing silicon is supplied to the silicon carbide single crystal substrate through the partition plate. Irradiation is performed so that a silicon carbide single crystal is grown while the amount of transmitted X-rays is constant.

【0022】このように炭化珪素原料とは別に珪素を含
む材料を配置し、X線の透過量が一定となるようにさせ
れば、珪素を含む材料から珪素が供給され、容器内の珪
素/炭素比を定常化させることができる。
As described above, if a material containing silicon is arranged separately from the silicon carbide raw material so that the amount of transmitted X-rays is constant, silicon is supplied from the material containing silicon and silicon / silicon in the container is removed. The carbon ratio can be stabilized.

【0023】請求項4に記載の発明においては、炭化珪
素原料とは別に、容器外に珪素を含む材料の供給源とな
る珪素導入部(12)を備え、容器に形成された開口部
を通じて珪素導入部から珪素を含む材料の導入を行い、
X線の透過量が一定となるように珪素を含む材料の導入
量を制御することを特徴としている。
According to the fourth aspect of the present invention, a silicon introducing portion (12) is provided outside the container as a supply source of a material containing silicon, separately from the silicon carbide raw material, and silicon is introduced through an opening formed in the container. Introduce a material containing silicon from the introduction section,
It is characterized in that the introduction amount of the material containing silicon is controlled so that the transmission amount of X-rays becomes constant.

【0024】このように容器外に珪素導入部を備え、こ
の珪素導入部によって珪素を含む材料を供給するように
すれば、導入時間を適宜調整でき、例えば導入時間を長
くすることによって長期に渡って容器内を適度な炭化珪
素原料の昇華ガスで満たすことができる。
If the silicon introducing section is provided outside the container and the material containing silicon is supplied by the silicon introducing section as described above, the introduction time can be appropriately adjusted. For example, by extending the introduction time, the introduction time can be extended. Thus, the inside of the container can be filled with a sublimation gas of an appropriate silicon carbide raw material.

【0025】なお、請求項7に示すように、容器の加熱
にらせん形状高周波誘導コイル(13)を用いる場合に
は、コイルを挟んで一直線にX線発生源とX線検出器を
配置し、X線発生源からのX線が、コイルを避けるよう
に照射され、容器及び炭化珪素原料を透過してX線検出
器に到達するようにすればよい。
When the spiral high-frequency induction coil (13) is used for heating the container, the X-ray source and the X-ray detector are arranged in a straight line with the coil interposed therebetween. X-rays from the X-ray generation source may be irradiated so as to avoid the coil, pass through the container and the silicon carbide raw material, and reach the X-ray detector.

【0026】この場合、請求項8に示すように、コイル
のらせんに沿って、X線発生源とX線検出器をらせん駆
動させるようにすれば、容器に対して相対的にX線発生
源とX線検出器とを上下に移動させることができるた
め、原料部全体の昇華状態を確認可能とすることができ
る。
In this case, if the X-ray source and the X-ray detector are spirally driven along the spiral of the coil, the X-ray source can be relatively moved with respect to the container. And the X-ray detector can be moved up and down, so that the sublimation state of the entire raw material section can be confirmed.

【0027】なお、請求項9乃至請求項16に記載の発
明は、請求項1乃至8に記載の炭化珪素単結晶の製造方
法の実施に使用する製造装置の発明である。
The inventions described in claims 9 to 16 are inventions of a manufacturing apparatus used for carrying out the method for manufacturing a silicon carbide single crystal according to claims 1 to 8.

【0028】なお、上記各手段の括弧内の符号は、後述
する実施形態に記載の具体的手段との対応関係を示すも
のである。
The reference numerals in the parentheses of the above means indicate the correspondence with specific means described in the embodiments described later.

【0029】[0029]

【発明の実施の形態】(第1実施形態)図1に本発明の
第1実施形態で用いる結晶成長装置を示す。この結晶成
長装置の容器として用いられる黒鉛製るつぼ1は、黒鉛
製るつぼ1の底部に備えられたSiC原料粉末(SiC
原料)2を熱処理によって昇華させ、種結晶であるSi
C単結晶基板3上にSiC単結晶4を結晶成長させるも
のである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIG. 1 shows a crystal growth apparatus used in a first embodiment of the present invention. The graphite crucible 1 used as a container of the crystal growth apparatus is made of SiC raw material powder (SiC crucible) provided at the bottom of the graphite crucible 1.
The raw material 2 is sublimated by heat treatment, and the seed crystal Si
This is for growing a SiC single crystal 4 on a C single crystal substrate 3.

【0030】この黒鉛製るつぼ1は、上面が開口してい
る略円筒状のるつぼ本体1aと、るつぼ本体1aの開口
部を塞ぐ蓋材1bとを備えて構成されている。この黒鉛
製るつぼ1を構成する蓋材1bを台座として、台座上に
SiC単結晶基板3が接着剤5を介して接合されてい
る。
The graphite crucible 1 includes a substantially cylindrical crucible body 1a having an open upper surface, and a lid 1b for closing the opening of the crucible body 1a. The lid 1b constituting the graphite crucible 1 is used as a pedestal, and the SiC single crystal substrate 3 is bonded on the pedestal via an adhesive 5.

【0031】一方、黒鉛製るつぼ1の外部には、黒鉛製
るつぼ1内に向かってX線8を照射するX線発生源6が
配置されていると共に、黒鉛製るつぼ1内を透過してき
たX線8を検出するためのX線検出器7が配置されてい
る。
On the other hand, outside the graphite crucible 1, an X-ray source 6 for irradiating the inside of the graphite crucible 1 with X-rays 8 is arranged, and X-rays transmitted through the graphite crucible 1 are arranged. An X-ray detector 7 for detecting a line 8 is arranged.

【0032】また、X線検出器7には、制御装置8が接
続されており、X線検出器7によるX線8の検出結果が
制御装置9にフィードバックされ、制御装置9によって
黒鉛製るつぼ1内の温度を制御できるように構成されて
いる。
A control device 8 is connected to the X-ray detector 7, and the result of detection of the X-rays 8 by the X-ray detector 7 is fed back to the control device 9, and the graphite crucible 1 is controlled by the control device 9. It is configured to be able to control the temperature inside.

【0033】なお、図示しないが、黒鉛製るつぼ1は、
アルゴンガスが導入できる真空容器の中で加熱装置によ
り、加熱できるようになっており、例えば、この加熱装
置のパワーを調節することによって種結晶であるSiC
単結晶基板3の温度がSiC原料粉末2の温度よりも1
00℃程度低温に保たれるようにすることができる。
Although not shown, the graphite crucible 1 is
Heating can be performed by a heating device in a vacuum vessel into which argon gas can be introduced. For example, by adjusting the power of the heating device, the seed crystal SiC can be heated.
The temperature of the single crystal substrate 3 is lower than the temperature of the SiC raw material powder 1 by one.
It can be kept at a low temperature of about 00 ° C.

【0034】このように構成された結晶成長装置を用い
たSiC単結晶の製造工程について説明する。
The manufacturing process of the SiC single crystal using the crystal growth apparatus having such a configuration will be described.

【0035】まず、SiC原料粉末2の温度を2000
〜2500℃に加熱する。そして、加熱装置の調節等に
より、SiC単結晶基板3の温度がSiC原料粉末2の
温度よりも低くなるように、黒鉛製るつぼ1内に温度勾
配を設ける。次に、黒鉛製るつぼ1内の圧力を13.3
Pa〜26.7kPaとして、昇華法成長を開始する
と、SiC原料粉末2が昇華して昇華ガスとなり、Si
C単結晶3に到達し、SiC原料粉末2側よりも相対的
に低温となるSiC単結晶基板3の表面上にSiC単結
晶4が成長する。
First, the temperature of the SiC raw material powder 2 was set to 2000
Heat to ~ 2500C. Then, a temperature gradient is provided in the graphite crucible 1 such that the temperature of the SiC single crystal substrate 3 is lower than the temperature of the SiC raw material powder 2 by adjusting a heating device or the like. Next, the pressure in the graphite crucible 1 was increased to 13.3.
When the sublimation growth is started at a pressure of Pa to 26.7 kPa, the SiC raw material powder 2 sublimates to become a sublimation gas,
The SiC single crystal 4 grows on the surface of the SiC single crystal substrate 3 which reaches the C single crystal 3 and has a relatively lower temperature than the SiC raw material powder 2 side.

【0036】その際、SiC原料粉末2にるつぼ本体1
の外部からX線8をX線発生源6を用いて照射し、Si
C原料粉末2とるつぼ本体1を透過したX線8をX線検
出器7で検出する。そうすることで、SiC原料粉末2
の珪素成分は昇華により少なくなるが、炭素成分はその
まま残存することから、成長中にX線8の透過量が経時
変化するので、SiC原料粉末2の減少量を確認するこ
とが可能となる。なお、X線検出器7に表示器を備え、
X線8の透過量若しくは減少量を表示器で表示すれば、
SiC原料粉末2の昇華状態を把握することも可能であ
る。例えば、透過量若しくは減少量の検出値を数値化し
てもよく、SiC原料粉末2の状態を画像で表すことに
よって昇華状態がイメージしやすくなるようにしてもよ
い。
At this time, the crucible body 1 is added to the SiC raw material powder 2.
X-rays 8 are radiated from the outside using the X-ray source 6 and Si
An X-ray 8 transmitted through the C raw material powder 2 and the crucible body 1 is detected by an X-ray detector 7. By doing so, SiC raw material powder 2
Although the silicon component becomes smaller due to sublimation, the carbon component remains as it is, so that the amount of transmission of the X-rays 8 changes over time during growth, so that the amount of decrease in the SiC raw material powder 2 can be confirmed. The X-ray detector 7 has a display,
If the amount of transmission or reduction of X-rays 8 is displayed on a display,
It is also possible to grasp the sublimation state of the SiC raw material powder 2. For example, the detection value of the transmission amount or the reduction amount may be digitized, and the state of the SiC raw material powder 2 may be represented by an image so that the sublimation state may be easily imaged.

【0037】そして、X線検出器7からの検出結果を制
御装置9にフィードバックし、制御装置9にて黒鉛製る
つぼ1内の温度を制御することによって、SiC原料粉
末2の減少量が一定となるようにさせつつ、SiC単結
晶4を結晶成長させる。例えば、加熱装置のパワーを調
整することにより黒鉛製るつぼ1内の温度分布を調整す
ることができる。
Then, the detection result from the X-ray detector 7 is fed back to the control device 9 and the temperature in the graphite crucible 1 is controlled by the control device 9 so that the reduction amount of the SiC raw material powder 2 is kept constant. While growing, the SiC single crystal 4 is grown. For example, the temperature distribution in the graphite crucible 1 can be adjusted by adjusting the power of the heating device.

【0038】このようにすることで、るつぼ1内の珪素
/炭素比を安定化させることができ、SiC単結晶4を
確実に高品質、長尺に形成することができる。
By doing so, the silicon / carbon ratio in the crucible 1 can be stabilized, and the SiC single crystal 4 can be reliably formed with high quality and long length.

【0039】(第2実施形態)図2に、本発明の第2実
施形態で用いる結晶成長装置を示す。以下、図2に基づ
いて本実施形態におけるSiC単結晶の製造について説
明するが、装置構成及びSiC単結晶の製造工程につい
ては第1実施形態とほぼ同様であるため、異なる点につ
いてのみ説明する。
(Second Embodiment) FIG. 2 shows a crystal growth apparatus used in a second embodiment of the present invention. Hereinafter, the manufacturing of the SiC single crystal in the present embodiment will be described with reference to FIG. 2. However, since the device configuration and the manufacturing process of the SiC single crystal are almost the same as those in the first embodiment, only different points will be described.

【0040】本実施形態では、黒鉛製るつぼ1内に配置
されたSiC原料粉末2の上部にのみX線8を照射し、
制御装置9によって透過したX線8の透過量が一定とな
るように黒鉛製るつぼ1内の温度を制御しながらSiC
単結晶4を成長させた。このようにすれば、黒鉛製るつ
ぼ1内の珪素/炭素比を定常化させることができ、Si
C単結晶4を確実に高品質、長尺に形成することができ
る。
In this embodiment, only the upper part of the SiC raw material powder 2 placed in the graphite crucible 1 is irradiated with X-rays 8,
The SiC while controlling the temperature in the graphite crucible 1 so that the transmission amount of the X-rays 8 transmitted by the control device 9 becomes constant.
A single crystal 4 was grown. By doing so, the silicon / carbon ratio in the graphite crucible 1 can be stabilized, and Si
The C single crystal 4 can be reliably formed in high quality and long.

【0041】(第3実施形態)図3に、本発明の第3実
施形態で用いる結晶成長装置を示す。以下、図3に基づ
いて本実施形態におけるSiC単結晶の製造について説
明するが、装置構成及びSiC単結晶の製造工程につい
ては第1実施形態とほぼ同様であるため、異なる点につ
いてのみ説明する。
(Third Embodiment) FIG. 3 shows a crystal growth apparatus used in a third embodiment of the present invention. Hereinafter, the manufacture of the SiC single crystal in the present embodiment will be described with reference to FIG. 3. However, since the device configuration and the manufacturing process of the SiC single crystal are almost the same as those in the first embodiment, only different points will be described.

【0042】るつぼ本体1aの底部には、仕切板10が
配置されており、この仕切板10によって、るつぼ本体
1aは、SiC単結晶基板3が配置されている側のスペ
ースと配置されていない側のスペースに仕切られてい
る。そして、SiC単結晶基板3が配置されていない側
のスペースには珪素を含む材料としての珪素粉末11が
収容され、仕切板10で珪素粉末11が囲まれた状態と
なっている。また、SiC単結晶基板3が配置されてい
る側には仕切板10を覆うようにSiC原料粉末2が充
填されている。なお、珪素粉末11とSiC原料粉末2
は仕切板10によって混合しないようになっている。具
体的には、仕切板10はポーラスカーボン(多孔質黒
鉛)で構成されており、珪素粉末11の蒸発ガスが通過
できるようになっている。
At the bottom of the crucible main body 1a, a partition plate 10 is disposed. With this partition plate 10, the crucible main body 1a is separated from the space where the SiC single crystal substrate 3 is disposed and the side where the SiC single crystal substrate 3 is not disposed. Is divided into spaces. The space on the side where the SiC single crystal substrate 3 is not disposed contains silicon powder 11 as a material containing silicon, and the partition plate 10 surrounds the silicon powder 11. The side on which the SiC single crystal substrate 3 is disposed is filled with the SiC raw material powder 2 so as to cover the partition plate 10. The silicon powder 11 and the SiC raw material powder 2
Are not mixed by the partition plate 10. Specifically, the partition plate 10 is made of porous carbon (porous graphite) so that the vaporized gas of the silicon powder 11 can pass through.

【0043】このような構成においても、SiC原料粉
末2にX線8を照射し、制御装置9によって透過したX
線8の透過量が一定となるように黒鉛製るつぼ1内の温
度を制御することで、SiC原料粉末2及び珪素粉末1
1からの昇華状態を制御し、黒鉛製るつぼ1内の珪素/
炭素比を定常化させることができる。これにより、Si
C単結晶4を確実に高品質、長尺に形成することができ
る。
Even in such a configuration, the SiC raw material powder 2 is irradiated with X-rays 8,
By controlling the temperature in the graphite crucible 1 so that the transmission amount of the wire 8 is constant, the SiC raw material powder 2 and the silicon powder 1 are controlled.
1 to control the state of sublimation from silicon,
The carbon ratio can be stabilized. Thereby, Si
The C single crystal 4 can be reliably formed in high quality and long.

【0044】(第4実施形態)図4に、本発明の第4実
施形態で用いる結晶成長装置を示す。以下、図4に基づ
いて本実施形態におけるSiC単結晶の製造について説
明するが、装置構成及びSiC単結晶の製造工程につい
ては第1実施形態とほぼ同様であるため、異なる点につ
いてのみ説明する。
(Fourth Embodiment) FIG. 4 shows a crystal growth apparatus used in a fourth embodiment of the present invention. Hereinafter, the production of the SiC single crystal in the present embodiment will be described with reference to FIG. 4. However, since the device configuration and the production process of the SiC single crystal are almost the same as those in the first embodiment, only different points will be described.

【0045】るつぼ本体1aの底部には開口部を設けて
あり、この開口部を通じて珪素導入部12から黒鉛製る
つぼ1内に珪素を含む材料が導入できるようになってい
る。この珪素を含む材料としては、例えば常温で珪素系
化合物ガスや珪素系化合物の液体を用いることができ
る。また、珪素導入部12は制御装置9に接続されてお
り、制御装置9によって珪素導入部12による珪素を含
む材料の導入量を制御できるように構成されている。
An opening is provided at the bottom of the crucible main body 1a, and a material containing silicon can be introduced into the graphite crucible 1 from the silicon introduction portion 12 through the opening. As the material containing silicon, for example, a silicon-based compound gas or a liquid of a silicon-based compound at room temperature can be used. Further, the silicon introduction unit 12 is connected to the control device 9, and is configured such that the control device 9 can control the introduction amount of the material containing silicon by the silicon introduction unit 12.

【0046】このような構成により、昇華によりSiC
原料粉末2から抜けたSi成分を、珪素導入部12によ
って補うことができる。また、このように珪素導入部1
2を黒鉛製るつぼ1の外部に設けることによって、珪素
を含む材料の導入時間を適宜調整でき、例えば導入時間
を長くすることによって長期に渡って黒鉛製るつぼ1内
を適度なSiC原料の昇華ガスで満たすことができる。
With such a structure, SiC is formed by sublimation.
The Si component that has escaped from the raw material powder 2 can be supplemented by the silicon introduction part 12. Also, as described above, the silicon introduction part 1
2 is provided outside the graphite crucible 1 so that the introduction time of the material containing silicon can be appropriately adjusted. For example, by increasing the introduction time, the sublimation gas of a suitable SiC raw material can be maintained in the graphite crucible 1 for a long time. Can be filled with

【0047】このため、SiC原料粉末2にX線8を照
射し、制御装置9によって透過したX線8の透過量が一
定となるように珪素導入部12による珪素を含む材料の
導入量を制御することにより、るつぼ1内の珪素/炭素
比を定常化させることができる。これにより、高品質か
つ長尺のSiC単結晶4を成長することができる。
For this reason, the SiC raw material powder 2 is irradiated with X-rays 8, and the control unit 9 controls the introduction amount of the material containing silicon by the silicon introduction unit 12 so that the transmission amount of the X-rays 8 is constant. By doing so, the silicon / carbon ratio in the crucible 1 can be stabilized. Thereby, a high quality and long SiC single crystal 4 can be grown.

【0048】(他の実施形態)上記実施形態で説明した
ように、黒鉛製るつぼ1は加熱装置で加熱されるが、例
えば、図5に示すように、らせん形状高周波誘導コイル
13を加熱装置として用いることができる。この場合、
黒鉛製るつぼ1は、コイル13に囲まれるように配置さ
れるため、コイル13によってX線8が遮られる。従っ
て、このような場合には、コイル13を挟んで一直線に
X線発生源6とX線検出器7とを配置し、X線8がコイ
ル13を避けて照射されると共に黒鉛製るつぼ1及びS
iC原料粉末2を透過してX線検出器7に到達するよう
にすればよい。また、X線発生源6とX線検出器7をら
せん駆動する機構を備えれば、X線発生源6とX線検出
器7を黒鉛製るつぼ1に対して相対的に上下に変位させ
ることも可能である。このようならせん駆動機構を設け
れば、X線8を照射できる範囲を超えてSiC原料粉末
2が多量に配置されていても、SiC原料粉末2の全体
の減少量を検出することができる。また、SiC原料粉
末2の量の変化と共に、X線発生源6とX線検出器7を
上下に変位させることもできる。
(Other Embodiments) As described in the above embodiment, the graphite crucible 1 is heated by a heating device. For example, as shown in FIG. 5, a spiral high-frequency induction coil 13 is used as a heating device. Can be used. in this case,
Since the graphite crucible 1 is arranged so as to be surrounded by the coil 13, the X-ray 8 is blocked by the coil 13. Therefore, in such a case, the X-ray source 6 and the X-ray detector 7 are arranged in a straight line with the coil 13 interposed therebetween, so that the X-ray 8 is irradiated while avoiding the coil 13 and the graphite crucible 1 and S
What is necessary is just to make it penetrate the iC raw material powder 2 and reach the X-ray detector 7. If a mechanism for spirally driving the X-ray source 6 and the X-ray detector 7 is provided, the X-ray source 6 and the X-ray detector 7 can be displaced up and down relatively to the graphite crucible 1. Is also possible. If such a spiral drive mechanism is provided, even if a large amount of the SiC raw material powder 2 is arranged beyond the range in which the X-rays 8 can be irradiated, it is possible to detect the total reduction amount of the SiC raw material powder 2. Further, the X-ray source 6 and the X-ray detector 7 can be displaced up and down as the amount of the SiC raw material powder 2 changes.

【0049】また、第3実施形態で示した珪素粉末11
は珪素基板などの固体の珪素でもよいし、窒化珪素、珪
素系化合物を用いることもできる。
Further, the silicon powder 11 shown in the third embodiment
May be solid silicon such as a silicon substrate, or may be silicon nitride or a silicon-based compound.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態における結晶成長装置の
構成を示す図である。
FIG. 1 is a diagram showing a configuration of a crystal growth apparatus according to a first embodiment of the present invention.

【図2】本発明の第2実施形態における結晶成長装置の
構成を示す図である。
FIG. 2 is a diagram illustrating a configuration of a crystal growth apparatus according to a second embodiment of the present invention.

【図3】本発明の第3実施形態における結晶成長装置の
構成を示す図である。
FIG. 3 is a diagram illustrating a configuration of a crystal growth apparatus according to a third embodiment of the present invention.

【図4】本発明の第4実施形態における結晶成長装置の
構成を示す図である。
FIG. 4 is a diagram showing a configuration of a crystal growth apparatus according to a fourth embodiment of the present invention.

【図5】他の実施形態で示すらせん形状高周波誘導コイ
ルを加熱装置として用いた場合の結晶成長装置の構成を
示す図である。
FIG. 5 is a diagram showing a configuration of a crystal growth apparatus when a spiral high-frequency induction coil shown in another embodiment is used as a heating apparatus.

【符号の説明】[Explanation of symbols]

1…黒鉛製るつぼ、1a…るつぼ本体、1b…蓋材、2
…SiC原料粉末、3…SiC単結晶基板、4…SiC
単結晶、5…接着剤、6…X線発生源、7…X線検出
器、8…X線、9…制御装置、10…仕切板、11…珪
素粉末、12…珪素導入部、13…らせん形状高周波誘
導コイル。
DESCRIPTION OF SYMBOLS 1 ... Graphite crucible, 1a ... Crucible main body, 1b ... Lid material, 2
... SiC raw material powder, 3 ... SiC single crystal substrate, 4 ... SiC
Single crystal, 5 adhesive, 6 X-ray source, 7 X-ray detector, 8 X-ray, 9 control device, 10 partition plate, 11 silicon powder, 12 silicon introduction section, 13 Spiral shaped high frequency induction coil.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 廣瀬 富佐雄 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 恩田 正一 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hiroo Tosao 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Inside DENSO Corporation (72) Inventor Shoichi Onda 1-1-1, Showa-cho, Kariya-shi, Aichi Stock Company Inside DENSO

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 容器(1)内に、炭化珪素原料(2)と
種結晶となる炭化珪素単結晶基板(3)を配置し、前記
炭化珪素原料を加熱昇華させて前記炭化珪素単結晶基板
上に炭化珪素単結晶(4)を成長させる炭化珪素単結晶
の製造過程において、 前記容器外部に備えたX線発生源(6)にてX線(8)
を前記炭化珪素原料に照射し、前記容器外部に備えたX
線検出器(7)により前記容器および前記炭化珪素原料
を透過したX線を検出し、そのX線の透過量から前記炭
化珪素原料の減少量をモニターし、該減少量が一定とな
るように前記容器内の温度を制御することを特徴とする
炭化珪素単結晶の製造方法。
1. A silicon carbide raw material (2) and a silicon carbide single crystal substrate (3) serving as a seed crystal are arranged in a container (1), and the silicon carbide raw material is heated and sublimated to form the silicon carbide single crystal substrate. In the process of producing a silicon carbide single crystal on which a silicon carbide single crystal (4) is grown, an X-ray (8) is generated by an X-ray source (6) provided outside the container.
To the silicon carbide raw material, and X
X-rays transmitted through the container and the silicon carbide raw material are detected by a line detector (7), and the reduction amount of the silicon carbide raw material is monitored from the transmission amount of the X-rays so that the reduction amount becomes constant. A method for producing a silicon carbide single crystal, comprising controlling a temperature in the container.
【請求項2】 容器(1)内に、炭化珪素原料(2)と
種結晶となる炭化珪素単結晶基板(3)を配置し、前記
炭化珪素原料を加熱昇華させて前記炭化珪素単結晶基板
上に炭化珪素単結晶(4)を成長させる炭化珪素単結晶
の製造過程において、 前記容器外部に備えたX線発生源(6)にてX線(8)
を前記炭化珪素原料の上部に照射し、前記容器外部に備
えたX線検出器(7)により前記容器および前記炭化珪
素原料を透過したX線を検出し、そのX線の透過量が一
定となるようにしつつ前記炭化珪素単結晶を成長させる
ことを特徴とする炭化珪素単結晶の製造方法。
2. A silicon carbide raw material (2) and a silicon carbide single crystal substrate (3) serving as a seed crystal are arranged in a container (1), and the silicon carbide raw material is heated and sublimated to form the silicon carbide single crystal substrate. In the process of producing a silicon carbide single crystal on which a silicon carbide single crystal (4) is grown, an X-ray (8) is generated by an X-ray source (6) provided outside the container.
Is irradiated onto the upper portion of the silicon carbide raw material, and X-rays transmitted through the container and the silicon carbide raw material are detected by an X-ray detector (7) provided outside the container. A method for producing a silicon carbide single crystal, wherein the silicon carbide single crystal is grown while forming the silicon carbide single crystal.
【請求項3】 容器(1)内に、炭化珪素原料(2)と
種結晶となる炭化珪素単結晶基板(3)を配置し、前記
炭化珪素原料を加熱昇華させて前記炭化珪素単結晶基板
上に炭化珪素単結晶(4)を成長させる炭化珪素単結晶
の製造過程において、 前記炭化珪素原料とは別に、前記容器内に少なくとも珪
素を含む材料(11)を配置すると共に、該珪素を含む
材料と前記炭化珪素原料との間を、珪素ガスを通過させ
ることができる仕切板(10)で仕切り、前記珪素を含
む材料から発生させた珪素ガスを前記仕切板を通じて前
記炭化珪素単結晶基板に供給させるようにし、 前記容器外部に備えたX線発生源(6)にてX線(8)
を前記炭化珪素原料の上部に照射し、前記容器外部に備
えたX線検出器(7)により前記容器および前記炭化珪
素原料を透過したX線を検出し、そのX線の透過量が一
定となるようにしつつ前記炭化珪素単結晶を成長させる
ことを特徴とする炭化珪素単結晶の製造方法。
3. A silicon carbide raw material (2) and a silicon carbide single crystal substrate (3) serving as a seed crystal are arranged in a container (1), and the silicon carbide raw material is heated and sublimated to form the silicon carbide single crystal substrate. In the process of producing a silicon carbide single crystal on which a silicon carbide single crystal (4) is grown, a material (11) containing at least silicon is placed in the container separately from the silicon carbide raw material and contains the silicon carbide. The material and the silicon carbide raw material are partitioned by a partition plate (10) through which a silicon gas can pass, and silicon gas generated from the silicon-containing material is passed through the partition plate to the silicon carbide single crystal substrate. X-rays (8) at an X-ray source (6) provided outside the container.
Is irradiated onto the upper portion of the silicon carbide raw material, and X-rays transmitted through the container and the silicon carbide raw material are detected by an X-ray detector (7) provided outside the container. A method for producing a silicon carbide single crystal, wherein the silicon carbide single crystal is grown while forming the silicon carbide single crystal.
【請求項4】 容器(1)内に、炭化珪素原料(2)と
種結晶となる炭化珪素単結晶基板(3)を配置し、前記
炭化珪素原料を加熱昇華させて前記炭化珪素単結晶基板
上に炭化珪素単結晶(4)を成長させる炭化珪素単結晶
の製造過程において、 前記炭化珪素原料とは別に、前記容器外に珪素を含む材
料の供給源となる珪素導入部(12)を備え、前記容器
に形成された開口部を通じて前記珪素導入部から前記珪
素を含む材料の導入を行い、 前記容器外部に備えたX線発生源(6)にてX線(8)
を前記炭化珪素原料の上部に照射し、前記容器外部に備
えたX線検出器(7)により前記容器および前記炭化珪
素原料を透過したX線を検出し、そのX線の透過量が一
定となるように前記珪素を含む材料の導入量を制御する
ことを特徴とする炭化珪素単結晶の製造方法。
4. A silicon carbide raw material (2) and a silicon carbide single crystal substrate (3) serving as a seed crystal are arranged in a container (1), and the silicon carbide raw material is heated and sublimated to form the silicon carbide single crystal substrate. In the manufacturing process of a silicon carbide single crystal on which a silicon carbide single crystal (4) is grown, a silicon introduction part (12) serving as a supply source of a material containing silicon is provided outside the container separately from the silicon carbide raw material. Introducing the silicon-containing material from the silicon introduction portion through an opening formed in the container; and X-rays (8) at an X-ray source (6) provided outside the container.
Is irradiated onto the upper portion of the silicon carbide raw material, and X-rays transmitted through the container and the silicon carbide raw material are detected by an X-ray detector (7) provided outside the container. A method for producing a silicon carbide single crystal, characterized in that the amount of the silicon-containing material to be introduced is controlled so as to be as follows.
【請求項5】 前記容器内の温度の制御を行なう制御装
置(10)による温度制御によって、前記前記X線の透
過量を一定に制御することを特徴とする請求項2乃至4
に記載の炭化珪素単結晶の製造方法。
5. The transmission amount of the X-rays is controlled to be constant by temperature control by a control device (10) for controlling the temperature in the container.
3. The method for producing a silicon carbide single crystal according to item 1.
【請求項6】 前記制御装置による温度制御は、前記容
器内の温度分布を変化させる制御であることを特徴とす
る請求項5に記載の炭化珪素単結晶の製造方法。
6. The method for producing a silicon carbide single crystal according to claim 5, wherein the temperature control by the control device is a control for changing a temperature distribution in the container.
【請求項7】 前記容器をらせん形状高周波誘導コイル
(13)に囲まれるように配置し、該コイルによって前
記容器内の温度を制御するようにし、 前記コイルを挟んで一直線にX線発生源と前記X線検出
器を配置し、X線発生源からのX線が、前記コイルを避
けるように照射され、前記容器及び前記炭化珪素原料を
透過して前記X線検出器に到達するようにすることを特
徴とする請求項1、5又は6に記載の炭化珪素単結晶の
製造方法。
7. The container is arranged so as to be surrounded by a helical high-frequency induction coil (13), and the temperature in the container is controlled by the coil. The X-ray detector is arranged so that X-rays from an X-ray source are irradiated so as to avoid the coil, pass through the container and the silicon carbide raw material, and reach the X-ray detector. The method for producing a silicon carbide single crystal according to claim 1, 5, or 6.
【請求項8】 前記コイルに沿って、前記X線発生源と
前記X線検出器をらせん駆動させることを特徴とする請
求項7に記載の炭化珪素単結晶の製造方法。
8. The method of manufacturing a silicon carbide single crystal according to claim 7, wherein the X-ray source and the X-ray detector are helically driven along the coil.
【請求項9】 容器(1)内に、炭化珪素原料(2)と
種結晶となる炭化珪素単結晶基板(3)を配置し、前記
炭化珪素原料を加熱昇華させて前記炭化珪素単結晶基板
上に炭化珪素単結晶(4)を成長させる炭化珪素単結晶
の製造装置において、 前記容器外部に備えられ、前記容器内部に配置された前
記炭化珪素原料に向かってX線(8)を照射するX線発
生源(6)と、 前記容器外部に備えられ、前記炭化珪素原料を透過した
前記X線の透過量を検出するX線検出器(7)とを備え
ていることを特徴とする炭化珪素単結晶の製造装置。
9. A silicon carbide raw material (2) and a silicon carbide single crystal substrate (3) serving as a seed crystal are arranged in a container (1), and the silicon carbide raw material is heated and sublimated to form the silicon carbide single crystal substrate. An apparatus for producing a silicon carbide single crystal on which a silicon carbide single crystal (4) is grown, wherein an X-ray (8) is irradiated toward the silicon carbide raw material provided outside the container and disposed inside the container. An X-ray generation source (6), and an X-ray detector (7) provided outside the container and configured to detect an amount of the X-ray transmitted through the silicon carbide raw material (7). Equipment for manufacturing silicon single crystals.
【請求項10】 前記X線検出器の検出結果が入力さ
れ、該検出結果に基づいて前記容器内の温度を制御でき
る制御装置(9)を備えていることを特徴とする請求項
9に記載の炭化珪素単結晶の製造装置。
10. The apparatus according to claim 9, further comprising a control device (9) to which a detection result of the X-ray detector is input, and which can control a temperature in the container based on the detection result. For producing silicon carbide single crystal.
【請求項11】 前記制御装置は、前記X線の透過量か
ら前記炭化珪素原料の減少量をモニターし、該減少量が
一定となるように前記容器内の温度を制御するものであ
ることを特徴とする請求項10に記載の炭化珪素単結晶
の製造装置。
11. The method according to claim 1, wherein the control device monitors a reduction amount of the silicon carbide raw material from the X-ray transmission amount, and controls a temperature in the container so that the reduction amount becomes constant. The apparatus for producing a silicon carbide single crystal according to claim 10.
【請求項12】 前記制御装置は、前記X線の透過量が
一定となるように前記容器内の温度を制御することを特
徴とする請求項10に記載の炭化珪素単結晶の製造装
置。
12. The apparatus for producing a silicon carbide single crystal according to claim 10, wherein the control device controls the temperature in the container so that the amount of transmission of the X-rays is constant.
【請求項13】 前記炭化珪素原料とは別に、前記容器
外に珪素を含む材料を前記容器内に導入する珪素導入部
(12)と、 前記X線検出器の検出結果が入力され、該検出結果に基
づいて前記珪素導入部による前記珪素を含む材料の導入
量を制御する制御装置(9)とを備えていることを特徴
とする請求項9に記載の炭化珪素単結晶の製造装置。
13. A silicon introduction part (12) for introducing a material containing silicon outside the container into the container separately from the silicon carbide raw material, and a detection result of the X-ray detector is input. The apparatus for producing a silicon carbide single crystal according to claim 9, further comprising: a control device (9) for controlling an introduction amount of the material containing silicon by the silicon introduction unit based on a result.
【請求項14】 前記制御装置は、前記X線の透過量か
ら前記炭化珪素原料の減少量をモニターし、該減少量が
一定となるように前記珪素を含む材料の導入量を制御す
るものであることを特徴とする請求項13に記載の炭化
珪素単結晶の製造装置。
14. The control device monitors a reduction amount of the silicon carbide raw material from the transmission amount of the X-ray, and controls an introduction amount of the silicon-containing material so that the reduction amount becomes constant. The apparatus for producing a silicon carbide single crystal according to claim 13, wherein:
【請求項15】 前記制御装置は、前記X線の透過量が
一定となるように前記珪素を含む材料の導入量を制御す
ることを特徴とする請求項13に記載の炭化珪素単結晶
の製造装置。
15. The production of a silicon carbide single crystal according to claim 13, wherein the control device controls the introduction amount of the silicon-containing material so that the transmission amount of the X-ray becomes constant. apparatus.
【請求項16】 前記容器を囲むように配置され、前記
容器の加熱を行なうらせん形状高周波誘導コイル(1
3)を有し、 前記X線発生源からのX線が、前記コイルを避けるよう
に照射され、前記容器及び前記炭化珪素原料を透過して
前記X線検出器に到達するように、前記コイルを挟んで
一直線に前記X線発生源と前記X線検出器とが配置され
ており、 前記コイルに沿って、前記X線発生源と前記X線検出器
をらせん駆動させる駆動機構が備えられていることを特
徴とする請求項9乃至15のいずれか1つに記載の炭化
珪素単結晶の製造装置。
16. A helical high-frequency induction coil (1) arranged to surround the container and heats the container.
3) wherein the X-rays from the X-ray source are irradiated so as to avoid the coil, and the X-ray is transmitted through the container and the silicon carbide raw material to reach the X-ray detector. The X-ray source and the X-ray detector are arranged in a straight line with a drive mechanism provided between the X-ray source and the X-ray detector in a spiral drive along the coil. The apparatus for producing a silicon carbide single crystal according to any one of claims 9 to 15, wherein:
【請求項17】 容器(1)内に、炭化珪素原料(2)
と種結晶となる炭化珪素単結晶基板(3)を配置し、前
記炭化珪素原料を加熱昇華させて前記炭化珪素単結晶基
板上に炭化珪素単結晶(4)を成長させる炭化珪素単結
晶の製造過程において、 前記容器外部に備えたX線発生源(6)にてX線を前記
炭化珪素原料に照射し、前記容器外部に備えたX線検出
器(7)により前記容器および前記炭化珪素原料を透過
したX線を検出し、そのX線の透過量から、前記炭化珪
素原料の減少量をモニターする炭化珪素原料の昇華状態
検出方法。
17. A silicon carbide raw material (2) in a container (1).
And a silicon carbide single crystal substrate (3) serving as a seed crystal is arranged, and the silicon carbide raw material is heated and sublimated to produce a silicon carbide single crystal (4) on the silicon carbide single crystal substrate. In the process, the X-ray source (6) provided outside the container irradiates the silicon carbide raw material with X-rays, and the X-ray detector (7) provided outside the container provides the X-ray detector (7) with the container and the silicon carbide raw material. A method for detecting the sublimation state of a silicon carbide raw material, comprising detecting X-rays transmitted through the silicon carbide and monitoring the amount of reduction of the silicon carbide raw material from the amount of transmitted X-rays.
JP2000041426A 2000-02-15 2000-02-15 Method and apparatus for producing silicon carbide single crystal Expired - Lifetime JP4238449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000041426A JP4238449B2 (en) 2000-02-15 2000-02-15 Method and apparatus for producing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000041426A JP4238449B2 (en) 2000-02-15 2000-02-15 Method and apparatus for producing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JP2001226198A true JP2001226198A (en) 2001-08-21
JP4238449B2 JP4238449B2 (en) 2009-03-18

Family

ID=18564671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000041426A Expired - Lifetime JP4238449B2 (en) 2000-02-15 2000-02-15 Method and apparatus for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP4238449B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131376A (en) * 2002-09-19 2004-04-30 Showa Denko Kk Silicon carbide single crystal, and method and apparatus for producing the same
KR20190000618A (en) * 2017-06-23 2019-01-03 주식회사 엘지화학 Manufacturing apparatus for silicon carbide single crystal
KR20220009142A (en) * 2020-07-15 2022-01-24 주식회사 쎄닉 Monitoring apparatus for monitoring inside of a reaction crucible and method for growing an ingot with a growth apparatus applied the same
CN116676662A (en) * 2023-07-31 2023-09-01 北京青禾晶元半导体科技有限责任公司 Bonding method and application of silicon carbide seed crystal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101189372B1 (en) 2011-01-13 2012-10-09 엘지이노텍 주식회사 Holder-seed assembly and method for the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131376A (en) * 2002-09-19 2004-04-30 Showa Denko Kk Silicon carbide single crystal, and method and apparatus for producing the same
JP4505202B2 (en) * 2002-09-19 2010-07-21 昭和電工株式会社 Method and apparatus for producing silicon carbide single crystal
KR20190000618A (en) * 2017-06-23 2019-01-03 주식회사 엘지화학 Manufacturing apparatus for silicon carbide single crystal
KR102153519B1 (en) * 2017-06-23 2020-09-08 주식회사 엘지화학 Manufacturing apparatus for silicon carbide single crystal
KR20220009142A (en) * 2020-07-15 2022-01-24 주식회사 쎄닉 Monitoring apparatus for monitoring inside of a reaction crucible and method for growing an ingot with a growth apparatus applied the same
KR102447492B1 (en) * 2020-07-15 2022-09-26 주식회사 쎄닉 Monitoring apparatus for monitoring inside of a reaction crucible and method for growing an ingot with a growth apparatus applied the same
CN116676662A (en) * 2023-07-31 2023-09-01 北京青禾晶元半导体科技有限责任公司 Bonding method and application of silicon carbide seed crystal
CN116676662B (en) * 2023-07-31 2023-11-10 北京青禾晶元半导体科技有限责任公司 Bonding method and application of silicon carbide seed crystal

Also Published As

Publication number Publication date
JP4238449B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
US9068277B2 (en) Apparatus for manufacturing single-crystal silicon carbide
US20120304916A1 (en) Method of producing silicon carbide single crystal
CN112176405B (en) System for horizontally growing high-quality semiconductor single crystal and method for producing the single crystal
EP1803840A2 (en) Method for growing single crystal of silicon carbide
CN105734671B (en) A kind of method of high quality growing silicon carbice crystals
CN105734672B (en) A method of growing silicon carbide crystal with high quality under an oxygen-containing atmosphere
US7771530B2 (en) Process and apparatus for producing a silicon single crystal
JPH11116398A (en) Production of silicon carbide single crystal
JP3194820B2 (en) Method for forming oriented diamond film
JP2000264793A (en) Method and apparatus for producing silicon carbide single crystal
JP6015397B2 (en) Method for manufacturing silicon carbide single crystal and apparatus for manufacturing the same
JPS61158891A (en) Crystal growing method and crystal pull-up device
JP2001226198A (en) Method and device for producing silicon carbide single crystal
JP6681687B2 (en) Graphite crucible for producing silicon carbide single crystal ingot and method for producing silicon carbide single crystal ingot
KR102153519B1 (en) Manufacturing apparatus for silicon carbide single crystal
CN114411258B (en) Growth method and growth equipment of silicon carbide crystals
JP2009051702A (en) Method for producing silicon carbide single crystal
JP4505202B2 (en) Method and apparatus for producing silicon carbide single crystal
JPH10139589A (en) Production of single crystal
JP5831339B2 (en) Method for producing silicon carbide single crystal
JP4691815B2 (en) Method for producing SiC single crystal
RU2770838C1 (en) Method for growing single crystals of silicon carbide with n-type conductivity
JP6501494B2 (en) Method and apparatus for manufacturing silicon carbide single crystal ingot
JP3213720B2 (en) Crystal growth apparatus and crystal growth method using the same
JPH05330995A (en) Production of silicon carbide single crystal and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4238449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term