JP4223359B2 - Method for producing transparent conductive laminate and touch panel - Google Patents

Method for producing transparent conductive laminate and touch panel Download PDF

Info

Publication number
JP4223359B2
JP4223359B2 JP2003314494A JP2003314494A JP4223359B2 JP 4223359 B2 JP4223359 B2 JP 4223359B2 JP 2003314494 A JP2003314494 A JP 2003314494A JP 2003314494 A JP2003314494 A JP 2003314494A JP 4223359 B2 JP4223359 B2 JP 4223359B2
Authority
JP
Japan
Prior art keywords
film
group
transparent conductive
carbon atoms
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003314494A
Other languages
Japanese (ja)
Other versions
JP2005085541A (en
Inventor
博 明間
克敏 澤田
弘信 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2003314494A priority Critical patent/JP4223359B2/en
Publication of JP2005085541A publication Critical patent/JP2005085541A/en
Application granted granted Critical
Publication of JP4223359B2 publication Critical patent/JP4223359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、フィルム基材上に透明な導電性薄膜を設けてなる透明導電性積層体の製造方法に関する。さらに詳しくは、透明フィルム上に特定の条件で透明導電膜を形成する透明導電積層体の製造方法に関する。   The present invention relates to a method for producing a transparent conductive laminate in which a transparent conductive thin film is provided on a film substrate. More specifically, the present invention relates to a method for producing a transparent conductive laminate in which a transparent conductive film is formed on a transparent film under specific conditions.

可視光領域で透明であり、かつ導電性を有する薄膜は、液晶ディスプレー、エレクトロルミネッセンスディスプレー、プラズマディスプレーなどのディスプレーやタッチパネルなどにおける透明電極のほか、透明デバイスの帯電防止や電磁波遮断などの目的で使用されている。従来、このような透明導電性薄膜として、ガラス上に酸化インジウム系の薄膜を形成したものが知られているが、基材がガラスであるために、可撓性、加工性に劣り、重いこと、割れ易いこと等で好ましくなかった。このため近年、可撓性、加工性に加え、耐衝撃性に優れ軽量である利点から、ポリエチレンテレフタレート、ポリエーテルサルフォン、ポリカーボネート、ノルボルネン系樹脂等の各種のプラスチックフィルムを基材とした透明導電性薄膜が用いられるようになった。   A transparent thin film that is transparent in the visible light region and is used for purposes such as preventing static charges and blocking electromagnetic waves in transparent devices in addition to transparent electrodes in liquid crystal displays, electroluminescence displays, plasma displays, and touch panels. Has been. Conventionally, such a transparent conductive thin film is known in which an indium oxide thin film is formed on glass. However, since the base material is glass, it is inferior in flexibility and workability and heavy. It was not preferable because it was easy to break. For this reason, in recent years, in addition to flexibility and workability, it has excellent impact resistance and light weight, so transparent conductive materials based on various plastic films such as polyethylene terephthalate, polyethersulfone, polycarbonate, norbornene resin, etc. Thin films have been used.

このようなフィルム基材を用いて製造された従来の透明導電性薄膜は、耐摩擦性に劣り、使用中に傷がついて、電気抵抗が増大したり、断線を生じる問題があった。特に、タッチパネル用の導電性薄膜では、スペーサーを介して対向させた一対の薄膜同士がその一方の基材側からの押圧打点で強く接触するものであるために、これに抗しうる良好な耐久特性つまり打点特性を有していることが望まれるが、従来の透明導電性薄膜ではこのような特性に劣り、タッチパネルとしての寿命が短くなるという問題があった。   The conventional transparent conductive thin film manufactured using such a film base material has inferior friction resistance, and has a problem in that it is damaged during use, resulting in increased electrical resistance or disconnection. In particular, in conductive thin films for touch panels, a pair of thin films facing each other via a spacer come into strong contact with each other at the pressing point from the side of one of the substrates, so that good durability can be resisted. Although it is desired to have a characteristic, that is, a hitting point characteristic, the conventional transparent conductive thin film is inferior to such a characteristic and has a problem that the life of the touch panel is shortened.

この問題の解決のために、特許公報第2667680号には、特定厚みの透明フィルム基材の一方の面上にあらかじめ導電性薄膜をスパッタリング等により形成させた後に、他方の面に特定の特性を有する透明粘着剤を介して透明基材を貼りあわせた透明導電性積層体が提案されている。この方法では、粘着剤がクッションの役目を果たし、透明導電性薄膜の耐磨耗性は大幅に改善できるものの、本質的にフィルムと透明導電膜間の接着が不十分なことに起因する耐久性の不足は解決されておらず、さらにフィルムと貼り合わせによる透明度の低下、作業工程の増加などの問題があった。   In order to solve this problem, Japanese Patent No. 2667680 discloses that a conductive thin film is previously formed on one surface of a transparent film substrate having a specific thickness by sputtering or the like, and then a specific property is provided on the other surface. There has been proposed a transparent conductive laminate in which a transparent substrate is bonded through a transparent adhesive having the same. In this method, the pressure-sensitive adhesive acts as a cushion, and the abrasion resistance of the transparent conductive thin film can be greatly improved, but the durability inherently due to insufficient adhesion between the film and the transparent conductive film. Insufficient deficiency has not been solved, and there have been problems such as a decrease in transparency due to bonding with the film and an increase in work processes.

本発明は、上記課題を鑑みてなされたものであり、フィルム基材に形成される透明導電性薄膜の耐擦傷性および打点特性を改良し、しかも生産性も優れている透明導電性積層体の製造方法を提供することを目的としている。   The present invention has been made in view of the above-mentioned problems, and is a transparent conductive laminate that improves the scratch resistance and the hit point characteristics of a transparent conductive thin film formed on a film substrate and is excellent in productivity. The object is to provide a manufacturing method.

本発明の透明導電性積層体の製造方法は、ガラス転移温度が200℃以上であり、かつ実質的に非晶質な重合体からなる透明フィルム上に、該フィルムの温度を160℃以上に
保って透明導電膜を形成し、該透明フィルムが、下記式(1)で示される繰り返し単位(a)と、下記式(2)で示される繰り返し単位(b)とを含む共重合体を含有する組成物からなることを特徴とする。この方法によれば、耐擦傷性および打点特性に優れた透明導電性積層体を生産性よく製造することができる。

Figure 0004223359
[式(1)中、A 1 〜A 4 はそれぞれ独立して、水素原子、炭素数1〜20の炭化水素基、または、
−(CR 1 2 f Si(OR 3 g 4 (3-g)
−(CR 1 2 f Si(R 3 4 )OSi(OR 3 g 4 (3-g)
−(CR 1 2 f C(O)O(CH 2 h Si(OR 3 g 4 (3-g)
で表されるアルコキシシリル基、アリロキシシリル基を示し、A 1 〜A 4 の少なくとも一つはアルコキシシリル基、アリロキシシリル基を示す。ここで、R 1 ,R 2 はそれぞれ独立して、水素原子または炭素数1〜20の炭化水素基を示し、R 3 は炭素数1〜10のアルキ
ル基、アルケニル基、アリール基またはシクロアルキル基を示し、R 4 は水素原子、ハロ
ゲン原子または炭素数1〜20の炭化水素基を示し、f,hは0〜5の整数、gは1〜3の整数を示す。また、Yは−CH 2 −または−O−を示し、mは0または1を示す。]
Figure 0004223359
[式(2)中、B 1 ,B 2 ,B 3 ,B 4 はそれぞれ独立して、水素原子、炭素数1〜20のアルキル基、アリール基、アルケニル基、シクロアルキル基、ハロゲン原子、ハロゲン化炭化水素基、または−(CH 2 j Xで表される極性基を示す。ここで、Xは−C(O)OR 5 、または−OC(O)R 6 であり、R 5 ,R 6 は炭素数1〜20のアルキル基、アルケニル基、アリール基、シクロアルキル基、またはこれらのハロゲン置換基、jは0〜5の整数を示す。また、B 1 〜B 4 にはB 1 とB 2 またはB 3 とB 4 で形成されるアルキリデニル基、B
1 とB 4 、B 1 とB 3 、またはB 2 とB 4 で形成されるシクロアルキレン基、シクロアルケニレン基も含まれる。nは0から2の整数を示す。]
上記フィルムの温度を200℃以上に保って透明導電膜を形成することが好ましい。
上記透明フィルムは、フィルム厚み100μmでのリターデーションが15nm以下であり、全光線透過率が90%以上であることが好ましい。
また、本発明の透明導電性積層体は、上記製造方法で得られることを特徴とし、さらにその上に、1.3〜2.0の屈折率を有し、CaF 2 、MgF 2 、NaAlF 6 、Al 2 3
、SiO x (x=1〜2)およびThF 4 からなる群から選ばれる少なくとも1種の材料を用いてなる誘電体薄膜を形成してもよい。
本発明のタッチパネルは、本発明の透明導電性積層体を少なくとも一方の電極として有することを特徴とする。
In the method for producing a transparent conductive laminate of the present invention, the glass transition temperature is 200 ° C. or higher , and the film temperature is maintained at 160 ° C. or higher on a transparent film made of a substantially amorphous polymer. Forming a transparent conductive film, and the transparent film contains a copolymer containing a repeating unit (a) represented by the following formula (1) and a repeating unit (b) represented by the following formula (2). It consists of a composition . According to this method, a transparent conductive laminate excellent in scratch resistance and hitting point characteristics can be produced with high productivity.
Figure 0004223359
Wherein (1), A 1 ~A 4 are each independently a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or
- (CR 1 R 2) f Si (OR 3) g R 4 (3-g),
- (CR 1 R 2) f Si (R 3 R 4) OSi (OR 3) g R 4 (3-g),
- (CR 1 R 2) f C (O) O (CH 2) h Si (OR 3) g R 4 (3-g)
And at least one of A 1 to A 4 represents an alkoxysilyl group or an allyloxysilyl group . Here, R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and R 3 represents an alkyl group having 1 to 10 carbon atoms.
R 4 represents a hydrogen atom, a halo group, an alkenyl group, an aryl group or a cycloalkyl group.
Represents a gen atom or a hydrocarbon group having 1 to 20 carbon atoms, f and h are integers of 0 to 5, and g is an integer of 1 to 3. Y represents —CH 2 — or —O—, and m represents 0 or 1. ]
Figure 0004223359
[In the formula (2), B 1 , B 2 , B 3 and B 4 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group, an alkenyl group, a cycloalkyl group, a halogen atom, a halogen atom. Or a polar group represented by — (CH 2 ) j X. Here, X is —C (O) OR 5 or —OC (O) R 6 , and R 5 and R 6 are each an alkyl group, alkenyl group, aryl group, cycloalkyl group having 1 to 20 carbon atoms, or These halogen substituents, j represents an integer of 0 to 5. B 1 to B 4 include an alkylidenyl group formed by B 1 and B 2 or B 3 and B 4 , B
A cycloalkylene group and a cycloalkenylene group formed by 1 and B 4 , B 1 and B 3 , or B 2 and B 4 are also included. n represents an integer of 0 to 2. ]
It is preferable to form a transparent conductive film while maintaining the temperature of the film at 200 ° C. or higher.
The transparent film preferably has a retardation of 15 nm or less at a film thickness of 100 μm and a total light transmittance of 90% or more.
In addition, the transparent conductive laminate of the present invention is obtained by the above production method, and further has a refractive index of 1.3 to 2.0, and is CaF 2 , MgF 2 , NaAlF 6. , Al 2 O 3
A dielectric thin film formed using at least one material selected from the group consisting of SiO x (x = 1 to 2) and ThF 4 may be formed.
The touch panel of the present invention has the transparent conductive laminate of the present invention as at least one electrode.

本発明によれば、透明フィルム上に少なくとも160℃以上の温度条件で透明導電膜を形
成することにより、耐擦傷性および打点特性に優れた透明導電性積層体を生産性よく製造することができる。
According to the present invention, by forming a transparent conductive film on a transparent film under a temperature condition of at least 160 ° C., a transparent conductive laminate excellent in scratch resistance and spot characteristics can be produced with high productivity. .

本発明において使用されるフィルム基材としては、透明性を有し、かつ160℃以上の温
度での透明導電膜製膜プロセスにおいて、基材の変形、変色等の品質変化がない各種のプラスチックフィルムを使用できる。具体的には、ポリイミド、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリカーボネート、ポリアミド、ポリアクリル、アセチルセルロース、ポリアリレート、ポリスルフォン、ノルボルネン系のポリマー等が挙げられる。
As the film substrate used in the present invention, various plastic films having transparency and having no quality change such as deformation and discoloration of the substrate in a transparent conductive film forming process at a temperature of 160 ° C. or higher. Can be used. Specific examples include polyimide, polyethersulfone, polyetheretherketone, polycarbonate, polyamide, polyacryl, acetylcellulose, polyarylate, polysulfone, norbornene-based polymer, and the like.

液晶ディスプレーやタッチパネル等のディスプレーの透明電極に用いる場合、透明性や非旋光性等の光学特性、低吸水性、耐熱性、機械的強度等の物理特性、価格等の様々な観点からフィルム基材が選ばれるため、それぞれのフィルム基材に一長一短があるが、総合的な観点から見ると、ポリカーボネート、ポリエーテルサルフォン、ノルボルネン系のポリマーが好ましい。さらに近年画質の品質や高温高湿時の寸法安定性が重要視されてきており、この観点から見ると、透明性、光の分散性(屈折率や複屈折の波長依存性)や非旋光性等の光学特性、耐熱性、低吸水性が他のポリマーに比べてはるかに優れているノルボルネン系ポリマーが特に好ましい。   When used for transparent electrodes of displays such as liquid crystal displays and touch panels, film bases from various viewpoints such as optical properties such as transparency and non-rotatory properties, physical properties such as low water absorption, heat resistance, mechanical strength, and price However, from the comprehensive viewpoint, polycarbonate, polyether sulfone, and norbornene-based polymers are preferable. In recent years, quality of image quality and dimensional stability at high temperature and high humidity have become important. From this viewpoint, transparency, light dispersibility (refractive index and wavelength dependence of birefringence), and non-optical rotation A norbornene-based polymer having optical properties such as heat resistance, low water absorption and the like that are far superior to other polymers is particularly preferable.

ノルボルネン系ポリマーは、ノルボルネン構造を有するモノマーと必要に応じて加えられた他の重合性モノマーとを、開環重合したり付加重合して得られるポリマーが含まれるものであるが、とりわけ、下記式(1)で表される環状オレフィンに由来する繰り返し単位(a)を少なくとも1種以上含む環状オレフィン付加共重合体が好ましい。   The norbornene-based polymer includes a polymer obtained by ring-opening polymerization or addition polymerization of a monomer having a norbornene structure and another polymerizable monomer added as necessary. A cyclic olefin addition copolymer containing at least one repeating unit (a) derived from the cyclic olefin represented by (1) is preferred.

Figure 0004223359
Figure 0004223359

[式(1)中、A1〜A4はそれぞれ独立して、水素原子、炭素数1〜20の炭化水素基、または、
−(CR12fSi(OR3g4 (3-g)
−(CR12fSi(R34)OSi(OR3g4 (3-g)
−(CR12fC(O)O(CH2hSi(OR3g4 (3-g)
で表されるアルコキシシリル基、アリロキシシリル基を示し、A1〜A4の少なくとも一つはアルコキシシリル基、アリロキシシリル基を示す。ここで、R1,R2はそれぞれ独立して、水素原子または炭素数1〜20の炭化水素基を示し、R3は炭素数1〜10のアルキ
ル基、アルケニル基、アリール基またはシクロアルキル基を示し、R4は水素原子、ハロ
ゲン原子または炭素数1〜20の炭化水素基を示し、f,hは0〜5の整数、gは1〜3の整数を示す。また、Yは−CH2−または−O−を示し、mは0または1を示す。]
また上記式(1)で表される、環状オレフィンに由来する繰り返し単位(a)を少なくとも1種以上と、下記式(2)で表される加水分解性シリル基を有する環状オレフィンに由来する繰り返し単位(b)を少なくとも1種以上含む環状オレフィン付加共重合体が好ましい。
Wherein (1), A 1 ~A 4 are each independently a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or
- (CR 1 R 2) f Si (OR 3) g R 4 (3-g),
- (CR 1 R 2) f Si (R 3 R 4) OSi (OR 3) g R 4 (3-g),
- (CR 1 R 2) f C (O) O (CH 2) h Si (OR 3) g R 4 (3-g)
And at least one of A 1 to A 4 represents an alkoxysilyl group or an allyloxysilyl group. Here, R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and R 3 represents an alkyl group, alkenyl group, aryl group or cycloalkyl group having 1 to 10 carbon atoms. R 4 represents a hydrogen atom, a halogen atom or a hydrocarbon group having 1 to 20 carbon atoms, f and h are integers of 0 to 5, and g is an integer of 1 to 3. Y represents —CH 2 — or —O—, and m represents 0 or 1. ]
Moreover, the repeating unit derived from the cyclic olefin represented by the above formula (1) derived from the cyclic olefin and having at least one cyclic olefin having a hydrolyzable silyl group represented by the following formula (2): A cyclic olefin addition copolymer containing at least one unit (b) is preferred.

Figure 0004223359
Figure 0004223359

[式(2)中、B1,B2,B3,B4はそれぞれ独立して、水素原子、炭素数1〜20のアルキル基、アリール基、アルケニル基、シクロアルキル基、ハロゲン原子、ハロゲン化炭化水素基、または−(CH2jXで表される極性基を示す。ここで、Xは−C(O)OR5、または−OC(O)R6であり、R5,R6は炭素数1〜20のアルキル基、アルケニル基、アリール基、シクロアルキル基、またはこれらのハロゲン置換基、jは0〜5の整数を示す。また、B1〜B4にはB1とB2またはB3とB4で形成されるアルキリデニル基、B1とB4、B1とB3、またはB2とB4で形成されるシクロアルキレン基、シクロアルケニレン基も含まれる。nは0から2の整数を示す。]。 [In the formula (2), B 1 , B 2 , B 3 and B 4 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group, an alkenyl group, a cycloalkyl group, a halogen atom, a halogen atom. Or a polar group represented by — (CH 2 ) j X. Here, X is —C (O) OR 5 or —OC (O) R 6 , and R 5 and R 6 are each an alkyl group, alkenyl group, aryl group, cycloalkyl group having 1 to 20 carbon atoms, or These halogen substituents, j represents an integer of 0 to 5. B 1 to B 4 include an alkylidenyl group formed by B 1 and B 2 or B 3 and B 4 , a cyclo formed by B 1 and B 4 , B 1 and B 3 , or B 2 and B 4. An alkylene group and a cycloalkenylene group are also included. n represents an integer of 0 to 2. ].

環状オレフィン重合体が、上記式(1)で表されるメタアクリロイル基、アクリロイル基、オキセタニル基などを含む環状オレフィンに由来する構造単位と、上記式(2)で表される加水分解性シリル基を有する環状オレフィンに由来する繰り返し単位(b)とを含む場合は、適当な助触媒(たとえばニッケル有機酸塩)の添加、熱、光、水蒸気などにより、容易に架橋樹脂フィルム基材を得ることができる。   The cyclic olefin polymer is a structural unit derived from a cyclic olefin containing a methacryloyl group, an acryloyl group, an oxetanyl group or the like represented by the above formula (1), and a hydrolyzable silyl group represented by the above formula (2). When a repeating unit derived from a cyclic olefin having (b) is included, a crosslinked resin film substrate can be easily obtained by adding an appropriate cocatalyst (for example, nickel organic acid salt), heat, light, water vapor, etc. Can do.

環状オレフィン中の上記の繰り返し単位(a)は70〜99.5%であり、繰り返し単位(b)は30〜0.05%であることが好ましい。   The above repeating unit (a) in the cyclic olefin is preferably 70 to 99.5%, and the repeating unit (b) is preferably 30 to 0.05%.

なおこのような架橋環状オレフィン系重合体フィルムの製造方法は、特開2002−327024号公報に記載されている。   In addition, the manufacturing method of such a crosslinked cyclic olefin type polymer film is described in Unexamined-Japanese-Patent No. 2002-327024.

これら共重合体を得るために用いる単量体として重合に関与しない不飽和結合を有するものを用いた場合、高温下での劣化を受けやすくなる。このような問題は、これら環状オレフィンを付加重合した後に不飽和結合の90モル%以上、好ましくは95モル%以上、さらに好ましくは99モル%以上を水素化することで回避できる。   When a monomer having an unsaturated bond that does not participate in polymerization is used as a monomer used to obtain these copolymers, it tends to be deteriorated at high temperatures. Such a problem can be avoided by hydrogenating 90 mol% or more, preferably 95 mol% or more, more preferably 99 mol% or more of the unsaturated bonds after addition polymerization of these cyclic olefins.

これらフィルム基材を構成する樹脂のガラス転移温度は、少なくとも180℃以上、好ましくは200℃以上、さらに好ましくは230℃以上、特に好ましくは250〜400℃である。ガラス転移温度が180℃以下では透明導電膜製膜の際に、フィルム基材が変形、収縮等により実用に耐えないものとなってしまうことがある。   The glass transition temperature of the resin constituting these film base materials is at least 180 ° C or higher, preferably 200 ° C or higher, more preferably 230 ° C or higher, and particularly preferably 250 to 400 ° C. When the glass transition temperature is 180 ° C. or lower, the film base material may become unusable due to deformation, shrinkage, etc. during the production of the transparent conductive film.

さらに本発明のフィルム基材は、フィルム厚み100μmでのリターデーションが15
以下、全光線透過率が90%以上であることが好ましい。リターデーションが15以上になると円偏光フィルムを用いたインナー型タッチパネルの上部基材などへの使用が困難となる。また全光線透過率が90%以下になるとパネル画面が暗くなるなどの不都合が生じる。
Furthermore, the film substrate of the present invention has a retardation of 15 at a film thickness of 100 μm.
Hereinafter, the total light transmittance is preferably 90% or more. When the retardation is 15 or more, it becomes difficult to use the inner-type touch panel using the circularly polarizing film as an upper base material. Further, when the total light transmittance is 90% or less, there is a disadvantage that the panel screen becomes dark.

また、フィルム中には、必要に応じて酸化防止剤、離型剤、紫外線吸収剤、滑剤、着色
剤など通常フィルムの中に混入して用いられる添加剤、さらに架橋反応のための助剤等を、種々の目的で添加することも可能である。フィルムを製造する方法は、特に限定されることはなく、公知の溶融押出し法、溶液キャスティング法、塗工法等の方法を用いることができるが、フィルムの表面平滑性から見ると溶液キャスティング法や塗工法で製造したフィルムが好ましい。また必要に応じてフィルム製造工程の中で、熱、光、水蒸気等により架橋反応を行わせることもできる。
Also, in the film, if necessary, additives such as antioxidants, mold release agents, ultraviolet absorbers, lubricants, colorants, etc. that are usually mixed in the film, further aids for crosslinking reaction, etc. Can also be added for various purposes. The method for producing the film is not particularly limited, and known melt extrusion methods, solution casting methods, coating methods and the like can be used. From the viewpoint of the surface smoothness of the film, the solution casting method and the coating method can be used. A film produced by a construction method is preferred. Moreover, a crosslinking reaction can also be performed by heat, light, water vapor or the like in the film production process as necessary.

本発明ではフィルム基材の厚みは、2〜400μm程度が好ましい。2μmより薄いと
基材そのものの機械的強度が不足し、この基材をロール状にして粘着剤層を塗布したり、後述するハードコーティング処理等の連続作業に困難が伴う。このような観点で、10μm以上の厚みであることが好ましく、20μm以上であることが特に好ましい。400μ
m以上になると、ロール状にすると巻癖がつき、連続作業が困難であるばかりか、巻癖が残存するため使用できないことになる。このような観点で、好ましい厚みは、300μm以下であり、特に好ましくは250μm以下である。
In the present invention, the thickness of the film substrate is preferably about 2 to 400 μm. If the thickness is less than 2 μm, the mechanical strength of the substrate itself is insufficient, and it is difficult to perform continuous operations such as applying a pressure-sensitive adhesive layer in the form of a roll or performing a hard coating process described later. From such a viewpoint, the thickness is preferably 10 μm or more, and particularly preferably 20 μm or more. 400μ
When it is more than m, when it is made into a roll shape, curling will occur and continuous work will be difficult, and curling will remain and it will not be usable. From such a viewpoint, the preferable thickness is 300 μm or less, and particularly preferably 250 μm or less.

このフィルム基材は、その表面に予めスパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、化成、酸化などのエッチング処理や下塗り処理を施して、この上に設けられる導電性薄膜や粘着剤、あるいは必要に応じて機能化するためにフィルム表面に形成される各種コート剤や薄膜の密着性を高めることもできる。また、導電性薄膜等を設ける前に、必要に応じて溶剤や水、酸、アルカリ等による洗浄や超音波洗浄などにより除塵、洗浄化しておくこともできる。   This film base material is subjected to etching treatment and undercoating treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation on the surface in advance, and a conductive thin film or adhesive provided on the surface, Or in order to make it functional as needed, the adhesiveness of the various coating agents and thin films which are formed in the film surface can also be improved. In addition, before providing the conductive thin film or the like, dust can be removed and cleaned by cleaning with a solvent, water, acid, alkali, or the like, or ultrasonic cleaning, if necessary.

本発明で使用するフィルム基材は、同フィルム基材同士、あるいは異種のフィルム基材と粘着剤、接着剤を介して貼り合わせて使用することもできる。この貼り合わせは、透明フィルム基材の一方に粘着剤層、あるいは接着剤層を設けておき、これに他方のフィルム基材を貼り合わせることで実施できる。この貼り合わせは、公知の方法を適宜選んで実施できるが、フィルムをロール状にして、連続的に行うのが生産性の面で有利である。粘着剤層、接着剤層としては、透明性を有するものであれば、特に制限されることはない。   The film base material used in the present invention can be used by bonding the film base materials to each other or different film base materials with a pressure-sensitive adhesive and an adhesive. This bonding can be carried out by providing a pressure-sensitive adhesive layer or an adhesive layer on one side of the transparent film substrate and bonding the other film substrate to this. This bonding can be carried out by appropriately selecting a known method, but it is advantageous in terms of productivity to perform the film continuously in a roll shape. The pressure-sensitive adhesive layer and the adhesive layer are not particularly limited as long as they have transparency.

本発明の透明導電性積層体を形成するため、フィルム基材の片方の外表面に透明な導電性薄膜を形成する。導電性薄膜の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法などの従来公知の技術をいずれも使用できるが、膜の均一性や透明基材への薄膜の密着性の観点から、スパッタリング法での薄膜形成が好ましい。また、用いる薄膜材料も特に制限されるものではなく、例えば、酸化錫を含有する酸化インジウム、アンチモンを含有する酸化錫などの金属酸化物のほか、金、銀、白金、パラジウム、銅、アルミニウム、ニッケル、クロム、チタン、コバルト、錫またはこれらの合金などが好ましく用いられる。この導電性薄膜の厚さは、30Å以上とすることが必要で、これより薄いと表面抵抗が、1000Ω/□以下となる良好な導電性を有する連続被膜となり難い。一方、厚くしすぎると透明性の低下などをきたすために、好適な厚さとしては、50〜2000Å程度である。   In order to form the transparent conductive laminate of the present invention, a transparent conductive thin film is formed on one outer surface of the film substrate. As a method for forming a conductive thin film, any of the conventionally known techniques such as vacuum deposition, sputtering, and ion plating can be used. From the viewpoint of film uniformity and thin film adhesion to a transparent substrate. The thin film formation by sputtering is preferred. Further, the thin film material to be used is not particularly limited. For example, in addition to metal oxides such as indium oxide containing tin oxide and tin oxide containing antimony, gold, silver, platinum, palladium, copper, aluminum, Nickel, chromium, titanium, cobalt, tin, or alloys thereof are preferably used. The thickness of the conductive thin film needs to be 30 mm or more, and if it is thinner than this, it is difficult to form a continuous film having good conductivity with a surface resistance of 1000 Ω / □ or less. On the other hand, if it is too thick, it causes a decrease in transparency and the like, and a suitable thickness is about 50 to 2000 mm.

本発明においては、透明導電膜を製膜する際の温度をコントロールすることが重要である。従来フィルムへのスパッタリングでは100℃以下の温度で実施されていた。フィルム基材と透明導電膜の接着力にはスパッタリング温度が大きく影響する。160℃以上の温度で製膜した場合に、耐久性に優れた透明導電性積層体を得ることができる。またより抵抗値を下げるためには180℃以上での製膜がさらに好ましく、200℃以上での製膜が特に好ましい。   In the present invention, it is important to control the temperature at which the transparent conductive film is formed. Conventionally, sputtering on a film has been performed at a temperature of 100 ° C. or lower. Sputtering temperature greatly affects the adhesion between the film substrate and the transparent conductive film. When a film is formed at a temperature of 160 ° C. or higher, a transparent conductive laminate excellent in durability can be obtained. In order to further reduce the resistance value, film formation at 180 ° C. or higher is further preferable, and film formation at 200 ° C. or higher is particularly preferable.

このようにして導電性薄膜の上に透明な誘電体薄膜を形成すると、さらに透明性と耐擦傷性、打点特性が改善され、より好ましい透明導電性積層体が得られる。この誘電体薄膜
は、導電性薄膜の屈折率より小さいもの、通常1.3〜2.0、好ましくは1.3〜1.6の屈折率を有するものがよく、例えばCaF2、MgF2、NaAlF6、Al23、S
iOx(x=1〜2)、ThF4などが好ましく、この中でもSiOxがもっとも好まし
い。これらの材料は、目的に従って、2種以上を併用することもできる。誘電体の膜厚は、100Å以上とすることが好ましく、通常100〜3000Å、好適には200〜1500Åが好ましい。薄いと連続被膜が得られ難く透明性や耐擦傷性改善効果が小さく、厚いと導電性や透明性が悪化しクラックが生じ易くなる。誘電体の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、塗工法など公知の方法で実施することができる。
When a transparent dielectric thin film is formed on the conductive thin film in this way, the transparency, scratch resistance, and spot characteristics are further improved, and a more preferable transparent conductive laminate is obtained. The dielectric thin film should have a refractive index smaller than that of the conductive thin film, usually 1.3 to 2.0, preferably 1.3 to 1.6. For example, CaF 2 , MgF 2 , NaAlF 6 , Al 2 O 3 , S
iOx (x = 1 to 2), ThF 4 and the like are preferable, and among these, SiOx is most preferable. These materials may be used in combination of two or more according to the purpose. The film thickness of the dielectric is preferably 100 mm or more, usually 100 to 3000 mm, preferably 200 to 1500 mm. If it is thin, it is difficult to obtain a continuous film, and the effect of improving transparency and scratch resistance is small. If it is thick, conductivity and transparency are deteriorated and cracks are likely to occur. The dielectric can be formed by a known method such as a vacuum deposition method, a sputtering method, an ion plating method, or a coating method.

次に、透明導電性積層体に、目的に応じて各種機能を付与する場合があり、むしろこれらが、より好適な実施態様になる場合が多い。これについて以下説明を加える。   Next, there are cases where various functions are imparted to the transparent conductive laminate depending on the purpose, but these are often more preferred embodiments. This will be described below.

フィルム基材は透明導電性薄膜の形成やその後の加工あるいは装置組み立て時に、傷が生じ易く、また積層体において、導電性薄膜を形成した面の反対側の面は裸の状態にあるために、使用中に表面傷が生じ易く、これが原因で透明導電膜積層体としての視認性が低下する問題があり、これを避けるためにフィルム基材にハードコート処理を施したものを用いるのが好ましい。   The film base is easily damaged during the formation of the transparent conductive thin film and the subsequent processing or device assembly, and in the laminate, the surface opposite to the surface on which the conductive thin film is formed is bare, Surface scratches are likely to occur during use, and this causes a problem that the visibility as a transparent conductive film laminate is lowered. In order to avoid this, it is preferable to use a film substrate subjected to a hard coat treatment.

ハードコート処理は、透明導電膜製膜前、あるいは後にフィルムの両面或いは片面に実施することができる。ハードコート処理を、積層体における導電薄膜の反対側の外表面に実施することが特に好ましい。ハードコート処理層は、メラニン系樹脂、ウレタン系樹脂、アルキド系樹脂、アクリル系樹脂、シリコン系樹脂等の硬化型樹脂からなる硬化被膜であることが好ましく用いられる。ハードコート処理層のうちアクリル系樹脂は、導電薄膜の密着性を高めることもあり、導電膜形成前の下地剤としての効果も有するのでもっとも好適に用いられる。   The hard coat treatment can be performed on both sides or one side of the film before or after the transparent conductive film is formed. It is particularly preferable that the hard coat treatment is performed on the outer surface on the opposite side of the conductive thin film in the laminate. The hard coat treatment layer is preferably a cured film made of a curable resin such as a melanin resin, a urethane resin, an alkyd resin, an acrylic resin, or a silicon resin. Among the hard coat treatment layers, the acrylic resin is most preferably used because it may improve the adhesion of the conductive thin film and has an effect as a base agent before forming the conductive film.

このような硬化被膜の形成に際しては、上述の硬化型樹脂に必要に応じて帯電防止剤、重合開始剤などの各種の添加物を加えてなる組成物を、通常溶剤で希釈して固形分が20〜80重量%となるように調製し、これを透明フィルム基材の一面に、一般的な溶液塗工手段であるグラビアコータ、リバースコータ、スプレーコータ、スロットオリフィスコータまたはスクリーン印刷などの手段により、乾燥硬化後の厚みが1〜15μm程度となるように塗布した後、加熱乾燥後紫外線照射や電子線照射あるいは加熱により硬化させることができる。このハードコート処理層の形成に先立ち、被着面にコロナ放電、紫外線照射、プラズマ処理、スパッタエッチング処理、プライマ処理などの易接着処理をすることで、透明フィルムとハードコート処理層との密着性を高めることができる。   In forming such a cured film, a composition obtained by adding various additives such as an antistatic agent and a polymerization initiator to the above-mentioned curable resin as necessary is usually diluted with a solvent to obtain a solid content. It is prepared to 20 to 80% by weight, and this is applied to one side of a transparent film substrate by means of a general solution coating means such as a gravure coater, reverse coater, spray coater, slot orifice coater or screen printing. Then, after coating so that the thickness after drying and curing is about 1 to 15 μm, it can be cured by ultraviolet irradiation, electron beam irradiation or heating after heating and drying. Prior to the formation of the hard coat treatment layer, the adhesion surface between the transparent film and the hard coat treatment layer is subjected to easy adhesion treatment such as corona discharge, ultraviolet irradiation, plasma treatment, sputter etching treatment, primer treatment, etc. Can be increased.

また、透明導電性積層体における、透明導電膜を形成した面と反対側の面が裸であるために、眩しさを感じたり、表面に傷が生じるとこれらのことが原因で、透明導電性薄膜を使用した製品において視認性に劣る問題があった。この問題を解決するために、防眩処理剤をフィルム外表面に塗工したものが好ましく使用される。   In addition, since the surface opposite to the surface on which the transparent conductive film is formed in the transparent conductive laminate is bare, if the surface feels dazzling or has scratches on the surface, the transparent conductive There was a problem that visibility was poor in a product using a thin film. In order to solve this problem, an antiglare treatment agent coated on the outer surface of the film is preferably used.

防眩処理剤は、上述のハードコート剤にシリカ粒子を分散結着させてなる硬化膜が好ましい。ここで用いるシリカ粒子は、非晶質で多孔性のものであり、代表例としてシリカゲルを挙げることができる。平均粒子径としては、通常30μm以下、好ましくは2〜15μm程度であり、配合割合は、樹脂100重量部に対してシリカ粒子が、0.1〜10重量部となるようにするのが好ましい。シリカ粒子の量が少ないと、防眩効果が劣り、多いと光透過率や被膜強度が低下する。防眩処理剤は、上述のハードコート処理とまったく同様にフィルムに塗布し、硬化させることができる。防眩処理剤は、ハードコート処理も兼ねており防眩効果のみでなく、傷防止効果も与える。   The antiglare treatment agent is preferably a cured film obtained by dispersing and binding silica particles to the hard coat agent described above. The silica particles used here are amorphous and porous, and a typical example is silica gel. The average particle diameter is usually 30 μm or less, preferably about 2 to 15 μm, and the blending ratio is preferably such that the silica particles are 0.1 to 10 parts by weight with respect to 100 parts by weight of the resin. When the amount of silica particles is small, the antiglare effect is inferior. When the amount is large, the light transmittance and the film strength are lowered. The antiglare treatment agent can be applied to a film and cured in exactly the same manner as the hard coat treatment described above. The antiglare treatment agent also serves as a hard coat treatment and provides not only an antiglare effect but also a scratch prevention effect.

次に、反射防止層を設けた透明導電性積層体について説明する。透明導電性薄膜は、ディスプレー装置に用いられ、表面で光が反射すると画像が不鮮明になり、場合によっては画像が見え難くなることがあった。高い光線透過能を有し、基材表面の耐擦傷性に優れ、その上基材表面での光の反射を防止しうる反射防止機能も備えたものは、実用上更に好ましい透明導電性積層体である。   Next, the transparent conductive laminate provided with the antireflection layer will be described. The transparent conductive thin film is used in a display device, and when light is reflected on the surface, the image becomes unclear, and in some cases, the image is difficult to see. A transparent conductive laminate having a high light transmittance, excellent scratch resistance on the surface of the base material, and having an antireflection function capable of preventing light reflection on the surface of the base material. It is.

反射防止層は、導電性薄膜形成後に、この導電性薄膜の形成されていない外表面に形成される。この反射防止層は、フィルム基材とは異なる屈折率を有する単層構造または2層以上の多層構造が含まれる。単層構造では、フィルム基材に比べ小さな屈折率を有する材料が選択される。反射防止効果をより優れたものとするために、多層構造とする場合、フィルム基材に比べ大きな屈折率を有する材料層を設け、その上にこれより小さな屈折率を有する材料層を設けることが好ましく、隣接層相互間で屈折率の異なる材料構成が用いられるが、より好ましくは3層以上に多層構造として最外層の屈折率がこれに隣接する下層の屈折率よりも小さくなるような材料構成とするのがよい。このような反射防止層を構成させるための材料としては、例えばCaF2、MgF2、NaAlF4、Al23、SiO
x(x=1〜2)、ThF4、ZrO2、Sh23、Nd23、SnO2、TiO2、In2
3などの誘導体が挙げられる。その屈折率が前記関係を満たすように適宜選択される。
この反射防止層は、導電層と同じような薄膜形成技術により形成することができる。その厚みは、反射防止層としての全体厚が、一般に500〜5000Å程度となる範囲内で選択される。この層は、表面の硬度も高めるため、耐擦傷性も向上する。
The antireflection layer is formed on the outer surface where the conductive thin film is not formed after the conductive thin film is formed. This antireflection layer includes a single layer structure having a refractive index different from that of the film substrate or a multilayer structure of two or more layers. In the single layer structure, a material having a smaller refractive index than that of the film substrate is selected. In order to improve the antireflection effect, when a multilayer structure is used, a material layer having a larger refractive index than that of the film substrate may be provided, and a material layer having a smaller refractive index may be provided thereon. Preferably, a material structure having a different refractive index between adjacent layers is used, but more preferably a material structure in which the refractive index of the outermost layer is smaller than the refractive index of the lower layer adjacent thereto as a multilayer structure of three or more layers. It is good to do. As a material for constituting such an antireflection layer, for example, CaF 2 , MgF 2 , NaAlF 4 , Al 2 O 3 , SiO
x (x = 1 to 2), ThF 4 , ZrO 2 , Sh 2 O 3 , Nd 2 O 3 , SnO 2 , TiO 2 , In 2
Derivatives such as O 3 are mentioned. The refractive index is appropriately selected so as to satisfy the above relationship.
This antireflection layer can be formed by a thin film forming technique similar to that of the conductive layer. The thickness is selected within a range in which the total thickness of the antireflection layer is generally about 500 to 5000 mm. Since this layer also increases the hardness of the surface, the scratch resistance is also improved.

また、この透明導電性積層体は、ディスプレー装置に用いられるために、加工時や使用時にその表面に指紋や汚れが生じ、まぶしさを感じるなど薄膜製品全体としての視認性に問題が生じる場合があった。この問題を解決するために、積層体の外表面に撥水および汚れ防止処理層を有する透明導電性積層体は用途によっては好ましい。撥水および汚れ防止処理層は、ハードコート形成とまったく同じようにして、フィルム外表面に形成できる。このような撥水および汚れ防止処理層を形成するための材料としては、例えば水酸基またはビニル基を含有するジメチルポリシロキサンとメチルハイドロジエンポリシロキサンとの組み合わせからなるシリコン含有化合物、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレンなどの弗素系樹脂のほか、硫化モリブデンなどが単独または化合物として用いられる。上記処理層の密着性や硬度向上のため、既述したハードコート剤等の硬化型樹脂に分散結着させ、基材表面に硬化膜層として設けてもよい。また、防眩効果や耐擦傷性を高める目的で、上記シリカ粒子を分散させることもできる。この撥水および汚れ防止層の形成は、特に限定されず、用いる材料に応じて、塗工法、スプレー法、真空蒸着法、スパッタリング法、イオンプレーティング法、焼き付け法などを用いることができる。処理層の厚みは特に限定されないが、通常100Å〜50μm程度が良い。薄いと連続膜が得られ難く撥水効果が乏しく、厚いとクラックが生じ易くなることがある。   In addition, since this transparent conductive laminate is used in a display device, fingerprints and dirt are generated on the surface during processing and use, and there may be a problem in visibility as a whole thin film product such as feeling glare. there were. In order to solve this problem, a transparent conductive laminate having a water-repellent and antifouling treatment layer on the outer surface of the laminate is preferred depending on the application. The water repellent and antifouling treatment layer can be formed on the outer surface of the film in exactly the same manner as the hard coat formation. As a material for forming such a water-repellent and antifouling treatment layer, for example, a silicon-containing compound comprising a combination of a dimethylpolysiloxane containing a hydroxyl group or a vinyl group and a methylhydropolysiloxane, polytetrafluoroethylene, In addition to fluorine-based resins such as polychlorotrifluoroethylene, molybdenum sulfide is used alone or as a compound. In order to improve the adhesion and hardness of the treatment layer, it may be dispersed and bonded to a curable resin such as the hard coat agent described above and provided as a cured film layer on the substrate surface. Moreover, the said silica particle can also be disperse | distributed for the purpose of improving an anti-glare effect and abrasion resistance. The formation of the water-repellent and antifouling layer is not particularly limited, and a coating method, a spray method, a vacuum deposition method, a sputtering method, an ion plating method, a baking method, or the like can be used depending on the material used. Although the thickness of a process layer is not specifically limited, About 100 to 50 micrometers is good normally. If it is thin, it is difficult to obtain a continuous film and the water-repellent effect is poor. If it is thick, cracks are likely to occur.

上述の機能化処理は、2種以上を組み合わせて実施することも可能であり、特にハードコート剤と防眩処理と撥水や汚れ防止処理剤とは組み合わせて使用すると効率的である。   The above-mentioned functionalization treatment can also be carried out in combination of two or more, and it is particularly efficient when used in combination with a hard coat agent, an antiglare treatment, and a water repellent or stain prevention treatment agent.

[実施例]
以下に、この発明を実施例でより具体的に説明する。
[Example]
Hereinafter, the present invention will be described more specifically with reference to examples.

実施例1
<ノルボルネン系樹脂の合成、フィルム基材の作製>
単量体としてビシクロ[2.2.1]ヘプタ−2−エンを700ミリモル、endo−トリシクロ[5,2,1,02,6]デカ−8−エン(endo/exo=96/4)を5
70ミリモル、5−トリエトキシシリルビシクロ[2.2.1]ヘプタ−2−エンを30
ミリモル、1−ヘキセンを5ミリモル、溶媒としてシクロヘキサン400g、塩化メチレン100gを2Lのステンレス製反応器に窒素下で仕込んだ。
Example 1
<Synthesis of norbornene resin, production of film base>
Bicyclo as monomers [2.2.1] hept-2-ene 700 mmol, endo- tricyclo [5,2,1,0 2,6] dec-8-ene (endo / exo = 96/4 ) 5
30 mmol of 70 mmol, 5-triethoxysilylbicyclo [2.2.1] hept-2-ene
Millimol, 5 mmol of 1-hexene, 400 g of cyclohexane as a solvent and 100 g of methylene chloride were charged into a 2 L stainless steel reactor under nitrogen.

オクタン酸ニッケルのヘキサン溶液とヘキサフロロアンチモン酸を−10℃、モル比1:1で反応させ、副生するビス(ヘキサフロロアンチモン酸)ニッケル、[Ni(SbF62]の沈殿をろ過で除去し、トルエンで希釈した。得られたオクタン酸ニッケルのヘキサフロロアンチモン酸変性体をニッケル原子として0.40ミリモル、三フッ化ホウ素エチルエーテラート1.2ミリモル、メチルアルモキサン8.0ミリモル、1,5−シクロオクタジエン0.4ミリモル、メチルトリエトキシシラン8.0ミリモルを、メチルトリエトキシシラン、1,5−シクロオクタジエン、メチルアルモキサン、三フッ化ホウ素エチルエーテラート、オクタン酸ニッケルのヘキサフロロアンチモン酸変性体の順に仕込み、重合を開始した。30℃で3時間重合を行い、メタノールを添加して重合を停止した。単量体の共重合体への転化率は92%であった。 A hexane solution of nickel octoate and hexafluoroantimonic acid are reacted at −10 ° C. and a molar ratio of 1: 1, and by-product precipitation of bis (hexafluoroantimonic acid) nickel and [Ni (SbF 6 ) 2 ] is filtered. Removed and diluted with toluene. The resulting hexafluoroantimonic acid modified form of nickel octoate is 0.40 mmol as a nickel atom, boron trifluoride ethyl etherate 1.2 mmol, methylalumoxane 8.0 mmol, 1,5-cyclooctadiene 0 .4 mmol, methyltriethoxysilane 8.0 mmol, methyltriethoxysilane, 1,5-cyclooctadiene, methylalumoxane, boron trifluoride ethyl etherate, hexafluoroantimonic acid modified nickel octanoate In order, the polymerization was started. Polymerization was performed at 30 ° C. for 3 hours, and methanol was added to terminate the polymerization. The conversion ratio of the monomer to the copolymer was 92%.

共重合体溶液にシクロヘキサン480gを加えて希釈し、そこに水660ml、乳酸48ミリモルを加え、充分に攪拌混合した後、共重合体溶液と水相を静置分離した。触媒成分の反応物を含む水相を除去し、共重合体溶液を4Lのイソプロピルアルコールに入れて共重合体を凝固し、未反応単量体および触媒残さを除去した。凝固した共重合体を乾燥し、共重合体を75g得た。   The copolymer solution was diluted by adding 480 g of cyclohexane, 660 ml of water and 48 mmol of lactic acid were added thereto, and the mixture was sufficiently stirred and mixed. Then, the copolymer solution and the aqueous phase were allowed to stand and be separated. The aqueous phase containing the reaction product of the catalyst component was removed, and the copolymer solution was put into 4 L of isopropyl alcohol to solidify the copolymer, thereby removing unreacted monomers and catalyst residues. The coagulated copolymer was dried to obtain 75 g of the copolymer.

共重合体中の5−トリエトキシシリルビシクロ[2.2.1]ヘプタ−2−エンに由来する構造単位の割合は2.1モル%、endo−トリシクロ[5,2,1,02,6]デカ
−8−エンに由来する構造単位の割合は35モル%であった。また、共重合体のポリスチレン換算の数平均分子量は89,000、重量平均分子量は187,000、で、Mw/Mnは2.1であった。
The proportion of structural units derived from 5-triethoxysilylbicyclo [2.2.1] hept-2-ene in the copolymer is 2.1 mol%, and endo-tricyclo [5,2,1,0 2, 6 ] The proportion of structural units derived from deca-8-ene was 35 mol%. Further, the polystyrene-equivalent number average molecular weight of the copolymer was 89,000, the weight average molecular weight was 187,000, and Mw / Mn was 2.1.

次に、共重合体10gをシクロヘキサン35.5gに溶解して、酸化防止剤としてペンタエリスリチルテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を共重合体100部に対して1.0部、および架橋触媒として亜リン酸トリブチルを共重合体100部に対して0.5部それぞれ添加した。この共重合体溶液をキャストして、生成したフィルムを150℃で2時間乾燥、さらに真空下200℃で1時間乾燥した。さらにこのフィルムを150℃の水蒸気下で4時間熱処理した。その後、真空下200℃で1時間乾燥して、厚さ100μmの架橋フィルムを作製した。   Next, 10 g of the copolymer is dissolved in 35.5 g of cyclohexane, and pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] is used as the antioxidant as a copolymer. 1.0 part per 100 parts and 0.5 part tributyl phosphite as a crosslinking catalyst were added to 100 parts copolymer. The copolymer solution was cast, and the resulting film was dried at 150 ° C. for 2 hours and further dried at 200 ° C. for 1 hour under vacuum. Further, this film was heat-treated under steam at 150 ° C. for 4 hours. Then, it dried at 200 degreeC under vacuum for 1 hour, and produced the 100-micrometer-thick crosslinked film.

得られたフィルムの特性は全光線透過率:91%、ガラス転移温度:375℃、リタデーション:5nmであった。   The characteristics of the obtained film were total light transmittance: 91%, glass transition temperature: 375 ° C., retardation: 5 nm.

<透明導電積層体の作成>
上述と同様の操作により得られた縦200mm、横200mm、厚さ100μmのシート上
にスパッター機を用いて以下の条件でインジウム−スズ酸化物(ITO)膜を形成した。
<Creation of transparent conductive laminate>
An indium-tin oxide (ITO) film was formed on a sheet having a length of 200 mm, a width of 200 mm and a thickness of 100 μm obtained by the same operation as described above using a sputtering machine under the following conditions.

基材温度:200℃
ターゲット:In2O3/SnO2=90/10(重量比)の合金
雰囲気:アルゴンガス流入下
スパッター速度:80Å/min
スパッター圧力:10-3 torr
この導電性薄膜の平均抵抗値、透過率、耐擦傷性、打点特性とを測定し表−1に示す。
Substrate temperature: 200 ° C
Target: Alloy of In 2 O 3 / SnO 2 = 90/10 (weight ratio) Atmosphere: Under argon gas flow Sputter speed: 80mm / min
Sputtering pressure: 10 -3 torr
The average resistance value, transmittance, scratch resistance, and spot characteristics of this conductive thin film were measured and shown in Table-1.

実施例2
フィルム基材として、実施例1と同じフィルムを用いて、基板温度を250℃に変更し
た以外は実施例1と同様の方法でITO製膜を実施した。
Example 2
Using the same film as in Example 1 as the film base, ITO film formation was carried out in the same manner as in Example 1 except that the substrate temperature was changed to 250 ° C.

この導電性薄膜の平均抵抗値、透過率、耐擦傷性、打点特性とを測定し表−1に示す。   The average resistance value, transmittance, scratch resistance, and spot characteristics of this conductive thin film were measured and shown in Table-1.

参考例1
フィルム基材として、厚さ100μmの帝人ピュアエースRWR(芳香族系ポリカーボネート)フィルムを用いた。このフィルムの特性は全光線透過率:90%、ガラス転移温度:210℃、リタデーション:20nmであった。本フィルムを用い、基板温度を180℃に変更した以外は実施例1と同様の方法でITO製膜を実施した。
Reference example 1
A Teijin Pure Ace RWR (aromatic polycarbonate) film having a thickness of 100 μm was used as the film substrate. Characteristics total light transmittance of the film: 90%, glass transition temperature: 210 ° C., Rita over Deshon: was 20 nm. Using this film, ITO film formation was carried out in the same manner as in Example 1 except that the substrate temperature was changed to 180 ° C.

この導電性薄膜の平均抵抗値、透過率、耐擦傷性、打点特性とを測定し表−1に示す。   The average resistance value, transmittance, scratch resistance, and spot characteristics of this conductive thin film were measured and shown in Table-1.

比較例1
フィルム基材として、厚さ100μmのJSRアートンR(ノルボルネン系)フィルムを用
いた。 このフィルムの特性は全光線透過率:90%、ガラス転移温度:170℃、リタデーション:3nmであった。本フィルムを用い、基板温度を130℃に変更した以外は実施例1と同様の方法でITO製膜を実施した。
Comparative Example 1
As the film substrate, a JSR Arton R (norbornene-based) film having a thickness of 100 μm was used. The characteristics of this film were total light transmittance: 90%, glass transition temperature: 170 ° C., and retardation: 3 nm. Using this film, ITO film formation was carried out in the same manner as in Example 1 except that the substrate temperature was changed to 130 ° C.

この導電性薄膜の平均抵抗値、透過率、耐擦傷性、打点特性とを測定し表−1に示す。   The average resistance value, transmittance, scratch resistance, and spot characteristics of this conductive thin film were measured and shown in Table-1.

比較例2
フィルム基材として厚さが25μmのポリエチレンテレフタレートフィルム(以下PETフィルムという。)を用いて、基板温度を50℃に変更した以外は実施例1と同様の方法でITO製膜を実施した。ついで上記PETフィルムの他方の面に、弾性係数が1.2×10の6乗dyn/cm2に調整されたアクリル系の透明な粘着剤層(アクリル酸ブチルと
アクリル酸と酢酸ビニルの重合比100:2:5の共重合体100重量部にイソシアネート系架橋剤を1重量部配合させたもの)を約20μmの厚さに形成し、この上に厚さが100μmのPETフィルムを貼りあわせた。この導電性薄膜の平均抵抗値、透過率、耐擦傷性、打点特性とを測定し表−1に示す。
Comparative Example 2
Using a polyethylene terephthalate film (hereinafter referred to as PET film) having a thickness of 25 μm as a film base material, ITO film formation was carried out in the same manner as in Example 1 except that the substrate temperature was changed to 50 ° C. Then, on the other surface of the PET film, an acrylic transparent pressure-sensitive adhesive layer (polymerization ratio of butyl acrylate, acrylic acid and vinyl acetate) having an elastic modulus of 1.2 × 10 6 dyn / cm 2 was adjusted. 100 parts by weight of a 100: 2: 5 copolymer was blended with 1 part by weight of an isocyanate-based crosslinking agent) to a thickness of about 20 μm, and a PET film with a thickness of 100 μm was laminated thereon. . The average resistance value, transmittance, scratch resistance, and spot characteristics of this conductive thin film were measured and shown in Table-1.

フィルム基材の特性は以下のように実施した。   The characteristics of the film substrate were carried out as follows.

全光線透過率・・ASTM−D1003に準拠し、厚さが100μmのフィルムで測定
した。
Total light transmittance: Measured with a film having a thickness of 100 μm based on ASTM-D1003.

ガラス転移温度・・動的粘弾性のtanδ(貯蔵弾性率E'と損失弾性率E''との比)ピーク温度でフィルム基材のガラス転移温度を測定した。動的粘弾性の測定はレオバイブロンDDV−01FP(オリエンテック製)を用い、測定周波数が10Hz、昇温速度が4℃/分、加振モードが単一波形、加振振幅が2.5μmのものを用いて得られるtanδの温度分散
のピーク温度で求めた。
リターデーション・・回転アナライザー式自動エリプソメーター((株)溝尻光学工業所製)を用いて楕円偏向解析法により、楕円偏向の位相差Δを測定することで、以下の式(1)よりリターデーションReを計算した。なお、レーザー光の入射光角度を0°とし、リターデーションを評価した。
Glass transition temperature: The glass transition temperature of the film substrate was measured at the peak temperature of tan δ (ratio of storage elastic modulus E ′ and loss elastic modulus E ″) of dynamic viscoelasticity. For measurement of dynamic viscoelasticity, use Leo Vibron DDV-01FP (Orientec), measurement frequency is 10Hz, heating rate is 4 ° C / min, vibration mode is single waveform, vibration amplitude is 2.5μm The peak temperature of the temperature dispersion of tan δ obtained by use was obtained.
Retardation: By measuring the phase difference Δ of the elliptical deflection by the elliptical deflection analysis method using a rotation analyzer type automatic ellipsometer (manufactured by Mizoji Optical Co., Ltd.), the retardation is obtained from the following formula (1). Re was calculated. In addition, the incident light angle of the laser beam was set to 0 °, and retardation was evaluated.

Δ=−k0(nx−ny)d=−k0Re (1)
ただし、k 0は波数( = 2π/λ)、nx,ny,nzはフィルムの3次元屈折率を直交する座標系x,y,zに取った際の各屈折率,dはフィルム光路長である。
Δ = -k 0 (n x -n y) d = -k 0 Re (1)
However, k 0 is the wave number (= 2π / λ), n x, n y, n z is the coordinate system x, each refractive index at the time of taking y, and z orthogonal three-dimensional refractive index of the film, d is film The optical path length.

作製した透明導電性積層体の特性の測定法は以下の通りである。
・平均抵抗値・・四端子法を用い、等間隔で9点を測定し、平均値を計算して求めた。
・透過率・・分光透過率計を用い、550nmの波長の光の透過率を求めた。
・耐擦傷性・・ヘイドン表面性測定機を用い、荷重90g/cm2のガーゼで、擦傷速度
30cm/分、擦傷回数100回の条件で薄膜表面を擦つた後に、抵抗値(Rs)を測定し、初期値(Ro)に対する変化率を求めた。
・打点特性・・2枚の透明導電性積層フィルムを厚さ100μmのスペーサを介して導電性薄膜同士が向かい合うように対向配置し、硬度40度のウレタンゴムからなるロッド(鍵先7R)を用いて、荷重90gで100万回のセンター打点を行った後に、抵抗値(Rd)を測定し、初期抵抗値(Ro)に対する変化率を求めた。
The measuring method of the characteristic of the produced transparent conductive laminated body is as follows.
-Average resistance value: Using the four probe method, nine points were measured at equal intervals, and the average value was calculated.
-Transmittance-The transmittance of light having a wavelength of 550 nm was determined using a spectral transmittance meter.
・ Abrasion resistance ・ ・ A resistance value (Rs) is measured after rubbing the surface of a thin film with a gauze with a load of 90 g / cm 2 and a scratch rate of 30 cm / min and a number of scratches of 100 using a Haydon surface property measuring instrument. The rate of change with respect to the initial value (Ro) was obtained.
-Dot characteristics-Two transparent conductive laminated films are placed facing each other so that the conductive thin films face each other with a spacer of 100 μm in thickness, and a rod (key tip 7R) made of urethane rubber with a hardness of 40 degrees is used. Then, after performing center hitting of 1 million times with a load of 90 g, the resistance value (Rd) was measured to determine the rate of change with respect to the initial resistance value (Ro).

Figure 0004223359
Figure 0004223359

上記結果から明らかなように、本発明では、透明導電性積層体を基材フィルムを160℃
以上の温度に保って、導電性薄膜をスパッタリングにより形成しており、スパッタリングによる導電薄膜形成時にフィルムの強度が増しているために耐擦傷性、打点特性も優れた透明導電性積層体が得られる。
As is clear from the above results, in the present invention, the transparent conductive laminate is made of a substrate film at 160 ° C.
The conductive thin film is formed by sputtering at the above temperature, and since the strength of the film is increased when the conductive thin film is formed by sputtering, a transparent conductive laminate having excellent scratch resistance and spot characteristics can be obtained. .

特に基材フィルムとしてノルボルネン系ポリマーを用いて、230℃以上好ましくは250℃以上で導電性薄膜をスパッタリングにより形成すると、耐擦傷性に優れた透明導電性積層体が得られる。   In particular, when a conductive thin film is formed by sputtering at 230 ° C. or higher, preferably 250 ° C. or higher, using a norbornene-based polymer as a base film, a transparent conductive laminate having excellent scratch resistance can be obtained.

Claims (6)

ガラス転移温度が200℃以上であり、かつ実質的に非晶質な重合体からなる透明フィルム上に、該フィルムの温度を160℃以上に保って透明導電膜を形成する透明導電性積層体の製造方法であって、
該透明フィルムが、下記式(1)で示される繰り返し単位(a)と、下記式(2)で示される繰り返し単位(b)とを含む共重合体を含有する組成物からなることを特徴とする透明導電性積層体の製造方法;
Figure 0004223359
[式(1)中、A 1 〜A 4 はそれぞれ独立して、水素原子、炭素数1〜20の炭化水素基、または、
−(CR 1 2 f Si(OR 3 g 4 (3-g)
−(CR 1 2 f Si(R 3 4 )OSi(OR 3 g 4 (3-g)
−(CR 1 2 f C(O)O(CH 2 h Si(OR 3 g 4 (3-g)
で表されるアルコキシシリル基、アリロキシシリル基を示し、A 1 〜A 4 の少なくとも一つはアルコキシシリル基、アリロキシシリル基を示す。ここで、R 1 ,R 2 はそれぞれ独立し
て、水素原子または炭素数1〜20の炭化水素基を示し、R 3 は炭素数1〜10のアルキ
ル基、アルケニル基、アリール基またはシクロアルキル基を示し、R 4 は水素原子、ハロ
ゲン原子または炭素数1〜20の炭化水素基を示し、f,hは0〜5の整数、gは1〜3の整数を示す。また、Yは−CH 2 −または−O−を示し、mは0または1を示す。]
Figure 0004223359
[式(2)中、B 1 ,B 2 ,B 3 ,B 4 はそれぞれ独立して、水素原子、炭素数1〜20のアルキル基、アリール基、アルケニル基、シクロアルキル基、ハロゲン原子、ハロゲン化炭化水素基、または−(CH 2 j Xで表される極性基を示す。ここで、Xは−C(O)OR 5 、または−OC(O)R 6 であり、R 5 ,R 6 は炭素数1〜20のアルキル基、アルケニル基、アリール基、シクロアルキル基、またはこれらのハロゲン置換基、jは0〜5の整数を示す。また、B 1 〜B 4 にはB 1 とB 2 またはB 3 とB 4 で形成されるアルキリデニル基、B 1 とB 4 、B 1 とB 3 、またはB 2 とB 4 で形成されるシクロアルキレン基、シクロアルケニレン基も含まれる。nは0から2の整数を示す。]
A glass transition temperature of 200 ° C. or higher, and substantially amorphous on comprising a polymer transparent film, temperature 160 ° C. or higher to keep a transparent conductive film to that translucent transparent conductive laminate formed of the film A method for manufacturing a body ,
The transparent film is composed of a composition containing a copolymer containing a repeating unit (a) represented by the following formula (1) and a repeating unit (b) represented by the following formula (2). A method for producing a transparent conductive laminate;
Figure 0004223359
Wherein (1), A 1 ~A 4 are each independently a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or
- (CR 1 R 2) f Si (OR 3) g R 4 (3-g),
- (CR 1 R 2) f Si (R 3 R 4) OSi (OR 3) g R 4 (3-g),
- (CR 1 R 2) f C (O) O (CH 2) h Si (OR 3) g R 4 (3-g)
And at least one of A 1 to A 4 represents an alkoxysilyl group or an allyloxysilyl group . Here, R 1 and R 2 are independent of each other.
A hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and R 3 represents an alkyl group having 1 to 10 carbon atoms.
R 4 represents a hydrogen atom, a halo group, an alkenyl group, an aryl group or a cycloalkyl group.
Represents a gen atom or a hydrocarbon group having 1 to 20 carbon atoms, f and h are integers of 0 to 5, and g is an integer of 1 to 3. Y represents —CH 2 — or —O—, and m represents 0 or 1. ]
Figure 0004223359
[In the formula (2), B 1 , B 2 , B 3 and B 4 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group, an alkenyl group, a cycloalkyl group, a halogen atom, a halogen atom. Or a polar group represented by — (CH 2 ) j X. Here, X is —C (O) OR 5 or —OC (O) R 6 , and R 5 and R 6 are each an alkyl group, alkenyl group, aryl group, cycloalkyl group having 1 to 20 carbon atoms, or These halogen substituents, j represents an integer of 0 to 5. Also, cyclo the B 1 .about.B 4 formed by B 1 and B 2 or B 3 and alkylidenyl group formed by B 4, B 1 and B 4, B 1 and B 3, or B 2 and B 4, An alkylene group and a cycloalkenylene group are also included. n represents an integer of 0 to 2. ]
フィルムの温度を200℃以上に保って透明導電膜を形成する請求項1に記載の製造方法。   The manufacturing method of Claim 1 which forms the transparent conductive film, keeping the temperature of a film at 200 degreeC or more. 透明フィルムが、フィルム厚み100μmでのリターデーションが15nm以下であり、全光線透過率が90%以上である請求項1または2に記載の製造方法。 Transparent film, the retardation in the film thickness of 100μm is at 15nm or less, the production method according to claim 1 or 2 total light transmittance of 90% or more. 請求項1〜のいずれかに記載の方法で得られた透明導電性積層体。 The transparent conductive laminated body obtained by the method in any one of Claims 1-3 . 1.3〜2.0の屈折率を有し、CaF2、MgF2、NaAlF6、Al23、SiOx(x=1〜2)およびThF4からなる群から選ばれる少なくとも1種の材料を用いてな
る誘電体薄膜を、さらにその上に形成する請求項4に記載の透明導電性積層体。
At least one selected from the group consisting of CaF 2 , MgF 2 , NaAlF 6 , Al 2 O 3 , SiO x (x = 1 to 2) and ThF 4 having a refractive index of 1.3 to 2.0. The transparent conductive laminate according to claim 4, further comprising a dielectric thin film made of the material formed thereon.
請求項4または5に記載の透明導電性積層体を少なくとも一方の電極として有するタッチパネル。 A touch panel having the transparent conductive laminate according to claim 4 as at least one electrode.
JP2003314494A 2003-09-05 2003-09-05 Method for producing transparent conductive laminate and touch panel Expired - Fee Related JP4223359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003314494A JP4223359B2 (en) 2003-09-05 2003-09-05 Method for producing transparent conductive laminate and touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003314494A JP4223359B2 (en) 2003-09-05 2003-09-05 Method for producing transparent conductive laminate and touch panel

Publications (2)

Publication Number Publication Date
JP2005085541A JP2005085541A (en) 2005-03-31
JP4223359B2 true JP4223359B2 (en) 2009-02-12

Family

ID=34415075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003314494A Expired - Fee Related JP4223359B2 (en) 2003-09-05 2003-09-05 Method for producing transparent conductive laminate and touch panel

Country Status (1)

Country Link
JP (1) JP4223359B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090448A1 (en) * 2005-02-23 2006-08-31 Jsr Corporation Process for producing transparent conductive laminate, and touch panel
JP4840037B2 (en) * 2006-02-03 2011-12-21 Jsr株式会社 Conductive transparent film and use thereof
JP2008277267A (en) * 2007-04-03 2008-11-13 Jsr Corp Conductive transparent sheet, and its application
JP2009187687A (en) * 2008-02-04 2009-08-20 Jsr Corp Method of manufacturing transparent conductive film, touch panel which has film obtained by the method, and display device which has the touch panel
JP5262366B2 (en) * 2008-04-15 2013-08-14 住友化学株式会社 Scratch-resistant resin plate and its use
JP2012218163A (en) * 2011-04-04 2012-11-12 Jsr Corp Transparent conductive film, laminate, touch panel, and display

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04306513A (en) * 1991-03-15 1992-10-29 A G Technol Kk Formation of transparent conductive film and transparent conductive film made with said formation
JPH07230715A (en) * 1994-02-16 1995-08-29 Sekisui Chem Co Ltd Transparent conductor
JP3650852B2 (en) * 1994-02-24 2005-05-25 Jsr株式会社 Liquid crystal substrate and polarizing film
JPH09262926A (en) * 1996-03-27 1997-10-07 Teijin Ltd Transparent conductive laminate for touch panel and its production
JP3855307B2 (en) * 1996-05-24 2006-12-06 東洋紡績株式会社 Transparent conductive film and method for producing the same
JPH10255555A (en) * 1997-03-14 1998-09-25 Mitsui Chem Inc Transparent electrode substrate
JP4085295B2 (en) * 1998-09-07 2008-05-14 東洋紡績株式会社 Method for producing transparent conductive film for pen input touch panel, pen input transparent touch panel and liquid crystal display element
JP4045405B2 (en) * 2000-12-22 2008-02-13 Jsr株式会社 Resin film and its use
JP3922109B2 (en) * 2001-10-17 2007-05-30 東洋紡績株式会社 Method for producing transparent conductive film roll
JP2003141936A (en) * 2001-11-02 2003-05-16 Mitsubishi Gas Chem Co Inc Transparent conductive film
JP4247448B2 (en) * 2002-09-17 2009-04-02 三菱瓦斯化学株式会社 Transparent conductive film
JP2005054173A (en) * 2003-07-18 2005-03-03 Toray Ind Inc Plastic substrate

Also Published As

Publication number Publication date
JP2005085541A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
JP4004025B2 (en) Transparent conductive laminate and touch panel
JP2667680B2 (en) Transparent conductive laminate
JP4419146B2 (en) Transparent conductive laminate
KR101410075B1 (en) Transparent conductive multilayer body and touch panel made of the same
KR101521317B1 (en) Transparent conductive laminate and touch panel
JP2763472B2 (en) Transparent conductive laminate and touch panel
JPWO2006090448A1 (en) Method for producing transparent conductive laminate and touch panel
WO1999042860A1 (en) Antireflection film
JP2009226932A (en) Conductive laminated film, polarizing plate, and touch panel
JPH02129808A (en) Transparent conductive laminated material
JP4223359B2 (en) Method for producing transparent conductive laminate and touch panel
JP2846887B2 (en) Transparent conductive laminate
JP2008292982A (en) Polarizing plate and touch panel
JP4369092B2 (en) Transparent film substrate for display
JP2004212848A (en) Optical film and its manufacture method as well as application product thereof
JP2624930B2 (en) Transparent conductive laminate and touch panel
JP2004331744A (en) Curable composition and article coated with cured product of the same
JP2714124B2 (en) Transparent conductive laminate
JP2002006103A (en) Antireflective film, optically functional film and display device
JP2829003B2 (en) Transparent conductive laminate
JP4233180B2 (en) Transparent conductive polymer substrate
JP5559491B2 (en) Transparent conductive laminate and touch panel using the same
JP3813009B2 (en) Transparent electrode substrate
JPH0449724B2 (en)
JP2002245858A (en) Transparent conductive laminated body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081119

R150 Certificate of patent or registration of utility model

Ref document number: 4223359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees