JP4225499B2 - Fire detection equipment - Google Patents

Fire detection equipment Download PDF

Info

Publication number
JP4225499B2
JP4225499B2 JP2004210806A JP2004210806A JP4225499B2 JP 4225499 B2 JP4225499 B2 JP 4225499B2 JP 2004210806 A JP2004210806 A JP 2004210806A JP 2004210806 A JP2004210806 A JP 2004210806A JP 4225499 B2 JP4225499 B2 JP 4225499B2
Authority
JP
Japan
Prior art keywords
radiation
fire
housing
fire detector
dosimeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004210806A
Other languages
Japanese (ja)
Other versions
JP2006031486A (en
Inventor
隆 能美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP2004210806A priority Critical patent/JP4225499B2/en
Publication of JP2006031486A publication Critical patent/JP2006031486A/en
Application granted granted Critical
Publication of JP4225499B2 publication Critical patent/JP4225499B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Fire-Detection Mechanisms (AREA)

Description

本発明は火災検出装置に関するものである。   The present invention relates to a fire detection device.

原子力施設やエネルギ研究所などの建物には、放射線が発生する放射線管理区域が設けられている。このような放射線管理区域にも火災感知器が天井に設置されている。   Buildings such as nuclear facilities and energy laboratories have radiation control areas where radiation is generated. Fire detectors are also installed on the ceiling in these radiation control areas.

ところで、放射線が発生する環境下に、電子機器としての火災感知器を設置しておくと、内部の半導体素子からなる電子部品がγ線などの放射線にさらされることにより、火災感知器が故障してしまうことがある。つまり、火災が発生していないのに動作したり(誤動作)、火災が発生したにもかかわらず動作しなかったり(失報)するというような影響を受けてしまうことがある。   By the way, if a fire detector is installed as an electronic device in an environment where radiation is generated, the fire detector will break down due to exposure of internal electronic components made of semiconductor elements to radiation such as gamma rays. May end up. In other words, it may be affected such that it operates without a fire (malfunction), or does not operate (missing information) despite a fire.

このような問題を解決するために、放射線環境下に設置される火災感知器の周囲に、鉛からなる放射線を遮蔽する遮蔽体を設けた煙感知器が提案されている(例えば、特許文献1参照)。
特開平11−134578号公報
In order to solve such a problem, a smoke detector is proposed in which a shield that shields radiation made of lead is provided around a fire detector installed in a radiation environment (for example, Patent Document 1). reference).
Japanese Patent Laid-Open No. 11-134578

しかし、煙感知器は、煙を流入させる必要があることから、煙感知器全体を隙間なく完全に鉛板で遮蔽することはできない。このため、長い期間、放射線環境下に火災感知器を設ける場合には、故障を避けることができなかった。また、放射線管理区域においては、その場所毎によって放射線の強さが異なるので、同じ遮蔽部材を設けても、火災感知器が故障するまでに要する月日はそれぞれ違った。このため、火災感知器の寿命を予測できるようにすることが望まれている。   However, since the smoke detector needs to allow smoke to flow in, the entire smoke detector cannot be completely shielded by the lead plate without a gap. For this reason, when a fire detector is provided in a radiation environment for a long period of time, failure cannot be avoided. Also, in the radiation control area, the intensity of radiation differs depending on the location. Therefore, even if the same shielding member is provided, the dates required for the fire detector to malfunction differ. For this reason, it is desired to be able to predict the life of a fire detector.

本発明は、以上の課題を解決するためになされたもので、放射線を遮蔽する遮蔽部材と火災感知器とを収容する筐体内に、前記火災感知器と接続される吸引ファンを設け、該吸引ファンと吸引口を介して接続されるサンプリング管を設け、該サンプリング管および前記筐体を放射線管理区域に設置した火災検出装置において、筐体内に設けられ、放射線量を測定する線量計と、線量計、火災感知器、及び吸引ファンがユニット化して設けられた複数の基板と、基板を収容すると共に、筐体内に引き出し自在に設けられるケースと、を備えたことを特徴とするものである。 The present invention has been made to solve the above-described problems. A suction fan connected to the fire sensor is provided in a housing that houses a shielding member that shields radiation and a fire sensor , and the suction is performed. In a fire detection apparatus provided with a sampling tube connected to a fan via a suction port, and the sampling tube and the housing are installed in a radiation control area, a dosimeter for measuring a radiation dose provided in the housing, and a dose It is characterized by comprising a plurality of substrates in which a meter, a fire detector, and a suction fan are provided as a unit, and a case that accommodates the substrates and is provided so as to be freely drawn out into the housing .

火災感知器を収容する筐体内に、放射線量を測定する線量計を設けたので、火災感知器の定期点検時に、線量計を筐体から取り出して、放射線の累積線量値を測定することができる。このため、火災感知器がその設置場所で受けた放射線量がわかるので、あとどれ位で火災感知器が故障するのか、感知器の寿命を予測することが可能となる。   Since the dosimeter that measures the radiation dose is installed in the housing that houses the fire detector, the accumulated dose value of radiation can be measured by taking out the dosimeter from the housing during periodic inspection of the fire detector. . For this reason, since the radiation dose received by the fire detector at the installation location can be known, it is possible to predict how long the fire detector will fail and the lifetime of the detector.

火災検出装置が、吸引ファンを備えたサンプリング式の火災検出装置の場合、装置を放射線管理区域の床面上に設置することができる。このため、線量計の取り出し作業が容易になる。また吸引ファンに接続されるサンプリング管の長さを調整して、火災検出装置の設置位置を調整することで、放射線の強い場所から火災検出装置の筐体を離すことが可能となり、放射線の影響を少なくすることができる。また天井でなく床面上に設置するので、放射線を遮蔽する重量の重い遮蔽部材の量を増やしても支障が生じない。   If the fire detection device is a sampling fire detection device equipped with a suction fan, the device can be installed on the floor of the radiation control area. This makes it easy to take out the dosimeter. In addition, by adjusting the length of the sampling tube connected to the suction fan and adjusting the installation position of the fire detection device, it is possible to move the fire detection device case away from places with strong radiation. Can be reduced. Moreover, since it is installed not on the ceiling but on the floor, there is no problem even if the amount of heavy shielding members that shield radiation is increased.

吸引ファン及び線量計は、火災感知器と共に一つの基板にユニット化して設けられるので、筐体内に複数のユニットを収容した場合に、遮蔽部材を共有化することができる、また基板は筐体から引き出し自在に設けられるので、筐体から線量計を取り出しやすい。特に、線量計が火災感知器とユニット化されていれば、火災感知器の点検時に線量計を取り出せ、放射線量も同時に測定することができる。   Since the suction fan and the dosimeter are provided as a unit on one board together with the fire detector, the shielding member can be shared when a plurality of units are accommodated in the case. Since it can be pulled out, it is easy to take out the dosimeter from the housing. In particular, if the dosimeter is unitized with a fire detector, the dosimeter can be taken out when the fire detector is inspected, and the radiation dose can be measured simultaneously.

線量計にはアラニン線量計が使用されるので、中性子線などの強い放射線も測定することができる。また、火災感知器の法定点検時に、線量計を取り出すようにすれば、都合良く作業することができる。   Since an alanine dosimeter is used as the dosimeter, it is possible to measure intense radiation such as neutrons. In addition, if the dosimeter is taken out at the legal inspection of the fire detector, it can work conveniently.

図1は本発明の火災検出装置Kを説明するためのシステム図、図2は火災検出装置Kの縦断面図、図3は火災感知器等が設けられた基板の平面図である。図において、1は原子力施設などの建物で、内部には放射線管理区域2が設けられている。   FIG. 1 is a system diagram for explaining a fire detection device K of the present invention, FIG. 2 is a longitudinal sectional view of the fire detection device K, and FIG. 3 is a plan view of a substrate provided with a fire detector and the like. In the figure, 1 is a building such as a nuclear facility, and a radiation control area 2 is provided inside.

3は放射線管理区域2の床面Fに設置され、火災検出装置Kを構成する筐体である。筐体3は、縦横高さがほぼ等しい直方体状の箱から形成されている。筐体3内には、火災検出装置Kを構成する火災感知器(煙感知器)15と放射線を遮蔽する遮蔽部材11とが収容されている。   Reference numeral 3 denotes a housing that is installed on the floor surface F of the radiation management area 2 and constitutes the fire detection device K. The housing 3 is formed from a rectangular parallelepiped box having substantially the same height and width. Housed in the housing 3 are a fire detector (smoke detector) 15 constituting the fire detection device K and a shielding member 11 for shielding radiation.

遮蔽部材11は、火災感知器15の近傍に設けられ、放射線を遮蔽できる部材から構成されている、例えばγ線を遮蔽するなら鉛や鉄から構成され、中性子線を遮蔽するなら、ポリエチレンから構成される。図2に示すように、筐体3の放射線侵入方向側(図では右側)には、厚さ20cm程度の遮蔽部材11が設けられる。そして図3に示すように、火災感知器15の側方には、横方向からの放射線の侵入を遮蔽するための遮蔽部材10aが設けられている。また火災感知器15は、金属ケース3aによって覆われている。   The shielding member 11 is provided in the vicinity of the fire detector 15 and is composed of a member capable of shielding radiation. For example, the shielding member 11 is composed of lead or iron when shielding γ rays, and is composed of polyethylene when shielding neutron rays. Is done. As shown in FIG. 2, a shielding member 11 having a thickness of about 20 cm is provided on the side of the housing 3 in the radiation penetration direction (right side in the figure). And as shown in FIG. 3, the shielding member 10a for shielding the penetration | invasion of the radiation from a horizontal direction is provided in the side of the fire detector 15. As shown in FIG. The fire detector 15 is covered with a metal case 3a.

5は筐体内に収容された吸引ファン、10は筐体の表面に設けた吸引口である。吸引ファン5は、パイプなどを介して火災感知器15と接続されると共に、その火災感知器15を介して吸引口10に接続されている。吸引口10にはサンプリング管8が接続され、吸引ファン5を駆動させることで、放射線感知区域内の空気や煙が吸引され、サンプリング式の火災検出装置Kを構成している。   Reference numeral 5 denotes a suction fan accommodated in the casing, and reference numeral 10 denotes a suction port provided on the surface of the casing. The suction fan 5 is connected to the fire sensor 15 via a pipe or the like, and is connected to the suction port 10 via the fire sensor 15. A sampling pipe 8 is connected to the suction port 10 and the suction fan 5 is driven, whereby air and smoke in the radiation sensing area are sucked to constitute a sampling type fire detection device K.

6は筐体内に設けられる、放射線量を測定する線量計である。放射線量を測定する手段としては、金属箔、ホウ酸、リチウム等があるが、本実施形態では、中性子線とγ線の両方に感度を持つアラニン線量計を使用する。このアラニン線量計6は、線量測定範囲が広く(1〜10↑5Gy(100000グレイ))、線量率やエネルギー依存性が少ないという特性がある。   Reference numeral 6 denotes a dosimeter for measuring the radiation dose provided in the housing. As means for measuring the radiation dose, there are metal foil, boric acid, lithium and the like. In this embodiment, an alanine dosimeter having sensitivity to both neutron rays and γ rays is used. The alanine dosimeter 6 has a characteristic that the dose measurement range is wide (1 to 10 ↑ 5 Gy (100,000 gray)) and the dose rate and energy dependency are small.

図3に示すように、火災感知器15、吸引ファン5及び線量計6は、一つの基板4a,4bにユニット化して設けられている。図3においては、2枚の基板4a,4bを併設した状態を示している。また図2に示すように、基板4a,4bは横方向だけでなく、縦方向にも2つ設けられており、都合、一つの筐体3内に4枚の基板が収容されているが、この数は適宜変更可能である。なお、基板4a,4bには、微差圧計18や端子台なども設けられる。   As shown in FIG. 3, the fire detector 15, the suction fan 5, and the dosimeter 6 are provided as a unit on one substrate 4a, 4b. FIG. 3 shows a state in which two substrates 4a and 4b are provided side by side. Also, as shown in FIG. 2, the substrates 4a and 4b are provided not only in the horizontal direction but also in the vertical direction, and for convenience, four substrates are accommodated in one housing 3. This number can be changed as appropriate. The substrates 4a and 4b are also provided with a fine differential pressure gauge 18 and a terminal block.

この基板4a,4bは、筐体3の上方から自在に引き出せるように、筐体3内に設けられている。具体的には、基板4a,4bはケース内に収容されており、このケースの上面と筐体3の上面とは、面一となっている。そして、サンプリング管8の基端部(吸引口10)を引っ張れば、ケース毎、各基板4a,4bを引き出せるようになっている。基板4a,4bの数に応じて吸引口10の数が設けられ、筐体3には複数のサンプリング管8が接続可能である。なお、ケースの上面には、必要に応じて、電源が正常に流れている際に点灯する電源灯、内部の機器が故障した際に点灯する異常灯、火災検出時に点灯する火災灯を設けるようにしてもよい。   The substrates 4 a and 4 b are provided in the housing 3 so that they can be pulled out freely from above the housing 3. Specifically, the substrates 4a and 4b are accommodated in a case, and the upper surface of the case and the upper surface of the housing 3 are flush with each other. And if the base end part (suction port 10) of the sampling tube 8 is pulled, each board | substrate 4a, 4b can be pulled out now for every case. The number of suction ports 10 is provided according to the number of substrates 4 a and 4 b, and a plurality of sampling tubes 8 can be connected to the housing 3. In addition, on the top surface of the case, as necessary, a power light that lights when the power is flowing normally, an abnormal light that lights when an internal device fails, and a fire light that lights when a fire is detected It may be.

なお、建物1の放射線管理区域2の空気は、放射線管理区域2の外側の通常区域に排気できないので、火災検出装置Kの筐体3は管理区域2内に設けられ、後述する受信機17だけが管理区域2の外側に設置される。   Since the air in the radiation management area 2 of the building 1 cannot be exhausted to the normal area outside the radiation management area 2, the casing 3 of the fire detection device K is provided in the management area 2, and only a receiver 17 described later is provided. Is installed outside the management area 2.

7は金網等のフィルタを有し、建物の上部に設置された煙吸引部である。煙吸引部7にはサンプリング管8の先端部分が接続されている。   Reference numeral 7 denotes a smoke suction part having a filter such as a wire mesh and installed at the upper part of the building. A tip portion of a sampling tube 8 is connected to the smoke suction unit 7.

17は信号線を介して火災感知器15と接続された受信機で、周期的に火災感知器15からのアナログ信号を受信するようになっており、受信機17は、火災感知器15からのアナログ信号と閾値とを比較して火災か否かを判断する。   Reference numeral 17 denotes a receiver connected to the fire detector 15 via a signal line, which periodically receives an analog signal from the fire detector 15. The receiver 17 receives the signal from the fire detector 15. The analog signal is compared with a threshold value to determine whether or not there is a fire.

上記のように構成した本実施の形態において、監視状態では、図示しない放射線発生源からの放射線は、筐体3内の遮蔽部材11,10aで遮蔽されるので、火災感知器15は放射線の影響を受けにくくなっている。また監視状態においては、吸引ファン5は、常時駆動されており、煙吸引部7から放射線管理区域2内の空気が吸引され、サンプリング管8を経て筐体3内の火災感知器15に導かれている。そしてその火災感知器15へと吸引された空気は、吸引ファン5を通って図示しないパイプを介して筐体3外に排気される。   In the present embodiment configured as described above, in a monitoring state, radiation from a radiation generation source (not shown) is shielded by the shielding members 11 and 10a in the housing 3, so that the fire detector 15 is affected by radiation. It is hard to receive. In the monitoring state, the suction fan 5 is always driven, and the air in the radiation control area 2 is sucked from the smoke suction section 7 and guided to the fire detector 15 in the housing 3 through the sampling tube 8. ing. The air sucked into the fire detector 15 passes through the suction fan 5 and is exhausted outside the housing 3 through a pipe (not shown).

放射線管理区域2内で火災が発生すると、火災によって生じた煙が上昇し、この煙は吸引ファン5の吸引力により煙吸引部7から吸引される。そしてサンプリング官8を通った煙は、火災感知器15によって検知される。火災感知器15は、受信機17にアナログ信号を送り、受信機17は閾値と比較して火災の発生を判断し、火災警報を行う。なお、煙吸引部7からのサンプリング官8の配置を調整して、火災検出装置Kを放射線の強い場所から離すように設置すれば、火災感知器15は更に放射線の影響を受けにくくなる。   When a fire occurs in the radiation management area 2, smoke generated by the fire rises, and this smoke is sucked from the smoke suction unit 7 by the suction force of the suction fan 5. The smoke passing through the sampling officer 8 is detected by the fire detector 15. The fire detector 15 sends an analog signal to the receiver 17, and the receiver 17 compares the threshold value with the threshold value to determine the occurrence of a fire and gives a fire alarm. Note that if the arrangement of the sampling unit 8 from the smoke suction unit 7 is adjusted and the fire detection device K is installed so as to be away from a place where radiation is strong, the fire detector 15 is further less affected by radiation.

続いて、火災感知器15の寿命を予測する方法について説明する。火災感知器15は消防法によって、その定期点検が義務付けられており、定期的に、例えば半年に一度、火災感知器15の点検を行う必要がある。そこで、この点検の際には、放射線発生源となる高速加速器などを停止させて、停止後時間をおいてから放射線管理区域2に入る。そして、筐体3上方から基板4a,4bを引き出して、基板4a,4bに設けたアラニン線量計6を取り出す。取り出したアラニン線量計6は、通常区域にある電子スピン共鳴スペクトロメータ(ESRスペクトル分析)を用いて、放射線の累積線量値を測定する。   Next, a method for predicting the life of the fire detector 15 will be described. The fire detector 15 is required to be regularly inspected by the Fire Service Law, and it is necessary to inspect the fire detector 15 periodically, for example, once every six months. Therefore, at the time of this inspection, the high-speed accelerator or the like serving as a radiation generation source is stopped, and the radiation control area 2 is entered after a certain time after the stop. And the board | substrates 4a and 4b are pulled out from the housing | casing 3 upper direction, and the alanine dosimeter 6 provided in the board | substrates 4a and 4b is taken out. The extracted alanine dosimeter 6 measures the cumulative dose value of radiation using an electron spin resonance spectrometer (ESR spectrum analysis) in a normal area.

このように半年毎の火災感知器15の点検時に、アラニン線量計6により放射線の累積線量値を測定することで、火災感知器15が6ヶ月間にうけた放射線の累積線量値を測定することができる。   Thus, at the time of inspection of the fire detector 15 every six months, the cumulative dose value of the radiation received by the fire detector 15 over six months is measured by measuring the cumulative dose value of the radiation with the alanine dosimeter 6. Can do.

どの程度の放射線を受けると、火災感知器15が異常をきたすかは、放射線の種類や放射線源からの設置距離による放射線量率及び累積線量値(積算吸収線量)などによって変化する。ここで、放射線量率の単位は、「GY/h」で、1時間あたりに受ける放射線量を表す。しかし実験を重ねることでおおよその数値がわかっており、累積線量値に関しては、100Gy(グレイ)以上照射されると、感知器15は出力値異常又は無応答状態になることが判明している。これは、火災感知器15内の半導体からなる電気素子が導体に変化したりする影響によるものである。よって測定した累積線量値と、この値を比較することで、火災感知器15を交換した方が良いか、又は半年後の点検時まで寿命が持つのかを予測することが可能となる。   How much radiation is received will cause the fire detector 15 to change depending on the type of radiation, the radiation dose rate depending on the installation distance from the radiation source, the cumulative dose value (cumulative absorbed dose), and the like. Here, the unit of the radiation dose rate is “GY / h” and represents the radiation dose received per hour. However, an approximate numerical value is known through repeated experiments, and it has been found that the accumulated dose value becomes abnormal or unresponsive when the sensor 15 is irradiated with 100 Gy (gray) or more. This is due to the influence that the electric element made of a semiconductor in the fire detector 15 changes to a conductor. Therefore, by comparing this value with the measured cumulative dose value, it is possible to predict whether it is better to replace the fire detector 15 or whether it will have a lifetime until the inspection after six months.

本実施形態においては、アラニン線量計の取り出し作業を容易にするため、床面上に設置したサンプリング式の火災検出装置Kを例に説明したが、天井に設けた火災感知器にアラニン線量計をテープやクリップなどで取り付けるようにしてもよい。また放射線量計の累積線量値を電気的に測定して、火災検出装置K内で、MPUなどにより寿命予測を演算させて、機能が停止する前に、異常警報を受信機に送出するようにしてもよい。   In this embodiment, in order to facilitate the work of taking out the alanine dosimeter, the sampling-type fire detection device K installed on the floor surface has been described as an example. However, the alanine dosimeter is attached to the fire detector provided on the ceiling. You may make it attach with a tape, a clip, etc. Also, the accumulated dose value of the radiation dosimeter is measured electrically, and the life prediction is calculated by the MPU in the fire detection device K, so that an abnormal alarm is sent to the receiver before the function stops. May be.

またアラニン線量計は、筐体3内に設置した場合で説明したが、筐体内の他に筐体の表面、例えば放射線侵入方向側に設置するようにしてもよい。そうすると、点検時に、筐体内と筐体外の2つの累積線量値を計測することが可能となる。この2つの計測値により、遮蔽部材の効果(効き目)がわかるので、火災感知器15の点検時には、火災感知器15の交換の他、遮蔽部材11の量を増加したり、減らしたり、もしくは筐体3の設置場所の移動を変更したりすることが可能となる。また筐体に複数の線量計を設置することで、どの方向からの放射線が強いかを知ることができる。   Moreover, although the alanine dosimeter was demonstrated in the case where it installed in the housing | casing 3, you may make it install in the surface of a housing | casing other than the inside of a housing | casing, for example, the radiation penetration | invasion direction side. Then, at the time of inspection, it becomes possible to measure two accumulated dose values inside and outside the housing. Since the effect (effectiveness) of the shielding member can be understood from these two measured values, when the fire detector 15 is inspected, the amount of the shielding member 11 is increased or decreased in addition to the replacement of the fire detector 15 or the housing. The movement of the installation location of the body 3 can be changed. In addition, by installing multiple dosimeters in the housing, it is possible to know from which direction the radiation is strong.

本発明の火災検出装置Kを説明するためのシステム図である。It is a system diagram for demonstrating the fire detection apparatus K of this invention. 火災検出装置Kの縦断面図で、図3のA−A線の断面である。It is a longitudinal cross-sectional view of the fire detection apparatus K, and is a cross section of the AA line of FIG. 火災感知器等が設けられた基板の平面図である。It is a top view of the board | substrate with which the fire detector etc. were provided.

符号の説明Explanation of symbols

1 建物、 2 放射線管理区域、 3 筐体、 4a 基板、
4b 基板、 5 吸引ファン、 6 線量計、 7 煙吸引部、
8 サンプリング管、 10 吸引口、 11 遮蔽部材、
15 火災感知器、 17 火災受信機、 18 微差圧計、 F 床面、
K 火災検出装置
1 building, 2 radiation control area, 3 housing, 4a board,
4b Substrate, 5 Suction fan, 6 Dosimeter, 7 Smoke suction part,
8 sampling tube, 10 suction port, 11 shielding member,
15 Fire detector, 17 Fire receiver, 18 Differential pressure gauge, F Floor,
K fire detection device

Claims (3)

放射線を遮蔽する遮蔽部材と火災感知器とを収容する筐体内に、前記火災感知器と接続される吸引ファンを設け、該吸引ファンと吸引口を介して接続されるサンプリング管を設け、該サンプリング管および前記筐体を放射線管理区域に設置した火災検出装置において、
前記筐体内に設けられ、放射線量を測定する線量計と、
該線量計、前記火災感知器、及び前記吸引ファンがユニット化して設けられた複数の基板と、
該基板を収容すると共に、前記筐体内に引き出し自在に設けられるケースと、
を備えたことを特徴とする火災検出装置。
A suction fan connected to the fire detector is provided in a housing that houses a shielding member that shields radiation and a fire detector, a sampling pipe connected to the suction fan via a suction port is provided, and the sampling In a fire detection device in which a tube and the housing are installed in a radiation control area,
A dosimeter provided in the housing for measuring the radiation dose;
A plurality of substrates in which the dosimeter, the fire detector, and the suction fan are provided as a unit;
A case that accommodates the substrate and is provided so as to be freely drawn into the housing;
Fire detection apparatus characterized by comprising a.
前記線量計の放射線の累積線量値を電気的に測定して、前記火災感知器の寿命予測をMPUにより演算させることを特徴とする請求項1記載の火災検出装置。   2. The fire detection apparatus according to claim 1, wherein a cumulative dose value of radiation of the dosimeter is electrically measured, and a life prediction of the fire detector is calculated by an MPU. 前記線量計は、前記筐体内と筐体の放射線侵入方向側の表面との2箇所に設けられることを特徴とする請求項1又は2記載の火災検出装置。   The fire detection device according to claim 1, wherein the dosimeter is provided at two locations, the inside of the housing and the surface of the housing on the radiation penetration direction side.
JP2004210806A 2004-07-16 2004-07-16 Fire detection equipment Expired - Fee Related JP4225499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210806A JP4225499B2 (en) 2004-07-16 2004-07-16 Fire detection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210806A JP4225499B2 (en) 2004-07-16 2004-07-16 Fire detection equipment

Publications (2)

Publication Number Publication Date
JP2006031486A JP2006031486A (en) 2006-02-02
JP4225499B2 true JP4225499B2 (en) 2009-02-18

Family

ID=35897734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210806A Expired - Fee Related JP4225499B2 (en) 2004-07-16 2004-07-16 Fire detection equipment

Country Status (1)

Country Link
JP (1) JP4225499B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4828562B2 (en) * 2008-03-31 2011-11-30 能美防災株式会社 smoke detector
KR101529734B1 (en) * 2008-03-31 2015-06-17 노미 보사이 가부시키가이샤 Electric instrument and smoke sensing device
JP4885900B2 (en) * 2008-03-31 2012-02-29 能美防災株式会社 smoke detector
JP6993936B2 (en) * 2018-06-22 2022-02-04 日立Geニュークリア・エナジー株式会社 Monitoring device for remote work equipment and its monitoring method
CN109615814A (en) * 2018-12-03 2019-04-12 中国船舶重工集团公司第七〇九研究所 Radiation resistance combined type fire detecting arrangement
CN114333579A (en) * 2021-12-20 2022-04-12 湛江市珠江电力设备安装有限公司 Emergent sparse guide device of power engineering with smoke abatement function

Also Published As

Publication number Publication date
JP2006031486A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
EP2113791B1 (en) Sodium iodide sctinitllator with flat plastic scintillator for Compton suppression
AU2016325425B2 (en) System for radiography imaging and method of operating such system
US7745799B2 (en) Detector for aiborne alpha partice radiation
KR101912680B1 (en) A radon monitoring service system using app and web
KR101085312B1 (en) Dose detector and dosimeter
CN110749914B (en) Nuclear power station gamma-ray radioactive pollution monitoring system
JP4225499B2 (en) Fire detection equipment
KR101771476B1 (en) Measuring device of Radon gas in multi purpose with improved function
JP2018004398A (en) Device, method, and program for measuring radiation
CN105137470A (en) Portable type radon emanation and thorium emanation detector
EP0052636A1 (en) A method and apparatus for detecting alpha-emitting substances.
JP2013213748A (en) Inner structure inspection device and inner structure monitoring system
KR100617872B1 (en) Soil Buried Earthquake Prediction System
WO2004061448A1 (en) Apparatus for the detection of radon gas concentration variation in the environment, method for such detection and their use in forecasting of seismic events.
JP5639530B2 (en) Radiation measuring device and portable terminal device
US4655994A (en) Method for determining the operability of a source range detector
KR101927908B1 (en) A radon sensor device of communication type using ionization chamber methods
Sandri et al. Ionizing radiation monitoring requirements at the Divertor Tokamak Test facility
JP5235697B2 (en) Area monitor
US20240077625A1 (en) Device and method for determining radon concentration
US20220034827A1 (en) Method and System for Stack Monitoring of Radioactive Nuclides
KR20230112885A (en) Automatic measurement device for radon gas emitted from groundwater well
AJ et al. UVC Detection as a Potential for Alpha Particle Induced Air Fluorescence Localisation
Ahlgren Cederlöf An investigation of detection limits for an early warning system for measurement of radioactivity in the atmosphere
Streil Exploration of radon affected work and living places and methods for the reduction of the radon exposure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4225499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees