JP4234800B2 - Method for producing silicon carbide powder - Google Patents

Method for producing silicon carbide powder Download PDF

Info

Publication number
JP4234800B2
JP4234800B2 JP22834697A JP22834697A JP4234800B2 JP 4234800 B2 JP4234800 B2 JP 4234800B2 JP 22834697 A JP22834697 A JP 22834697A JP 22834697 A JP22834697 A JP 22834697A JP 4234800 B2 JP4234800 B2 JP 4234800B2
Authority
JP
Japan
Prior art keywords
silicon carbide
carbide powder
catalyst
mixture
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22834697A
Other languages
Japanese (ja)
Other versions
JPH10120411A (en
Inventor
鳴雪 梶原
誠夫 橋本
宏明 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP22834697A priority Critical patent/JP4234800B2/en
Publication of JPH10120411A publication Critical patent/JPH10120411A/en
Application granted granted Critical
Publication of JP4234800B2 publication Critical patent/JP4234800B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
炭化ケイ素粉体の製造方法に係り、特に硬化重合触媒由来の硫黄化合物を発生しない炭化ケイ素粉体の製造方法に関する。
【0002】
【従来の技術】
炭化ケイ素の製造方法としては、従来、ケイ砂と石油コークスとを原料とし、炭化ケイ素粉体を得るアチソン法が知られている。この方法によれば、前記の原料中に不純物が多く含まれているために、得られた炭化ケイ素粉体は十分高純度にならず、焼結体原料に用いた場合には、焼結体中に不純物が混入するため種々の特性に欠点が多発することが知られており、高純度の焼結体の製造には不向きである。
【0003】
高純度の炭化ケイ素粉体を製造する方法としては、高純度の液状ケイ素源と液状の炭素源とを原料として用いる方法が特公平1−42886号に開示されている。
【0004】
この方法においては、金属を含まない強酸として従来pKaの強度よりトルエンスルホン酸が選択されていたが、炭化・焼成工程で発生する硫黄化合物、例えば、SO、SO2 等の気体を連続的に加熱炉外に放出する際に、相当硫黄化合物の処理のための設備と処理工程を必要するという欠点を有していた。
【0005】
【発明が解決しようとする課題】
従って、本発明は前記問題を鑑みてなされたものであり、本発明の目的は前記高純度炭化ケイ素製造方法において、炭化・焼成工程において硫黄化合物が発生することなく炭化ケイ素を製造しうる、高性能の炭化ケイ素粉体の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、これらの硫黄化合物の発生機構について鋭意検討した結果、炭化ケイ素製造方法で用いられていたトルエンスルホン酸に代表される含硫黄触媒を用いず、主成分のエチルシリケート又はフェノール樹脂中の過剰な酸素原子と反応し加水分解・重合反応を均一に生起させる方法を見出し、本発明を完成した。
【0007】
即ち、本発明の炭化ケイ素の製造方法は、少なくとも1種以上の常温で液状のケイ素化合物と、官能基を有し加熱により炭素を生成する常温で液状の有機化合物と、少なくとも該有機化合物と均一に溶化する重合又は架橋触媒とを混合して混合物を得、これを均質に固化させて得られた前駆体物質を用いる炭化ケイ素粉体の製造方法であって、該触媒が、マレイン酸またはアクリル酸であることを特徴とする。
【0009】
また、この製造方法において前記前駆体物質が、加熱焼成前に予め非酸化性雰囲気下で加熱炭化されることが好ましく、前記混合物には、界面活性剤を添加することが好ましい。
【0010】
【発明の実施の形態】
以下に、本発明をさらに詳細に説明する。
【0011】
本発明の炭化ケイ素粉末は、例えば、液状のケイ素化合物と、酸素を分子内に含有し、加熱により炭素を生成する液状の有機化合物(以下、適宜、炭素源と称する)と、少なくとも有機化合物と均一に溶化する重合又は架橋触媒とを均質に混合して得られた混合物を、非酸化性雰囲気下で加熱焼成して製造され、好ましくは、前記液状のケイ素化合物と炭素源と触媒と、を均質に混合して得られた混合物を固化して固形物を得る固化工程と、得られた固形物を非酸化性雰囲気下で加熱炭化した後、さらに、非酸化性雰囲気下で焼成する焼成工程とを含む製造方法により得ることができる。
【0012】
この炭化ケイ素粉体の製造方法に用いられるケイ素源としては、高純度のテトラアルコキシシラン、その重合体、酸化ケイ素から選択される1種以上を用いる。本発明において酸化ケイ素とは、二酸化ケイ素、一酸化ケイ素を包含するものとする。ケイ素源としては、具体的には、テトラエトキシシランに代表されるアルコキシシラン、その低分子量重合体(オリゴマー)、及び、さらに重合度が高いケイ酸ポリマー等や、シリカゾル、微粉体シリカ等の酸化ケイ素化合物が挙げられる。アルコキシシランとしては、メトキシシラン、エトキシシラン、プロポキシシラン、ブトキシシラン等が例示され、なかでも、ハンドリング性の観点から、エトキシシランが好ましく用いられる。ここでオリゴマーとは重合度2〜15程度の重合体を指す。
【0013】
これらケイ素源のなかでも、均質性やハンドリング性が良好な観点から、テトラエトキシシランのオリゴマーや、テトラエトキシシランのオリゴマーと微粉体シリカとの混合物等が好適である。また、これらのケイ素源は用に応じて高純度の物質を用いることが好ましく、その場合には、初期の不純物含有量が20ppm以下であることが好ましく、5ppm以下であることがさらに好ましい。
【0014】
また、本発明の方法において、前記炭化ケイ素粉末と混合される、加熱により炭素を生成する有機化合物として用いられる物質は、具体的には、残炭率の高いコールタールピッチ、フェノール樹脂、フラン樹脂、エポキシ樹脂、フェノキシ樹脂やグルコース等の単糖類、蔗糖等の少糖類、セルロース、デンプン等の多糖類などの等の各種糖類が挙げられる。これらはケイ源と均質に混合するという目的から、常温で液状のもの、溶媒に溶解するもの、熱可塑性或いは熱融解性のように加熱することにより軟化するもの或いは液状となるものが好適に用いられるが、なかでも、残炭率が高く、触媒又は加熱により重合又は架橋する炭素原子、水素原子、及び窒素原子のみから構成される化合物、具体的には例えば、フェノール樹脂、ポリビニルアルコール、ポリ酢酸ビニルなどが好ましい。
【0015】
本発明の原料粉体である炭化ケイ素粉体を製造するにあたっての、炭素とケイ素の比(以下、C/Si比と略記)は、混合物を炭化して得られる炭化物中間体を、元素分析することにより定義される。化学量論的には、C/Si比が3.0の時に生成炭化ケイ素中の遊離炭素が0%となるはずであるが、実際には同時に生成するSiOガスの揮散により低C/Si比において遊離炭素が発生する。この生成炭化ケイ素粉体中の遊離炭素量が焼結体製造用途に適当でない量にならないように予め配合を決定することが重要である。通常、1気圧近傍で1600℃以上での焼成では、C/Si比を2.0〜2.5にすると遊離炭素を抑制することができ、この範囲を好適に用いることができる。C/Si比を2.5以上にすると遊離炭素が顕著に増加するが、この遊離炭素は粒成長を抑制する効果を持つため、粒子形成の目的に応じて適宜選択しても良い。但し、雰囲気の圧力を低圧又は高圧で焼成する場合は、純粋な炭化ケイ素を得るためのC/Si比は変動するので、この場合は必ずしも前記C/Si比の範囲に限定するものではない。
【0016】
本発明の方法においては、前記の常温で液状のケイ素化合物と、炭素源とをよく混合した後、これらの化合物と均一に溶化する触媒とを均質に混合して混合物を得るものであるが、触媒はこれらの原料を十分攪拌した後に添加することが好ましい。
【0017】
本発明の製造方法においては、少なくとも有機化合物と均一に溶化し、炭素原子、水素原子及び酸素原子のみから構成される化合物であるマレイン酸またはアクリル酸を触媒として用いることが特徴であり、炭素原子、水素原子及び酸素原子のみから構成され、従来、汎用の触媒であるトルエンスルホン酸(CS)の如く分子内に硫黄原子を含まないため、加熱・焼成工程においても有害な硫黄化合物が発生しない。硫黄原子を含まない従来の触媒は非水系及び親水系原料の均一混合に難があり、適当なものが用いられなかったが、本発明に用いられる特定の触媒は少なくとも反応に使用される有機化合物と均一に溶化しうるため均質性が良好であり、さらに、反応性向上の観点からは、カルボキシル基を含む化合物が好ましいことが見出された。本発明において「有機化合物と均一に溶化する」とは、有機化合物と混合により分子レベルに均一になることを指すものとする。
【0018】
触媒としては、具体的には、マレイン酸(pKa=1.75)、アクリル酸(pKa=4.26)が挙げられ、なかでもpKa、水に対する溶解度の観点からマレイン酸が好ましい
【0019】
本発明に係る触媒であるマレイン酸を例に挙げれば、(1) pKaの値がトルエンスルホン酸(pKa=1.4)にほぼ匹敵し(pKa=1.75)、酸強度がある、(2) 不飽和結合とカルボキシル基両方を分子内に含むため、疎水性部分親水性部分同士の親和性を有しており、ケイ素源と炭素源を均一混合し易い、(3) 反応自体が強い発熱反応ではないため、硬化反応が緩やかで、触媒の添加量により反応速度を制御しうる等の利点を有するものである。
【0020】
本発明の製造方法に用いる混合物の配合比としては、例えば、ケイ素源100重量部に対して、炭素源が40〜60重量部、触媒が5〜10重量部程度であることが好ましい。触媒は、不純物を含有しない溶媒に溶解して配合することもでき、例えば、水、アセトン等の飽和溶液として配合することができる。この混合物を均質に混合することが、その後の炭化・焼成工程の均一な反応に重要であるため、混合物の均質度合いに応じ適宜、混合物に界面活性剤を添加してもよい。ここで用い得る界面活性剤としては、スパン(Span)20、ツィーン(Tween )20(商品名、関東化学社製)などが挙げられ、添加量としては、混合物総量に対して5〜10重量%程度であることが好ましい。
【0021】
こうして、配合後によく攪拌されて均一化された混合物は固化されるが、その方法としては、触媒を加えた後、攪拌を続けること以外に加熱を併用してもよい。また、必要に応じて、該固化物を窒素、アルゴン等の非酸化性雰囲気中800℃〜1000℃の温度において30〜120分間加熱することで炭化する工程を加えてもよい。こうして得られた炭化物は、アルゴン雰囲気中において、1350℃〜2000℃で加熱することにより炭化ケイ素になる。焼成温度と時間は希望する粒径などの特性に応じて適宜選択できるが、より効率的な生産のためには、1600〜1900℃での焼成が好ましい。
【0022】
この炭化ケイ素の粒径は、焼結法に適宜制御されればよいが、通常の焼結法では高密度化の観点からは、小さいことが好ましく、この炭化ケイ素粉体を原料として用いる観点から0.01〜20μm程度、さらには、0.05〜2.5μm程度となるよう焼成する。粒径が0.01μm未満であると、計量、混合などの処理工程における取扱が困難となり、20μmを超えると比表面積が小さく、即ち、隣接する粉体との接触面積が小さくなり、高密度化が困難となるため、好ましくない。
【0023】
通常、炭化ケイ素粉体の態様としては、粒径が0.05〜1μm、比表面積が5m2 /g以上、遊離炭素1%以下、酸素含有量1%以下のものが好適に用いられるが、必ずしもこれに限定されるわけではない。
【0024】
【実施例】
以下に、実施例をあげてさらに詳細に説明するが、本発明はこの実施例に制限されるものではない。
【0025】
参考例1)
原料として、常温で液状のケイ素化合物であるエチルシリケート305gと、加熱により炭素を発生する有機化合物であるレゾール型フェノール142gを約3000r.p.m.の攪拌速度で5分間攪拌した後、この混合物に触媒として無水マレイン酸(三菱化学社製)の飽和水溶液100gを添加してさらに3000r.p.m.の攪拌速度で約15分間攪拌した。
【0026】
次に、この混合物を100〜180℃の温度で約2時間硬化させた後、得られた樹脂状固形物を窒素雰囲気中、900℃の温度で約1.5時間炭化処理を行った。また、この熱処理物は、残炭率からC/Si=2.5と算出された。
【0027】
最後にこの熱処理物をアルゴン雰囲気中、1800℃の温度で約2時間焼成処理を行った。得られた炭化ケイ素粉体は、X線回折の結果、実質的にβ型炭化ケイ素のみからなり、その平均粒径は約1.5μmであった。
【0028】
なお、上記炭化・焼成工程においてはSO、SO2 等の気体の発生は認められなかった。
【0029】
また、得られた粉体をフッ酸、硝酸を含む強酸中で加圧分解し、ICP−MSを用いて純度分析を実施したところ、酸素以外の不純物元素で1ppmを超える元素は見出されず、非常に高純度であった。
【0030】
(実施例
原料として、常温で液状のケイ素化合物であるエチルシリケート15gと、加熱により炭素を発生する有機化合物であるレゾール型フェノール7gを約3000r.p.m.の攪拌速度で5分間攪拌した後、この混合物に触媒としてアクリル酸(和光純薬社製)の飽和水溶液1.5gを添加してさらに約3000r.p.m.の攪拌速度で約15分間攪拌した。
【0031】
次に、この混合物を100〜180℃の温度で約2時間硬化させた後、得られた樹脂状固形物を窒素雰囲気中、900℃の温度で約1.5時間炭化処理を行った。また、この熱処理物は、残炭率からC/Si=2.5と算出された。
【0032】
最後にこの熱処理物をアルゴン雰囲気中、1800℃の温度で約2時間焼成処理を行った。得られた炭化ケイ素粉体は、X線回折の結果、実質的にβ型炭化ケイ素のみからなり、その平均粒径は約1.5μmであった。
【0033】
なお、上記炭化・焼成工程ではSO、SO2 等の気体の発生は認められなかった。
【0034】
また、参考例1と同様に純度分析を実施したところ、得られた粉体には1ppmを超える不純物元素は見出されず、非常に高純度であった。
【0035】
参考
原料として、アモルファスシリカ微粉末24gと、常温で液状のケイ素化合物であるエチルシリケート10gと、加熱により炭素を発生する有機化合物であるレゾール型フェノール樹脂8gを約3000r.p.m.の攪拌速度で5分間攪拌した後、この混合物に触媒として無水マレイン酸(三菱化学社製)の飽和水溶液8gを添加してさらに約3000r.p.m.の攪拌速度で約15分間攪拌した。
【0036】
次に、この混合物を100〜180℃の温度で約2時間硬化させた後、得られた樹脂状固形物を窒素雰囲気中、900℃の温度で約1.5時間炭化処理を行った。
【0037】
最後にこの熱処理物をアルゴン雰囲気中、1800℃の温度で約2時間焼成処理を行った。得られた炭化ケイ素粉体は、X線回折の結果、実質的にβ型炭化ケイ素のみからなり、その平均粒径は約0.4μmであった。
【0038】
なお、上記炭化・焼成工程ではSO、SO2 等の気体の発生は認められなかった。
【0039】
また、参考例1と同様に純度分析を実施したところ、得られた粉体には1ppmを超える不純物元素は見出されず、非常に高純度であった。
【0040】
(比較例1)
原料として、常温で液状のケイ素化合物であるエチルシリケート305gと、加熱により炭素を発生する有機化合物であるレゾール型フェノール142gとを約3000r.p.m.の攪拌速度で5分間攪拌した後、この混合物に従来から用いられている触媒であるp−トルエンスルホン酸(ナカライ化学社製)の50%水溶液26gを添加してさらに約3000r.p.m.の攪拌速度で約5分間攪拌した。
【0041】
次に、この混合物を100〜180℃の温度で約1時間硬化させた後、得られた樹脂状固形物を窒素雰囲気中、900℃の温度で約1.5時間炭化処理を行った。また、この熱処理物は、残炭率からC/Si=2.5と算出された。
【0042】
最後にこの熱処理物をアルゴン雰囲気中、1800℃の温度で約2時間焼成処理を行った。得られた炭化ケイ素粉体は、X線回折の結果、実質的にβ型炭化ケイ素からなり、その平均粒径は約1.5μmであった。
【0043】
しかし、上記炭化・焼成工程ではSO、SO2 等の気体が発生し(280ppm程度検出)、炭化・焼成工程で発生する硫黄化合物を加熱炉外に放出した。
【0044】
実施例及び比較例から明らかなように、本発明の製造方法によれば、炭化・焼成工程におけるSO、SO2 等の気体を発生させることなく、C/Si比、平均粒径ともに従来の方法により得られたものと変わらない、高品質の炭化ケイ素を得ることができた。
【0045】
【発明の効果】
本発明の方法によれば、炭化・焼成工程において硫黄化合物が発生することなく高純度の炭化ケイ素を製造することができ、環境保護の観点からも好ましい炭化ケイ素粉体の製造方法であった。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing silicon carbide powder, and more particularly to a method for producing silicon carbide powder that does not generate a sulfur compound derived from a curing polymerization catalyst.
[0002]
[Prior art]
As a method for producing silicon carbide, an Atchison method for obtaining silicon carbide powder using silica sand and petroleum coke as raw materials is conventionally known. According to this method, since the raw material contains a large amount of impurities, the obtained silicon carbide powder does not have a sufficiently high purity, and when used as a sintered body raw material, Since impurities are mixed in, it is known that various defects occur frequently in various characteristics, and is not suitable for the production of a high-purity sintered body.
[0003]
Japanese Patent Publication No. 1-4886 discloses a method for producing a high-purity silicon carbide powder using a high-purity liquid silicon source and a liquid carbon source as raw materials.
[0004]
In this method, toluene sulfonic acid has been selected as a strong acid that does not contain metal from the strength of pKa. However, sulfur compounds generated in the carbonization / firing process, such as SO and SO 2 , are continuously heated. When discharged to the outside of the furnace, there is a drawback that it requires equipment and processing steps for processing the corresponding sulfur compounds.
[0005]
[Problems to be solved by the invention]
Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide a high-purity silicon carbide production method that can produce silicon carbide without generating a sulfur compound in the carbonization / firing process. The object is to provide a method for producing high performance silicon carbide powder.
[0006]
[Means for Solving the Problems]
As a result of intensive studies on the generation mechanism of these sulfur compounds, the present inventors did not use a sulfur-containing catalyst typified by toluenesulfonic acid that was used in the silicon carbide production method, but the main component ethyl silicate or phenol resin. The present invention was completed by finding a method of reacting with excess oxygen atoms therein to cause a hydrolysis / polymerization reaction to occur uniformly.
[0007]
That is, the method for producing silicon carbide of the present invention includes at least one or more kinds of silicon compounds that are liquid at room temperature, organic compounds that have functional groups and generate carbon by heating, and at least uniform with the organic compounds. A method for producing silicon carbide powder using a precursor material obtained by mixing a polymerization or cross-linking catalyst solubilized in a catalyst, and solidifying the mixture uniformly, wherein the catalyst is maleic acid or acrylic It is characterized by being an acid.
[0009]
Further, the precursor material in this manufacturing method is preferably to be heated and carbonized in advance in a non-oxidizing atmosphere prior to firing, the mixture, it is preferable to add a surfactant.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in further detail below.
[0011]
The silicon carbide powder of the present invention includes, for example, a liquid silicon compound, a liquid organic compound containing oxygen in the molecule and generating carbon by heating (hereinafter, appropriately referred to as a carbon source), and at least an organic compound. A mixture obtained by uniformly mixing a homogeneously solubilizing polymerization or crosslinking catalyst is produced by heating and firing in a non-oxidizing atmosphere, and preferably the liquid silicon compound, carbon source and catalyst. A solidification step for solidifying the mixture obtained by homogeneous mixing to obtain a solid, and a firing step for heating and carbonizing the obtained solid in a non-oxidizing atmosphere, followed by firing in a non-oxidizing atmosphere It can obtain by the manufacturing method containing these.
[0012]
As a silicon source used in this method for producing silicon carbide powder, one or more selected from high-purity tetraalkoxysilane, a polymer thereof, and silicon oxide are used. In the present invention, silicon oxide includes silicon dioxide and silicon monoxide. Specific examples of silicon sources include alkoxysilanes typified by tetraethoxysilane, low molecular weight polymers (oligomers) thereof, silicate polymers having a higher degree of polymerization, and oxidation of silica sol, fine powder silica, etc. A silicon compound is mentioned. Examples of the alkoxy silane include methoxy silane, ethoxy silane, propoxy silane, butoxy silane and the like. Among these, ethoxy silane is preferably used from the viewpoint of handling properties. Here, the oligomer refers to a polymer having a degree of polymerization of about 2 to 15.
[0013]
Among these silicon sources, from the viewpoint of good homogeneity and handling properties, an oligomer of tetraethoxysilane, a mixture of an oligomer of tetraethoxysilane and fine powder silica, and the like are preferable. These silicon source is preferably used a high-purity material according to APPLICATIONS, in that case, it is preferable that the initial impurity content is 20ppm or less, and more preferably 5ppm or less.
[0014]
In the method of the present invention, the substance used as an organic compound that produces carbon by heating mixed with the silicon carbide powder is specifically a coal tar pitch, phenol resin, furan resin with a high residual carbon ratio. And various saccharides such as monosaccharides such as epoxy resin, phenoxy resin and glucose, oligosaccharides such as sucrose, polysaccharides such as cellulose and starch. For the purpose of homogeneously mixing with the silicic acid source, those that are liquid at room temperature, those that dissolve in a solvent, those that soften or become liquid when heated, such as thermoplasticity or heat melting properties, are preferably used. Among them, the residual carbon ratio is high, and a compound composed only of a carbon atom, a hydrogen atom, and a nitrogen atom that is polymerized or cross-linked by a catalyst or heating, specifically, for example, phenol resin, polyvinyl alcohol, polyacetic acid Vinyl and the like are preferable.
[0015]
The ratio of carbon to silicon (hereinafter abbreviated as C / Si ratio) in producing the silicon carbide powder that is the raw material powder of the present invention is the elemental analysis of the carbide intermediate obtained by carbonizing the mixture. Is defined by Stoichiometrically, when the C / Si ratio is 3.0, the free carbon in the generated silicon carbide should be 0%. However, in practice, the low C / Si ratio is caused by volatilization of the SiO gas generated at the same time. Free carbon is generated in It is important to determine the blending in advance so that the amount of free carbon in the resulting silicon carbide powder does not become an amount that is not suitable for the purpose of manufacturing a sintered body. Usually, in firing at 1600 ° C. or more near 1 atm, free carbon can be suppressed when the C / Si ratio is set to 2.0 to 2.5, and this range can be suitably used. When the C / Si ratio is 2.5 or more, free carbon significantly increases. However, since this free carbon has an effect of suppressing grain growth, it may be appropriately selected according to the purpose of grain formation. However, when the atmosphere is fired at a low pressure or a high pressure, the C / Si ratio for obtaining pure silicon carbide varies, and in this case, it is not necessarily limited to the range of the C / Si ratio.
[0016]
In the method of the present invention, the silicon compound that is liquid at normal temperature and a carbon source are mixed well, and then these compounds and a catalyst that is uniformly solubilized are homogeneously mixed to obtain a mixture. The catalyst is preferably added after sufficiently stirring these raw materials.
[0017]
The production method of the present invention is characterized by using maleic acid or acrylic acid, which is a compound composed of only carbon atoms, hydrogen atoms and oxygen atoms, as a catalyst, solubilized uniformly with at least an organic compound, as a catalyst. It is composed only of hydrogen atoms and oxygen atoms, and conventionally contains no sulfur atoms in the molecule like toluenesulfonic acid (C 7 H 8 O 3 S), which is a general-purpose catalyst, and is also harmful in the heating and firing process. Sulfur compounds are not generated. Conventional catalysts that do not contain sulfur atoms have difficulty in uniformly mixing non-aqueous and hydrophilic raw materials, and no suitable catalyst has been used. However, the specific catalyst used in the present invention is at least an organic compound used in the reaction. It was found that a compound containing a carboxyl group is preferable from the viewpoint of improving the reactivity. In the present invention, “uniformly solubilized with an organic compound” means that it becomes uniform at the molecular level when mixed with an organic compound.
[0018]
Specific examples of the catalyst include maleic acid (pKa = 1.75) and acrylic acid (pKa = 4.26). Among them, maleic acid is preferable from the viewpoint of pKa and water solubility .
[0019]
Taking maleic acid which is a catalyst according to the present invention as an example, (1) the value of pKa is almost comparable to toluenesulfonic acid (pKa = 1.4) (pKa = 1.75) and has acid strength. 2) Since both unsaturated bond and carboxyl group are included in the molecule, it has affinity between hydrophobic part and hydrophilic part, easy to mix silicon source and carbon source uniformly, (3) Strong reaction itself Since it is not an exothermic reaction, the curing reaction is slow and the reaction rate can be controlled by the amount of catalyst added.
[0020]
As a compounding ratio of the mixture used for the manufacturing method of this invention, it is preferable that a carbon source is 40-60 weight part and a catalyst is about 5-10 weight part with respect to 100 weight part of silicon sources, for example. A catalyst can also be mix | blended by melt | dissolving in the solvent which does not contain an impurity, for example, can be mix | blended as saturated solutions, such as water and acetone. Since mixing this mixture homogeneously is important for the subsequent uniform reaction in the carbonization / calcination step, a surfactant may be added to the mixture as appropriate depending on the degree of homogeneity of the mixture. Examples of the surfactant that can be used here include Span 20 and Tween 20 (trade name, manufactured by Kanto Chemical Co., Inc.), and the addition amount is 5 to 10% by weight based on the total amount of the mixture. It is preferable that it is a grade.
[0021]
In this way, the mixture which is well stirred and homogenized after blending is solidified, but as a method thereof, heating may be used in addition to continuing stirring after adding the catalyst. Moreover, you may add the process which carbonizes this solidified material by heating for 30 to 120 minutes in the temperature of 800 to 1000 degreeC in non-oxidizing atmosphere, such as nitrogen and argon, as needed. The carbide thus obtained becomes silicon carbide by heating at 1350 ° C. to 2000 ° C. in an argon atmosphere. The firing temperature and time can be appropriately selected according to the desired properties such as particle size, but firing at 1600 to 1900 ° C. is preferred for more efficient production.
[0022]
The particle size of the silicon carbide may be appropriately controlled depending on the sintering method, but it is preferably small in the ordinary sintering method from the viewpoint of increasing the density, and from the viewpoint of using the silicon carbide powder as a raw material. Firing is carried out to a thickness of about 0.01 to 20 μm, and further about 0.05 to 2.5 μm. When the particle size is less than 0.01 μm, handling in processing steps such as weighing and mixing becomes difficult. When the particle size exceeds 20 μm, the specific surface area is small, that is, the contact area with the adjacent powder is small, and the density is increased. Is not preferable because it becomes difficult.
[0023]
Usually, as the aspect of the silicon carbide powder, those having a particle size of 0.05 to 1 μm, a specific surface area of 5 m 2 / g or more, free carbon of 1% or less, and oxygen content of 1% or less are preferably used. It is not necessarily limited to this.
[0024]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0025]
( Reference Example 1)
As raw materials, 305 g of ethyl silicate, which is a silicon compound that is liquid at room temperature, and 142 g of resol type phenol, which is an organic compound that generates carbon by heating, are about 3000 r.p. p. m. After stirring at a stirring speed of 5 minutes, 100 g of a saturated aqueous solution of maleic anhydride (manufactured by Mitsubishi Chemical) was added to the mixture as a catalyst, and an additional 3000 r. p. m. For about 15 minutes.
[0026]
Next, after the mixture was cured at a temperature of 100 to 180 ° C. for about 2 hours, the obtained resinous solid was carbonized in a nitrogen atmosphere at a temperature of 900 ° C. for about 1.5 hours. Further, this heat-treated product was calculated as C / Si = 2.5 from the residual carbon ratio.
[0027]
Finally, this heat-treated product was baked for about 2 hours at a temperature of 1800 ° C. in an argon atmosphere. As a result of X-ray diffraction, the obtained silicon carbide powder was substantially composed only of β-type silicon carbide, and the average particle size was about 1.5 μm.
[0028]
Note that generation of gases such as SO and SO 2 was not recognized in the carbonization / firing step.
[0029]
Moreover, when the obtained powder was decomposed under pressure in a strong acid containing hydrofluoric acid and nitric acid, and purity analysis was performed using ICP-MS, no element exceeding 1 ppm was found as an impurity element other than oxygen. It was highly pure.
[0030]
(Example 1 )
As raw materials, 15 g of ethyl silicate, which is a liquid silicon compound at room temperature, and 7 g of resol type phenol, which is an organic compound that generates carbon by heating, are about 3000 r.p. p. m. After stirring at a stirring speed of 5 minutes, 1.5 g of a saturated aqueous solution of acrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) as a catalyst was added to the mixture and about 3000 r. p. m. For about 15 minutes.
[0031]
Next, after the mixture was cured at a temperature of 100 to 180 ° C. for about 2 hours, the obtained resinous solid was carbonized in a nitrogen atmosphere at a temperature of 900 ° C. for about 1.5 hours. Further, this heat-treated product was calculated as C / Si = 2.5 from the residual carbon ratio.
[0032]
Finally, this heat-treated product was baked for about 2 hours at a temperature of 1800 ° C. in an argon atmosphere. As a result of X-ray diffraction, the obtained silicon carbide powder was substantially composed only of β-type silicon carbide, and the average particle size was about 1.5 μm.
[0033]
In the carbonization / firing process, no generation of gas such as SO and SO 2 was observed.
[0034]
Further, when a purity analysis was performed in the same manner as in Reference Example 1, no impurity element exceeding 1 ppm was found in the obtained powder, and the purity was very high.
[0035]
( Reference Example 2 )
As raw materials, 24 g of amorphous silica fine powder, 10 g of ethyl silicate which is a liquid silicon compound at room temperature, and 8 g of resol type phenol resin which is an organic compound which generates carbon by heating are about 3000 r. p. m. After stirring at a stirring speed of 5 minutes, 8 g of a saturated aqueous solution of maleic anhydride (manufactured by Mitsubishi Chemical Corporation) was added as a catalyst to this mixture, and about 3000 r. p. m. For about 15 minutes.
[0036]
Next, after the mixture was cured at a temperature of 100 to 180 ° C. for about 2 hours, the obtained resinous solid was carbonized in a nitrogen atmosphere at a temperature of 900 ° C. for about 1.5 hours.
[0037]
Finally, this heat-treated product was baked for about 2 hours at a temperature of 1800 ° C. in an argon atmosphere. As a result of X-ray diffraction, the obtained silicon carbide powder was substantially composed only of β-type silicon carbide, and the average particle size was about 0.4 μm.
[0038]
In the carbonization / firing process, no generation of gas such as SO and SO 2 was observed.
[0039]
Further, when a purity analysis was performed in the same manner as in Reference Example 1, no impurity element exceeding 1 ppm was found in the obtained powder, and the purity was very high.
[0040]
(Comparative Example 1)
As raw materials, 305 g of ethyl silicate, which is a silicon compound that is liquid at room temperature, and 142 g of resol type phenol, which is an organic compound that generates carbon by heating, are about 3000 r.p. p. m. After stirring at a stirring speed of 5 minutes, 26 g of a 50% aqueous solution of p-toluenesulfonic acid (manufactured by Nacalai Chemical Co., Ltd.), which is a conventionally used catalyst, was added to this mixture, and about 3000 r. p. m. For about 5 minutes.
[0041]
Next, after this mixture was cured at a temperature of 100 to 180 ° C. for about 1 hour, the obtained resinous solid was carbonized in a nitrogen atmosphere at a temperature of 900 ° C. for about 1.5 hours. Further, this heat-treated product was calculated as C / Si = 2.5 from the residual carbon ratio.
[0042]
Finally, this heat-treated product was baked for about 2 hours at a temperature of 1800 ° C. in an argon atmosphere. As a result of X-ray diffraction, the obtained silicon carbide powder was substantially composed of β-type silicon carbide, and the average particle size was about 1.5 μm.
[0043]
However, in the carbonization / firing process, gases such as SO and SO 2 were generated (detected at about 280 ppm), and sulfur compounds generated in the carbonizing / firing process were released outside the heating furnace.
[0044]
As is clear from the examples and comparative examples, according to the production method of the present invention, the C / Si ratio and the average particle diameter are both conventional methods without generating gases such as SO and SO 2 in the carbonization / firing process. As a result, it was possible to obtain high-quality silicon carbide that was the same as that obtained by the above.
[0045]
【The invention's effect】
According to the method of the present invention, high-purity silicon carbide can be produced without generating a sulfur compound in the carbonization / firing step, and this is a preferred method for producing silicon carbide powder from the viewpoint of environmental protection.

Claims (3)

少なくとも1種以上の常温で液状のケイ素化合物と、官能基を有し加熱により炭素を生成する常温で液状の有機化合物と、少なくとも該有機化合物と均一に溶化する重合又は架橋触媒とを混合して混合物を得、これを均質に固化させて得られた前駆体物質を用いる炭化ケイ素粉体の製造方法であって、
該触媒が、マレイン酸またはアクリル酸であることを特徴とする炭化ケイ素粉体の製造方法。
Mix at least one silicon compound that is liquid at normal temperature, an organic compound that has a functional group and generates carbon by heating, and a polymerization or crosslinking catalyst that is at least uniformly dissolved with the organic compound. A method for producing a silicon carbide powder using a precursor material obtained by obtaining a mixture and solidifying it homogeneously,
The method for producing silicon carbide powder, wherein the catalyst is maleic acid or acrylic acid.
前記前駆体物質が、加熱焼成前に予め非酸化性雰囲気下で加熱炭化されることを特徴とする請求項1に記載の炭化ケイ素粉体の製造方法。The method for producing silicon carbide powder according to claim 1, wherein the precursor substance is heated and carbonized in advance in a non-oxidizing atmosphere before heating and firing. 前記混合物に、界面活性剤を添加することを特徴とする請求項1または請求項2に記載の炭化ケイ素粉体の製造方法。  The method for producing a silicon carbide powder according to claim 1, wherein a surfactant is added to the mixture.
JP22834697A 1996-08-26 1997-08-25 Method for producing silicon carbide powder Expired - Lifetime JP4234800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22834697A JP4234800B2 (en) 1996-08-26 1997-08-25 Method for producing silicon carbide powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-224246 1996-08-26
JP22424696 1996-08-26
JP22834697A JP4234800B2 (en) 1996-08-26 1997-08-25 Method for producing silicon carbide powder

Publications (2)

Publication Number Publication Date
JPH10120411A JPH10120411A (en) 1998-05-12
JP4234800B2 true JP4234800B2 (en) 2009-03-04

Family

ID=26525942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22834697A Expired - Lifetime JP4234800B2 (en) 1996-08-26 1997-08-25 Method for producing silicon carbide powder

Country Status (1)

Country Link
JP (1) JP4234800B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101084735B1 (en) 2009-06-05 2011-11-22 한국과학기술연구원 Preparing method of silicon carbide powder

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7910082B2 (en) * 2008-08-13 2011-03-22 Corning Incorporated Synthesis of ordered mesoporous carbon-silicon nanocomposites
DE102008042499A1 (en) * 2008-09-30 2010-04-01 Evonik Degussa Gmbh Process for the preparation of high purity silicon carbide from carbohydrates and silica by calcining
KR101210218B1 (en) * 2010-11-16 2012-12-07 엘지이노텍 주식회사 Silicon carbide and method for manufacturing the same
WO2014208461A1 (en) 2013-06-26 2014-12-31 株式会社ブリヂストン Silicon carbide powder
WO2014208460A1 (en) 2013-06-26 2014-12-31 株式会社ブリヂストン Silicon carbide powder
KR102293576B1 (en) * 2019-11-28 2021-08-26 한국과학기술연구원 fabrication Method of high purity large size α-phase silicon carbide powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101084735B1 (en) 2009-06-05 2011-11-22 한국과학기술연구원 Preparing method of silicon carbide powder

Also Published As

Publication number Publication date
JPH10120411A (en) 1998-05-12

Similar Documents

Publication Publication Date Title
US6251353B1 (en) Production method of silicon carbide particles
JP4234800B2 (en) Method for producing silicon carbide powder
US6699411B2 (en) Method for producing high purity silicon carbide sintered body
JP6423341B2 (en) Method for producing silicon carbide powder
JP5303103B2 (en) Silicon carbide sintered body and method for producing the same
WO2006085479A1 (en) Method for preparing silicon carbide based nano fiber
TWI519472B (en) Silicon carbide powder (a)
JP2008050201A (en) Method for producing silicon carbide powder, and silicon carbide powder
JPH0137324B2 (en)
WO1987005612A1 (en) Organopolyarylsilane, process for its production, and fibers prepared therefrom
JPH0662286B2 (en) Method for producing silicon carbide
US5863848A (en) Preparation of substantially crystalline silicon carbide fibers from borosilazanes
JPH062565B2 (en) Method for producing silicon carbide
JP2013216550A (en) Method for manufacturing silicon carbide sintered body, and silicon carbide sintered body
JPH11171652A (en) Producing of silicon carbide sintered compact
JP5130099B2 (en) Method for producing sintered silicon carbide
JPS60226406A (en) Preparation of beta-silicon carbide
JP3356186B2 (en) Optically anisotropic pitch composition
JPS62215016A (en) Sic-c based inorganic filament and production thereof
JP2006248807A (en) Silicon carbide sintered compact having silicon carbide surface rich layer
JP2000109375A (en) Ceramic porous body
JP2001146473A (en) Method for producing silicon carbide porous body
JPH02269191A (en) Binder pitch for raw material of high-purity carbon material and production thereof
JP2001019548A (en) Silicon carbide sintered compact and its production
JPH05294604A (en) Production of carbon filler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term