JP4230541B2 - Binder removal method - Google Patents

Binder removal method Download PDF

Info

Publication number
JP4230541B2
JP4230541B2 JP53062998A JP53062998A JP4230541B2 JP 4230541 B2 JP4230541 B2 JP 4230541B2 JP 53062998 A JP53062998 A JP 53062998A JP 53062998 A JP53062998 A JP 53062998A JP 4230541 B2 JP4230541 B2 JP 4230541B2
Authority
JP
Japan
Prior art keywords
binder
article
water
derivative
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP53062998A
Other languages
Japanese (ja)
Other versions
JP2001508128A (en
Inventor
ビショップ,イーアン,エイチ.
マシュダー,デビッド
Original Assignee
エイブイエックス リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エイブイエックス リミテッド filed Critical エイブイエックス リミテッド
Publication of JP2001508128A publication Critical patent/JP2001508128A/en
Application granted granted Critical
Publication of JP4230541B2 publication Critical patent/JP4230541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • B22F3/1025Removal of binder or filler not by heating only

Abstract

The invention relates to a method of removing water-insoluble binder from a porous article formed from pressed particulate material, such as tantalum powder. The invention provides a method capable of removing substantially all of the binder from the article for high purity applications, such as capacitor manufacture. The method comprises contacting the article with an aqueous solution of an agent which reacts with said binder to produce a water soluble derivative thereof whereby said binder derivative may be substantially dissolved in said solution. In a particular embodiment, the derivative is produced by hydrolysis of a fatty acid binder.

Description

本発明は、結合剤/潤滑剤により結合された粒状物質をプレスすることにより、物品を形成する分野に関し、詳しくは、プレスした後であって焼結する前に、結合剤を除去した高純度焼結物品の部品を製造する方法に関する。
タンタルキャパシタを製造する場合、タンタル粉末と少量の結合剤/潤滑剤とを混合し、その混合物を圧搾成形して必要な形状物を形成し、次に真空中で結合剤が昇華、蒸発、又は分解するように加熱して結合剤を除去することによりアノードを形成するのが典型的である。結合剤を除去した後、アノードを焼結し、粉末を溶融して一体的物品にする。
電気的又は他の高純度用途で、結合剤/潤滑剤材料(以下、結合剤と呼ぶ)の選択は、真空加熱工程後、炭素質残渣が殆ど又は全く残っておらず、除去工程によってアノードに酸素が添加されないようにする必要条件により制約されている。そのような残渣の存在は、焼結タンタル生成物上に付着したアノード酸化物膜を劣化するためキャパシタの電気的性質を変える。現在用いられている結合剤には、樟脳、或るワックス及び或る重合体が含まれる。
これらの結合剤を用いた場合でも、結合剤の不完全な除去又はその分解生成物及び残渣のため、少量の炭素がアノードに付加されることは避けられない。更に、除去のために用いた加熱工程のため、また結合剤自身の中に存在する酸素のため、少量の酸素も存在する。
米国特許第5,470,525号明細書には、暖かい洗浄剤水溶液中で浸出し、次にきれいな水で洗浄することによりタンタル粉末ペレットから結合剤を除去する方法が記載されている。しかし、上記明細書に開示されている方法では、浸出工程がかなり長い時間、典型的には何時間もかかる。
本発明の目的は、高純度用途のため結合剤を除去する方法で、既知の方法よりも改良された方法を与えることにある。
本発明によれば、プレスした粒状材料から形成した多孔質物品から水不溶性結合剤を除去する方法において、前記結合剤と反応してその水溶性誘導体を生ずる薬品の水溶液と前記物品とを接触させ、それによって前記結合剤誘導体を前記溶液に実質的に溶解することからなる結合剤除去方法が与えられる。
このように、本発明は、化学反応及び高度に溶解性の反応生成物の溶解により結合剤を除去する。この方法で、従来法の複雑な蒸留又は高温加熱処理を用いることなく、既知の加熱浸出法よりもかなり速い速度で結合剤を除去することができる。
接触は、前記薬品を含有又はそれからなる流体中に物品を浸漬することにより行なうことができる。これにより流体が物品の中にそこに存在する気孔を通って入り、結合剤と接触する。
本発明の一つの態様として、物品を薬品の水溶液中に浸漬することにより接触を行なう。
物品からの結合剤の除去を促進するため、水溶液は加熱してもよい。溶液の温度は結合剤の融点よりも高いのが好ましく、それにより溶液中に浸漬した時、結合剤が液化する。
結合剤材料は高級脂肪酸でもよい。この場合変性工程は、その酸をアルカリ性溶液の存在下で加水分解することからなる。これにより脂肪酸の塩が形成され、その塩が、溶液に溶解して結合剤の除去を行う。
好ましい脂肪酸は、ステアリン酸である。脂肪酸は安く、容易に入手でき、非常に効果的な結合剤/潤滑剤である。しかし、今日まで高純度用途のためそれらを使用することは、プレス後、結合剤を完全に除去することは困難であること、及び特にある高純度用途の場合に残渣のため損傷を与えるような炭素含有量が高いことのため、制限されてきた。
本発明の別の態様として、結合剤は水不溶性結合剤材料と水溶性材料との混合物からなる。そのような水溶性材料は、ポリエチレングリコールのような長鎖アルコールである。好ましい組合せはステアリン酸のような脂肪酸とポリエチレングリコールである。ある態様では、脂肪酸5重量%以下を、グリコール5重量%以下に添加する。
ポリエチレングリコールは良好な結合剤であり、脂肪酸は良好な潤滑剤である。一緒にしてそれら2つの成分は、「未焼成(green)」物品の形成に良好な加工性を与える混合物を形成する。
水溶液は、水の中で解離する水酸化物を添加することにより導入された水酸化物イオンを含有する。典型的な例は、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム等である。
水酸化物は、物品の効果的な浸透を可能にする低い粘度を維持しながら、結合剤との化学量論的反応を確実にする充分な割合で添加すべきである。
流体は、除去工程中撹拌するか、又は別な方法として動かすのがよい。別法として、物品自身を浸漬中動かし、それにより物品中への流体の浸透を促進する。適当な撹拌装置は当業者に知られている。
変性工程が完了したならば、物品中に残留する全ての結合剤誘導体を、奇麗な水で物品を洗うことにより除去する。洗浄工程は変性結合剤の完全な除去が確実に行われるように繰り返す。金属水酸化物溶液を用いた場合、洗浄工程の進行及び効果を、各洗浄溶液の伝導度を測定することにより監視することができる。溶液中に残留する金属イオンは、比較的大きな伝導度の読みを与える。
洗浄後、物品を乾燥し、次に焼結し、固化生成物を形成する。
粒子は金属、例えばニオブ、アルミニウム、タンタル、及びアノード処理可能な他の金属である。一つの態様として、粒子はタンタル粉末からなる。物品をキャパシタのアノードになるように成形する。そのような物品は、大きさが約0.6mmの立方体から直径約6mm、長さ7mmの円柱までの範囲にある。
本発明は特にタンタルキャパシタの製造に適用され、その場合にタンタル粉末アノードを焼結タンタル粉末から形成し、次にキャパシタに組み込む。そのような製品では、形成されたキャパシタの正確で信頼性のある作動を確実に与えるため、全ての結合剤又は結合剤残渣を、特にアノード表面上に炭素質付着物が形成されるのを抑制することにより除去することが必須である。
次に本発明を実施する方法を単なる例として記述する。
タンタル粉末を少量(5重量%)のステアリン酸[CH3−(CH216−COOH]結合剤/潤滑剤と混合する。次に混合物をプレスして成形物品、この例では固体キャパシタのアノード部品を形成する。
次に物品を、約80℃に加熱した水酸化ナトリウム0.5%水溶液中に約30分間浸漬し、反応を行わせる。この時間中、物品を撹拌し、溶液が物品の中へ完全に浸透するようにし、更に反応生成物を溶液本体中へ溶解させながら、未反応溶液を物品中へ連続的に導入するようにする。
反応/溶解工程が完了したならば、物品を溶液から取り出し、奇麗な水で洗浄し、物品の気孔中に存在する残留ステアリン酸塩を除去する。洗浄工程は完全に奇麗になるまで繰り返す。各工程後、洗浄溶液の伝導度を慣用的方法により測定し、ナトリウムイオン濃度の指示を与える。ナトリウムイオンが洗浄除去されるに従って、必要な奇麗さが達成されるまで、洗浄溶液の伝導度が低下する。
本発明の別の態様として結合剤はステアリン酸と、平均分子量2000のポリエチレングリコールからなる。その酸とグリコールは夫々(タンタル重量の%として)4重量%及び0.5重量%で存在する。工程変量の残りは実質的に同じである。
本発明の方法で用いられる処理薬品は比較的危険が少なく、安価であり、環境への影響が少なく、容易に捨てることができる。
本発明による方法で製造されたタンタルアノードは炭素含有量が非常に低い。なぜなら、炭素質物質が実際上完全に除去されているからである。更に、本発明の除去工程で使用される温度が低いため、結合剤除去工程中に付加される酸素の量は無視できる。このため、完成物品の電気的特性は著しく改善されている。特にキャパシタの信頼性は向上し使用中の漏洩電流は減少する。
The present invention relates to the field of forming articles by pressing particulate material bound by a binder / lubricant, and in particular, high purity with the binder removed after pressing and before sintering. The present invention relates to a method for manufacturing a component of a sintered article.
When manufacturing tantalum capacitors, tantalum powder and a small amount of binder / lubricant are mixed and the mixture is squeezed to form the required shape, and then the binder is sublimated, evaporated, or The anode is typically formed by heating to decompose to remove the binder. After removal of the binder, the anode is sintered and the powder is melted into an integral article.
For electrical or other high purity applications, the choice of binder / lubricant material (hereinafter referred to as the binder) is such that after the vacuum heating step, little or no carbonaceous residue remains and the removal step results in the anode. Limited by the requirement to prevent oxygen from being added. The presence of such residues changes the electrical properties of the capacitor as it degrades the anodic oxide film deposited on the sintered tantalum product. Currently used binders include camphor, certain waxes and certain polymers.
Even with these binders, it is inevitable that a small amount of carbon is added to the anode due to incomplete removal of the binder or its decomposition products and residues. In addition, small amounts of oxygen are also present due to the heating step used for removal and because of the oxygen present in the binder itself.
U.S. Pat. No. 5,470,525 describes a method for removing binder from tantalum powder pellets by leaching in a warm aqueous detergent solution and then washing with clean water. However, in the method disclosed in the above specification, the leaching process takes a rather long time, typically many hours.
It is an object of the present invention to provide a method that removes the binder for high purity applications and is an improvement over known methods.
According to the present invention, in a method for removing a water-insoluble binder from a porous article formed from a pressed particulate material, the article is contacted with an aqueous solution of a chemical that reacts with the binder to produce a water-soluble derivative thereof. Thereby providing a method of removing the binder comprising substantially dissolving the binder derivative in the solution.
Thus, the present invention removes the binder by chemical reaction and dissolution of the highly soluble reaction product. In this way, the binder can be removed at a much faster rate than the known heat leaching method without using the complex distillation or high temperature heat treatment of conventional methods.
Contact can be effected by immersing the article in a fluid containing or consisting of the drug. This allows fluid to enter the article through the pores present therein and contact the binder.
In one embodiment of the invention, the contact is made by immersing the article in an aqueous solution of the chemical.
The aqueous solution may be heated to facilitate the removal of the binder from the article. The temperature of the solution is preferably higher than the melting point of the binder, so that the binder liquefies when immersed in the solution.
The binder material may be a higher fatty acid. In this case, the modification step consists of hydrolyzing the acid in the presence of an alkaline solution. This forms a fatty acid salt which dissolves in the solution and removes the binder.
A preferred fatty acid is stearic acid. Fatty acids are cheap, readily available and a very effective binder / lubricant. However, using them for high-purity applications to date makes it difficult to completely remove the binder after pressing, and may cause damage due to residue, especially in certain high-purity applications Limited due to the high carbon content.
In another embodiment of the invention, the binder comprises a mixture of a water insoluble binder material and a water soluble material. Such water soluble materials are long chain alcohols such as polyethylene glycol. A preferred combination is a fatty acid such as stearic acid and polyethylene glycol. In some embodiments, 5 wt% or less of the fatty acid is added to 5 wt% or less of the glycol.
Polyethylene glycol is a good binder and fatty acids are good lubricants. Together, the two components form a mixture that gives good processability to the formation of “green” articles.
The aqueous solution contains hydroxide ions introduced by adding a hydroxide that dissociates in water. Typical examples are sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like.
The hydroxide should be added in a sufficient proportion to ensure a stoichiometric reaction with the binder while maintaining a low viscosity that allows effective penetration of the article.
The fluid may be stirred during the removal process or otherwise moved. Alternatively, the article itself is moved during immersion, thereby facilitating fluid penetration into the article. Suitable agitation devices are known to those skilled in the art.
Once the denaturation step is complete, any binder derivative remaining in the article is removed by washing the article with clean water. The washing process is repeated to ensure complete removal of the modified binder. When a metal hydroxide solution is used, the progress and effect of the cleaning process can be monitored by measuring the conductivity of each cleaning solution. Metal ions remaining in solution give a relatively large conductivity reading.
After washing, the article is dried and then sintered to form a solidified product.
The particles are metals such as niobium, aluminum, tantalum, and other metals that can be anodized. In one embodiment, the particles consist of tantalum powder. The article is shaped to be the capacitor anode. Such articles range from a cube with a size of about 0.6 mm to a cylinder with a diameter of about 6 mm and a length of 7 mm.
The invention is particularly applicable to the manufacture of tantalum capacitors, where the tantalum powder anode is formed from sintered tantalum powder and then incorporated into the capacitor. In such a product, all binders or binder residues are suppressed, especially the formation of carbonaceous deposits on the anode surface, to ensure accurate and reliable operation of the formed capacitor. It is essential to remove it.
The method of practicing the present invention will now be described by way of example only.
Tantalum powder is mixed with a small amount (5% by weight) of stearic acid [CH 3 — (CH 2 ) 16 —COOH] binder / lubricant. The mixture is then pressed to form a molded article, in this example a solid capacitor anode part.
The article is then immersed in a 0.5% aqueous sodium hydroxide solution heated to about 80 ° C. for about 30 minutes to allow the reaction to occur. During this time, the article is agitated so that the solution completely penetrates into the article and the unreacted solution is continuously introduced into the article while dissolving the reaction product into the solution body. .
When the reaction / dissolution process is complete, the article is removed from the solution and washed with clean water to remove residual stearate present in the pores of the article. The washing process is repeated until it is completely clean. After each step, the conductivity of the cleaning solution is measured by conventional methods and an indication of sodium ion concentration is given. As the sodium ions are washed away, the conductivity of the washing solution decreases until the required cleanliness is achieved.
In another embodiment of the present invention, the binder comprises stearic acid and polyethylene glycol having an average molecular weight of 2000. The acid and glycol are present in 4 wt% and 0.5 wt% (as% of tantalum weight), respectively. The rest of the process variables are substantially the same.
The treatment chemicals used in the method of the present invention are relatively less dangerous, inexpensive, have little environmental impact, and can be easily discarded.
The tantalum anode produced by the method according to the invention has a very low carbon content. This is because the carbonaceous material is practically completely removed. Furthermore, since the temperature used in the removal process of the present invention is low, the amount of oxygen added during the binder removal process is negligible. For this reason, the electrical properties of the finished article are significantly improved. In particular, the reliability of the capacitor is improved and the leakage current during use is reduced.

Claims (6)

アノード処理可能な金属の粒子と結合剤との混合物を与え、該混合物をプレスして未焼成物品を形成し、然る後、前記物品を焼結して前記粒子を溶融し、一体的多孔質アノード本体を形成することからなる固体キャパシタの製法において、前記結合剤が水不溶性酸性材料からなり、前記水不溶性酸性材料と反応してそれの水溶性誘導体を生ずる水酸化物イオンを含む水溶液に前記未処理物品を接触させ、それによって前記結合剤誘導体を前記溶液に実質的に溶解することにより、焼結前に前記結合剤を除去することを特徴とする、上記製法。An anodizable metal particle and binder mixture is provided and the mixture is pressed to form a green article, after which the article is sintered to melt the particles to form an integral porous In a method for producing a solid capacitor comprising forming an anode body, the binder is made of a water-insoluble acidic material, and the aqueous solution containing hydroxide ions reacts with the water-insoluble acidic material to produce a water-soluble derivative thereof. The above process characterized in that the binder is removed prior to sintering by contacting an untreated article, thereby substantially dissolving the binder derivative in the solution. 誘導体を加水分解により生成させる、請求項1記載の方法。The process according to claim 1, wherein the derivative is produced by hydrolysis. 水不溶性材料が脂肪酸からなる、請求項1〜2のいずれか1項に記載の方法。The method according to claim 1, wherein the water-insoluble material comprises a fatty acid. 結合剤は水溶性材料を更に含む、請求項1〜3のいずれか1項に記載の方法。The method of any one of claims 1 to 3, wherein the binder further comprises a water soluble material. 親水性材料がポリエチレングリコールである、請求項4記載の方法。The method according to claim 4, wherein the hydrophilic material is polyethylene glycol. 粒子がタンタル粉末である、請求項1〜5のいずれか1項に記載の方法。The method according to any one of claims 1 to 5, wherein the particles are tantalum powder.
JP53062998A 1997-01-13 1998-01-06 Binder removal method Expired - Fee Related JP4230541B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9700566.4 1997-01-13
GBGB9700566.4A GB9700566D0 (en) 1997-01-13 1997-01-13 Binder removal
PCT/GB1998/000023 WO1998030348A1 (en) 1997-01-13 1998-01-06 Binder removal

Publications (2)

Publication Number Publication Date
JP2001508128A JP2001508128A (en) 2001-06-19
JP4230541B2 true JP4230541B2 (en) 2009-02-25

Family

ID=10805885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53062998A Expired - Fee Related JP4230541B2 (en) 1997-01-13 1998-01-06 Binder removal method

Country Status (12)

Country Link
US (1) US6197252B1 (en)
EP (1) EP0951374B1 (en)
JP (1) JP4230541B2 (en)
KR (1) KR100494140B1 (en)
CN (1) CN1106898C (en)
AT (1) ATE223274T1 (en)
AU (1) AU5490498A (en)
DE (1) DE69807650T2 (en)
GB (1) GB9700566D0 (en)
IL (1) IL130892A (en)
PT (1) PT951374E (en)
WO (1) WO1998030348A1 (en)

Families Citing this family (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6315808B1 (en) 1999-09-16 2001-11-13 Kemet Electronics Corporation Process for producing powder metallurgy compacts free from binder contamination and compacts produced thereby
US6319459B1 (en) * 1999-10-18 2001-11-20 Kemet Electronics Corporation Removal of organic acid based binders from powder metallurgy compacts
MXPA03003968A (en) 2000-11-06 2004-05-24 Cabot Corp Modified oxygen reduced valve metal oxides.
US7149074B2 (en) 2001-04-19 2006-12-12 Cabot Corporation Methods of making a niobium metal oxide
US6674635B1 (en) 2001-06-11 2004-01-06 Avx Corporation Protective coating for electrolytic capacitors
KR100920862B1 (en) * 2001-12-21 2009-10-09 엠이엠씨 일렉트로닉 머티리얼즈 인코포레이티드 Process for making ideal oxygen precipitating silicon wafers with nitrogen/carbon stabilized oxygen precipitate nucleation centers
US6864147B1 (en) 2002-06-11 2005-03-08 Avx Corporation Protective coating for electrolytic capacitors
WO2004103906A2 (en) 2003-05-19 2004-12-02 Cabot Corporation Methods of making a niobium metal oxide and oxygen reduced niobium oxides
JP4614908B2 (en) * 2005-05-11 2011-01-19 日立粉末冶金株式会社 Cold cathode fluorescent lamp electrode
US7099143B1 (en) 2005-05-24 2006-08-29 Avx Corporation Wet electrolytic capacitors
SE529297C2 (en) * 2005-07-29 2007-06-26 Sandvik Intellectual Property Ways to make a submicron cemented carbide powder mixture with low compression pressure
WO2007020464A1 (en) 2005-08-19 2007-02-22 Avx Limited Solid state capacitors and method of manufacturing them
GB0517952D0 (en) 2005-09-02 2005-10-12 Avx Ltd Method of forming anode bodies for solid state capacitors
US8717777B2 (en) 2005-11-17 2014-05-06 Avx Corporation Electrolytic capacitor with a thin film fuse
US8257463B2 (en) * 2006-01-23 2012-09-04 Avx Corporation Capacitor anode formed from flake powder
US7480130B2 (en) * 2006-03-09 2009-01-20 Avx Corporation Wet electrolytic capacitor
US7511943B2 (en) * 2006-03-09 2009-03-31 Avx Corporation Wet electrolytic capacitor containing a cathode coating
US7352563B2 (en) * 2006-03-13 2008-04-01 Avx Corporation Capacitor assembly
US7468882B2 (en) * 2006-04-28 2008-12-23 Avx Corporation Solid electrolytic capacitor assembly
GB0613491D0 (en) 2006-07-06 2006-08-16 Avx Ltd Binder removal particulate bodies
US7280343B1 (en) * 2006-10-31 2007-10-09 Avx Corporation Low profile electrolytic capacitor assembly
GB0622463D0 (en) 2006-11-10 2006-12-20 Avx Ltd Powder modification in the manufacture of solid state capacitor anodes
US7532457B2 (en) * 2007-01-15 2009-05-12 Avx Corporation Fused electrolytic capacitor assembly
US7515396B2 (en) 2007-03-21 2009-04-07 Avx Corporation Solid electrolytic capacitor containing a conductive polymer
US7483259B2 (en) 2007-03-21 2009-01-27 Avx Corporation Solid electrolytic capacitor containing a barrier layer
US7460358B2 (en) 2007-03-21 2008-12-02 Avx Corporation Solid electrolytic capacitor containing a protective adhesive layer
US7724502B2 (en) 2007-09-04 2010-05-25 Avx Corporation Laser-welded solid electrolytic capacitor
US7760487B2 (en) 2007-10-22 2010-07-20 Avx Corporation Doped ceramic powder for use in forming capacitor anodes
US7852615B2 (en) 2008-01-22 2010-12-14 Avx Corporation Electrolytic capacitor anode treated with an organometallic compound
US7768773B2 (en) 2008-01-22 2010-08-03 Avx Corporation Sintered anode pellet etched with an organic acid for use in an electrolytic capacitor
US7760488B2 (en) * 2008-01-22 2010-07-20 Avx Corporation Sintered anode pellet treated with a surfactant for use in an electrolytic capacitor
US7826200B2 (en) 2008-03-25 2010-11-02 Avx Corporation Electrolytic capacitor assembly containing a resettable fuse
US8094434B2 (en) 2008-04-01 2012-01-10 Avx Corporation Hermetically sealed capacitor assembly
US8298479B2 (en) * 2008-06-24 2012-10-30 Gerald Martino Machined titanium connecting rod and process
US7985371B2 (en) * 2008-06-24 2011-07-26 Gerald Martino Titanium connecting rod
US8199462B2 (en) * 2008-09-08 2012-06-12 Avx Corporation Solid electrolytic capacitor for embedding into a circuit board
CA2735994C (en) * 2008-09-09 2014-05-27 Ndc Corporation Glove and attachment therefor
US8344282B2 (en) 2008-09-24 2013-01-01 Avx Corporation Laser welding of electrolytic capacitors
US20100085685A1 (en) * 2008-10-06 2010-04-08 Avx Corporation Capacitor Anode Formed From a Powder Containing Coarse Agglomerates and Fine Agglomerates
US8075640B2 (en) 2009-01-22 2011-12-13 Avx Corporation Diced electrolytic capacitor assembly and method of production yielding improved volumetric efficiency
US8203827B2 (en) 2009-02-20 2012-06-19 Avx Corporation Anode for a solid electrolytic capacitor containing a non-metallic surface treatment
GB2468942B (en) 2009-03-23 2014-02-19 Avx Corp High voltage electrolytic capacitors
US8405956B2 (en) 2009-06-01 2013-03-26 Avx Corporation High voltage electrolytic capacitors
US8223473B2 (en) 2009-03-23 2012-07-17 Avx Corporation Electrolytic capacitor containing a liquid electrolyte
US8279583B2 (en) 2009-05-29 2012-10-02 Avx Corporation Anode for an electrolytic capacitor that contains individual components connected by a refractory metal paste
US8441777B2 (en) * 2009-05-29 2013-05-14 Avx Corporation Solid electrolytic capacitor with facedown terminations
US8199461B2 (en) 2009-05-29 2012-06-12 Avx Corporation Refractory metal paste for solid electrolytic capacitors
US8139344B2 (en) 2009-09-10 2012-03-20 Avx Corporation Electrolytic capacitor assembly and method with recessed leadframe channel
US8194395B2 (en) 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
US8125768B2 (en) 2009-10-23 2012-02-28 Avx Corporation External coating for a solid electrolytic capacitor
US8339771B2 (en) * 2010-02-19 2012-12-25 Avx Corporation Conductive adhesive for use in a solid electrolytic capacitor
US8619410B2 (en) 2010-06-23 2013-12-31 Avx Corporation Solid electrolytic capacitor for use in high voltage applications
US8512422B2 (en) 2010-06-23 2013-08-20 Avx Corporation Solid electrolytic capacitor containing an improved manganese oxide electrolyte
US8125769B2 (en) 2010-07-22 2012-02-28 Avx Corporation Solid electrolytic capacitor assembly with multiple cathode terminations
US8259436B2 (en) 2010-08-03 2012-09-04 Avx Corporation Mechanically robust solid electrolytic capacitor assembly
US8279584B2 (en) 2010-08-12 2012-10-02 Avx Corporation Solid electrolytic capacitor assembly
US8824121B2 (en) 2010-09-16 2014-09-02 Avx Corporation Conductive polymer coating for wet electrolytic capacitor
US8605411B2 (en) 2010-09-16 2013-12-10 Avx Corporation Abrasive blasted conductive polymer cathode for use in a wet electrolytic capacitor
US8968423B2 (en) 2010-09-16 2015-03-03 Avx Corporation Technique for forming a cathode of a wet electrolytic capacitor
US8199460B2 (en) 2010-09-27 2012-06-12 Avx Corporation Solid electrolytic capacitor with improved anode termination
US8514547B2 (en) 2010-11-01 2013-08-20 Avx Corporation Volumetrically efficient wet electrolytic capacitor
US8824122B2 (en) 2010-11-01 2014-09-02 Avx Corporation Solid electrolytic capacitor for use in high voltage and high temperature applications
US8259435B2 (en) 2010-11-01 2012-09-04 Avx Corporation Hermetically sealed wet electrolytic capacitor
US8355242B2 (en) 2010-11-12 2013-01-15 Avx Corporation Solid electrolytic capacitor element
US8848342B2 (en) 2010-11-29 2014-09-30 Avx Corporation Multi-layered conductive polymer coatings for use in high voltage solid electrolytic capacitors
US8576543B2 (en) 2010-12-14 2013-11-05 Avx Corporation Solid electrolytic capacitor containing a poly(3,4-ethylenedioxythiophene) quaternary onium salt
US8493713B2 (en) 2010-12-14 2013-07-23 Avx Corporation Conductive coating for use in electrolytic capacitors
US8687347B2 (en) 2011-01-12 2014-04-01 Avx Corporation Planar anode for use in a wet electrolytic capacitor
US8477479B2 (en) 2011-01-12 2013-07-02 Avx Corporation Leadwire configuration for a planar anode of a wet electrolytic capacitor
US8514550B2 (en) 2011-03-11 2013-08-20 Avx Corporation Solid electrolytic capacitor containing a cathode termination with a slot for an adhesive
US8451588B2 (en) 2011-03-11 2013-05-28 Avx Corporation Solid electrolytic capacitor containing a conductive coating formed from a colloidal dispersion
US8582278B2 (en) 2011-03-11 2013-11-12 Avx Corporation Solid electrolytic capacitor with improved mechanical stability
US9767964B2 (en) 2011-04-07 2017-09-19 Avx Corporation Multi-anode solid electrolytic capacitor assembly
US8947857B2 (en) 2011-04-07 2015-02-03 Avx Corporation Manganese oxide capacitor for use in extreme environments
US8379372B2 (en) 2011-04-07 2013-02-19 Avx Corporation Housing configuration for a solid electrolytic capacitor
US8300387B1 (en) 2011-04-07 2012-10-30 Avx Corporation Hermetically sealed electrolytic capacitor with enhanced mechanical stability
US8451586B2 (en) 2011-09-13 2013-05-28 Avx Corporation Sealing assembly for a wet electrolytic capacitor
US9105401B2 (en) 2011-12-02 2015-08-11 Avx Corporation Wet electrolytic capacitor containing a gelled working electrolyte
GB2498066B (en) 2011-12-20 2015-09-23 Avx Corp Wet electrolytic capacitor containing an improved anode
CN102513538B (en) * 2011-12-23 2014-04-09 泰克科技(苏州)有限公司 Method for sintering anode block of tantalum capacitor
WO2013106659A1 (en) 2012-01-13 2013-07-18 Avx Corporation Solid electrolytic capacitor with integrated fuse assembly
DE102013101443A1 (en) 2012-03-01 2013-09-05 Avx Corporation Ultrahigh voltage solid electrolytic capacitor
US8971019B2 (en) 2012-03-16 2015-03-03 Avx Corporation Wet capacitor cathode containing an alkyl-substituted poly(3,4-ethylenedioxythiophene)
US9076592B2 (en) 2012-03-16 2015-07-07 Avx Corporation Wet capacitor cathode containing a conductive coating formed anodic electrochemical polymerization of a microemulsion
US8971020B2 (en) 2012-03-16 2015-03-03 Avx Corporation Wet capacitor cathode containing a conductive copolymer
US9053861B2 (en) 2012-03-16 2015-06-09 Avx Corporation Wet capacitor cathode containing a conductive coating formed anodic electrochemical polymerization of a colloidal suspension
US9129747B2 (en) 2012-03-16 2015-09-08 Avx Corporation Abrasive blasted cathode of a wet electrolytic capacitor
JP2013219362A (en) 2012-04-11 2013-10-24 Avx Corp Solid electrolytic capacitor with enhanced mechanical stability under extreme conditions
US8947858B2 (en) 2012-04-24 2015-02-03 Avx Corporation Crimped leadwire for improved contact with anodes of a solid electrolytic capacitor
US8760852B2 (en) 2012-04-24 2014-06-24 Avx Corporation Solid electrolytic capacitor containing multiple sinter bonded anode leadwires
US9776281B2 (en) 2012-05-30 2017-10-03 Avx Corporation Notched lead wire for a solid electrolytic capacitor
GB2502703B (en) 2012-05-30 2016-09-21 Avx Corp Notched lead for a solid electrolytic capacitor
US9548163B2 (en) 2012-07-19 2017-01-17 Avx Corporation Solid electrolytic capacitor with improved performance at high voltages
DE102013213723A1 (en) 2012-07-19 2014-01-23 Avx Corporation Solid electrolytic capacitor with increased wet-to-dry capacity
DE102013213728A1 (en) 2012-07-19 2014-01-23 Avx Corporation Solid electrolytic capacitor used in space and military fields, comprises sintered porous anode, dielectric layer covering anode, and solid electrolyte comprising conductive polymer, and nonionic surfactant covering dielectric layer
DE102013213720A1 (en) 2012-07-19 2014-01-23 Avx Corporation Temperature stable solid electrolytic capacitor
CN102800484B (en) * 2012-08-17 2016-07-20 中国振华(集团)新云电子元器件有限责任公司 A kind of method making anode pellet of niobium capacitor
JP5933397B2 (en) 2012-08-30 2016-06-08 エイヴィーエックス コーポレイション Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
GB2512480B (en) 2013-03-13 2018-05-30 Avx Corp Solid electrolytic capacitor for use in extreme conditions
GB2512481B (en) 2013-03-15 2018-05-30 Avx Corp Wet electrolytic capacitor for use at high temperatures
US9324503B2 (en) 2013-03-15 2016-04-26 Avx Corporation Solid electrolytic capacitor
GB2512486B (en) 2013-03-15 2018-07-18 Avx Corp Wet electrolytic capacitor
US9240285B2 (en) 2013-04-29 2016-01-19 Avx Corporation Multi-notched anode for electrolytic capacitor
US9824826B2 (en) 2013-05-13 2017-11-21 Avx Corporation Solid electrolytic capacitor containing conductive polymer particles
US9892862B2 (en) 2013-05-13 2018-02-13 Avx Corporation Solid electrolytic capacitor containing a pre-coat layer
US9472350B2 (en) 2013-05-13 2016-10-18 Avx Corporation Solid electrolytic capacitor containing a multi-layered adhesion coating
US9236192B2 (en) 2013-08-15 2016-01-12 Avx Corporation Moisture resistant solid electrolytic capacitor assembly
US9269499B2 (en) 2013-08-22 2016-02-23 Avx Corporation Thin wire/thick wire lead assembly for electrolytic capacitor
US9165718B2 (en) 2013-09-16 2015-10-20 Avx Corporation Wet electrolytic capacitor containing a hydrogen protection layer
US10403444B2 (en) 2013-09-16 2019-09-03 Avx Corporation Wet electrolytic capacitor containing a composite coating
US9183991B2 (en) 2013-09-16 2015-11-10 Avx Corporation Electro-polymerized coating for a wet electrolytic capacitor
US9236193B2 (en) 2013-10-02 2016-01-12 Avx Corporation Solid electrolytic capacitor for use under high temperature and humidity conditions
CN103551570B (en) * 2013-10-18 2015-09-23 中国振华(集团)新云电子元器件有限责任公司 The tantalum capacitor manufacture method of tantalum powder mobility is improved in a kind of preparation process
US9589733B2 (en) 2013-12-17 2017-03-07 Avx Corporation Stable solid electrolytic capacitor containing a nanocomposite
US9916935B2 (en) 2014-11-07 2018-03-13 Avx Corporation Solid electrolytic capacitor with increased volumetric efficiency
US9620293B2 (en) 2014-11-17 2017-04-11 Avx Corporation Hermetically sealed capacitor for an implantable medical device
US9892860B2 (en) 2014-11-24 2018-02-13 Avx Corporation Capacitor with coined lead frame
US10290430B2 (en) 2014-11-24 2019-05-14 Avx Corporation Wet Electrolytic Capacitor for an Implantable Medical Device
US9786440B2 (en) 2014-12-17 2017-10-10 Avx Corporation Anode for use in a high voltage electrolytic capacitor
US9837216B2 (en) 2014-12-18 2017-12-05 Avx Corporation Carrier wire for solid electrolytic capacitors
US9620294B2 (en) 2014-12-30 2017-04-11 Avx Corporation Wet electrolytic capacitor containing a recessed planar anode and a restraint
US10297393B2 (en) 2015-03-13 2019-05-21 Avx Corporation Ultrahigh voltage capacitor assembly
US9928963B2 (en) 2015-03-13 2018-03-27 Avx Corporation Thermally conductive encapsulant material for a capacitor assembly
US10014108B2 (en) 2015-03-13 2018-07-03 Avx Corporation Low profile multi-anode assembly
US9754730B2 (en) 2015-03-13 2017-09-05 Avx Corporation Low profile multi-anode assembly in cylindrical housing
US9966196B2 (en) 2015-03-23 2018-05-08 Avx Corporation Tantalum embedded microchip
US10074487B2 (en) 2015-05-18 2018-09-11 Avx Corporation Solid electrolytic capacitor having a high capacitance
US9672989B2 (en) 2015-05-29 2017-06-06 Avx Corporation Solid electrolytic capacitor assembly for use in a humid atmosphere
US9972444B2 (en) 2015-05-29 2018-05-15 Avx Corporation Solid electrolytic capacitor element for use in dry conditions
US9991055B2 (en) 2015-05-29 2018-06-05 Avx Corporation Solid electrolytic capacitor assembly for use at high temperatures
US9767963B2 (en) 2015-05-29 2017-09-19 Avx Corporation Solid electrolytic capacitor with an ultrahigh capacitance
US9842704B2 (en) 2015-08-04 2017-12-12 Avx Corporation Low ESR anode lead tape for a solid electrolytic capacitor
US9905368B2 (en) 2015-08-04 2018-02-27 Avx Corporation Multiple leadwires using carrier wire for low ESR electrolytic capacitors
US10186382B2 (en) 2016-01-18 2019-01-22 Avx Corporation Solid electrolytic capacitor with improved leakage current
US9545008B1 (en) 2016-03-24 2017-01-10 Avx Corporation Solid electrolytic capacitor for embedding into a circuit board
US9907176B2 (en) 2016-03-28 2018-02-27 Avx Corporation Solid electrolytic capacitor module with improved planarity
US10381165B2 (en) 2016-05-20 2019-08-13 Avx Corporation Solid electrolytic capacitor for use at high temperatures
US9870869B1 (en) 2016-06-28 2018-01-16 Avx Corporation Wet electrolytic capacitor
US9870868B1 (en) 2016-06-28 2018-01-16 Avx Corporation Wet electrolytic capacitor for use in a subcutaneous implantable cardioverter-defibrillator
US10763046B2 (en) 2016-09-15 2020-09-01 Avx Corporation Solid electrolytic capacitor with improved leakage current
CN110024067B (en) 2016-09-22 2021-08-10 阿维科斯公司 Electrolytic capacitor containing valve metal from collision-free mine site and method of forming the same
US10741333B2 (en) 2016-10-18 2020-08-11 Avx Corporation Solid electrolytic capacitor with improved leakage current
WO2018075329A1 (en) 2016-10-18 2018-04-26 Avx Corporation Solid electrolytic capacitor with improved performance at high temperatures and voltages
WO2018075327A1 (en) 2016-10-18 2018-04-26 Avx Corporation Solid electrolytic capacitor assembly
US10737101B2 (en) 2016-11-14 2020-08-11 Avx Corporation Medical device containing a solid electrolytic capacitor
US10431389B2 (en) 2016-11-14 2019-10-01 Avx Corporation Solid electrolytic capacitor for high voltage environments
US10832871B2 (en) 2016-11-14 2020-11-10 Avx Corporation Wet electrolytic capacitor for an implantable medical device
US10643797B2 (en) 2016-11-15 2020-05-05 Avx Corporation Casing material for a solid electrolytic capacitor
US10475591B2 (en) 2016-11-15 2019-11-12 Avx Corporation Solid electrolytic capacitor for use in a humid atmosphere
US10504657B2 (en) 2016-11-15 2019-12-10 Avx Corporation Lead wire configuration for a solid electrolytic capacitor
EP3593367A4 (en) 2017-03-06 2021-01-20 AVX Corporation Solid electrolytic capacitor assembly
WO2019005535A1 (en) 2017-06-29 2019-01-03 Avx Corporation Module containing hermetically sealed capacitors
US11257628B2 (en) 2017-07-03 2022-02-22 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a nanocoating
EP3649660A4 (en) 2017-07-03 2021-04-21 AVX Corporation Solid electrolytic capacitor assembly
MX2020002919A (en) 2017-09-21 2020-08-03 Kyocera Avx Components Corp Electronic part containing a metal component sourced from a conflict-free mine site and a method of forming thereof.
US10957493B2 (en) 2017-12-05 2021-03-23 Avx Corporation Wet electrolytic capacitor for an implantable medical device
US11004615B2 (en) 2017-12-05 2021-05-11 Avx Corporation Solid electrolytic capacitor for use at high temperatures
US11257629B2 (en) 2018-02-12 2022-02-22 KYOCERA AVX Components Corporation Solid electrolytic capacitor for a tantalum embedded microchip
US11056285B2 (en) 2018-04-13 2021-07-06 Avx Corporation Solid electrolytic capacitor containing an adhesive film
CN111971767B (en) 2018-04-13 2022-03-22 京瓷Avx元器件公司 Solid electrolytic capacitor containing internal conductive polymer film deposited by sequential vapor phase deposition
WO2019199484A1 (en) 2018-04-13 2019-10-17 Avx Corporation Solid electrolytic capacitor containing a vapor-deposited barrier film
US11342129B2 (en) 2018-06-21 2022-05-24 KYOCERA AVX Components Corporation Solid electrolytic capacitor with stable electrical properties at high temperatures
WO2020033819A1 (en) 2018-08-10 2020-02-13 Avx Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
WO2020033820A1 (en) 2018-08-10 2020-02-13 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
US11081288B1 (en) 2018-08-10 2021-08-03 Avx Corporation Solid electrolytic capacitor having a reduced anomalous charging characteristic
WO2020033817A1 (en) 2018-08-10 2020-02-13 Avx Corporation Solid electrolytic capacitor containing polyaniline
WO2020106406A1 (en) 2018-11-19 2020-05-28 Avx Corporation Solid electrolytic capacitor for a tantalum embedded microchip
JP7167344B2 (en) 2018-11-29 2022-11-08 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション Solid electrolytic capacitors containing sequentially deposited dielectric films
WO2020123577A1 (en) 2018-12-11 2020-06-18 Avx Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11380492B1 (en) 2018-12-11 2022-07-05 KYOCERA AVX Components Corporation Solid electrolytic capacitor
KR20210148365A (en) 2019-04-25 2021-12-07 로무 가부시키가이샤 solid electrolytic capacitors
WO2020236579A1 (en) 2019-05-17 2020-11-26 Avx Corporation Solid electrolytic capacitor
US11270847B1 (en) 2019-05-17 2022-03-08 KYOCERA AVX Components Corporation Solid electrolytic capacitor with improved leakage current
WO2020236566A1 (en) 2019-05-17 2020-11-26 Avx Corporation Delamination-resistant solid electrolytic capacitor
CN113853662B (en) 2019-05-17 2023-08-04 京瓷Avx元器件公司 Solid electrolytic capacitor
CN110434325A (en) * 2019-07-31 2019-11-12 中国振华(集团)新云电子元器件有限责任公司 A method of it reducing tantalum capacitor and is sintered tantalum block carbon, oxygen content
DE112020004416T5 (en) 2019-09-18 2022-06-15 KYOCERA AVX Components Corporation Solid electrolytic capacitor for use at high voltages
JP7417714B2 (en) 2019-09-18 2024-01-18 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション Solid electrolytic capacitors with barrier coatings
US11756742B1 (en) 2019-12-10 2023-09-12 KYOCERA AVX Components Corporation Tantalum capacitor with improved leakage current stability at high temperatures
DE112020006024T5 (en) 2019-12-10 2022-10-06 KYOCERA AVX Components Corporation Tantalum capacitor with increased stability
WO2021119065A1 (en) 2019-12-10 2021-06-17 Avx Corporation Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer
US11450486B2 (en) 2020-04-03 2022-09-20 Greatbatch Ltd. Electrolytic capacitor having a tantalum anode
US11763998B1 (en) 2020-06-03 2023-09-19 KYOCERA AVX Components Corporation Solid electrolytic capacitor
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier
US11837415B2 (en) 2021-01-15 2023-12-05 KYOCERA AVX Components Corpration Solid electrolytic capacitor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2747182C2 (en) * 1977-10-20 1985-08-14 Wacker-Chemie GmbH, 8000 München Binders for nonwovens
JPS5927743B2 (en) * 1979-02-28 1984-07-07 旭硝子株式会社 Processing method for ceramic molded products
US4765950A (en) * 1987-10-07 1988-08-23 Risi Industries, Inc. Process for fabricating parts from particulate material
US5059388A (en) * 1988-10-06 1991-10-22 Sumitomo Cement Co., Ltd. Process for manufacturing sintered bodies
US5043121A (en) 1990-05-03 1991-08-27 Hoechst Celanese Corp. Process for removing polyacetal binder from molded ceramic greenbodies with acid gases
US5665289A (en) * 1990-05-07 1997-09-09 Chang I. Chung Solid polymer solution binders for shaping of finely-divided inert particles
JPH0497957A (en) * 1990-08-10 1992-03-30 Daido Steel Co Ltd Method for removing binder in molded body of powder
US5332537A (en) * 1992-12-17 1994-07-26 Pcc Airfoils, Inc. Method and binder for use in powder molding
CN1106324A (en) * 1994-02-07 1995-08-09 北京粉末冶金研究所 injection moulding method for metal chamber type products
NL9400879A (en) * 1994-05-27 1996-01-02 Univ Delft Tech A method of manufacturing molded articles from metallic or ceramic powder particles as well as a binder system suitable for use therewith.
US5470525A (en) * 1994-07-01 1995-11-28 H. C. Starck, Inc. Removal of binder from Ta products
US5977230A (en) * 1998-01-13 1999-11-02 Planet Polymer Technologies, Inc. Powder and binder systems for use in metal and ceramic powder injection molding

Also Published As

Publication number Publication date
KR20000070086A (en) 2000-11-25
DE69807650T2 (en) 2003-04-24
IL130892A0 (en) 2001-01-28
AU5490498A (en) 1998-08-03
PT951374E (en) 2003-01-31
ATE223274T1 (en) 2002-09-15
EP0951374A1 (en) 1999-10-27
DE69807650D1 (en) 2002-10-10
KR100494140B1 (en) 2005-06-10
EP0951374B1 (en) 2002-09-04
WO1998030348A1 (en) 1998-07-16
GB9700566D0 (en) 1997-03-05
US6197252B1 (en) 2001-03-06
JP2001508128A (en) 2001-06-19
CN1243464A (en) 2000-02-02
CN1106898C (en) 2003-04-30
IL130892A (en) 2002-12-01

Similar Documents

Publication Publication Date Title
JP4230541B2 (en) Binder removal method
US20100025876A1 (en) Binder removal from particulate bodies
US4063016A (en) Chitin complexes with alcohols and carbonyl compounds
JP2004518812A (en) Non-aqueous electrolyte and anodic oxidation method
EP2890822A1 (en) Low-temperature dispersion-based syntheses of silver and silver products produced thereby
JP2003512521A (en) Removal of organic acid-based binders from powder metallurgy compacts
US6375710B2 (en) Process for producing powder metallurgy compacts free from binder contamination and compacts produced thereby
US3997361A (en) Coin cleaner
KR102289961B1 (en) Method of manufacturing transparent electrode film having improved conductivity through alkaline solution spraying process
JPH07502787A (en) Silver-metal oxide materials used in electrical contacts
US3966880A (en) Method for producing alkali metal gold sulfite
JP2888960B2 (en) Method for degreasing powder compacts
JPH0379859B2 (en)
JPH11238569A (en) Surface treatment method for connector terminal
US3085035A (en) Composition and method for cleaning and blackening metal dies
US3639646A (en) Anti-tarnish process using dicyandiamide formaldehyde condensation product
JP2626907B2 (en) Palladium hydrosol stabilization method
JPS5830922B2 (en) Method for producing amalgamated zinc powder
US4086087A (en) Process for the preparation of powdered metal parts
JP2851168B2 (en) Manufacturing method of tin / tin alloy plating material
US2149963A (en) Soldering flux and process of fluxing
JPS58110681A (en) Rust removing method for pure iron
JPH02240277A (en) Method for coloring copper
DRAŽIĆ et al. and CHAO WANG
GB2110249A (en) Fluxes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071128

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees