KR100617872B1 - Soil Buried Earthquake Prediction System - Google Patents

Soil Buried Earthquake Prediction System Download PDF

Info

Publication number
KR100617872B1
KR100617872B1 KR1020050009976A KR20050009976A KR100617872B1 KR 100617872 B1 KR100617872 B1 KR 100617872B1 KR 1020050009976 A KR1020050009976 A KR 1020050009976A KR 20050009976 A KR20050009976 A KR 20050009976A KR 100617872 B1 KR100617872 B1 KR 100617872B1
Authority
KR
South Korea
Prior art keywords
unit
prediction system
soil buried
radiation dose
chamber
Prior art date
Application number
KR1020050009976A
Other languages
Korean (ko)
Other versions
KR20050029149A (en
Inventor
박영웅
Original Assignee
박영웅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박영웅 filed Critical 박영웅
Priority to KR1020050009976A priority Critical patent/KR100617872B1/en
Publication of KR20050029149A publication Critical patent/KR20050029149A/en
Application granted granted Critical
Publication of KR100617872B1 publication Critical patent/KR100617872B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/026Semiconductor dose-rate meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/1603Measuring radiation intensity with a combination of at least two different types of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • G01T1/178Circuit arrangements not adapted to a particular type of detector for measuring specific activity in the presence of other radioactive substances, e.g. natural, in the air or in liquids such as rain water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S250/00Radiant energy
    • Y10S250/02Radon detection

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

본 발명은 지진의 예측뿐만 아니라 원자력 이용에 따르는 환경오염을 감시하기 위한 환경방사선 감시에도 활용될 수 있도록 개량한 토양 매몰식 지진예측 시스템으로서, 핵실험의 조기발견 및 지진예측 등 재난 예방에 활용하기 위한 방사선/능 측정시스템을 제공한다. The present invention is a soil buried seismic prediction system improved to be used not only for the prediction of earthquakes but also for monitoring environmental radiation caused by the use of nuclear power, and is used for disaster prevention such as early detection of nuclear tests and earthquake prediction. To provide a radiation / capacity measurement system.

환경방사선, 라돈농도, 공간방사선량율, 유도방사선량율, 지진예측, 인터넷통신망Environmental Radiation, Radon Concentration, Spatial Radiation Dose Rate, Guided Radiation Dose Rate, Earthquake Prediction, Internet Communication Network

Description

토양 매몰식 지진예측 시스템 {Soil Buried Earthquake Prediction System}Soil Buried Earthquake Prediction System

도1은 현재 국내에서 운영 중에 있는 전 국토를 대상으로 하는 '국가환경방사능자동감시망'의 지방측정소 위치를 나타낸 그림1 is a diagram showing the location of the local measuring station of the 'National Environmental Radioactivity Monitoring Network' for all the lands currently operating in Korea.

도2는 지방측정소에 설치된 공간방사선량을 측정하기 위한 구조물의 사진Figure 2 is a photograph of the structure for measuring the spatial radiation dose installed in the local measurement station

도3은 기존에 설치된 공간방사선 측정시설(그림A)과 본 발명에서 제시한 공간방사선 측정시설(그림B)을 비교하여 설명하기 위한 그림Figure 3 is a diagram for explaining the comparison of the existing spatial radiation measurement facility (Fig. A) and the spatial radiation measurement facility (Fig. B) proposed in the present invention

도4는 "도3"의 "그림B"에 해당하는 '단위계측기'가 내장된 챔버를 확대하여 나타낸 그림으로써, 챔버의 상부는 플랜지 형태로 하였으며 하부는 그믈망 형태로 설계하여 기체를 제외한 고체상의 물질이 챔버 내부로 들어오지 못하도록 하였다.FIG. 4 is an enlarged view of a chamber in which a 'unit meter' corresponding to “Fig. B” of FIG. 3 is embedded. The upper part of the chamber is in the form of a flange and the lower part is designed in the shape of a mesh net, except for gas. To prevent substances from entering the chamber.

도5는 본 발명에 해당하는 시스템의 전체 구성도로써, '단위계측기'가 측정하고 연산한 결과를 현장에서 출력하거나 인터넷 망을 이용하여 실시간으로 감시하는 원리를 설명하기 위한 그림FIG. 5 is an overall configuration diagram of a system corresponding to the present invention. FIG. 5 is a view for explaining the principle of outputting the results measured and calculated by the unit measuring instrument in the field or monitoring in real time using the Internet network.

도6은 '단위계측기'에서 '공간방사선량율' 및 '라돈농도'를 각각 측정하기 위한 쎈서 부분을 나타낸 그림Fig. 6 is a diagram showing a sequence for measuring 'spatial radiation dose rate' and 'radon concentration' in the 'unit measuring instrument', respectively.

본 발명은 환경방사선 감시시스템의 기능을 원자력 이용에 따르는 환경오염을 감시하기 위한 당초 목적뿐만 아니라 지진의 예측에도 활용될 수 있도록 개량한 기술에 해당한다.The present invention corresponds to a technique for improving the function of the environmental radiation monitoring system to be used not only for the purpose of monitoring environmental pollution caused by the use of nuclear energy but also for the prediction of earthquakes.

현재 국내에는 원자력의 이용에 따르는 환경오염을 감시하기 위한 목적으로 전 국토를 대상으로 총37개의 측정소로 구성된 '국가환경방사능자동감시망'이 운영되고 있으나, 감시망에서 사용하고 있는 공간방사선량 측정기는 비오는 날에 공간방사선량이 30%까지 높게 나타나는 이유를 실시간으로 밝혀낼 수 없을 뿐만 아니라, 공간방사선량의 측정이라는 고유의 기능만 부여되어 있을 뿐 지진에 의한 2차 피해를 예방하기 위한 지진 예측 기능이 없으며, 또한 방사선 검출부가 지상으로부터 약1m 높이에 설치되어 있으므로 오염원이 저 에너지의 감마선을 방출하는 핵종인 경우에는 오염의 정도를 감지하기가 쉽지 않으며 또한 계측기를 보호하기 위해 별도의 철제 구조물을 제작하여야 하는 번거로움이 따른다. Currently, the National Environmental Radioactivity Monitoring Network, which consists of 37 measuring stations across the country, is operated for the purpose of monitoring the environmental pollution caused by the use of nuclear power, but the spatial radiation dose meter used in the monitoring network is rainy. Not only can't reveal in real time the reason that the radiation dose is high up to 30% on the day, it also has the unique function of measuring the radiation dose, and there is no earthquake prediction function to prevent the secondary damage caused by the earthquake. In addition, since the radiation detector is installed about 1m above the ground, it is not easy to detect the degree of contamination when the source is a nuclide that emits low energy gamma rays, and a separate steel structure must be manufactured to protect the instrument. Hassle

본 발명에서는, 전 국토를 측정 범위로 하여 현재 설치·운영되고 있는 환경방사선 감시시스템에 대하여 공간방사선량 측정이라는 고유의 기능 외에 ⅰ원자력시설을 포함한 건축 구조물에 치명적인 위해를 줄 수 있는 지진의 발생을 사전에 예측할 수 있는 기능, ⅱ비오는 날을 포함하여 공간방사선량이 증가되는 원인이 자연방사성핵종에 의한 것인지 인공방사성핵종에 의한 것인지를 실시간으로 분석할 수 있는 기능을 부가하는 것뿐만 아니라, ⅲ저 에너지의 감마선을 방출하는 인공방사성핵종이 토양에 흡수되더라도 오염의 정도를 예측할 수 있는 개량형의 환경방사선 감시시스템을 개발하는데 있으며, 이를 구현하기 위한 기술적 과제는 지진 예측을 위한 '단위계측기'가 지면에 묻힌 상태로 운전되어야 하며 또한 공간방사선량 측정값에서 감마선을 방출하는 라돈자핵종에 의한 기여 부분을 제거할 수 있어야 할뿐만 아니라, 수십개 내지 수백개의 '단위계측기'에서 측정한 정보를 인터넷 및 기타 통신망을 이용하여 실시간으로 사용자에게 전송 할 수 있어야 한다. In the present invention, in addition to the inherent function of spatial radiation dose measurement for the environmental radiation monitoring system currently installed and operated with the whole land as the measurement range, an earthquake that can cause fatal harm to a building structure including nuclear power facilities is provided. In addition to the ability to predict in advance, and the ability to analyze in real time whether the cause of the increase in spatial radiation dose, including rainy days, is due to natural radionuclides or artificial radionuclides, The development of an improved environmental radiation monitoring system that can predict the degree of pollution even if artificial radionuclides that emit gamma rays of light is absorbed into the soil, and the technical task to realize this is to have a 'unit instrument' for earthquake prediction buried in the ground. Condition and also gamma at the spatial radiation dose measurement In addition to being able to eliminate contributions from radon-producing radionuclides, the information measured by dozens or hundreds of 'unit instruments' must be able to be transmitted to users in real time using the Internet and other communication networks.

상기 기술적 과제를 이루기 위하여 본 발명에서는, ⅰ지름 5cm 내지 50cm, 길이 10cm 내지 200cm 규격의 챔버 내부에 공간방사선량 측정이라는 본래의 기능 외에 라돈의 농도를 측정할 수 있는 기능이 부가된 '단위계측기'를 장착하는 단계, ⅱ계측기가 내장된 "ⅰ"의 챔버의 상단이 지면으로부터 1mm 내지 100cm 깊이가 되도록 하거나 또는 1mm 내지 200cm 높이가 되도록 챔버를 땅에 묻는 단계, ⅲ1개 내지 10,000개의 '단위계측기'를 TCP/IP 통신망을 이용하여 1개 내지 100대의 서버에 연결하는 단계, ⅳ'단위계측기'가 측정하고 연산한 값에 해당하는 '공간방사선량율', '라돈농도' 및 '유도방사선량율'을 현장에 출력하거나 RSC-232, RS-485 또는 TCP/IP 통신망을 이용하여 1분 내지 24시간의 범위 내에서 미리 설정된 시간 구간별로 누적 처리하여 현장에 설치된 디스플레이, 휴대형 프린터, 노트북 또는 서버에 전송하는 단계, 및 ⅴ사용자 요청시 인터넷 망에 연결된 사용자 PC를 통하여 실시간으로 측정결과를 받아볼 수 있는 단계로 구성된 시스템을 구축하였으며, '단위 계측기'를 구성하는 알파선 검출용 반도체 쎈서로부터 측정된 라돈의 농도 측정값이 정상적인 측정값에 비해 5배 내지 100배 이상의 급격한 증가가 감지된 경우 해당지역에 지진이 발생할 가능성이 있다는 것을 예고할 수 있도록 프로그램에 설정할 수 있도록 하였으며, 또한 감마선 검출용 반도체 쎈서로부터 측정된 공간방사선량 측정값이 정상적인 측정값에 비해 10% 이상의 증가가 감지된 반면 알파선 검출용 반도체 쎈서를 통해 얻은 라돈의 농도 측정결과로부터 유도된 라돈 및 토론의 자핵종에서 방출한 감마선의 기여부분을 제거하여 계산된 유도방사선량은 정상적인 측정값에 비해 증가하지 않았다면 공간방사선량의 증가가 라돈 및 토론의 자핵종에 해당하는 자연방사성핵종에 의한 것이 아니라 인공방사성핵종에 의한 오염 때문이라는 것을 실시간으로 판단할 수 있도록 프로그램에 설정할 수 있도록 하였다. In order to achieve the above technical problem, in the present invention, in addition to the original function of measuring the spatial radiation dose in the chamber of the diameter of 5cm to 50cm, length 10cm to 200cm standard 'unit measurer' is added to the ability to measure the concentration of radon Step ii, the upper part of the chamber "ii" with the built-in measuring instrument is buried in the ground so that 1mm to 100cm deep or 1mm to 200cm high from the ground, ⅲ 1 to 10,000 'unit instruments' Is connected to 1 to 100 servers using a TCP / IP communication network, 공간 'spatial radiation dose rate', 'radon concentration' and 'induction radiation dose rate' corresponding to the values measured and calculated by the 'unit instrument' Display or pause installed in the field by accumulating by preset time interval within 1 minute to 24 hours using RSC-232, RS-485 or TCP / IP communication network. The system consists of the steps of transmitting to a printer, a notebook or a server, and 측정 receiving a measurement result in real time through a user PC connected to the Internet when a user requests it, and detecting an alpha ray constituting a 'unit instrument'. If the radon concentration measured from the semiconductor semiconductor process detects a sudden increase of 5 to 100 times higher than the normal measured value, the program can be set up so that the earthquake may occur in the area. In addition, the measured values of the spatial radiation dose measured by the gamma-ray semiconductor sensor increased by more than 10% compared to the normal measured values. Induced radiation calculated by removing the contribution of gamma radiation emitted by If the dose is not increased compared to normal measurements, the program can be set up to determine in real time that the increase in spatial radiation dose is due to contamination by artificial radionuclides rather than by spontaneous radionuclides, which are radon and the progeny of the debate. To make it possible.

본 발명을 기술적으로 구현하기 위한 실시 예는 다음과 같으며, 본 발명은 이에 국한되지 않는다.
<실시예 1>
공간방사선량 측정에 필요한 감마선을 측정하기 위한 반도체검출기(11)와 라돈의 농도 측정에 필요한 알파선을 측정하기 위한 반도체검출기(12)를 1대의 측정기 회로에 함께 설계하여 '공간방사선량율'(μSv/h or mR/h)과 '라돈의 농도'(pCi/l or Bq/㎥)를 동시에 실시간으로 측정 및 연산할 수 있도록 하였으며, 연산에 필요한 환산인자(A,B)는 한국표준과학연구원 및 한국원자력연구소로부터 표준조사를 통하여 구하였으며 그 값은 각각 0.009(uSv/h)/cph 및 0.602(pCi/l)/cph 였다. 또한, 감마선 측정값에서 라돈자핵종의 기여부분을 제거한 유도선량을 도출하기 위한 가중인자는 O.35MeV의 감마선을 측정하기 위해 미리 설정한 에너지 구간(0.25MeV~0.45MeV)에서의 측정값에 O.35MeV의 감마선 방출율에 대한 라돈자핵종 전체의 감마선 방출율의 비(158/36.7)에 해당하는 4.30를 사용하였다.
Embodiments for technically implementing the present invention are as follows, but the present invention is not limited thereto.
<Example 1>
The semiconductor detector 11 for measuring gamma rays necessary for measuring the spatial radiation dose and the semiconductor detector 12 for measuring the alpha rays necessary for measuring the concentration of radon are designed together in one measuring circuit so that the 'space radiation dose rate' (μSv / h or mR / h) and 'concentration of radon' (pCi / l or Bq / ㎥) can be measured and calculated at the same time in real time, and the conversion factors (A, B) required for calculation are the Korea Research Institute of Standards and Science Standards were obtained from the Atomic Energy Research Institute. The values were 0.009 (uSv / h) / cph and 0.602 (pCi / l) / cph, respectively. In addition, the weighted value for deriving the induced dose from which the contribution of radon nuclide is removed from the gamma ray measurement value is determined by O in the energy range (0.25MeV to 0.45MeV) set in advance to measure gamma ray of O.35MeV. 4.30, which is the ratio of the gamma-ray emission rate of the whole radon nuclide to the gamma-ray emission rate of .35MeV (158 / 36.7), was used.

Figure 112005006531071-pat00001
Figure 112005006531071-pat00001

Figure 112005006531071-pat00002
Figure 112005006531071-pat00002

Figure 112005006531071-pat00003
Figure 112005006531071-pat00003

감마선량에 기여하는 라돈자핵종들의 감마선에너지 및 방출율Gamma-ray Energy and Emission Rate of Radon Nuclides Contributing to Gamma Dose 구 분division 에너지(MeV)Energy (MeV) 방출율(%)% Release 우라늄 계열Uranium Series Pb-214Pb-214 0.053 0.242 0.295 0.3520.053 0.242 0.295 0.352 2.2 7.6 18.9 36.72.2 7.6 18.9 36.7 Bi-214Bi-214 0.609 0.768 1.120 1.238 1.765 2.2040.609 0.768 1.120 1.238 1.765 2.204 46.1 4.9 15 5.9 15.8 4.946.1 4.9 15 5.9 15.8 4.9 토륨 계열Thorium series Pb-212Pb-212 0.239 0.3000.239 0.300 43 3.343 3.3 Tl-208Tl-208 0.277 0.511 0.583 0.860 2.6140.277 0.511 0.583 0.860 2.614 6.8 22 86 12 1006.8 22 86 12 100

'단위계측기'의 검출부는 감마선 및 알파선을 측정하기 위한 P·N 접합형 반도체검출기(111,121)가 내장된 챔버(114,124)로 구성하되, 감마선을 측정하기 위한 챔버(그림A)는 밀폐된 구조로 설계하였으며(113), 알파선을 측정하기 위한 챔버(그림B)는 지름 30mm 내지 50mm, 길이 10mm 내지 50mm의 원통형 구조(124)이면서, 한 쪽 면에는 1mm 내지 20mm 지름의 기공을 1개 내지 100개 뚫은 후(123) 유리섬유, 셀룰로오스, 테프론 등 시중에서 쉽게 구입할 수 있는 재질의 필터를 부착하여 공기중의 라돈은 확산을 통하여 챔버 내부로 들어갈 수 있으나 라돈자핵종 및 강한 빛은 통과할 수 없는 구조로 설계하였다. The detection unit of the unit measuring instrument is composed of chambers 114 and 124 in which P and N junction type semiconductor detectors 111 and 121 for measuring gamma rays and alpha rays are incorporated, but the chamber for measuring gamma rays (Fig. A) is a closed structure. Designed (113), the chamber for measuring alpha rays (Fig. B) is a cylindrical structure 124 with a diameter of 30 mm to 50 mm and a length of 10 mm to 50 mm, with 1 to 100 pores of 1 mm to 20 mm diameter on one side. After drilling (123), a filter made of commercially available materials such as fiberglass, cellulose, and teflon is attached, so that radon in the air can enter the chamber through diffusion, but radon nuclide and strong light cannot pass through. Designed as.

한 개의 측정회로에 두개의 검출회로를 도입하는 경우 두개의 검출회로에서 동시에 발생한 전기신호를 하드웨어 또는 소프트웨어적으로 제거하는 방식으로 전기잡음에 의한 백그라운드를 감소시킬 수 있으므로, 본 발명에서는 공간방사선량 및 라돈의 농도를 측정하기 위한 두 개의 P·N 접합형 반도체검출기에서 동시에 감지된 신호를 선별할 수 있도록 전자회로를 구성한 후 동시에 감지된 신호를 전기잡음에 의한 백그라운드로 처리하여 측정 정밀도를 높일 수 있도록 하였다. 본 발명에서는 위에서 설명한 검출부 외에 검출부에서 발생한 미세전류를 신호처리가 가능한 전압(200~500mV)으로 증폭시키기 위한 증폭기(21,22), 증폭기를 거쳐 나온 펄스상태의 신호 중에서 두개의 챔버에서 동시에 발생한 전기잡음 외에 미리 설정된 값(50~300mV) 이하에 해당하는 전기잡음을 제거시키기 위한 필터(31,32), 신호처리 및 연산을 수행하기 위한 마이크로프로세서(50), 및 측정결과를 내·외장 디스플레이(61,200), 외장프린터 및 PC로 출력하거나(300), 또는 인터넷 망을 이용하여 서버(510)로 전송하기 위한 출력 단자(71,72,73)로 구성되어 있다.In the case of introducing two detection circuits in one measurement circuit, the background due to the electric noise can be reduced by hardware or software removing the electric signals simultaneously generated by the two detection circuits. Two P · N junction type semiconductor detectors for measuring radon concentration are configured to select the detected signals at the same time, and then the processed signals are processed in the background by electric noise to improve the measurement accuracy. It was. In the present invention, in addition to the above-described detection unit, the amplifier 21, 22 for amplifying the microcurrent generated in the detection unit to the signal processing voltage (200 ~ 500mV), the electricity generated in the two chambers at the same time in the pulse state signal passed through the amplifier In addition to the noise, filters 31 and 32 for removing electric noise corresponding to a predetermined value (50 to 300 mV) or less, a microprocessor 50 for performing signal processing and calculation, and internal / external display of measurement results ( 61, 200, an external printer, and output to the PC (300), or output terminal 71, 72, 73 for transmitting to the server 510 using the Internet network.

원자력의 이용에 따라 발생할 가능성이 있는 환경오염의 감시를 위해 현재 운영되고 있는 환경방사선 감시시스템을 환경방사선 측정이라는 고유의 목적 외에 지진 예측에도 활용할 수 있도록 개량하여 핵실험의 조기 감지뿐만 아니라 지진의 발생으로 인한 재난을 예방하는데 활용할 수 있게 하였다. In order to monitor the environmental pollution that may occur due to the use of nuclear power, the currently operating environmental radiation monitoring system has been modified to be used for earthquake prediction in addition to its original purpose of measuring environmental radiation. It can be used to prevent disasters caused by

Claims (3)

토양 매몰식 지진예측 시스템에 있어서,In the soil buried seismic prediction system, ⅰ지름 5cm 내지 50cm, 길이 10cm 내지 200cm 규격의 챔버 내부에 공간방사선량율 및 라돈의 농도를 측정하기 위한 '단위계측기'를 장착하는 단계, ⅱ'단위계측기'가 내장된 "ⅰ"의 챔버의 상단이 지면으로부터 1mm 내지 100cm 깊이가 되도록 하거나 또는 1mm 내지 200cm 높이가 되도록 챔버를 땅에 묻는 단계, ⅲ1개 내지 10,000개의 '단위계측기'를 TCP/IP 통신망을 이용하여 1개 내지 100대의 서버에 연결하는 단계, ⅳ'단위계측기'가 측정하고 연산한 값을 현장에 출력하거나 RSC-232, RS-485 또는 TCP/IP 통신망을 이용하여 1분 내지 24시간의 범위 내에서 미리 설정된 시간 구간별로 누적 처리하여 현장에 설치된 디스플레이, 휴대형 프린터, 노트북 또는 서버에 전송하는 단계, 및 ⅴ사용자 요청시 인터넷 망에 연결된 사용자 PC를 통하여 실시간으로 측정결과를 받아볼 수 있는 단계를 특징으로 하는, 토양 매몰식 지진예측 시스템'Installing a' unit meter 'for measuring spatial radiation dose rate and radon concentration in a chamber of 5cm to 50cm in diameter and 10cm to 200cm in length, ii.Top of the chamber of "ⅰ" with a unit meter Burying the chamber in the ground to be 1mm to 100cm deep or 1mm to 200cm high from the ground, connecting ⅲ1 to 10,000 'unit meters' to 1 to 100 servers using a TCP / IP network. Step, 출력 Output the value measured and calculated by the 'unit measuring instrument' to the field or by accumulating by preset time interval within the range of 1 minute to 24 hours using RSC-232, RS-485 or TCP / IP communication network. Transferring to a display, portable printer, laptop or server installed in the field, and 측정 Receiving measurement results in real time through a user PC connected to the Internet when requested. Soil buried seismic prediction system characterized by the steps 제1항에 있어서, '단위계측기'를 구성하는 알파선 검출용 반도체 쎈서로부터 측정된 라돈농도가 5배 내지 100배 이상의 급격한 증가를 나타낸 경우 해당지역에 지진이 발생할 가능성이 있다는 것을 예고하는 것을 특징으로 하는, 토양 매몰식 지진예측 시스템The method according to claim 1, wherein if the radon concentration measured from the alpha ray detection semiconductor sequence constituting the 'unit instrument' shows a sharp increase of 5 to 100 times, the earthquake may occur in the region. Soil buried earthquake prediction system 제1항에 있어서, '단위계측기'를 구성하는 감마선 검출용 반도체 쎈서로부터 측정된 공간방사선량율 측정값을 환경방사선 감시에 이용할 수 있도록 한 것을 특징으로 하는, 토양 매몰식 지진예측 시스템The soil buried seismic prediction system according to claim 1, wherein the spatial radiation dose rate measurement value measured from the gamma-ray detecting semiconductor sequence constituting the unit measuring instrument can be used for environmental radiation monitoring.
KR1020050009976A 2005-02-03 2005-02-03 Soil Buried Earthquake Prediction System KR100617872B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050009976A KR100617872B1 (en) 2005-02-03 2005-02-03 Soil Buried Earthquake Prediction System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050009976A KR100617872B1 (en) 2005-02-03 2005-02-03 Soil Buried Earthquake Prediction System

Publications (2)

Publication Number Publication Date
KR20050029149A KR20050029149A (en) 2005-03-24
KR100617872B1 true KR100617872B1 (en) 2006-08-28

Family

ID=37385847

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050009976A KR100617872B1 (en) 2005-02-03 2005-02-03 Soil Buried Earthquake Prediction System

Country Status (1)

Country Link
KR (1) KR100617872B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100978839B1 (en) * 2009-09-09 2010-08-30 한국지질자원연구원 Soil radon gas collecting method and devices
KR101054361B1 (en) 2011-04-20 2011-08-05 한국지질자원연구원 Real time and automatic radon monitoring system with direct connecter using ground water bore hole

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6346750B2 (en) * 2014-01-27 2018-06-20 国立研究開発法人 海上・港湾・航空技術研究所 Radioactive substance distribution measuring apparatus and radioactive substance distribution measuring method
GB201412352D0 (en) 2014-07-11 2014-08-27 Corentium As Radon monitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111081A (en) 1982-12-17 1984-06-27 Shintaro Kamisaka Earthquake predicting apparatus
JP2000180559A (en) 1998-12-17 2000-06-30 Masatada Hata Earth's crust activity-monitoring device
KR20040024208A (en) * 2002-09-13 2004-03-20 한일원자력(주) Advanced Environmental Radiation Monitoring System
KR20040097081A (en) * 2004-10-25 2004-11-17 박영웅 Method of a Multipurpose Environmental Radiation Monitoring and a Portable Environmental Radiation Monitor by using the Method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111081A (en) 1982-12-17 1984-06-27 Shintaro Kamisaka Earthquake predicting apparatus
JP2000180559A (en) 1998-12-17 2000-06-30 Masatada Hata Earth's crust activity-monitoring device
KR20040024208A (en) * 2002-09-13 2004-03-20 한일원자력(주) Advanced Environmental Radiation Monitoring System
KR20040097081A (en) * 2004-10-25 2004-11-17 박영웅 Method of a Multipurpose Environmental Radiation Monitoring and a Portable Environmental Radiation Monitor by using the Method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100978839B1 (en) * 2009-09-09 2010-08-30 한국지질자원연구원 Soil radon gas collecting method and devices
KR101054361B1 (en) 2011-04-20 2011-08-05 한국지질자원연구원 Real time and automatic radon monitoring system with direct connecter using ground water bore hole

Also Published As

Publication number Publication date
KR20050029149A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
Sroor et al. Natural radioactivity and radon exhalation rate of soil in southern Egypt
Chaiwongkhot et al. Development of a portable muography detector for infrastructure degradation investigation
CN106873021A (en) The measuring method and device of content of radioactive isotopes in nuclear reactor Loop Water
Ambrosino et al. RaMonA system for radon and thoron measurement
KR100617872B1 (en) Soil Buried Earthquake Prediction System
Bae et al. Plastic scintillator beta ray scanner for in-situ discrimination of beta ray and gamma ray radioactivity in soil
CN101982795B (en) Method and system for detecting accuracy of gamma ray spectrometer
Pequignot The Nucifer and Stereo reactor antineutrino experiments
WO2004061448A1 (en) Apparatus for the detection of radon gas concentration variation in the environment, method for such detection and their use in forecasting of seismic events.
Dosh et al. Radon gas in indoor air of primary schools of Al-Najaf city, Iraq
Liu et al. Measurements of radon concentrations using CR-39 detectors in China JinPing Underground Laboratory (2015-2016)
KR20040097081A (en) Method of a Multipurpose Environmental Radiation Monitoring and a Portable Environmental Radiation Monitor by using the Method
Nicolì et al. The method of measuring radon and other environmental parameters as earthquake precursors
Morin et al. An automatic electronic counter for short term radon measurements in soil and/or water
Lalau et al. Performance evaluation of radon monitors at IFIN-HH, Romania
Neumaier et al. Improved assessment of Ḣ∗(10) in the environment using two complementary active dosimetry systems
Morelli et al. Radionuclide measurements, via different methodologies, as tool for geophysical studies on Mt. Etna
Van der Graaf et al. Testing and assessment of a large BGO detector for beach monitoring of radioactive particles
Smith et al. Low background counting at LBNL
Moontaha et al. Real-Time Environmental Gamma Radiation Dose Rate Measurement around Major Nuclear and Radiological Facilities in Bangladesh
Amanat et al. Calibration and optimization of a low cost diffusion chamber for passive separated measurements of radon and thoron in soil by Lexan PC SSNTD
Kadhim et al. Assessment of Eu-152 nuclide contaminated from radioactive lightning rods in soil samples at Kasra and Atash in Baghdad
RU1817858C (en) Method for stress-deformation state of rock testing
KR200372733Y1 (en) A Portable Multipurpose Environmental Radiation Monitor
Carter et al. A portable cosmic ray detector for engineering, IoT, and science research

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120822

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130822

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140821

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150824

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160822

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170821

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180822

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190819

Year of fee payment: 14