JP4212439B2 - How to use lithium secondary battery - Google Patents

How to use lithium secondary battery Download PDF

Info

Publication number
JP4212439B2
JP4212439B2 JP2003320661A JP2003320661A JP4212439B2 JP 4212439 B2 JP4212439 B2 JP 4212439B2 JP 2003320661 A JP2003320661 A JP 2003320661A JP 2003320661 A JP2003320661 A JP 2003320661A JP 4212439 B2 JP4212439 B2 JP 4212439B2
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
electrode
active material
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003320661A
Other languages
Japanese (ja)
Other versions
JP2005093084A (en
Inventor
宜之 田村
和之 佐藤
丸男 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003320661A priority Critical patent/JP4212439B2/en
Publication of JP2005093084A publication Critical patent/JP2005093084A/en
Application granted granted Critical
Publication of JP4212439B2 publication Critical patent/JP4212439B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、シリコンを含む活物質層を集電体上に設けた電極を負極として用いたリチウム二次電池の使用方法及びリチウム二次電池に関するものである。   The present invention relates to a method for using a lithium secondary battery using an electrode in which an active material layer containing silicon is provided on a current collector as a negative electrode, and a lithium secondary battery.

シリコンは、リチウムを合金化することにより吸蔵することができる材料であり、その理論容量が大きいことから高エネルギー密度化が図れるリチウム二次電池の電極材料として注目されている。しかしながら、シリコンを活物質として用いた電極は、サイクル特性において黒鉛などの炭素材料に比べて劣るという問題があった。この原因の1つとして、充放電における活物質の膨張収縮が大きいため、その際に生じる応力により活物質が微粉化したり、あるいは活物質が集電体から脱離するなどにより、集電性が低下することが考えられる。   Silicon is a material that can be occluded by alloying lithium, and because of its large theoretical capacity, silicon is attracting attention as an electrode material for lithium secondary batteries that can achieve high energy density. However, an electrode using silicon as an active material has a problem that the cycle characteristics are inferior to a carbon material such as graphite. One of the causes is that the active material expands and contracts during charge and discharge, and the active material is pulverized due to the stress generated at that time, or the active material is detached from the current collector. It is thought that it falls.

本出願人は、非晶質シリコン薄膜などを銅箔などの集電体上に堆積して形成した電極が、充放電によって薄膜の厚み方向に切れ目が形成され、この切れ目によって薄膜が柱状に分離することにより、良好なサイクル特性を示すことを見出した(特許文献1など)。   The applicant has formed an electrode formed by depositing an amorphous silicon thin film on a current collector such as a copper foil, and a cut is formed in the thickness direction of the thin film by charging and discharging, and the thin film is separated into a columnar shape by this cut. As a result, it has been found that good cycle characteristics are exhibited (Patent Document 1, etc.).

しかしながら、上記電極の良好なサイクル特性をさらに高めることができる充放電条件の詳細に関しては、未だ提案されていない。
国際公開第01/31720号パンフレット
However, details of the charge / discharge conditions that can further improve the good cycle characteristics of the electrode have not yet been proposed.
International Publication No. 01/31720 Pamphlet

本発明の目的は、シリコンを含む活物質層を集電体上に設けた電極を負極として用いたリチウム二次電池の使用方法において、サイクル特性を高めることができる使用方法を提供することにある。   An object of the present invention is to provide a usage method capable of improving cycle characteristics in a usage method of a lithium secondary battery using an electrode in which an active material layer containing silicon is provided on a current collector as a negative electrode. .

本発明は、リチウムと合金化しない金属からなる集電体の上に、シリコンを含む活物質層を設けた電極を負極として用いたリチウム二次電池の使用方法であり、初回の充電時を除き、負極の電位が0.8V(vs.Li/Li+)以下である範囲で充放電することを特徴としている。 The present invention is a method for using a lithium secondary battery using an electrode provided with an active material layer containing silicon on a current collector made of a metal that is not alloyed with lithium as a negative electrode, except during the first charge. In addition, charging and discharging are performed in a range where the potential of the negative electrode is 0.8 V (vs. Li / Li + ) or less.

本発明に従い、負極の電位が0.8V(vs.Li/Li+)以下である範囲で充放電することにより、サイクル特性を向上させることができる。 According to the present invention, cycle characteristics can be improved by charging and discharging in a range where the potential of the negative electrode is 0.8 V (vs. Li / Li + ) or less.

本発明において、「初回の充電時を除き」とは、初回の充電を開始する際においては、負極の電位が0.8V(vs.Li/Li+)より高い値であってもよいことを意味している。 In the present invention, “except at the first charge” means that the potential of the negative electrode may be higher than 0.8 V (vs. Li / Li + ) when starting the first charge. I mean.

本発明のさらに限定された局面は、リチウムを合金化しない金属からなる集電体の上に、非晶質シリコン薄膜を堆積して設けた電極を負極として用いたリチウム二次電池の使用方法であり、初回の充電時を除き、負極の電位が0.8V(vs.Li/Li+)以下である範囲で充放電することを特徴としている。 A further limited aspect of the present invention is a method of using a lithium secondary battery in which an electrode provided by depositing an amorphous silicon thin film on a current collector made of a metal that does not alloy lithium is used as a negative electrode. In addition, except for the first charge, charging and discharging are performed in a range where the potential of the negative electrode is 0.8 V (vs. Li / Li + ) or less.

上記局面に従い、負極の電位が0.8V(vs.Li/Li+)以下である範囲で充放電することにより、サイクル特性を向上させることができる。 In accordance with the above aspect, cycle characteristics can be improved by charging and discharging in a range where the potential of the negative electrode is 0.8 V (vs. Li / Li + ) or less.

本発明においては、負極の電位が0.8V(vs.Li/Li+)以下である範囲で充放電することにより、サイクル特性を高めている。0.8V(vs.Li/Li+)を超えて充放電を行うと、活物質の構造変化がより大きくなり、活物質の劣化が促進されるため、サイクル特性が悪くなる。すなわち、放電末期において特に活物質の変化の度合いが大きくなり、また放電末期において電解液との反応による被膜が形成され、この被膜の形成がサイクル特性に悪影響を及ぼしているものと考えられる。本発明においては、負極の電位が0.7V(vs.Li/Li+)以下の範囲で充放電が行われることがさらに好ましい。 In the present invention, cycle characteristics are enhanced by charging and discharging in the range where the potential of the negative electrode is 0.8 V (vs. Li / Li + ) or less. When charging / discharging is performed at a voltage exceeding 0.8 V (vs. Li / Li + ), the structural change of the active material is further increased, and the deterioration of the active material is promoted, resulting in poor cycle characteristics. That is, the degree of change of the active material is particularly large at the end of discharge, and a film is formed by reaction with the electrolytic solution at the end of discharge, and this formation of the film is considered to have an adverse effect on the cycle characteristics. In the present invention, it is more preferable that charging / discharging is performed in a range where the potential of the negative electrode is 0.7 V (vs. Li / Li + ) or less.

負極の電位は、放電の際に上昇する。従って、負極の放電終止電位を0.8V(vs.Li/Li+)以下とすることにより、本発明に従う充放電を行うことができる。 The potential of the negative electrode rises during discharge. Therefore, charging / discharging according to the present invention can be performed by setting the discharge end potential of the negative electrode to 0.8 V (vs. Li / Li + ) or less.

本発明において、シリコンを含む活物質層は、例えば、シリコンを薄膜状に堆積して形成された層である。薄膜の形成方法としては、CVD法、スパッタリング法、真空蒸着法、及び溶射法などが挙げられる。また、本発明においてシリコンを含む活物質層は、シリコン粒子とバインダーを含むスラリーを集電体上に塗布することにより形成された層であってもよい。すなわち、活物質層は、シリコン粒子とバインダーから形成された層であってもよい。シリコンを含む合金としては、例えば、Si−Cu、Si−Coなどが挙げられる。   In the present invention, the active material layer containing silicon is, for example, a layer formed by depositing silicon in a thin film shape. Examples of the method for forming a thin film include a CVD method, a sputtering method, a vacuum evaporation method, and a thermal spraying method. In the present invention, the active material layer containing silicon may be a layer formed by applying a slurry containing silicon particles and a binder onto a current collector. That is, the active material layer may be a layer formed of silicon particles and a binder. Examples of the alloy containing silicon include Si—Cu and Si—Co.

本発明において、集電体は、リチウムと合金化しない金属から形成される。このような金属としては、銅、ニッケル、鉄、チタン、コバルト、モリブデン、タングステン、タンタル等の金属及びこれらの合金などが挙げられ、特に好ましくは、銅、銅合金が用いられる。また活物質層を設ける面に凹凸が形成されている集電体が好ましく用いられる。このような観点からは、電解銅箔及び電解銅合金箔などが好ましく用いられる。   In the present invention, the current collector is formed from a metal that does not alloy with lithium. Examples of such metals include metals such as copper, nickel, iron, titanium, cobalt, molybdenum, tungsten, and tantalum, and alloys thereof, and copper, copper alloys are particularly preferably used. Further, a current collector in which irregularities are formed on the surface on which the active material layer is provided is preferably used. From such a viewpoint, electrolytic copper foil, electrolytic copper alloy foil, and the like are preferably used.

本発明において、活物質層がシリコン薄膜である場合には、その厚み方向に形成された切れ目によって柱状にシリコン薄膜が分離されており、該柱状部分の底部が集電体と密着していることが好ましい。このような柱状構造を有することにより、柱状部分の周囲に形成された隙間によって、充放電反応の際の薄膜の体積の膨張・収縮を吸収することができ、体積膨張によって生じる応力を緩和させることができる。このため、活物質の微粉化や集電体からの脱離を防止することができ、サイクル特性を高めることができる。   In the present invention, when the active material layer is a silicon thin film, the silicon thin film is separated in a columnar shape by a cut formed in the thickness direction, and the bottom of the columnar portion is in close contact with the current collector. Is preferred. By having such a columnar structure, the gap formed around the columnar part can absorb the expansion and contraction of the volume of the thin film during the charge / discharge reaction, and relieve the stress caused by the volume expansion. Can do. For this reason, pulverization of the active material and desorption from the current collector can be prevented, and cycle characteristics can be improved.

集電体の表面には、上述のように凹凸が形成されていることが好ましい。薄膜が形成されている面に凹凸を設けることにより、初回以降の充放電によって活物質薄膜が柱状に分離され、上記の柱状構造が形成される。集電体表面の表面粗さRaは、0.01〜2μm程度であることが好ましく、さらに好ましくは、0.1〜2μm程度である。表面粗さRaは、日本工業規格(JIS B 0601−1994)に定められている。例えば、表面粗さ計により表面粗さを測定することができる。   The surface of the current collector is preferably formed with irregularities as described above. By providing irregularities on the surface on which the thin film is formed, the active material thin film is separated into columns by charge and discharge after the first time, and the columnar structure is formed. The surface roughness Ra of the current collector surface is preferably about 0.01 to 2 μm, and more preferably about 0.1 to 2 μm. The surface roughness Ra is defined in Japanese Industrial Standard (JIS B 0601-1994). For example, the surface roughness can be measured with a surface roughness meter.

本発明のリチウム二次電池の正極活物質としては、リチウム二次電池の正極活物質として用いることができるものであれば特に限定されるものではなく、例えば、従来より正極活物質として用いられているLiCoO2、LiNiO2、LiMn24、LiMnO2、LiCo0.5Ni0.52、LiNi0.7Co0.2Mn0.12などのリチウム含有遷移金属酸化物や、MnO2などのリチウムを含有していない金属酸化物が例示される。また、この他にも、リチウムを電気化学的に挿入、脱離する物質であれば、制限なく用いることができる。 The positive electrode active material of the lithium secondary battery of the present invention is not particularly limited as long as it can be used as the positive electrode active material of a lithium secondary battery. For example, it has been conventionally used as a positive electrode active material. Does not contain lithium-containing transition metal oxides such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co 0.2 Mn 0.1 O 2 or lithium such as MnO 2 Metal oxide is exemplified. In addition, any substance that electrochemically inserts and desorbs lithium can be used without limitation.

本発明のリチウム二次電池に用いる非水電解質の溶媒は、特に限定されるものではないが、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネートと、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの鎖状カーボネートとの混合溶媒が例示される。また、上記環状カーボネートと1,2−ジメトキシエタン、1,2−ジエトキシエタンなどのエーテル系溶媒との混合溶媒も例示される。また、非水電解質の溶質としては、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO2)2、LiN(C25SO2)2、LiN(CF3SO2)(C49SO2)、LiC(CF3SO2)3、LiC(C25SO2)3、LiAsF6、LiClO4、Li210Cl10、Li212Cl12など及びそれらの混合物が例示される。さらに電解質として、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、LiI、Li3Nなどの無機固体電解質が例示される。 The solvent of the non-aqueous electrolyte used in the lithium secondary battery of the present invention is not particularly limited, but cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl A mixed solvent with a chain carbonate such as carbonate is exemplified. Further, mixed solvents of the above cyclic carbonate and ether solvents such as 1,2-dimethoxyethane and 1,2-diethoxyethane are also exemplified. The solutes of the nonaqueous electrolyte include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiAsF 6, LiClO 4, Li 2 B 10 Cl 10, Li 2 B 12 Cl 12 and the like and their Mixtures are exemplified. Further, examples of the electrolyte include gel polymer electrolytes in which a polymer electrolyte such as polyethylene oxide and polyacrylonitrile is impregnated with an electrolytic solution, and inorganic solid electrolytes such as LiI and Li 3 N.

本発明によれば、シリコンを含む活物質層を集電体上に設けた電極を負極として用いたリチウム二次電池のサイクル特性を高めることができる。   ADVANTAGE OF THE INVENTION According to this invention, the cycling characteristics of the lithium secondary battery using the electrode which provided the active material layer containing silicon on the electrical power collector as a negative electrode can be improved.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples, and can be implemented with appropriate modifications within a range not changing the gist thereof. Is.

〔電極の作製〕
圧延銅箔(厚み25μm)の表面に電解法で銅を析出することにより、表面に凹凸を形成した銅箔(厚み30μm、表面粗さRa=0.2μm)を集電体として用いた。この集電体の上に、厚み3.5μmの非晶質シリコン薄膜を堆積し、電極を作製した。スパッタリングの条件は、直流パルス周波数:100kHz、直流パルス幅:1856ns、直流パルス電力:2000W、アルゴン流量:60sccm、ガス圧力:2〜2.5×10-1Pa、形成時間:105分とした。なお、ここでは、スパッタリング用電力として直流パルスを供給しているが、直流や高周波でも同様の条件でスパッタリングすることが可能である。
[Production of electrodes]
A copper foil (thickness 30 μm, surface roughness Ra = 0.2 μm) having irregularities formed on the surface by depositing copper on the surface of the rolled copper foil (thickness 25 μm) was used as a current collector. An amorphous silicon thin film having a thickness of 3.5 μm was deposited on the current collector to produce an electrode. The sputtering conditions were as follows: DC pulse frequency: 100 kHz, DC pulse width: 1856 ns, DC pulse power: 2000 W, argon flow rate: 60 sccm, gas pressure: 2 to 2.5 × 10 −1 Pa, formation time: 105 minutes. Note that although a DC pulse is supplied as sputtering power here, sputtering can be performed under the same conditions even at DC or high frequency.

〔電解液の作製〕
エチレンカーボネートとジエチルカーボネートを体積比3:7で混合した溶媒に、LiPF6を1モル/リットルとなるように溶解させて、電解液を作製した。
(Preparation of electrolyte)
LiPF 6 was dissolved in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 so as to be 1 mol / liter to prepare an electrolytic solution.

〔小型ラミネートセルの作製〕
上記電極を2cm×2cmの大きさに切り取ったものを作用極として用い、小型ラミネートセルを作製した。参照極としてはリチウム金属を用い、対極としては、LiCoO2を用いた。対極は、作用極が0V(vs.Li/Li+)となるのに必要な容量に対し大過剰となる容量のLiCoO2をアルミニウム箔の上に塗布して作製したものを用いた。
[Production of small laminate cells]
A small laminate cell was prepared by using the electrode cut into a size of 2 cm × 2 cm as a working electrode. Lithium metal was used as the reference electrode, and LiCoO 2 was used as the counter electrode. The counter electrode was prepared by applying on the aluminum foil a large excess of LiCoO 2 with respect to the capacity necessary for the working electrode to be 0 V (vs. Li / Li + ).

電解液としては、上記電解液を用いた。   As the electrolytic solution, the above electrolytic solution was used.

〔サイクル試験〕
上記のようにして作製した小型ラミネートセルを、25℃にて、11mAで作用極(負極)の電位が0.07Vになるまで定電流充電を行い、さらにその電位を保持したまま0.6mAになるまで定電圧充電行った。その後、11mAで作用極が表1に示す所定の電位になるまで定電流放電を行い、これを1サイクルとして、100サイクル充放電を行った。なお、ここでは、作用極の還元を充電とし、作用極の酸化を放電としている。以下の式により、100サイクル目の容量維持率を算出し、表1に示した。
[Cycle test]
The small laminate cell produced as described above was charged at a constant current of 11 mA at 25 ° C. until the potential of the working electrode (negative electrode) reached 0.07 V, and further maintained at 0.6 mA while maintaining the potential. Constant voltage charging was performed until Then, constant current discharge was performed until the working electrode reached a predetermined potential shown in Table 1 at 11 mA, and this was defined as one cycle, and 100 cycles of charge / discharge were performed. Here, reduction of the working electrode is charging, and oxidation of the working electrode is discharging. The capacity retention rate at the 100th cycle was calculated according to the following formula and shown in Table 1.

100サイクル目の容量維持率(%)=(100サイクル目の放電容量)/(1サイクル目の放電容量)×100   Capacity maintenance ratio (%) at 100th cycle = (discharge capacity at 100th cycle) / (discharge capacity at the first cycle) × 100

表1に示す結果から明らかなように、負極の放電終止電位が0.8V(vs.Li/Li+)以下となるように充放電を行った実施例1及び2においては、比較例1〜3に比べ、サイクル特性が向上している。特に、放電終止電位を0.7V(vs.Li/Li+)以下とすることにより、さらにサイクル特性が向上する。 As is clear from the results shown in Table 1, in Examples 1 and 2 in which charging and discharging were performed so that the discharge end potential of the negative electrode was 0.8 V (vs. Li / Li + ) or less, Comparative Examples 1 and 2 Compared to 3, the cycle characteristics are improved. In particular, the cycle characteristics are further improved by setting the discharge end potential to 0.7 V (vs. Li / Li + ) or less.

100サイクル後の実施例1の電極及び比較例3の電極について、活物質薄膜の断面を電子顕微鏡(SEM)で観察した。図1(倍率20000)は実施例1の電極であり、図2(倍率20000)は比較例3の電極である。   About the electrode of Example 1 and the electrode of Comparative Example 3 after 100 cycles, the cross section of the active material thin film was observed with an electron microscope (SEM). 1 (magnification 20000) is the electrode of Example 1, and FIG. 2 (magnification 20000) is the electrode of Comparative Example 3.

図1及び図2に示すように、活物質薄膜の縦方向に切れ目が形成されていることがわかる。この切れ目は、シリコン薄膜が充放電反応により膨張・収縮することにより、その厚み方向に形成された切れ目である。この切れ目によりシリコン薄膜は柱状に分離されている。図1と図2の比較から明らかなように、図2に示す比較例3の電極においては、活物質である薄膜の表面に大きな凹凸が存在しており、薄膜の表面が荒れていることがわかる。これは、充放電反応によるシリコン薄膜の構造の変化が大きいことを示す。これに対し、図1に示す実施例1の電極では、このような薄膜表面の状態変化が認められない。   As shown in FIGS. 1 and 2, it can be seen that a cut is formed in the longitudinal direction of the active material thin film. This break is a break formed in the thickness direction by the silicon thin film expanding and contracting due to the charge / discharge reaction. The silicon thin film is separated into columns by the cuts. As is clear from the comparison between FIG. 1 and FIG. 2, in the electrode of Comparative Example 3 shown in FIG. 2, there are large irregularities on the surface of the thin film as the active material, and the surface of the thin film is rough. Recognize. This indicates that the change in the structure of the silicon thin film due to the charge / discharge reaction is large. On the other hand, in the electrode of Example 1 shown in FIG.

図3は、比較例3の1サイクル目の放電曲線を示す図である。図3から明らかなように、0.8V(vs.Li/Li+)以下の範囲で充放電を行っても、十分な充放電容量が得られることがわかる。 FIG. 3 is a diagram showing a discharge curve in the first cycle of Comparative Example 3. As is apparent from FIG. 3, it is understood that sufficient charge / discharge capacity can be obtained even when charge / discharge is performed in the range of 0.8 V (vs. Li / Li + ) or less.

従って、本発明によれば、充放電容量が高く、かつサイクル特性に優れたリチウム二次電池の充放電方法とすることができる。   Therefore, according to this invention, it can be set as the charging / discharging method of the lithium secondary battery which was high in charge / discharge capacity and excellent in cycling characteristics.

本発明に従う実施例1の電極の100サイクル後の活物質表面の状態を示す図。The figure which shows the state of the active material surface after 100 cycles of the electrode of Example 1 according to this invention. 比較例3の電極の100サイクル後の活物質表面の状態を示す図。The figure which shows the state of the active material surface after 100 cycles of the electrode of the comparative example 3. FIG. 比較例3の電極の1サイクル目の放電曲線を示す図。The figure which shows the discharge curve of the 1st cycle of the electrode of the comparative example 3.

Claims (7)

リチウムと合金化しない金属からなる集電体の上にシリコンを含む活物質層を設けた電極を負極として用いたリチウム二次電池の使用方法であって、
初回の充電時を除き、前記負極の電位が0.8V(vs.Li/Li+)以下である範囲で充放電することを特徴とするリチウム二次電池の使用方法。
A method for using a lithium secondary battery in which an electrode provided with an active material layer containing silicon on a current collector made of a metal that is not alloyed with lithium is used as a negative electrode,
A method for using a lithium secondary battery, wherein charging and discharging are performed in a range where the potential of the negative electrode is 0.8 V (vs. Li / Li + ) or less except during the first charge.
前記活物質層が、シリコン粒子とバインダーから形成された層であることを特徴とする請求項1に記載のリチウム二次電池の使用方法。   The method for using a lithium secondary battery according to claim 1, wherein the active material layer is a layer formed of silicon particles and a binder. 前記活物質層が、シリコンを薄膜状に堆積して形成された層であることを特徴とする請求項1に記載のリチウム二次電池の使用方法。   The method of using a lithium secondary battery according to claim 1, wherein the active material layer is a layer formed by depositing silicon in a thin film shape. リチウムと合金化しない金属からなる集電体の上に非晶質シリコン薄膜を堆積して設けた電極を負極として用いたリチウム二次電池の使用方法であって、
初回の充電時を除き、前記負極の電位が0.8V(vs.Li/Li+)以下である範囲で充放電することを特徴とするリチウム二次電池の使用方法。
A method for using a lithium secondary battery in which an electrode provided by depositing an amorphous silicon thin film on a current collector made of a metal not alloyed with lithium is used as a negative electrode,
A method for using a lithium secondary battery, wherein charging and discharging are performed in a range where the potential of the negative electrode is 0.8 V (vs. Li / Li + ) or less except during the first charge.
前記シリコン薄膜が、その厚み方向に形成された切れ目によって柱状に分離されており、該柱状部分の底部が前記集電体と密着していることを特徴とする請求項4に記載のリチウム二次電池の使用方法。   5. The lithium secondary according to claim 4, wherein the silicon thin film is separated in a columnar shape by a cut formed in a thickness direction thereof, and a bottom portion of the columnar portion is in close contact with the current collector. How to use the battery. 前記負極の電位が0.7V(vs.Li/Li+)以下である範囲で充放電することを特徴とする請求項1〜5のいずれか1項に記載のリチウム二次電池の使用方法。 6. The method for using a lithium secondary battery according to claim 1, wherein charging and discharging are performed in a range where the potential of the negative electrode is 0.7 V (vs. Li / Li + ) or less. 前記集電体が銅からなることを特徴とする請求項1〜6のいずれか1項に記載のリチウム二次電池の使用方法。
The method of using a lithium secondary battery according to claim 1, wherein the current collector is made of copper.
JP2003320661A 2003-09-12 2003-09-12 How to use lithium secondary battery Expired - Lifetime JP4212439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003320661A JP4212439B2 (en) 2003-09-12 2003-09-12 How to use lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003320661A JP4212439B2 (en) 2003-09-12 2003-09-12 How to use lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2005093084A JP2005093084A (en) 2005-04-07
JP4212439B2 true JP4212439B2 (en) 2009-01-21

Family

ID=34452552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003320661A Expired - Lifetime JP4212439B2 (en) 2003-09-12 2003-09-12 How to use lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4212439B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9123928B2 (en) 2011-05-27 2015-09-01 Nec Corporation Method for doping and dedoping lithium into and from negative electrode and method for producing negative electrode for lithium secondary battery
JP7019840B2 (en) 2019-01-17 2022-02-15 三菱電機株式会社 Semiconductor devices and methods for manufacturing semiconductor devices

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100709860B1 (en) 2005-07-22 2007-04-23 삼성에스디아이 주식회사 Electrode including si material layer and porous layer and the lithium battery employing the same
EP2267824B1 (en) 2008-04-18 2014-05-07 Kabushiki Kaisha Toyota Jidoshokki Negative electrode for lithium-ion secondary battery and manufacturing process for the same
CN103943821A (en) * 2013-01-18 2014-07-23 苏州宝时得电动工具有限公司 Negative electrode, battery with negative electrode and negative electrode manufacturing method
JP6955660B2 (en) * 2014-05-09 2021-10-27 ユニチカ株式会社 Power storage element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9123928B2 (en) 2011-05-27 2015-09-01 Nec Corporation Method for doping and dedoping lithium into and from negative electrode and method for producing negative electrode for lithium secondary battery
JP7019840B2 (en) 2019-01-17 2022-02-15 三菱電機株式会社 Semiconductor devices and methods for manufacturing semiconductor devices

Also Published As

Publication number Publication date
JP2005093084A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP5219339B2 (en) Lithium secondary battery
JP4201509B2 (en) Electrode for lithium secondary battery and lithium secondary battery
JP4212458B2 (en) Lithium secondary battery
JP2001283834A (en) Secondary battery
JP2001210315A (en) Electrode for lithium secondary battery and lithium secondary battery using it
JPWO2002058182A1 (en) Lithium secondary battery
WO2004114453A1 (en) Lithium secondary battery and method for producing same
JP4497899B2 (en) Lithium secondary battery
JP4895503B2 (en) Lithium secondary battery
JP3913438B2 (en) Lithium secondary battery
JP3670938B2 (en) Lithium secondary battery
WO2011065538A1 (en) Non-aqueous electrolyte rechargeable battery
JP2005235397A (en) Electrode for lithium battery, lithium battery using it, and lithium secondary battery
JP4104476B2 (en) Method of using lithium secondary battery and lithium secondary battery
JP2009081067A (en) Non-aqueous secondary battery
JP2001250559A (en) Lithium secondary cell
JP4212439B2 (en) How to use lithium secondary battery
JP4412885B2 (en) Lithium secondary battery
JP4775621B2 (en) Nonaqueous electrolyte secondary battery
JP4436624B2 (en) Lithium secondary battery
JP2007227239A (en) Anode for a lithium secondary battery and lithium secondary cell
JP4204281B2 (en) Nonaqueous electrolyte secondary battery
JP5116213B2 (en) Nonaqueous electrolyte secondary battery
JP2008210576A (en) Negative electrode plate for non-aqueous electrolyte secondary battery, and nonaqueous secondary battery using that negative electrode plate
JP4798957B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4212439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

EXPY Cancellation because of completion of term