JP4222033B2 - InGaP / InGaAs heterojunction bipolar transistor - Google Patents

InGaP / InGaAs heterojunction bipolar transistor Download PDF

Info

Publication number
JP4222033B2
JP4222033B2 JP2003011155A JP2003011155A JP4222033B2 JP 4222033 B2 JP4222033 B2 JP 4222033B2 JP 2003011155 A JP2003011155 A JP 2003011155A JP 2003011155 A JP2003011155 A JP 2003011155A JP 4222033 B2 JP4222033 B2 JP 4222033B2
Authority
JP
Japan
Prior art keywords
ingaas
layer
ingap
bipolar transistor
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003011155A
Other languages
Japanese (ja)
Other versions
JP2004228137A (en
Inventor
薫由 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003011155A priority Critical patent/JP4222033B2/en
Publication of JP2004228137A publication Critical patent/JP2004228137A/en
Application granted granted Critical
Publication of JP4222033B2 publication Critical patent/JP4222033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bipolar Transistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヘテロ接合バイポーラトランジスタに関する。
【0002】
【従来の技術】
III−V族化合物半導体を用いたヘテロ接合バイポーラトランジスタ(以下「HBT」という。)は、エミッタにワイドバンドギャップ半導体であるInGaPを用い、エミッタ以外の各層にGaAsを用いたInGaP/GaAs系HBTが開発されている(例えば、特許文献1参照。)。
【0003】
このInGaP/GaAs系HBTにおいて、InGaAsをHBTのベース層及びコレクタ層に用いると、InGaAsは高い電子移動度を有するため、高速動作に有利である。また、InGaAsはエネルギーギャップがGaAsに比べて小さいため、ターンオン電圧を低下させることができる。
【0004】
InGaAsはGaAsとは格子定数が異なるので、高速動作や低ターンオン電圧のためには、In混晶比を0.2以下とすることが望ましい。また、図2に示すようなIn、Ga、As各組成の混晶比をGaAsからInGaAsに向けて徐々に変化させたグレーデッド層を設けたメタモルフィックHBTエピタキシャルウェハが作製されている。
【0005】
図2は従来のヘテロ接合バイポーラトランジスタに用いられるエピタキシャルウェハの構造図である。
【0006】
同図に示すメタモルフィックHBTエピタキシャルウェハは、GaAs基板1上に、In組成傾斜InGaAsバッファ層2、InGaAsサブコレクタ層3、InGaAsコレクタ層4、InGaAsベース層5、InGaPエミッタ層6、InGaAsエミッタコンタクト層7及びInGaAsノンアロイ層8が順次形成されたものである(例えば、特願2002−72359号参照。)。
【0007】
【特許文献1】
特開2002−50630号公報
【0008】
【発明が解決しようとする課題】
InGaAsをベース層に用いることでデバイスのON電圧であるターンオン電圧を低下させることができるのが、メタモルフィックHBTのメリットではあるが、一方で従来のメタモルフィックHBTエピタキシャルウェハを用いたHBTではオフセット電圧(コレクタ電流が零の時のコレクタ−エミッタ間電圧)が高かった。オフセット電圧はデバイスの動作下限電圧となるため、低い方が望ましい。
【0009】
そこで、本発明の目的は、上記課題を解決し、オフセット電圧を低下させたInGaP/InGaAs系のヘテロ接合バイポーラトランジスタを提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、GaAs基板側から順に、In組成傾斜InGaAsバッファ層、InGaAsサブコレクタ層、InGaAsコレクタ層、InGaAsベース層、InGaPエミッタ層、InGaAsエミッタコンタクト層、及びInGaAsノンアロイコンタクト層を形成した積層構造を備え、前記InGaAsコレクタ層と前記InGaAsベース層との間にヘテロ障壁を形成してオフセット電圧を低下させるAlGaAs層を、前記InGaAsコレクタ層と前記InGaAsベース層との間に更に有するInGaP/InGaAs系のヘテロ接合バイポーラトランジスタである。
【0011】
請求項2の発明は、請求項1に記載の構成に加え、In組成傾斜InGaAsバッファ層、InGaAsサブコレクタ層、InGaAsコレクタ層、InGaAsベース層及びInGaAsエミッタコンタクト層In混晶比が0.2以下であるのが好ましい。
【0013】
請求項の発明は、請求項1又は2に記載の構成に加え、In組成傾斜InGaAsバッファ層、InGaAsサブコレクタ層、InGaAsコレクタ層、InGaAsベース層、InGaPエミッタ層、InGaAsエミッタコンタクト層、及びInGaAsノンアロイコンタクト層を有機金属気相成長法により形成したものであるのが好ましい。
【0014】
本発明の参考例によれば、InGaP/InGaAs系のヘテロ接合バイポーラトランジスタにおいて、コレクタ層とベース層との間にInGaP層を有するので、ヘテロ障壁がコレクタ層とベース層との間に形成されてオフセット電圧が低下する。また、上記参考例によれば、コレクタ層に挿入されるInGaP層のIn混晶比を0.52〜0.60の範囲内にあるとすることにより、InGaAsベースと格子整合させることができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態の参考となる参考例を添付図面に基づいて詳述する。
【0016】
図1は本発明のヘテロ接合バイポーラトランジスタに用いられるエピタキシャルウェハの一実施の形態を示す構造図である。
【0017】
同図に示すエピタキシャルウェハは、GaAs基板1上に、In組成傾斜InGaAsバッファ層2、InGaAsサブコレクタ層3、InGaAsコレクタ層4、InGaPコレクタ層10、InGaAsベース層5、InGaPエミッタ層6、InGaAsエミッタコンタクト層7及びInGaAsノンアロイ層8を順次形成したものである。
【0018】
このような構造を有するHBTは、メタモルフィックHBTエピタキシャルウェハにおいて、InGaAsコレクタ層4の一部にInGaP層10を設けることによって、オフセット電圧を減少させるものである。
【0019】
HBTにおいて、ベース層5とエミッタ層6との間及びベース層5とコレクタ層4との間の伝導帯のエネルギーの不連続量をそれぞれΔEc1、ΔEc2とすると、ΔEc1とΔEc2との差がオフセット電圧の原因である。従って、コレクタ層4のベース層との界面近傍の一部をInGaPコレクタ層10とし、ベース層5とコレクタ層4間にもヘテロ障壁を設けることによってオフセット電圧を低下させることができる。
【0020】
InGaAsベース層5に格子整合させるため、コレクタ層4に挿入するInGaP層10のIn混晶比は0.52〜0.60の範囲内にあるのが好ましい。
【0021】
HBTのコレクタ層のベース界面近傍を一部InGaPとし、ベース層とコレクタ層との間にもヘテロ障壁を設けることによってオフセット電圧を低下させることができる。
【0022】
図2に示した構造を有するHBTと図1に示した構造を有するHBTとのオフセット電圧を比較したところ、図2に示した従来の構造のHBTのオフセット電圧が115mV〜120mVの間であったのに対し、図1に示した本発明の構造のHBTのオフセット電圧が95mV〜100mVと低い値であった。
【0023】
参考例では、コレクタ層に挿入されるワイドバンドギャップ材料がInGaPの場合で説明したが、本発明では、ワイドバンドギャップ材料がInGaPではなく、GaAsとの格子整合が可能なAlGaAsである。
【0024】
【発明の効果】
以上要するに本発明によれば、オフセット電圧を低下させたヘテロ接合バイポーラトランジスタの提供を実現することができる。
【図面の簡単な説明】
【図1】 本発明のヘテロ接合バイポーラトランジスタに用いられるエピタキシャルウェハの参考例を示す構造図である。
【図2】 従来のヘテロ接合バイポーラトランジスタに用いられるエピタキシャルウェハの構造図である。
【符号の説明】
1 GaAs基板
2 In組成傾斜InGaAsバッファ層
3 InGaAsサブコレクタ層
4 InGaAsコレクタ層
5 InGaAsベース層
6 InGaPエミッタ層
7 InGaAsエミッタコンタクト層
8 InGaAsノンアロイ層
10 InGaPコレクタ層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to heterojunction bipolar transistors.
[0002]
[Prior art]
A heterojunction bipolar transistor (hereinafter referred to as “HBT”) using a group III-V compound semiconductor is an InGaP / GaAs HBT using InGaP, which is a wide bandgap semiconductor, as the emitter and GaAs in each layer other than the emitter. It has been developed (for example, see Patent Document 1).
[0003]
In this InGaP / GaAs HBT, if InGaAs is used for the base layer and collector layer of the HBT, InGaAs has high electron mobility, which is advantageous for high-speed operation. Moreover, since InGaAs has a smaller energy gap than GaAs, the turn-on voltage can be lowered.
[0004]
Since InGaAs has a lattice constant different from that of GaAs, the In mixed crystal ratio is preferably 0.2 or less for high-speed operation and low turn-on voltage. Further, a metamorphic HBT epitaxial wafer provided with a graded layer in which the mixed crystal ratio of each composition of In, Ga, and As shown in FIG. 2 is gradually changed from GaAs to InGaAs is produced.
[0005]
FIG. 2 is a structural diagram of an epitaxial wafer used in a conventional heterojunction bipolar transistor.
[0006]
The metamorphic HBT epitaxial wafer shown in FIG. 1 includes an In composition gradient InGaAs buffer layer 2, an InGaAs subcollector layer 3, an InGaAs collector layer 4, an InGaAs base layer 5, an InGaP emitter layer 6, and an InGaAs emitter contact layer on a GaAs substrate 1. 7 and an InGaAs non-alloy layer 8 are sequentially formed (see, for example, Japanese Patent Application No. 2002-72359).
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-50630
[Problems to be solved by the invention]
The use of InGaAs for the base layer can reduce the turn-on voltage, which is the ON voltage of the device, which is a merit of the metamorphic HBT. On the other hand, in the HBT using the conventional metamorphic HBT epitaxial wafer, the offset voltage is used. (The collector-emitter voltage when the collector current is zero) was high. Since the offset voltage is the lower limit voltage of the device, a lower one is desirable.
[0009]
Accordingly, an object of the present invention is to provide an InGaP / InGaAs heterojunction bipolar transistor in which the above-described problems are solved and the offset voltage is lowered.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, an In composition gradient InGaAs buffer layer, an InGaAs subcollector layer, an InGaAs collector layer, an InGaAs base layer, an InGaP emitter layer, an InGaAs emitter contact layer, And an InGaAs non-alloy contact layer, an AlGaAs layer that forms a hetero-barrier between the InGaAs collector layer and the InGaAs base layer to reduce an offset voltage, an InGaAs collector layer, and the InGaAs base layer. It is an InGaP / InGaAs heterojunction bipolar transistor further provided between the layers.
[0011]
In the invention of claim 2, in addition to the structure of claim 1, the In mixed crystal ratio of the In composition gradient InGaAs buffer layer, InGaAs subcollector layer, InGaAs collector layer, InGaAs base layer , and InGaAs emitter contact layer is 0. 2 or less is preferable.
[0013]
According to a third aspect of the present invention, in addition to the configuration of the first or second aspect , an In composition gradient InGaAs buffer layer, an InGaAs subcollector layer, an InGaAs collector layer, an InGaAs base layer, an InGaP emitter layer, an InGaAs emitter contact layer, and an InGaAs The non-alloy contact layer is preferably formed by metal organic vapor phase epitaxy.
[0014]
According to the reference example of the present invention, an InGaP / InGaAs heterojunction bipolar transistor has an InGaP layer between a collector layer and a base layer, so that a hetero barrier is formed between the collector layer and the base layer. The offset voltage decreases. Further, according to the above reference example , lattice matching with the InGaAs base can be achieved by setting the In mixed crystal ratio of the InGaP layer inserted in the collector layer within the range of 0.52 to 0.60.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a reference example serving as a reference for the embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0016]
FIG. 1 is a structural diagram showing an embodiment of an epitaxial wafer used in the heterojunction bipolar transistor of the present invention.
[0017]
The epitaxial wafer shown in FIG. 1 includes an In composition gradient InGaAs buffer layer 2, an InGaAs subcollector layer 3, an InGaAs collector layer 4, an InGaP collector layer 10, an InGaAs base layer 5, an InGaP emitter layer 6, and an InGaAs emitter on a GaAs substrate 1. A contact layer 7 and an InGaAs non-alloy layer 8 are sequentially formed.
[0018]
The HBT having such a structure reduces the offset voltage by providing the InGaP layer 10 on a part of the InGaAs collector layer 4 in the metamorphic HBT epitaxial wafer.
[0019]
In the HBT, when the energy discontinuities between the base layer 5 and the emitter layer 6 and between the base layer 5 and the collector layer 4 are ΔEc1 and ΔEc2, respectively, the difference between ΔEc1 and ΔEc2 is the offset voltage. Is the cause. Therefore, the offset voltage can be reduced by providing a part of the collector layer 4 in the vicinity of the interface with the base layer as the InGaP collector layer 10 and also providing a hetero barrier between the base layer 5 and the collector layer 4.
[0020]
In order to lattice match with the InGaAs base layer 5, the In mixed crystal ratio of the InGaP layer 10 inserted into the collector layer 4 is preferably in the range of 0.52 to 0.60.
[0021]
The offset voltage can be reduced by partially forming InGaP near the base interface of the collector layer of the HBT and providing a hetero barrier between the base layer and the collector layer.
[0022]
When comparing the offset voltage between the HBT having the structure shown in FIG. 2 and the HBT having the structure shown in FIG. 1, the offset voltage of the HBT having the conventional structure shown in FIG. 2 was between 115 mV and 120 mV. On the other hand, the offset voltage of the HBT having the structure of the present invention shown in FIG. 1 was as low as 95 mV to 100 mV.
[0023]
In the reference example , the case where the wide band gap material inserted into the collector layer is InGaP has been described. However, in the present invention, the wide band gap material is not InGaP but AlGaAs capable of lattice matching with GaAs.
[0024]
【The invention's effect】
In short, according to the present invention, it is possible to provide a heterojunction bipolar transistor with a reduced offset voltage.
[Brief description of the drawings]
FIG. 1 is a structural diagram showing a reference example of an epitaxial wafer used in a heterojunction bipolar transistor of the present invention.
FIG. 2 is a structural diagram of an epitaxial wafer used in a conventional heterojunction bipolar transistor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 GaAs substrate 2 In composition gradient InGaAs buffer layer 3 InGaAs subcollector layer 4 InGaAs collector layer 5 InGaAs base layer 6 InGaP emitter layer 7 InGaAs emitter contact layer 8 InGaAs non-alloy layer 10 InGaP collector layer

Claims (3)

GaAs基板側から順に、In組成傾斜InGaAsバッファ層、InGaAsサブコレクタ層、InGaAsコレクタ層、InGaAsベース層、InGaPエミッタ層、InGaAsエミッタコンタクト層、及びInGaAsノンアロイコンタクト層を形成した積層構造を備え、
前記InGaAsコレクタ層と前記InGaAsベース層との間にヘテロ障壁を形成してオフセット電圧を低下させるAlGaAs層を、前記InGaAsコレクタ層と前記InGaAsベース層との間に更に有することを特徴とするInGaP/InGaAs系のヘテロ接合バイポーラトランジスタ。
In order from the GaAs substrate side, an In composition gradient InGaAs buffer layer, an InGaAs subcollector layer, an InGaAs collector layer, an InGaAs base layer, an InGaP emitter layer, an InGaAs emitter contact layer, and an InGaAs non-alloy contact layer are provided.
InGaP /, further comprising an AlGaAs layer between the InGaAs collector layer and the InGaAs base layer for forming a hetero barrier between the InGaAs collector layer and the InGaAs base layer to reduce an offset voltage. InGaAs heterojunction bipolar transistor.
前記In組成傾斜InGaAsバッファ層、前記InGaAsサブコレクタ層、前記InGaAsコレクタ層、前記InGaAsベース層、及び前記InGaAsエミッタコンタクト層のIn混晶比が0.2以下である請求項1に記載のInGaP/InGaAs系のヘテロ接合バイポーラトランジスタ。2. The InGaP / P1 according to claim 1, wherein an In mixed crystal ratio of the In composition gradient InGaAs buffer layer, the InGaAs subcollector layer, the InGaAs collector layer, the InGaAs base layer, and the InGaAs emitter contact layer is 0.2 or less. InGaAs heterojunction bipolar transistor. 前記In組成傾斜InGaAsバッファ層、前記InGaAsサブコレクタ層、前記InGaAsコレクタ層、前記InGaAsベース層、前記InGaPエミッタ層、前記InGaAsエミッタコンタクト層、及び前記InGaAsノンアロイコンタクト層を有機金属気相成長法により形成した請求項1又は2に記載のInGaP/InGaAs系のヘテロ接合バイポーラトランジスタ。The In composition gradient InGaAs buffer layer, the InGaAs subcollector layer, the InGaAs collector layer, the InGaAs base layer, the InGaP emitter layer, the InGaAs emitter contact layer, and the InGaAs non-alloy contact layer are formed by metal organic vapor phase epitaxy. The InGaP / InGaAs heterojunction bipolar transistor according to claim 1 or 2 formed.
JP2003011155A 2003-01-20 2003-01-20 InGaP / InGaAs heterojunction bipolar transistor Expired - Fee Related JP4222033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003011155A JP4222033B2 (en) 2003-01-20 2003-01-20 InGaP / InGaAs heterojunction bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003011155A JP4222033B2 (en) 2003-01-20 2003-01-20 InGaP / InGaAs heterojunction bipolar transistor

Publications (2)

Publication Number Publication Date
JP2004228137A JP2004228137A (en) 2004-08-12
JP4222033B2 true JP4222033B2 (en) 2009-02-12

Family

ID=32900139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003011155A Expired - Fee Related JP4222033B2 (en) 2003-01-20 2003-01-20 InGaP / InGaAs heterojunction bipolar transistor

Country Status (1)

Country Link
JP (1) JP4222033B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335586A (en) * 2006-06-14 2007-12-27 Sony Corp Semiconductor integrated circuit device and its manufacturing method
CN113130638A (en) * 2020-01-14 2021-07-16 全新光电科技股份有限公司 High robustness heterojunction bipolar transistor

Also Published As

Publication number Publication date
JP2004228137A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
JP3594482B2 (en) Heterojunction bipolar transistor
JPH10144910A (en) Hot electron device and resonance tunneling hot electron device
Cutaia et al. Vertical InAs-Si gate-all-around tunnel FETs integrated on Si using selective epitaxy in nanotube templates
Hafizi et al. The effects of base dopant diffusion on DC and RF characteristics of InGaAs/InAlAs heterojunction bipolar transistors
Wu et al. Small offset-voltage In/sub 0.49/Ga/sub 0.51/P/GaAs double-barrier bipolar transistor
US5381027A (en) Semiconductor device having a heterojunction and a two dimensional gas as an active layer
EP1583154B1 (en) P-type nitride semiconductor structure and bipolar transistor
JP4222033B2 (en) InGaP / InGaAs heterojunction bipolar transistor
US5258631A (en) Semiconductor device having a two-dimensional electron gas as an active layer
JPH0658917B2 (en) Bipolar transistor and manufacturing method thereof
JP2002359249A (en) Compound semiconductor device and manufacturing method therefor
JP3255973B2 (en) Semiconductor device
JP2980630B2 (en) Compound semiconductor device
JP3077670B2 (en) Heterojunction field effect transistor
JPS61150372A (en) Semiconductor device
JP2004273891A (en) Heterojunction bipolar transistor
JP3141841B2 (en) Heterojunction field effect transistor
Yi et al. The effect of strained Al 0.7 In 0.3 As emitter layers on abrupt Np+ AllnAs-GaInAs heterojunction diodes and heterojunction bipolar transistors
Liu et al. High-Gain Arsenic-Rich npn InP/GaAsSb DHBTs With $ F_ {T}≫\hbox {420}\\hbox {GHz} $
JP2004193406A (en) Hetero-junction bipolar transistor
JP2001203216A (en) Semiconductor epitaxial wafer
JPH02271534A (en) Heterojunction bipolar transistor
JP2001156078A (en) Hetero-junction bipolar transistor
Tsai High performances of InP/InGaAs heterojunction bipolar transistors with a δ-doped sheet between two spacer layers
Zeng et al. Effects of arsenic mole fraction x on the gain characteristics of type-II InP/GaAsxSb1− x DHBTs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees