JP4227802B2 - Photocatalyst dispersed toner - Google Patents

Photocatalyst dispersed toner Download PDF

Info

Publication number
JP4227802B2
JP4227802B2 JP2002350672A JP2002350672A JP4227802B2 JP 4227802 B2 JP4227802 B2 JP 4227802B2 JP 2002350672 A JP2002350672 A JP 2002350672A JP 2002350672 A JP2002350672 A JP 2002350672A JP 4227802 B2 JP4227802 B2 JP 4227802B2
Authority
JP
Japan
Prior art keywords
anatase
photocatalyst
titania powder
mass
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002350672A
Other languages
Japanese (ja)
Other versions
JP2004182838A (en
Inventor
節子 小浦
淳 梶本
佳子 坂本
克全 阿波
浩茂 中村
智訓 牧野
崇 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Organic Chemicals Ind.,Ltd.
Nippon Steel Nisshin Co Ltd
Original Assignee
Osaka Organic Chemicals Ind.,Ltd.
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Organic Chemicals Ind.,Ltd., Nippon Steel Nisshin Co Ltd filed Critical Osaka Organic Chemicals Ind.,Ltd.
Priority to JP2002350672A priority Critical patent/JP4227802B2/en
Publication of JP2004182838A publication Critical patent/JP2004182838A/en
Application granted granted Critical
Publication of JP4227802B2 publication Critical patent/JP4227802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、各種器物,機器の基材表面に光触媒塗膜を形成する際に使用される光触媒分散トナーに関する。
【0002】
【従来の技術】
塗膜に光触媒粒子を分散させると、セルフクリーニング作用が塗膜表面に付与され、長期間にわたって清浄な塗膜表面が維持される。有機物ベースの塗膜は光照射で生成した活性酸素によって分解しチョーキング現象が発生するので、活性酸素による分解のない無機物をベースに光触媒塗膜を形成している。
【0003】
光触媒粒子として代表的なアナターゼ型チタニア粉末を用いて塗料組成物を調合すると、バインダとの混合と同時にアナターゼ型チタニア粉末の凝集沈殿が開始し、貯蔵安定性が極めて悪い。そのため、光触媒分散トナー及び無機系バインダを個別に用意しておき、塗装直前に両者を混合する方法が採用されている。たとえば、テトラエトキシシラン等のアルコキシドを溶解した水/エタノール混合溶媒にTiO2の水分散ゾルを混合し(WO96/29375)、或いはオルガノシリカゾルを有機溶媒に溶解させた溶液にTiO2粉末を分散させること(特開平8−67835号公報)により塗料組成物を調合している。
【0004】
【発明が解決しようとする課題】
塗装直前に光触媒分散トナー,無機系バインダを混合することにより調合した塗料組成物でも、アナターゼ型チタニア粉末の凝集沈殿が進行するため塗装性や塗膜性状が安定化しない。凝集沈殿は、アナターゼ型チタニア粉末のゼータ電位が4.5〜6.0の範囲にあり、貯蔵安定化のために調整した無機系バインダのpH3〜6.5に重複することが原因である。
【0005】
そこで、本発明者等は、アナターゼ型チタニア粉末の凝集沈殿を防止するため、バインダ成分であるオルガノアルコキシシランの一部を光触媒分散トナーに予め添加することを提案した(特開2002−105357号公報)。光触媒分散トナーに添加されたオルガノアルコキシシランがアナターゼ型チタニア粉末の表面を覆うと、粉末表面のゼータ電位が無機系バインダのpH値から外れ、結果として無機系バインダと混合した場合でもアナターゼ型チタニア粉末の凝集沈殿が抑制されるものと推察される。
【0006】
【課題を解決するための手段】
本発明は、先願・特開2002−105357号公報で紹介した光触媒塗料組成物を更に改良すべく案出されたものであり、部分加水分解によりオルガノアルコキシシランのアルコキシ基をアナターゼ型チタニア粉末表面のOH基と反応させ、光触媒分散トナーにおいてもアナターゼ型チタニア粉末の分散性を一層改善することを目的とする。
【0007】
本発明の光触媒分散トナーは、その目的を達成するため、イソプロパノール,ブチルセロソルブの混合溶媒にアナターゼ型チタニア粉末,オルガノアルコキシシランが少量の水と共に配合され、水添加で部分加水分解したオルガノアルコキシシランで被覆したアナターゼ型チタニア粉末が分散していることを特徴とする。水添加量は、オルガノアルコキシシランを部分加水分解させるが、オルガノアルコキシシラン相互の脱水縮合反応を進行させない0.1〜10質量%の範囲で選定される。
【0008】
アナターゼ型チタニア粉末としては、粒径5〜200nmの粉末が好ましく、30〜60質量%の割合で配合される。オルガノアルコキシシランは、一般式R1Si(OR2)3〔R1は炭素数1〜3のアルキル基,ビニル基,3,4-エポキシシクロヘキシル基,γ-グリシドキシプロピル基又はγ-メルカプトプロピル基、R2は炭素数1〜4のアルキル基又はアリール基〕で表され、1〜10質量%の割合で配合される。
【0009】
【作用及び実施の形態】
光触媒分散トナーに配合したオルガノアルコキシシランは、アナターゼ型チタニア粉末の表面にオルガノアルコキシシランのまま吸着し、或いは溶剤中に単に分散した状態で存在する。吸着したオルガノアルコキシシランはアナターゼ型チタニア粉末の分散性を向上させるが、長期間にわたる貯蔵では分散性が十分とはいえない。
【0010】
水が存在する系では、オルガノアルコキシシランのアルコキシ基が部分加水分解する。加水分解生成物がアナターゼ型チタニア粉末表面のOH基と結合するので、この結合を介しアナターゼ型チタニア粉末表面にオルガノアルコキシシランが付着する。アナターゼ型チタニア粉末は、オルガノアルコキシシランの付着によって分散性が向上し、長期にわたって凝集沈殿なく光触媒分散トナー中に懸濁する。その結果、貯蔵安定性に優れた光触媒分散トナーが得られる。良好な分散性は、無機系バインダと混合した後でも維持される。
【0011】
アナターゼ型チタニア粉末表面に対するオルガノアルコキシシランの付着量は光触媒分散トナーの水添加量で制御でき、オルガノアルコキシシラン付着による分散性の向上は0.1質量%以上の水添加量でみられる。水添加量の増加に応じてアナターゼ型チタニア粉末表面に付着するオルガノアルコキシシランが多くなり、アナターゼ型チタニア粉末の分散性が向上する。しかし、10質量%を超える過剰量の水を添加すると、アナターゼ型チタニア粉末表面に付着するアルコキシ基の加水分解生成物が多くなりすぎ、光触媒活性が損なわれる。過剰量の水添加は、光触媒分散トナーに添加したオルガノアルコキシシラン相互の脱水縮合を促進させ、アナターゼ型チタニア粉末表面に付着する加水分解生成物の割合が却って減少する。
【0012】
光触媒分散トナーに配合される水以外の成分は、次のように定めることが好ましい。
光触媒としては、光触媒活性が高く化学的安定性にも優れた粒径5〜200nmのアナターゼ型チタニア粉末を用い、30〜60質量%の割合で配合する。粒径5nmの粉末は製造自体が難しく、200nmを置ける粒径では光触媒活性が不十分となる。アナターゼ型チタニア粉末の配合割合が30質量%未満になるとチクソ性がなく粒子の沈降が早く固めのケーキになるため、トナー使用時の再分散が困難になる。逆に60質量%を超える配合量では、チクソ性が高くなりすぎ却ってトナーとしての流動性が損なわれる。
【0013】
オルガノアルコキシシランは、一般式R1Si(OR2)3〔R1はアルキル基,ビニル基,3,4-エポキシシクロヘキシル基,γ-グリシドキシプロピル基又はγ-メルカプトプロピル基,R2は炭素数1〜4のアルキル基又はアリール基〕で表され、1〜10質量%の割合で配合される。オルガノアルコキシシランは、有機官能基の導入によってシラン相互の反応が抑制され、アナターゼ型チタニア粉末の表面に付着する割合が高くなる。この点、テトラアルコキシシランでは、加水分解が過度に進行してアナターゼ型チタニア粉末の表面に付着するだけでなく、シラン相互が反応する結果としてアナターゼ型チタニア粉末の分散に寄与しない割合が高くなる。オルガノアルコキシシランであっても、有機官能基が2個以上になるとアナターゼ型チタニア粉末の表面に付着する有機物の量が増加する。過剰の有機物が付着したアナターゼ型チタニア粉末の分散トナーから作製された光触媒塗膜を光照射環境に置くと有機物が分解し、塗膜のチョーキングが短時間に進行する。そこで、Siに直接結合する有機官能基を一つだけとし、炭素数1〜3のアルキル基,ビニル基,3,4-エポキシシクロヘキシル基,γ-グリシドキシプロピル基又はγ-メルカプトプロピル基にすることが好適である。
【0014】
オルガノアルコキシシランの配合量は、1〜10質量%の範囲に定められる。1質量%未満の配合量では分散性の向上がみられず、逆に10質量%を超える配合量ではアナターゼ型チタニア粉末表面の被覆率が高くなりすぎて塗膜形成後の光触媒活性が極端に低下する。オルガノアルコキシシランの配合量はアナターゼ型チタニア粉末の粒径に依存する。たとえば、7nmのTiO2粉末は約300m2/gの大きな表面積をもつので、8質量%のオルガノアルコキシシランで最も大きな効果が得られる。粒径20nmのTiO2粉末では表面積が50m2/g程度であり、オルガノアルコキシシランの配合量3質量%で最も効果的になる。
【0015】
溶媒には、イソプロパノール,ブチルセロソルブの混合溶媒が使用される。混合比率は、イソプロパノール:40〜60質量%,ブチルセロソルブ:40〜60質量%が好ましい。混合比率の調整によって,アナターゼ型チタニア粉末の分散性が改善されると共に、光触媒分散トナーをバインダと混合した後で塗膜を形成する際に揮発スピードが適度にコントロールされるので、剥離に至るクラックの発生が防止される。
光触媒分散トナーは、オルガノアルコキシシラン,水を添加したイソプロパノール/ブチルセロソルブの混合溶媒にアナターゼ型チタニア粉末を加え、攪拌機で攪拌した後、充填したビーズが攪拌状態に維持されている横型ミルに流量1リットル/分の速さで注入することにより調製される。必要に応じ、顔料,染料等の着色剤や増粘剤等の添加材を添加することも可能である。
【0016】
光触媒分散トナーと配合可能な無機系バインダには、アルコキシシラン及び/又はオルガノアルコキシシランを加水分解させて縮合したもの,当該加水分解縮合物に水系又はアルコール系のコロイダルシリカを配合したシリカ系、アルミニウムアルコキシドを加水分解させて縮合したもの,当該加水分解縮合物に水系又はアルコール系のコロイダルアルミナを配合したアルミナ系等が挙げられる。シリカ系,アルミナ系を混合して使用することもでき、水系,溶剤系の何れにも配合できる。塗膜に柔軟性を付与する場合には、アクリルシリケート等を配合したバインダを用いても良い。
【0017】
光触媒分散トナー,無機系バインダから塗料を調製する際,固形分としてTiO2が5〜80質量%となる配合比率で光触媒分散トナー,無機系バインダを混合する。十分な光触媒活性を得る上で5質量%以上のTiO2含有量が必要であるが、80質量%を超える過剰量のTiO2が含まれると塗膜の密着性が低下する。混合に際しては、十分に攪拌された光触媒分散トナーに無機系バインダを徐々に加え、更に攪拌することにより塗料化できる。
【0018】
調製された塗料は、スプレー法,浸漬法,フローコーティング法,ロールコート法,スクリーン印刷法,静電塗装法等によって、前処理された基材に塗布される。塗布後、80〜130℃で1〜30分加熱することにより、基材に対する密着性に優れた塗膜が形成される。塗膜の厚さは、基材の種類や用途に応じて異なるため一概に定めることはできないが、通常1〜30μmの範囲で調整される。光触媒塗料組成物が塗布される基材には、普通鋼,めっき鋼板,ステンレス鋼板,アルミニウム,銅、真鍮等の金属や、セメント,コンクリート,タイル,スレート板,ガラス,石材等がある。加熱時の温度によっては、プラスチック等の有機材料にも塗装可能である。
【0019】
【実施例】
アナターゼ型チタニア粉末分散トナーの調製
イソプロパノール:50質量%,ブチルセロソルブ:50質量%の混合溶媒に3質量%のオルガノアルコキシシラン,水を添加し、更に粒径20nmのアナターゼ型チタニア粉末を添加した。アナターゼ型チタニア粉末の添加量は、塗料全体の40質量%となる割合に設定した。ビーズミルを用いた攪拌機で混合物を分散させることにより光触媒分散トナーを調製した。
【0020】
無機系バインダの調製
水系コロイダルシリカ:21.2g(平均粒径5〜20nm,固形分20質量%,pH3.0)とイソプロパノール系コロイダルシリカ62.6g(平均粒径5〜20nm,固形分20質量%)を混合した後、メチルトリメトキシシラン13.9gを加え、30℃で5時間攪拌して加水分解を完了させた。次いで、加水分解物にイソプロパノール:33質量%,ブチルセロソルブ:67質量%の混合溶媒を添加し、更にアンモニア水を添加してpHを4.5に調整した。
得られた光触媒分散トナー,無機系バインダを固形分中のTiO2含有量が40質量%となる割合で混合攪拌し、50μmのメッシュを用いて濾過し塗料化した。
【0021】
前処理したSUS304ステンレス鋼基材に塗料をスプレー塗布し、200℃で20分加熱することにより膜厚10μmの塗膜を形成した。比較のため、水無添加の光触媒分散トナーを無機系バインダと混合することにより調製された塗料を用いて同様にSUS304ステンレス鋼基材を塗装した。
【0022】
調製された光触媒塗料組成物の分散性及び塗膜の光触媒活性を以下の方法で評価した。
(1)光触媒塗料組成物の分散性
光触媒分散トナー,無機系バインダを混合した塗料化した後、1日経過後にTiO2粒子の凝集状態を調査した。5μm以上のツブが検出されない塗料組成物を○,10μm以上のツブはないが5〜10μmのツブが検出された塗料組成物を△,10μm以上のツブが生じた塗料組成物を×として分散性を評価した。
(2)塗膜の光触媒活性
付着量0.2mg/cm2でサラダ油を試験片表面に付着させ、5mW/cm2のブラックライトで24時間照射した後、試験片に残存しているサラダ油の重量を測定し、重量減少率を油分解率として光触媒活性を評価した。
【0023】
表1の調査結果にみられるように、オルガノアルコキシシランを添加した水無添加の光触媒分散トナーから得られた塗料組成物を使用した場合では、分散性はある程度良好であるが、光触媒活性に劣っていた。これに対し、本発明に従った光触媒分散トナーから得られた塗料組成物は、水添加の効果によって分散性が一層よくなりアナターゼ型チタニア粉末が塗膜中に均一分散しており、光触媒活性も一段と向上していた。
【0024】

Figure 0004227802
【0025】
【発明の効果】
以上に説明したように、アナターゼ型チタニア粉末,オルガノアルコキシシランを配合した光触媒分散トナーに少量の水を添加してオルガノアルコキシシランを部分加水分解し、アナターゼ型チタニア粉末表面のOH基にアルコキシ基の加水分解生成物を反応させるとき、アナターゼ型チタニア粉末の凝集沈殿が抑制され分散性が向上する。この光触媒分散トナーを無機系バインダと配合することにより調製された塗料組成物は、アナターゼ型チタニア粉末の優れた分散状態を維持したままで塗装原板に塗布され、アナターゼ型チタニア粉末の光触媒活性が効率よく発現する光触媒塗膜となる。[0001]
[Industrial application fields]
The present invention relates to a photocatalyst-dispersed toner used when a photocatalyst coating film is formed on the surface of a substrate of various types of equipment and devices.
[0002]
[Prior art]
When the photocatalyst particles are dispersed in the coating film, a self-cleaning action is imparted to the coating film surface, and a clean coating film surface is maintained over a long period of time. Since the organic-based coating film is decomposed by active oxygen generated by light irradiation and a choking phenomenon occurs, the photocatalytic coating film is formed on the basis of an inorganic substance that is not decomposed by active oxygen.
[0003]
When a coating composition is prepared using typical anatase type titania powder as photocatalyst particles, aggregation and precipitation of the anatase type titania powder starts simultaneously with mixing with the binder, and the storage stability is extremely poor. Therefore, a method is adopted in which a photocatalyst-dispersed toner and an inorganic binder are prepared separately and both are mixed immediately before coating. For example, an aqueous dispersion sol of TiO 2 is mixed in a water / ethanol mixed solvent in which an alkoxide such as tetraethoxysilane is dissolved (WO 96/29375), or TiO 2 powder is dispersed in a solution in which an organosilica sol is dissolved in an organic solvent. (JP-A-8-67835) discloses a coating composition.
[0004]
[Problems to be solved by the invention]
Even in a coating composition prepared by mixing a photocatalyst-dispersed toner and an inorganic binder immediately before coating, the agglomeration and precipitation of anatase-type titania powder proceeds, so that the coating properties and coating properties are not stabilized. The aggregation precipitation is caused by the fact that the zeta potential of the anatase type titania powder is in the range of 4.5 to 6.0 and overlaps with the pH of the inorganic binder adjusted for storage stabilization of 3 to 6.5.
[0005]
Accordingly, the present inventors have proposed to add a part of the organoalkoxysilane as a binder component to the photocatalyst-dispersed toner in advance in order to prevent aggregation and precipitation of the anatase-type titania powder (Japanese Patent Laid-Open No. 2002-105357). ). When the organoalkoxysilane added to the photocatalyst-dispersed toner covers the surface of the anatase titania powder, the zeta potential of the powder surface deviates from the pH value of the inorganic binder, and as a result, even when mixed with the inorganic binder, the anatase titania powder It is presumed that coagulation and precipitation of is suppressed.
[0006]
[Means for Solving the Problems]
The present invention was devised to further improve the photocatalyst coating composition introduced in the prior application / Japanese Patent Application Laid-Open No. 2002-105357, and the surface of the anatase titania powder is modified by partially hydrolyzing the alkoxy group of the organoalkoxysilane. An object of the present invention is to further improve the dispersibility of anatase-type titania powder even in a photocatalyst-dispersed toner by reacting with an OH group.
[0007]
In order to achieve the object, the photocatalyst-dispersed toner of the present invention comprises an anatase-type titania powder and an organoalkoxysilane mixed with a small amount of water in a mixed solvent of isopropanol and butylcellosolve and coated with an organoalkoxysilane partially hydrolyzed by addition of water. The anatase-type titania powder is dispersed. The amount of water to be added is selected in the range of 0.1 to 10% by mass, in which the organoalkoxysilane is partially hydrolyzed but the dehydration condensation reaction between the organoalkoxysilanes does not proceed.
[0008]
As the anatase type titania powder, a powder having a particle size of 5 to 200 nm is preferable, and it is blended at a ratio of 30 to 60% by mass. The organoalkoxysilane has the general formula R 1 Si (OR 2 ) 3 [R 1 is an alkyl group having 1 to 3 carbon atoms, vinyl group, 3,4-epoxycyclohexyl group, γ-glycidoxypropyl group or γ-mercapto. Propyl group, R 2 is an alkyl group or aryl group having 1 to 4 carbon atoms], and is blended at a ratio of 1 to 10% by mass.
[0009]
[Operation and embodiment]
The organoalkoxysilane blended in the photocatalyst-dispersed toner is adsorbed on the surface of the anatase type titania powder as it is, or simply dispersed in a solvent. Although the adsorbed organoalkoxysilane improves the dispersibility of the anatase-type titania powder, it cannot be said that the dispersibility is sufficient for long-term storage.
[0010]
In a system in which water is present, the alkoxy group of the organoalkoxysilane is partially hydrolyzed. Since the hydrolysis product binds to the OH group on the surface of the anatase type titania powder, the organoalkoxysilane adheres to the surface of the anatase type titania powder through this bond. Anatase-type titania powder has improved dispersibility due to adhesion of organoalkoxysilane, and is suspended in the photocatalyst-dispersed toner for a long time without aggregation and precipitation. As a result, a photocatalyst-dispersed toner having excellent storage stability can be obtained. Good dispersibility is maintained even after mixing with an inorganic binder.
[0011]
The adhesion amount of the organoalkoxysilane to the surface of the anatase-type titania powder can be controlled by the water addition amount of the photocatalyst-dispersed toner, and the improvement in dispersibility due to the adhesion of the organoalkoxysilane can be seen at a water addition amount of 0.1% by mass or more. As the amount of water added increases, the amount of organoalkoxysilane adhering to the surface of the anatase titania powder increases, and the dispersibility of the anatase titania powder improves. However, when an excessive amount of water exceeding 10% by mass is added, the hydrolysis product of the alkoxy group adhering to the surface of the anatase-type titania powder increases so that the photocatalytic activity is impaired. Excess water addition promotes dehydration condensation between the organoalkoxysilanes added to the photocatalyst-dispersed toner, and the ratio of hydrolysis products adhering to the surface of the anatase-type titania powder is reduced.
[0012]
Components other than water blended in the photocatalyst-dispersed toner are preferably determined as follows.
As the photocatalyst, anatase titania powder having a particle size of 5 to 200 nm, which has high photocatalytic activity and excellent chemical stability, is blended at a ratio of 30 to 60% by mass. A powder with a particle size of 5 nm is difficult to produce itself, and the photocatalytic activity is insufficient with a particle size of 200 nm. If the blending ratio of the anatase type titania powder is less than 30% by mass, there is no thixotropy and the particles settle quickly and become a hard cake, so that redispersion when using the toner becomes difficult. On the other hand, if the blending amount exceeds 60% by mass, the thixotropy becomes too high and the fluidity as a toner is impaired.
[0013]
The organoalkoxysilane has the general formula R 1 Si (OR 2 ) 3 [R 1 is an alkyl group, vinyl group, 3,4-epoxycyclohexyl group, γ-glycidoxypropyl group or γ-mercaptopropyl group, R 2 is The alkyl group or aryl group having 1 to 4 carbon atoms] is blended at a ratio of 1 to 10% by mass. In the organoalkoxysilane, the reaction between silanes is suppressed by the introduction of the organic functional group, and the ratio of adhesion to the surface of the anatase-type titania powder increases. In this respect, tetraalkoxysilane not only contributes to the dispersion of the anatase titania powder as a result of not only the hydrolysis proceeding excessively and adhering to the surface of the anatase titania powder but also the reaction between the silanes. Even in the case of organoalkoxysilane, when there are two or more organic functional groups, the amount of organic matter adhering to the surface of the anatase titania powder increases. When a photocatalytic coating film prepared from a dispersed toner of anatase-type titania powder to which an excessive amount of organic substance is attached is placed in a light irradiation environment, the organic substance is decomposed and the coating is choked in a short time. Therefore, only one organic functional group directly bonded to Si is used, and an alkyl group having 1 to 3 carbon atoms, a vinyl group, a 3,4-epoxycyclohexyl group, a γ-glycidoxypropyl group, or a γ-mercaptopropyl group. It is preferable to do.
[0014]
The compounding amount of the organoalkoxysilane is determined in the range of 1 to 10% by mass. When the blending amount is less than 1% by mass, no improvement in dispersibility is observed. Conversely, when the blending amount exceeds 10% by mass, the anatase-type titania powder has an excessively high surface coverage, and the photocatalytic activity after coating is extremely high. descend. The compounding amount of the organoalkoxysilane depends on the particle size of the anatase type titania powder. For example, 7 nm TiO 2 powder has a large surface area of about 300 m 2 / g, so that 8% by mass of organoalkoxysilane provides the greatest effect. A TiO 2 powder having a particle size of 20 nm has a surface area of about 50 m 2 / g, and is most effective when the amount of organoalkoxysilane is 3% by mass.
[0015]
As the solvent, a mixed solvent of isopropanol and butyl cellosolve is used. The mixing ratio is preferably isopropanol: 40 to 60% by mass and butyl cellosolve: 40 to 60% by mass. By adjusting the mixing ratio, the dispersibility of the anatase-type titania powder is improved, and the volatilization speed is appropriately controlled when the coating film is formed after the photocatalyst-dispersed toner is mixed with the binder. Is prevented from occurring.
The photocatalyst-dispersed toner is prepared by adding anatase-type titania powder to a mixed solvent of isopropanol / butyl cellosolve to which organoalkoxysilane and water are added, stirring with a stirrer, and then a flow rate of 1 liter into a horizontal mill in which the filled beads are maintained in a stirring state It is prepared by injecting at a rate of / min. If necessary, it is also possible to add colorants such as pigments and dyes, and additives such as thickeners.
[0016]
The inorganic binder that can be blended with the photocatalyst-dispersed toner includes those obtained by hydrolyzing and condensing alkoxysilane and / or organoalkoxysilane, silica-based, aluminum or alcohol-based colloidal silica mixed with the hydrolyzed condensate, aluminum Examples include those obtained by hydrolyzing and condensing an alkoxide, and alumina based in which water-based or alcohol-based colloidal alumina is blended with the hydrolyzed condensate. Silica-based and alumina-based materials can be mixed and used, and can be blended in both water-based and solvent-based ones. When imparting flexibility to the coating film, a binder blended with acrylic silicate or the like may be used.
[0017]
When preparing a paint from the photocatalyst-dispersed toner and the inorganic binder, the photocatalyst-dispersed toner and the inorganic binder are mixed at a blending ratio of 5 to 80% by mass of TiO 2 as a solid content. In order to obtain sufficient photocatalytic activity, a TiO 2 content of 5% by mass or more is necessary, but if an excessive amount of TiO 2 exceeding 80% by mass is contained, the adhesion of the coating film decreases. In mixing, an inorganic binder is gradually added to the sufficiently stirred photocatalyst-dispersed toner, followed by further stirring to form a coating material.
[0018]
The prepared paint is applied to the pretreated substrate by spraying, dipping, flow coating, roll coating, screen printing, electrostatic coating, or the like. After coating, a coating film having excellent adhesion to the substrate is formed by heating at 80 to 130 ° C. for 1 to 30 minutes. The thickness of the coating film varies depending on the type and application of the base material and cannot be determined unconditionally, but is usually adjusted in the range of 1 to 30 μm. Base materials to which the photocatalytic coating composition is applied include ordinary steel, plated steel plate, stainless steel plate, aluminum, copper, brass and other metals, cement, concrete, tile, slate plate, glass, stone and the like. Depending on the heating temperature, it can also be applied to organic materials such as plastic.
[0019]
【Example】
Preparation of Anatase Type Titania Powder Dispersed Toner 3% by weight of organoalkoxysilane and water were added to a mixed solvent of isopropanol: 50% by mass and butyl cellosolve: 50% by mass, and anatase type titania powder having a particle size of 20 nm was further added. The addition amount of the anatase type titania powder was set to a ratio of 40% by mass with respect to the entire coating material. A photocatalyst-dispersed toner was prepared by dispersing the mixture with a stirrer using a bead mill.
[0020]
Preparation of inorganic binder Water-based colloidal silica: 21.2 g (average particle size 5 to 20 nm, solid content 20 mass%, pH 3.0) and isopropanol colloidal silica 62.6 g (average particle size 5 to 20 nm, solid content 20 mass) %), 13.9 g of methyltrimethoxysilane was added, and the mixture was stirred at 30 ° C. for 5 hours to complete the hydrolysis. Next, a mixed solvent of isopropanol: 33% by mass and butyl cellosolve: 67% by mass was added to the hydrolyzate, and ammonia water was further added to adjust the pH to 4.5.
The obtained photocatalyst-dispersed toner and inorganic binder were mixed and stirred at a ratio such that the TiO 2 content in the solid content was 40% by mass, and filtered using a 50 μm mesh to form a paint.
[0021]
A paint was spray-coated on the pretreated SUS304 stainless steel substrate and heated at 200 ° C. for 20 minutes to form a coating film having a thickness of 10 μm. For comparison, a SUS304 stainless steel substrate was similarly coated using a paint prepared by mixing water-free photocatalyst-dispersed toner with an inorganic binder.
[0022]
The dispersibility of the prepared photocatalytic coating composition and the photocatalytic activity of the coating film were evaluated by the following methods.
(1) Dispersibility of photocatalyst coating composition The photocatalyst-dispersed toner and the inorganic binder were mixed to form a coating material, and the aggregation state of TiO 2 particles was investigated after one day. Dispersibility with a coating composition in which no tabs of 5 μm or more are detected as ○, a coating composition in which no tabs of 10 μm or more are detected but 5-10 μm are detected is Δ, and a coating composition in which tabs of 10 μm or more are generated is × Evaluated.
(2) Weight of salad oil remaining on the test piece after the salad oil was attached to the surface of the test piece with a photocatalytic activity adhesion amount of 0.2 mg / cm 2 on the coating film and irradiated with black light of 5 mW / cm 2 for 24 hours. Was measured, and the photocatalytic activity was evaluated using the weight reduction rate as the oil decomposition rate.
[0023]
As can be seen from the investigation results in Table 1, when a coating composition obtained from a water-free photocatalyst-dispersed toner added with an organoalkoxysilane is used, the dispersibility is good to some extent, but the photocatalytic activity is inferior. It was. In contrast, the coating composition obtained from the photocatalyst-dispersed toner according to the present invention has better dispersibility due to the effect of water addition, and the anatase-type titania powder is uniformly dispersed in the coating film, and the photocatalytic activity is also improved. It was further improved.
[0024]
Figure 0004227802
[0025]
【The invention's effect】
As described above, a small amount of water is added to the photocatalyst-dispersed toner containing anatase-type titania powder and organoalkoxysilane to partially hydrolyze the organoalkoxysilane, and an OH group on the surface of the anatase-type titania powder has an alkoxy group. When the hydrolysis product is reacted, aggregation and precipitation of the anatase-type titania powder is suppressed and dispersibility is improved. The coating composition prepared by blending this photocatalyst-dispersed toner with an inorganic binder is applied to the coating original plate while maintaining the excellent dispersion state of the anatase-type titania powder, and the photocatalytic activity of the anatase-type titania powder is efficient. It becomes a photocatalyst coating film that develops well.

Claims (3)

イソプロパノール,ブチルセロソルブの混合溶媒にアナターゼ型チタニア粉末,オルガノアルコキシシランが配合され、0.1〜10質量%の範囲で添加量が選定された水が添加されており、部分加水分解したオルガノアルコキシシランで被覆したアナターゼ型チタニア粉末が分散していることを特徴とする光触媒分散トナー。An anatase-type titania powder and an organoalkoxysilane are mixed in a mixed solvent of isopropanol and butylcellosolve, and water whose addition amount is selected in the range of 0.1 to 10% by mass is added. A photocatalyst-dispersed toner, wherein the coated anatase-type titania powder is dispersed. 粒径5〜200nmのアナターゼ型チタニア粉末を30〜60質量%配合している請求項1記載の光触媒分散トナー。The photocatalyst-dispersed toner according to claim 1, wherein 30 to 60% by mass of anatase-type titania powder having a particle size of 5 to 200 nm is blended. 一般式R1Si(OR2)3〔R1は炭素数1〜3のアルキル基,ビニル基,3,4-エポキシシクロヘキシル基,γ-グリシドキシプロピル基又はγ-メルカプトプロピル基、R2は炭素数1〜4のアルキル基又はアリール基〕で表されるオルガノアルコキシシランを1〜10質量%配合している請求項1記載の光触媒分散トナー。General formula R 1 Si (OR 2 ) 3 [R 1 is an alkyl group having 1 to 3 carbon atoms, vinyl group, 3,4-epoxycyclohexyl group, γ-glycidoxypropyl group or γ-mercaptopropyl group, R 2 The photocatalyst-dispersed toner according to claim 1, wherein 1 to 10% by mass of an organoalkoxysilane represented by formula (1) is an alkyl group or aryl group having 1 to 4 carbon atoms].
JP2002350672A 2002-12-03 2002-12-03 Photocatalyst dispersed toner Expired - Fee Related JP4227802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350672A JP4227802B2 (en) 2002-12-03 2002-12-03 Photocatalyst dispersed toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350672A JP4227802B2 (en) 2002-12-03 2002-12-03 Photocatalyst dispersed toner

Publications (2)

Publication Number Publication Date
JP2004182838A JP2004182838A (en) 2004-07-02
JP4227802B2 true JP4227802B2 (en) 2009-02-18

Family

ID=32752819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350672A Expired - Fee Related JP4227802B2 (en) 2002-12-03 2002-12-03 Photocatalyst dispersed toner

Country Status (1)

Country Link
JP (1) JP4227802B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5121169B2 (en) * 2006-06-14 2013-01-16 株式会社日本触媒 Organic solvent dispersion of inorganic-containing particles and inorganic-containing particles used in the dispersion

Also Published As

Publication number Publication date
JP2004182838A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP3348635B2 (en) Coating composition, method for forming hydrophilic film, and hydrophilic film-coated article
CN100572462C (en) Antiadhesive high temperature layers
JP3949175B2 (en) Polyalkoxysiloxane compound, method for producing the same, and coating composition containing the same
EP1017746B1 (en) Hydrophilic materials and their method of preparation
JPH05221640A (en) Production of hydrophobic titanium oxide fine particle
CN101525504A (en) Photocatalytic self-cleaning film coating agent with self-layered isolation effect and preparation method thereof
JP6961931B2 (en) Metatitanic acid particles and their production methods, photocatalyst-forming compositions, photocatalysts, and structures
JP2603291B2 (en) Fine powder of silicone resin containing quaternary ammonium group
JP2018168007A (en) Metatitanic acid particle, production method of metatitanic acid particle, composition for photocatalyst formation, photocatalyst and structure
JP2018094495A (en) Titanium oxide particles and method for producing the same, composition for forming photocatalyst, photocatalyst and structure
JP4409169B2 (en) Paint containing colored pigment particles, substrate with visible light shielding film
JP2002249705A (en) Photocatalytic coating composition
JP4456809B2 (en) Photocatalyst coating composition
JP4227802B2 (en) Photocatalyst dispersed toner
JP2717167B2 (en) Coating composition
JP2000290528A (en) Lustrous material, coating composition and coated item
JPH10324838A (en) Pigment dispersion composition and coating composition
JP3499525B2 (en) Photocatalytic coating composition
JP2009209250A (en) Photocatalyst coating film forming composition, photocatalyst coating film, and forming method of photocatalyst coating film
JP2003026959A (en) Inorganic coating
JP2010043159A (en) Method for producing titanium oxide dispersion and titanium oxide film
JP2005179472A (en) Highly corrosionproof zinc powder-containing coating composition
JP2002308664A (en) Inorganic based curable composition and inorganic coating material
JP2000212473A (en) Coating composition
JP2005113023A (en) Photocatalyst-containing silicon composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070416

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070416

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070416

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141205

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees