JP2001210315A - Electrode for lithium secondary battery and lithium secondary battery using it - Google Patents

Electrode for lithium secondary battery and lithium secondary battery using it

Info

Publication number
JP2001210315A
JP2001210315A JP2000015295A JP2000015295A JP2001210315A JP 2001210315 A JP2001210315 A JP 2001210315A JP 2000015295 A JP2000015295 A JP 2000015295A JP 2000015295 A JP2000015295 A JP 2000015295A JP 2001210315 A JP2001210315 A JP 2001210315A
Authority
JP
Japan
Prior art keywords
thin film
silicon thin
electrode
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000015295A
Other languages
Japanese (ja)
Inventor
Masao Isomura
雅夫 磯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000015295A priority Critical patent/JP2001210315A/en
Publication of JP2001210315A publication Critical patent/JP2001210315A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain an electrode for a lithium secondary battery wherein charges are carried out by enhancing a current density, wherein charge and discharge capacities are high, and wherein discharge and charge cycle properties are superior. SOLUTION: Fine crystallite silicon thin film or amorphous silicon thin film containing at least one kind of impurity selected from phosphorus, oxygen and nitrogen is used as an active substance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムを吸蔵・
放出する活物質を含むリチウム二次電池用電極に関する
ものである。
TECHNICAL FIELD The present invention relates to a method for storing lithium.
The present invention relates to a lithium secondary battery electrode containing an active material to be released.

【0002】[0002]

【従来の技術】近年、研究開発が盛んに行われているリ
チウム二次電池は、用いられる電極により充放電電圧、
充放電サイクル寿命特性、保存特性などの電池特性が大
きく左右される。このことから、電極活物質を改善する
ことにより、電池特性の向上が図られている。
2. Description of the Related Art In recent years, a lithium secondary battery, which has been actively researched and developed, has a charge / discharge voltage,
Battery characteristics such as charge-discharge cycle life characteristics and storage characteristics are greatly affected. For this reason, the battery characteristics have been improved by improving the electrode active material.

【0003】負極活物質としてリチウム金属を用いる
と、重量当り及び体積当りともに高いエネルギー密度の
電池を構成することができるが、充電時にリチウムがデ
ンドライト状に析出し、内部短絡を引き起こすという問
題があった。
[0003] When lithium metal is used as the negative electrode active material, a battery having a high energy density per weight and per volume can be formed. However, there is a problem that lithium is deposited in a dendrite shape during charging and causes an internal short circuit. Was.

【0004】これに対し、充電の際に電気化学的にリチ
ウムと合金化するアルミニウム、シリコン、錫などを電
極として用いるリチウム二次電池が報告されている(So
lidState Ionics, 113-115, p57(1998))。これらのう
ち、特にシリコンは理論容量が大きく、高い容量を示す
電池用負極として有望であり、これを負極とする種々の
二次電池が提案されている(特開平10−255768
号公報)。しかしながら、この種の合金負極は、電極活
物質である合金自体が充放電により微粉化し集電特性が
悪化することから、十分なサイクル特性は得られていな
い。
On the other hand, there has been reported a lithium secondary battery using, as an electrode, aluminum, silicon, tin or the like which electrochemically alloys with lithium during charging (So).
lidState Ionics, 113-115, p57 (1998)). Among these, silicon is particularly promising as a battery negative electrode having a large theoretical capacity and a high capacity, and various secondary batteries using this as a negative electrode have been proposed (Japanese Patent Application Laid-Open No. 10-255768).
No.). However, in this type of alloy negative electrode, sufficient cycle characteristics have not been obtained because the alloy itself, which is an electrode active material, is pulverized by charging and discharging and the current collecting characteristics are deteriorated.

【0005】[0005]

【発明が解決しようとする課題】本出願人は、プラズマ
CVD法等により、銅箔等の金属箔上に形成したシリコ
ン薄膜をリチウム二次電池用負極として用いることによ
り、充放電容量が高く、かつ充放電サイクル特性に優れ
たリチウム二次電池とすることができることを見出した
(特願平11−301679号)。
SUMMARY OF THE INVENTION The present applicant uses a silicon thin film formed on a metal foil such as a copper foil by a plasma CVD method or the like as a negative electrode for a lithium secondary battery, thereby achieving a high charge / discharge capacity. It has been found that a lithium secondary battery having excellent charge / discharge cycle characteristics can be obtained (Japanese Patent Application No. 11-301679).

【0006】ところで、リチウム二次電池においては、
その他の二次電池と同様に、急速充電が可能であること
が望まれており、このため高い電流密度で充電できるこ
とが求められている。
By the way, in a lithium secondary battery,
Like other secondary batteries, it is desired that rapid charging is possible, and therefore it is required that the battery can be charged at a high current density.

【0007】本発明の目的は、高い電流密度で充電する
ことができ、かつ充放電容量が高く、充放電サイクル特
性に優れたリチウム二次電池用電極及びこれを用いたリ
チウム二次電池を提供することにある。
An object of the present invention is to provide a lithium secondary battery electrode which can be charged at a high current density, has a high charge / discharge capacity, and has excellent charge / discharge cycle characteristics, and a lithium secondary battery using the same. Is to do.

【0008】[0008]

【課題を解決するための手段】本発明のリチウム二次電
池用電極は、リチウムを吸蔵・放出する活物質を含むリ
チウム二次電池用電極であり、リン、酸素、及び窒素か
ら選ばれる少なくとも1種の不純物を含有する微結晶シ
リコン薄膜または非晶質シリコン薄膜を前記活物質とし
て用いたことを特徴としている。
The electrode for a lithium secondary battery according to the present invention is an electrode for a lithium secondary battery containing an active material for absorbing and releasing lithium, and at least one selected from phosphorus, oxygen and nitrogen. A microcrystalline silicon thin film or an amorphous silicon thin film containing various kinds of impurities is used as the active material.

【0009】微結晶シリコン薄膜は、ラマン分光分析に
おいて、結晶領域に対応する520cm-1近傍のピーク
と、非晶質領域に対応する480cm-1近傍のピークの
両方が実質的に検出されるシリコン薄膜である。また、
非晶質シリコン薄膜は、ラマン分光分析において、結晶
領域に対応する520cm-1近傍のピークが実質的に検
出されず、非晶質領域に対応する480cm-1近傍のピ
ークが実質的に検出されるシリコン薄膜である。
In a microcrystalline silicon thin film, in Raman spectroscopic analysis, both a peak near 520 cm -1 corresponding to a crystalline region and a peak near 480 cm -1 corresponding to an amorphous region are substantially detected. It is a thin film. Also,
In the amorphous silicon thin film, a peak near 520 cm -1 corresponding to a crystalline region is not substantially detected in Raman spectroscopy, and a peak near 480 cm -1 corresponding to an amorphous region is substantially detected. Silicon thin film.

【0010】本発明において、上記シリコン薄膜に含ま
れるリンの濃度は、1×1017〜1×1022cm-3であ
ることが好ましい。また、上記シリコン薄膜に含まれる
酸素の濃度は、1×1018〜1×1022cm-3であるこ
とが好ましい。また、上記シリコン薄膜に含まれる窒素
の濃度は、1×1018〜1×1022cm-3であることが
好ましい。なお、リン、酸素、及び窒素のシリコン薄膜
中の濃度は、二次イオン質量分析(SIMS)より測定
することができる。
In the present invention, the concentration of phosphorus contained in the silicon thin film is preferably 1 × 10 17 to 1 × 10 22 cm −3 . The concentration of oxygen contained in the silicon thin film is preferably 1 × 10 18 to 1 × 10 22 cm −3 . The concentration of nitrogen contained in the silicon thin film is preferably 1 × 10 18 to 1 × 10 22 cm −3 . Note that the concentrations of phosphorus, oxygen, and nitrogen in the silicon thin film can be measured by secondary ion mass spectrometry (SIMS).

【0011】本発明において、リン、酸素、及び窒素か
ら選ばれる少なくとも1種の不純物(ドーパント)は、
一般的な半導体薄膜への不純物のドーピングと同様の方
法によりシリコン薄膜中に含有させることができる。例
えば、シランガスなどのシリコン薄膜原料ガス中に不純
物の原料ガスを混合し、プラズマCVD法などのCVD
法によりシリコン薄膜を形成し、シリコン薄膜中に不純
物を含有させてもよい。また、シリコン薄膜形成後、イ
オン注入法などの方法により不純物を含有させてもよ
い。また、予め不純物を含有させたシリコンをターゲッ
トなどとして用いて、スパッタリング法などにより、不
純物を含有したシリコン薄膜を形成してもよい。
In the present invention, at least one impurity (dopant) selected from phosphorus, oxygen and nitrogen is:
It can be contained in a silicon thin film by a method similar to the method of doping an impurity into a general semiconductor thin film. For example, a raw material gas of an impurity is mixed with a raw material gas of a silicon thin film such as a silane gas, and a CVD method such as a plasma CVD method.
A silicon thin film may be formed by a method, and impurities may be contained in the silicon thin film. After the formation of the silicon thin film, impurities may be contained by a method such as an ion implantation method. Alternatively, a silicon thin film containing impurities may be formed by a sputtering method or the like using silicon containing impurities in advance as a target or the like.

【0012】本発明においては、微結晶シリコン薄膜ま
たは非晶質シリコン薄膜を集電体上に設けることが好ま
しい。シリコン薄膜を集電体上に設ける方法としては、
集電体を基板として用い、この上にCVD法、スパッタ
リング法、真空蒸着法などの薄膜形成方法によりシリコ
ン薄膜を形成する方法が挙げられる。集電体としては、
好ましくは銅箔などの金属箔が用いられる。銅箔として
は、圧延銅箔及び電解銅箔などを用いることができる。
集電体に対するシリコン薄膜の密着性を高める観点から
は、表面粗さRaの大きい銅箔である電解銅箔が好まし
く用いられる。
In the present invention, it is preferable to provide a microcrystalline silicon thin film or an amorphous silicon thin film on a current collector. As a method of providing a silicon thin film on a current collector,
There is a method in which a current collector is used as a substrate, and a silicon thin film is formed thereon by a thin film forming method such as a CVD method, a sputtering method, or a vacuum evaporation method. As a current collector,
Preferably, a metal foil such as a copper foil is used. As the copper foil, a rolled copper foil, an electrolytic copper foil, or the like can be used.
From the viewpoint of enhancing the adhesion of the silicon thin film to the current collector, an electrolytic copper foil which is a copper foil having a large surface roughness Ra is preferably used.

【0013】本発明のリチウム二次電池は、上記本発明
のリチウム二次電池用電極からなる負極と、正極と、非
水電解質とを備えるリチウム二次電池である。本発明の
リチウム二次電池に用いる電解質の溶媒は、特に限定さ
れるものではないが、エチレンカーボネート、プロピレ
ンカーボネート、ブチレンカーボネートなどの環状カー
ボネートと、ジメチルカーボネート、メチルエチルカー
ボネート、ジエチルカーボネートなどの鎖状カーボネー
トとの混合溶媒が例示される。また、前記環状カーボネ
ートと1,2−ジメトキシエタン、1,2−ジエトキシ
エタンなどのエーテル系溶媒との混合溶媒も例示され
る。また、電解質の溶質としては、LiPF6 、LiB
4 、LiCF3SO3 、LiN(CF3SO2)2 、Li
N(C25SO2)2 、LiN(CF3SO2)(C49SO
2)、LiC(CF3SO2)3 、LiC(C25SO2)3
など及びそれらの混合物が例示される。さらに電解質と
して、ポリエチレンオキシド、ポリアクリロニトリルな
どのポリマー電解質に電解液を含浸したゲル状ポリマー
電解質や、LiI、Li3Nなどの無機固体電解質が例
示される。本発明のリチウム二次電池の電解質は、イオ
ン導電性を発現させる溶媒としてのLi化合物とこれを
溶解・保持する溶媒が電池の充電時や放電時あるいは保
存時の電圧で分解しない限り、制約なく用いることがで
きる。
The lithium secondary battery of the present invention is a lithium secondary battery comprising a negative electrode comprising the above-mentioned electrode for a lithium secondary battery of the present invention, a positive electrode, and a non-aqueous electrolyte. Solvent of the electrolyte used in the lithium secondary battery of the present invention is not particularly limited, and cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate, and dimethyl carbonate, methyl ethyl carbonate, and a chain-like solvent such as diethyl carbonate. A mixed solvent with carbonate is exemplified. Further, a mixed solvent of the cyclic carbonate and an ether solvent such as 1,2-dimethoxyethane and 1,2-diethoxyethane is also exemplified. The solutes of the electrolyte include LiPF 6 , LiB
F 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , Li
N (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO
2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3
And mixtures thereof. Examples of the electrolyte further include a gel polymer electrolyte obtained by impregnating an electrolyte with a polymer electrolyte such as polyethylene oxide and polyacrylonitrile, and an inorganic solid electrolyte such as LiI and Li 3 N. The electrolyte of the lithium secondary battery of the present invention is not limited, as long as the Li compound as a solvent that develops ionic conductivity and the solvent that dissolves and retains the Li compound are not decomposed at the time of charging or discharging or storing the battery. Can be used.

【0014】本発明のリチウム二次電池の正極活物質と
しては、LiCoO2 、LiNiO 2 、LiMn
24 、LiMnO2 、LiCo0.5Ni0.52 、Li
Ni0.7Co 0.2Mn0.12 などのリチウム含有遷移金
属酸化物や、MnO2 などのリチウムを含有していない
金属酸化物が例示される。また、この他にも、リチウム
を電気化学的に挿入・脱離する物質であれば、制限なく
用いることができる。
The positive electrode active material of the lithium secondary battery of the present invention
Is LiCoOTwo, LiNiO Two, LiMn
TwoOFour, LiMnOTwo, LiCo0.5Ni0.5OTwo, Li
Ni0.7Co 0.2Mn0.1OTwoSuch as lithium-containing transition gold
Oxide or MnOTwoDoes not contain lithium
Metal oxides are exemplified. In addition to this, lithium
Any substance can be inserted or removed electrochemically
Can be used.

【0015】[0015]

【発明の実施の形態】以下、本発明を実施例に基づいて
さらに詳細に説明するが、本発明は下記の実施例の何ら
限定されるものではなく、その要旨を変更しない範囲に
おいて適宜変更して実施することが可能なものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and may be appropriately changed without departing from the gist thereof. It can be implemented by

【0016】〔電極の作製〕基板として電解銅箔(厚み
17μm)を用い、この銅箔の上にプラズマCVD法に
より微結晶シリコン薄膜を形成した。シリコン薄膜形成
の原料ガスとしては、シラン(SiH4 )ガスを用い、
キャリアガスとしては水素ガスを用いた。実施例1で
は、シランガスに対し0.1%のPH3ガスを混入し、
P(リン)ドープシリコン薄膜を形成した。実施例2で
は、シランガスに対し1%のN2ガスを混入し、N(窒
素)ドープシリコン薄膜を形成した。実施例3では、シ
ランガスに対し0.3%のCO2ガスを混入し、O(酸
素)ドープシリコン薄膜を形成した。薄膜形成条件は、
原料ガス流量:10sccm、キャリアガス流量:20
0sccm、基板温度:180℃、反応圧力:40P
a、高周波電力:555Wとした。比較例1では、シラ
ンガスに不純物の原料ガスを混入させずにノンドープシ
リコン薄膜を形成した。
[Preparation of Electrode] An electrolytic copper foil (thickness: 17 μm) was used as a substrate, and a microcrystalline silicon thin film was formed on the copper foil by a plasma CVD method. A silane (SiH 4 ) gas is used as a raw material gas for forming a silicon thin film.
Hydrogen gas was used as a carrier gas. In Example 1, 0.1% PH 3 gas was mixed with silane gas,
A P (phosphorus) doped silicon thin film was formed. In Example 2, an N (nitrogen) -doped silicon thin film was formed by mixing 1% of N 2 gas with respect to silane gas. In Example 3, 0.3% CO 2 gas was mixed with silane gas to form an O (oxygen) -doped silicon thin film. The conditions for forming the thin film are as follows:
Source gas flow rate: 10 sccm, carrier gas flow rate: 20
0 sccm, substrate temperature: 180 ° C, reaction pressure: 40P
a, High-frequency power: 555 W. In Comparative Example 1, a non-doped silicon thin film was formed without mixing an impurity source gas into a silane gas.

【0017】膜厚が2μmになるまで上記の条件で微結
晶シリコン薄膜を銅箔上に堆積させた。得られたシリコ
ン薄膜の伝導度を測定したところ、実施例1のPドープ
シリコン薄膜においては100cm-1Ω-1であり、実施
例2及び実施例3のNドープシリコン薄膜及びOドープ
シリコン薄膜においては10-4cm-1Ω-1であり、比較
例1のノンドープシリコン薄膜においては10-6cm-1
Ω-1以下であった。また、不純物含有量をSIMSによ
り測定したところ、実施例1〜3のいずれのシリコン薄
膜においても、不純物の含有率はシリコンに対し0.1
%であり、その濃度は5×1020cm-3であった。以上
のようにして微結晶シリコン薄膜を形成した各電解銅箔
を2cm×2cmの大きさに切り出し、実施例1〜3及
び比較例1の電極を作製した。
A microcrystalline silicon thin film was deposited on a copper foil under the above conditions until the film thickness became 2 μm. The conductivity of the resulting silicon thin film was measured, in the P-doped silicon thin film of Example 1 was 10 0 cm -1 Ω -1, N-doped silicon thin film and O-doped silicon of Example 2 and Example 3 It is 10 -4 cm -1 Ω -1 for the thin film, and 10 -6 cm -1 for the non-doped silicon thin film of Comparative Example 1.
Ω -1 or less. Further, when the impurity content was measured by SIMS, the content of the impurity was 0.1% relative to silicon in any of the silicon thin films of Examples 1 to 3.
%, And the concentration was 5 × 10 20 cm −3 . Each electrodeposited copper foil on which the microcrystalline silicon thin film was formed as described above was cut into a size of 2 cm × 2 cm, and electrodes of Examples 1 to 3 and Comparative Example 1 were produced.

【0018】〔充放電特性の測定〕上記で得られた実施
例1〜3及び比較例1の電極を作用極として用い、対極
及び参照極を金属リチウムとした試験セルを作製した。
電解液としては、エチレンカーボネートとジエチルカー
ボネートとの等体積混合溶媒に、LiPF6 を1モル/
リットル溶解したものを用いた。なお、単極の試験セル
では作用極の還元を充電とし、酸化を放電としている。
[Measurement of Charging / Discharging Characteristics] Using the electrodes obtained in Examples 1 to 3 and Comparative Example 1 as working electrodes, test cells were prepared in which the counter electrode and the reference electrode were metallic lithium.
As an electrolytic solution, LiPF 6 was added to an equal volume mixed solvent of ethylene carbonate and diethyl carbonate at 1 mol / mol.
One liter dissolved was used. In the case of a single-electrode test cell, reduction of the working electrode is defined as charging, and oxidation is defined as discharging.

【0019】上記各試験セルを、25℃にて、表1に示
す一定の電流密度で参照極を基準とする電位が0Vに達
するまで充電した後、2Vに達するまで放電を行った。
この1サイクル目の充電容量及び充放電効率を測定し、
その結果を表1に示した。
Each of the test cells was charged at 25 ° C. at a constant current density shown in Table 1 until the potential with respect to the reference electrode reached 0 V, and then discharged until the potential reached 2 V.
The charge capacity and charge / discharge efficiency of this first cycle were measured,
The results are shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】表1に示す結果から明らかなように、本発
明に従い、リン、酸素、または窒素の不純物を含有させ
た微結晶シリコン薄膜を活物質として用いた実施例1〜
3においては、充電電流密度を高くした場合にも、高い
充電容量が得られている。特に、リンをドープした実施
例1においては、良好な結果が得られている。
As is clear from the results shown in Table 1, Examples 1 to 4 using a microcrystalline silicon thin film containing an impurity of phosphorus, oxygen, or nitrogen as an active material according to the present invention.
In No. 3, a high charging capacity was obtained even when the charging current density was increased. In particular, in Example 1 doped with phosphorus, good results were obtained.

【0022】上記実施例では、微結晶シリコン薄膜を活
物質として用いているが、非晶質シリコン薄膜を活物質
として用いた場合にも同様の効果が得られることが確認
されている。
In the above embodiment, a microcrystalline silicon thin film is used as an active material. However, it has been confirmed that a similar effect can be obtained when an amorphous silicon thin film is used as an active material.

【0023】[0023]

【発明の効果】本発明によれば、高い電流密度で充電す
ることができ、かつ充放電容量が高く、充放電サイクル
特性に優れたリチウム二次電池とすることができる。
According to the present invention, a lithium secondary battery which can be charged at a high current density, has a high charge / discharge capacity, and has excellent charge / discharge cycle characteristics can be obtained.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵・放出する活物質を含む
リチウム二次電池用電極において、リン、酸素、及び窒
素から選ばれる少なくとも1種の不純物を含有する微結
晶シリコン薄膜または非晶質シリコン薄膜を前記活物質
として用いたことを特徴とするリチウム二次電池用電
極。
1. An electrode for a lithium secondary battery containing an active material for inserting and extracting lithium, wherein a microcrystalline silicon thin film or an amorphous silicon thin film containing at least one impurity selected from phosphorus, oxygen, and nitrogen. An electrode for a lithium secondary battery, characterized in that is used as the active material.
【請求項2】 前記微結晶シリコン薄膜または非晶質シ
リコン薄膜に含まれるリンの濃度が1×1017〜1×1
22cm-3であることを特徴とする請求項1に記載のリ
チウム二次電池用電極。
2. The method according to claim 1, wherein the concentration of phosphorus contained in the microcrystalline silicon thin film or the amorphous silicon thin film is 1 × 10 17 to 1 × 1.
The electrode for a lithium secondary battery according to claim 1, wherein the electrode has a thickness of 0 22 cm -3 .
【請求項3】 前記微結晶シリコン薄膜または非晶質シ
リコン薄膜に含まれる酸素の濃度が1×1018〜1×1
22cm-3であることを特徴とする請求項1または2に
記載のリチウム二次電池用電極。
3. The method according to claim 1, wherein the concentration of oxygen contained in the microcrystalline silicon thin film or the amorphous silicon thin film is 1 × 10 18 to 1 × 1.
The electrode for a lithium secondary battery according to claim 1, wherein the electrode has a thickness of 0 22 cm −3 .
【請求項4】 前記微結晶シリコン薄膜または非晶質シ
リコン薄膜に含まれる窒素の濃度が1×1018〜1×1
22cm-3であることを特徴とする請求項1〜3のいず
れか1項に記載のリチウム二次電池用電極。
4. The method according to claim 1, wherein the concentration of nitrogen contained in the microcrystalline silicon thin film or the amorphous silicon thin film is 1 × 10 18 to 1 × 1.
The electrode for a lithium secondary battery according to any one of claims 1 to 3, wherein the electrode has a diameter of 0 22 cm -3 .
【請求項5】 前記微結晶シリコン薄膜または非晶質シ
リコン薄膜が集電体上に設けられていることを特徴とす
る請求項1〜4のいずれか1項に記載のリチウム二次電
池用電極。
5. The electrode for a lithium secondary battery according to claim 1, wherein said microcrystalline silicon thin film or amorphous silicon thin film is provided on a current collector. .
【請求項6】 前記集電体が銅箔であることを特徴とす
る請求項5に記載のリチウム二次電池用電極。
6. The electrode for a lithium secondary battery according to claim 5, wherein the current collector is a copper foil.
【請求項7】 請求項1〜6のいずれか1項に記載の電
極からなる負極と、正極と、非水電解質とを備えること
を特徴とするリチウム二次電池。
7. A lithium secondary battery comprising a negative electrode comprising the electrode according to claim 1, a positive electrode, and a non-aqueous electrolyte.
JP2000015295A 2000-01-25 2000-01-25 Electrode for lithium secondary battery and lithium secondary battery using it Pending JP2001210315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000015295A JP2001210315A (en) 2000-01-25 2000-01-25 Electrode for lithium secondary battery and lithium secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000015295A JP2001210315A (en) 2000-01-25 2000-01-25 Electrode for lithium secondary battery and lithium secondary battery using it

Publications (1)

Publication Number Publication Date
JP2001210315A true JP2001210315A (en) 2001-08-03

Family

ID=18542617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000015295A Pending JP2001210315A (en) 2000-01-25 2000-01-25 Electrode for lithium secondary battery and lithium secondary battery using it

Country Status (1)

Country Link
JP (1) JP2001210315A (en)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022433A (en) * 2002-06-19 2004-01-22 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and lithium secondary battery
WO2004051768A1 (en) * 2002-11-29 2004-06-17 Mitsui Mining & Smelting Co., Ltd. Negative electrode for non-aqueous electrolyte secondary cell and method for manufacture thereof, and non-aqueous electrolyte secondary cell
US6800400B2 (en) 2001-04-19 2004-10-05 Sanyo Electric Co., Ltd. Lithium secondary battery
KR100659822B1 (en) 2004-11-11 2006-12-19 마쯔시다덴기산교 가부시키가이샤 Negative electrode for lithium ion secondary battery, production method thereof and lithium ion secondary battery comprising the same
JP2007188872A (en) * 2005-12-13 2007-07-26 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2008081820A (en) * 2006-09-28 2008-04-10 Sumitomo Electric Ind Ltd Film deposition system
US7407725B2 (en) 2001-10-25 2008-08-05 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell
JP2010135332A (en) * 2002-11-05 2010-06-17 Nexeon Ltd Structured silicon anode
JP2010192444A (en) * 2009-02-16 2010-09-02 Samsung Electronics Co Ltd Anode containing 14-group metal nanotube, lithium battery in which same is adopted, and its manufacturing method
US7816032B2 (en) 2003-11-28 2010-10-19 Panasonic Corporation Energy device and method for producing the same
WO2010128681A1 (en) * 2009-05-08 2010-11-11 古河電気工業株式会社 Negative electrodes for secondary battery, copper foil for electrode, secondary battery, and processes for producing negative electrodes for secondary battery
JP2010282957A (en) * 2009-05-08 2010-12-16 Furukawa Electric Co Ltd:The Negative electrode for secondary battery, copper foil for electrode, secondary battery, and process for producing the negative electrode for secondary battery
JP2011108639A (en) * 2009-10-22 2011-06-02 Ronald Anthony Rojeski Electrode including collar stop
JP2012018911A (en) * 2010-07-07 2012-01-26 Samsung Sdi Co Ltd Negative active material for lithium secondary battery and lithium secondary battery including the same
JP2012033472A (en) * 2010-06-30 2012-02-16 Semiconductor Energy Lab Co Ltd Method of producing power storage device
CN102812581A (en) * 2010-03-26 2012-12-05 株式会社半导体能源研究所 Secondary battery and method for forming electrode of secondary battery
DE112011101878T5 (en) 2010-06-01 2013-03-21 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and manufacturing method thereof
US8455044B2 (en) 2010-11-26 2013-06-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, method for manufacturing the same, and power storage device
KR20130124337A (en) 2010-12-07 2013-11-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power storage device
US8658246B2 (en) 2010-10-15 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of group of whiskers
US8669009B2 (en) 2010-07-01 2014-03-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, positive electrode of power storage device, power storage device, manufacturing method of positive electrode active material of power storage device
US8685569B2 (en) 2011-08-19 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device and power storage device
US8814956B2 (en) 2011-07-14 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Power storage device, electrode, and manufacturing method thereof
US8821601B2 (en) 2011-01-21 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Hydrogen generating element, hydrogen generation device, power generation device, and driving device
US8835048B2 (en) 2010-06-11 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8845764B2 (en) 2010-06-14 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Power storage device comprising solid electrolyte layer over active material and second electrolyte and method of manufacturing the same
US8846530B2 (en) 2010-06-30 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Method for forming semiconductor region and method for manufacturing power storage device
US8852294B2 (en) 2010-05-28 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US8871555B2 (en) 2010-06-18 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
US8896098B2 (en) 2010-05-28 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US8940438B2 (en) 2009-02-16 2015-01-27 Samsung Electronics Co., Ltd. Negative electrode including group 14 metal/metalloid nanotubes, lithium battery including the negative electrode, and method of manufacturing the negative electrode
JP2015018821A (en) * 2010-03-26 2015-01-29 株式会社半導体エネルギー研究所 Secondary battery
US9076909B2 (en) 2010-06-18 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method for manufacturing the same
US9083030B2 (en) 2011-08-25 2015-07-14 Samsung Sdi Co., Ltd. Battery module
US9112224B2 (en) 2010-06-30 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and method for manufacturing the same
US9129754B2 (en) 2011-09-02 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device and power storage device
US9136530B2 (en) 2010-05-28 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and manufacturing method thereof
US9183995B2 (en) 2012-06-01 2015-11-10 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9281134B2 (en) 2010-06-02 2016-03-08 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US9337475B2 (en) 2011-08-30 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9349544B2 (en) 2009-02-25 2016-05-24 Ronald A Rojeski Hybrid energy storage devices including support filaments
US9362549B2 (en) 2011-12-21 2016-06-07 Cpt Ip Holdings, Llc Lithium-ion battery anode including core-shell heterostructure of silicon coated vertically aligned carbon nanofibers
US9384904B2 (en) 2012-04-06 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US9401247B2 (en) 2011-09-21 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9412998B2 (en) 2009-02-25 2016-08-09 Ronald A. Rojeski Energy storage devices
US9431181B2 (en) 2009-02-25 2016-08-30 Catalyst Power Technologies Energy storage devices including silicon and graphite
US9543577B2 (en) 2010-12-16 2017-01-10 Semiconductor Energy Laboratory Co., Ltd. Active material, electrode including the active material and manufacturing method thereof, and secondary battery
TWI568065B (en) * 2011-08-30 2017-01-21 半導體能源研究所股份有限公司 Power storage device and method for manufacturing electrode
US9620769B2 (en) 2011-06-24 2017-04-11 Semiconductor Energy Laboratory Co., Ltd. Power storage device, electrode thereof, and method for manufacturing power storage device
US9685275B2 (en) 2010-04-28 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US9705136B2 (en) 2008-02-25 2017-07-11 Traverse Technologies Corp. High capacity energy storage
US9799461B2 (en) 2011-09-02 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing electrode
US9815691B2 (en) 2011-08-19 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
US9917300B2 (en) 2009-02-25 2018-03-13 Cf Traverse Llc Hybrid energy storage devices including surface effect dominant sites
US9929407B2 (en) 2011-12-21 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for non-aqueous secondary battery, non-aqueous secondary battery, and manufacturing methods thereof
US9941709B2 (en) 2009-02-25 2018-04-10 Cf Traverse Llc Hybrid energy storage device charging
US9960225B2 (en) 2010-06-30 2018-05-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of power storage device
US9966197B2 (en) 2009-02-25 2018-05-08 Cf Traverse Llc Energy storage devices including support filaments
US9979017B2 (en) 2009-02-25 2018-05-22 Cf Traverse Llc Energy storage devices
US10056602B2 (en) 2009-02-25 2018-08-21 Cf Traverse Llc Hybrid energy storage device production
US10072331B2 (en) 2011-07-08 2018-09-11 Semiconductor Energy Laboratory Co., Ltd. Method for forming silicon film and method for manufacturing power storage device
US10193142B2 (en) 2008-02-25 2019-01-29 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
US10388467B2 (en) 2012-11-07 2019-08-20 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device, power storage device, and manufacturing method of electrode for power storage device
US10665858B2 (en) 2009-02-25 2020-05-26 Cf Traverse Llc Energy storage devices
US11075378B2 (en) 2008-02-25 2021-07-27 Cf Traverse Llc Energy storage devices including stabilized silicon
US11233234B2 (en) 2008-02-25 2022-01-25 Cf Traverse Llc Energy storage devices

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309548B2 (en) 2001-04-19 2007-12-18 Sanyo Electric Co., Ltd Lithium secondary battery
US6800400B2 (en) 2001-04-19 2004-10-05 Sanyo Electric Co., Ltd. Lithium secondary battery
US7407725B2 (en) 2001-10-25 2008-08-05 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell
JP2004022433A (en) * 2002-06-19 2004-01-22 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and lithium secondary battery
JP2010135332A (en) * 2002-11-05 2010-06-17 Nexeon Ltd Structured silicon anode
US7811709B2 (en) 2002-11-29 2010-10-12 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous secondary battery, process of producing the negative electrode, and nonaqueous secondary battery
WO2004051768A1 (en) * 2002-11-29 2004-06-17 Mitsui Mining & Smelting Co., Ltd. Negative electrode for non-aqueous electrolyte secondary cell and method for manufacture thereof, and non-aqueous electrolyte secondary cell
US7816032B2 (en) 2003-11-28 2010-10-19 Panasonic Corporation Energy device and method for producing the same
KR100659822B1 (en) 2004-11-11 2006-12-19 마쯔시다덴기산교 가부시키가이샤 Negative electrode for lithium ion secondary battery, production method thereof and lithium ion secondary battery comprising the same
JP2007188872A (en) * 2005-12-13 2007-07-26 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2008081820A (en) * 2006-09-28 2008-04-10 Sumitomo Electric Ind Ltd Film deposition system
US11152612B2 (en) 2008-02-25 2021-10-19 Cf Traverse Llc Energy storage devices
US10978702B2 (en) 2008-02-25 2021-04-13 Cf Traverse Llc Energy storage devices
US11075378B2 (en) 2008-02-25 2021-07-27 Cf Traverse Llc Energy storage devices including stabilized silicon
US11127948B2 (en) 2008-02-25 2021-09-21 Cf Traverse Llc Energy storage devices
US10964938B2 (en) 2008-02-25 2021-03-30 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
US11233234B2 (en) 2008-02-25 2022-01-25 Cf Traverse Llc Energy storage devices
US9705136B2 (en) 2008-02-25 2017-07-11 Traverse Technologies Corp. High capacity energy storage
US11502292B2 (en) 2008-02-25 2022-11-15 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
US10193142B2 (en) 2008-02-25 2019-01-29 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
JP2015128075A (en) * 2009-02-16 2015-07-09 三星電子株式会社Samsung Electronics Co.,Ltd. Anode containing 14-group metal nanotube, lithium battery employing anode, and manufacturing method of anode
US9923209B2 (en) 2009-02-16 2018-03-20 Samsung Electronics Co., Ltd. Negative electrode including group 14 metal/metalloid nanotubes, lithium battery including the negative electrode, and method of manufacturing the negative electrode
US8940438B2 (en) 2009-02-16 2015-01-27 Samsung Electronics Co., Ltd. Negative electrode including group 14 metal/metalloid nanotubes, lithium battery including the negative electrode, and method of manufacturing the negative electrode
JP2010192444A (en) * 2009-02-16 2010-09-02 Samsung Electronics Co Ltd Anode containing 14-group metal nanotube, lithium battery in which same is adopted, and its manufacturing method
US10461324B2 (en) 2009-02-25 2019-10-29 Cf Traverse Llc Energy storage devices
US10714267B2 (en) 2009-02-25 2020-07-14 Cf Traverse Llc Energy storage devices including support filaments
US10056602B2 (en) 2009-02-25 2018-08-21 Cf Traverse Llc Hybrid energy storage device production
US9979017B2 (en) 2009-02-25 2018-05-22 Cf Traverse Llc Energy storage devices
US9966197B2 (en) 2009-02-25 2018-05-08 Cf Traverse Llc Energy storage devices including support filaments
US10665858B2 (en) 2009-02-25 2020-05-26 Cf Traverse Llc Energy storage devices
US9431181B2 (en) 2009-02-25 2016-08-30 Catalyst Power Technologies Energy storage devices including silicon and graphite
US9412998B2 (en) 2009-02-25 2016-08-09 Ronald A. Rojeski Energy storage devices
US10673250B2 (en) 2009-02-25 2020-06-02 Cf Traverse Llc Hybrid energy storage device charging
US10622622B2 (en) 2009-02-25 2020-04-14 Cf Traverse Llc Hybrid energy storage devices including surface effect dominant sites
US10727481B2 (en) 2009-02-25 2020-07-28 Cf Traverse Llc Energy storage devices
US9917300B2 (en) 2009-02-25 2018-03-13 Cf Traverse Llc Hybrid energy storage devices including surface effect dominant sites
US9941709B2 (en) 2009-02-25 2018-04-10 Cf Traverse Llc Hybrid energy storage device charging
US10727482B2 (en) 2009-02-25 2020-07-28 Cf Traverse Llc Energy storage devices
US9349544B2 (en) 2009-02-25 2016-05-24 Ronald A Rojeski Hybrid energy storage devices including support filaments
US10741825B2 (en) 2009-02-25 2020-08-11 Cf Traverse Llc Hybrid energy storage device production
JP2010282957A (en) * 2009-05-08 2010-12-16 Furukawa Electric Co Ltd:The Negative electrode for secondary battery, copper foil for electrode, secondary battery, and process for producing the negative electrode for secondary battery
WO2010128681A1 (en) * 2009-05-08 2010-11-11 古河電気工業株式会社 Negative electrodes for secondary battery, copper foil for electrode, secondary battery, and processes for producing negative electrodes for secondary battery
JP2011108639A (en) * 2009-10-22 2011-06-02 Ronald Anthony Rojeski Electrode including collar stop
JP2015018821A (en) * 2010-03-26 2015-01-29 株式会社半導体エネルギー研究所 Secondary battery
CN102812581A (en) * 2010-03-26 2012-12-05 株式会社半导体能源研究所 Secondary battery and method for forming electrode of secondary battery
JP2015035427A (en) * 2010-03-26 2015-02-19 株式会社半導体エネルギー研究所 Secondary battery
US9735419B2 (en) 2010-03-26 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and method for forming electrode of secondary battery
US9685275B2 (en) 2010-04-28 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US10236502B2 (en) 2010-04-28 2019-03-19 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US8852294B2 (en) 2010-05-28 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US8896098B2 (en) 2010-05-28 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US9136530B2 (en) 2010-05-28 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and manufacturing method thereof
DE112011101878T5 (en) 2010-06-01 2013-03-21 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and manufacturing method thereof
KR20130082101A (en) 2010-06-01 2013-07-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Energy storage device and manufacturing method thereof
US9685277B2 (en) 2010-06-02 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Electrode
US9281134B2 (en) 2010-06-02 2016-03-08 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US8835048B2 (en) 2010-06-11 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8845764B2 (en) 2010-06-14 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Power storage device comprising solid electrolyte layer over active material and second electrolyte and method of manufacturing the same
US9397245B2 (en) 2010-06-18 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
US8871555B2 (en) 2010-06-18 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
US9076909B2 (en) 2010-06-18 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method for manufacturing the same
US9112224B2 (en) 2010-06-30 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and method for manufacturing the same
US8846530B2 (en) 2010-06-30 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Method for forming semiconductor region and method for manufacturing power storage device
US10283765B2 (en) 2010-06-30 2019-05-07 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and method for manufacturing the same
JP2012033472A (en) * 2010-06-30 2012-02-16 Semiconductor Energy Lab Co Ltd Method of producing power storage device
US9960225B2 (en) 2010-06-30 2018-05-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of power storage device
US8669009B2 (en) 2010-07-01 2014-03-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, positive electrode of power storage device, power storage device, manufacturing method of positive electrode active material of power storage device
US8551655B2 (en) 2010-07-07 2013-10-08 Samsung Sdi Co., Ltd. Negative active material for secondary lithium battery and secondary lithium battery
JP2012018911A (en) * 2010-07-07 2012-01-26 Samsung Sdi Co Ltd Negative active material for lithium secondary battery and lithium secondary battery including the same
US8658246B2 (en) 2010-10-15 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of group of whiskers
US8643182B2 (en) 2010-11-26 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, method for manufacturing the same, and power storage device
US8455044B2 (en) 2010-11-26 2013-06-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, method for manufacturing the same, and power storage device
US10128498B2 (en) 2010-12-07 2018-11-13 Semiconductor Energy Laboratory Co., Ltd. Power storage device
KR20130124337A (en) 2010-12-07 2013-11-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power storage device
US9362556B2 (en) 2010-12-07 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9543577B2 (en) 2010-12-16 2017-01-10 Semiconductor Energy Laboratory Co., Ltd. Active material, electrode including the active material and manufacturing method thereof, and secondary battery
US8821601B2 (en) 2011-01-21 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Hydrogen generating element, hydrogen generation device, power generation device, and driving device
US9620769B2 (en) 2011-06-24 2017-04-11 Semiconductor Energy Laboratory Co., Ltd. Power storage device, electrode thereof, and method for manufacturing power storage device
US10072331B2 (en) 2011-07-08 2018-09-11 Semiconductor Energy Laboratory Co., Ltd. Method for forming silicon film and method for manufacturing power storage device
US8814956B2 (en) 2011-07-14 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Power storage device, electrode, and manufacturing method thereof
US9815691B2 (en) 2011-08-19 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
US8685569B2 (en) 2011-08-19 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device and power storage device
US11248307B2 (en) 2011-08-19 2022-02-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
US10050273B2 (en) 2011-08-19 2018-08-14 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device and power storage device
US10544041B2 (en) 2011-08-19 2020-01-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
US11898261B2 (en) 2011-08-19 2024-02-13 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
US9083030B2 (en) 2011-08-25 2015-07-14 Samsung Sdi Co., Ltd. Battery module
TWI568065B (en) * 2011-08-30 2017-01-21 半導體能源研究所股份有限公司 Power storage device and method for manufacturing electrode
US9337475B2 (en) 2011-08-30 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US10658661B2 (en) 2011-08-30 2020-05-19 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing electrode
US9129754B2 (en) 2011-09-02 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device and power storage device
US9799461B2 (en) 2011-09-02 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing electrode
US9401247B2 (en) 2011-09-21 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9362549B2 (en) 2011-12-21 2016-06-07 Cpt Ip Holdings, Llc Lithium-ion battery anode including core-shell heterostructure of silicon coated vertically aligned carbon nanofibers
US9929407B2 (en) 2011-12-21 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for non-aqueous secondary battery, non-aqueous secondary battery, and manufacturing methods thereof
US9685653B2 (en) 2012-04-06 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US9384904B2 (en) 2012-04-06 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US11605804B2 (en) 2012-04-06 2023-03-14 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US9899660B2 (en) 2012-04-06 2018-02-20 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US11056678B2 (en) 2012-04-06 2021-07-06 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US10263243B2 (en) 2012-04-06 2019-04-16 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US10541409B2 (en) 2012-06-01 2020-01-21 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9698412B2 (en) 2012-06-01 2017-07-04 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9183995B2 (en) 2012-06-01 2015-11-10 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9490080B2 (en) 2012-06-01 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9911971B2 (en) 2012-06-01 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US10388467B2 (en) 2012-11-07 2019-08-20 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device, power storage device, and manufacturing method of electrode for power storage device

Similar Documents

Publication Publication Date Title
JP2001210315A (en) Electrode for lithium secondary battery and lithium secondary battery using it
CN101017915B (en) Nonaqueous electrolyte secondary battery
EP1936731B1 (en) Rechargeable lithium battery
US20080063941A1 (en) Positive electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2001283834A (en) Secondary battery
WO2005057713A1 (en) Secondary battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
US6764791B2 (en) Rechargeable lithium battery
JP2001283833A (en) Secondary battery
US8263261B2 (en) Active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery comprising it
JP2005235397A (en) Electrode for lithium battery, lithium battery using it, and lithium secondary battery
JP4297704B2 (en) Nonaqueous electrolyte secondary battery
JP2000021442A (en) Nonaqueous electrolyte secondary battery
JP2004185931A (en) Nonaqueous electrolyte secondary battery
JP2002289177A (en) Lithium secondary battery and electrode for it
JP4693371B2 (en) Nonaqueous electrolyte secondary battery
JP2001202992A (en) Electrolytic solution for lithium secondary battery
JP2001222995A (en) Lithium ion secondary battery
JP5779452B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4104476B2 (en) Method of using lithium secondary battery and lithium secondary battery
EP3890090B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
JP4535722B2 (en) Nonaqueous electrolyte secondary battery
JP4212439B2 (en) How to use lithium secondary battery
US20120301788A1 (en) Electrode active material, method of preparing the same, electrode for lithium secondary battery which includes the same, and lithium secondary battery using the electrode
JP2008084766A (en) Non-aqueous electrolyte secondary battery