JP4210556B2 - Method for producing aluminum foil - Google Patents

Method for producing aluminum foil Download PDF

Info

Publication number
JP4210556B2
JP4210556B2 JP2003164291A JP2003164291A JP4210556B2 JP 4210556 B2 JP4210556 B2 JP 4210556B2 JP 2003164291 A JP2003164291 A JP 2003164291A JP 2003164291 A JP2003164291 A JP 2003164291A JP 4210556 B2 JP4210556 B2 JP 4210556B2
Authority
JP
Japan
Prior art keywords
aluminum foil
mass
aluminum
foil
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003164291A
Other languages
Japanese (ja)
Other versions
JP2005002371A (en
Inventor
利規 高野
裕志 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO ALMINIUM KABUSHIKI KAISHA
Original Assignee
TOYO ALMINIUM KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO ALMINIUM KABUSHIKI KAISHA filed Critical TOYO ALMINIUM KABUSHIKI KAISHA
Priority to JP2003164291A priority Critical patent/JP4210556B2/en
Publication of JP2005002371A publication Critical patent/JP2005002371A/en
Application granted granted Critical
Publication of JP4210556B2 publication Critical patent/JP4210556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • ing And Chemical Polishing (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide aluminum foil whose electrical properties or mechanical properties can be improved, and regions different in surface roughness can be provided in optional shape, and to provide its production method. <P>SOLUTION: The aluminum foil is provided with: a first region subjected to etching treatment and having a relatively reduced surface roughness; and a second region subjected to etching treatment and having a relatively large surface roughness. A partial region on the surface of the aluminum foil is brought into contact with an acidic first liquid comprising hydrogen fluoride, and thereafter, the surface of the aluminum foil at least comprising the part is brought into contact with an acidic second liquid comprising hydrochloric acid, so that the aluminum foil is subjected to etching treatment. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、一般的にはアルミニウム箔の製造方法に関し、特定的にはリチウムイオン電池およびポリマーリチウムイオン電池等の二次電池ならびに電気二重層コンデンサに用いられる集電体用アルミニウム箔の製造方法に関するものである。
【0002】
【従来の技術】
近年、高いエネルギ効率の二次電池として、リチウムイオン電池またはポリマーリチウムイオン電池が、携帯電話、パーソナルコンピュータ、カメラまたは自動車等の電源として使用されてきている。
【0003】
二次電池の一例としてリチウムイオン電池では、正極材料として、たとえばカーボン、リチウム金属酸化物塩、フッ素系バインダからなる活物質を集電体としてのアルミニウム箔の表面にコーティングしたものが使用されている。また、ポリマーリチウムイオン電池では、正極材料として、ポリアニリン、ポリアセチレン等の導電性の高分子電極活物質を集電体としてのアルミニウム箔の表面にコーティングしたものが使用されている。
【0004】
電気二重層コンデンサでは、電極活物質であるカーボンと高分子樹脂バインダの混合物がアルミニウム箔の表面にコーティングしたものが電極として使用されている。
【0005】
このようにアルミニウム箔は、二次電池、電気二重層コンデンサ等の集電体材料として活用されている。しかし、活物質等の電極コーティング材とアルミニウム箔の表面との密着性が低いと、電極コーティング材とアルミニウム箔との接触抵抗値が大きくなるとともに、充放電時に電極活物質が剥離し、電池またはコンデンサの性能、寿命等の特性に悪影響を与える恐れがある。
【0006】
活物質との密着性を改善することによって集電体としての性能をさらに向上させるために、直径1〜1.5mm程度の貫通穴を多数個形成したアルミニウム箔が開発されている。しかし、貫通穴を形成したアルミニウム箔は、その強度が著しく低下するという欠点がある。また、打抜き用のパンチと金型を用いて貫通穴を形成したアルミニウム箔を集電体材料として用いる場合には、バリまたは抜きカスの発生という製造上の問題があるので、生産性、製造コスト、信頼性等の点で満足したものを得ることができない。さらに、エッチング液によって貫通穴を形成したアルミニウム箔を集電体材料として用いる場合には、多量のレジストマスクが必要になり、そのレジストマスクを除去する工程も必要になるので、生産性、製造コスト等が低下するという問題がある。
【0007】
そこで、活物質との密着性を改善するためにアルミニウム箔の表面を粗くすることが検討されている。
【0008】
たとえば、水または不燃性有機溶媒を媒介としてアルミニウム箔の表面にアルミナ粒子を噴射することによってアルミニウム箔の表面を粗化することを特徴とする集電体用アルミニウム箔の製造方法が、特開平11−162470号公報(特許文献1)に開示されている。いわゆるブラスト法を採用してアルミニウム箔の表面を粗くする方法が上記公報に開示されている。
【0009】
また、たとえば、塩素イオンを含有する電解液中にアルミニウム箔を浸漬し、このアルミニウム箔に交流を印加してエッチング処理をする電気二重層コンデンサ集電体用アルミニウム箔の製造方法であって、エッチング処理に周波数60Hz以下の交流電流を用いたことを特徴とするものが、特開2001−189238号公報(特許文献2)に開示されている。いわゆる電解エッチング法を採用してアルミニウム箔の表面を粗くする方法が上記公報に開示されている。
【0010】
これらの方法によって処理されたアルミニウム箔の表面は、電極活物質との密着性を向上させるために一様に粗くなっている。
【0011】
ところで、電池等の体積あたりの蓄電容量を高めるためには、集電体として用いられるアルミニウム箔自体を薄くすることが求められている。そして、電極活物質を塗布する工程において必要な一定の機械強度を確保するとともに、電極のリード部を接合するために必要な一定の溶接特性等を確保することも求められている。アルミニウム箔の表面を一様に、あるいは全表面を粗くすると、これらの要求特性を満足することが困難になる。
【0012】
そこで、たとえば、特開2001−338843号公報(特許文献3)には、塩素イオンを含有する電解液中でアルミニウム箔をエッチング処理する電気二重層コンデンサ集電体用アルミニウムエッチング箔の製造方法であって、電解液中でアルミニウム箔表面の一部に近接して電気絶縁性の遮蔽部材が存在する表面に未エッチング部分を残存させる方法が提案されている。
【0013】
【特許文献1】
特開平11−162470号公報
【特許文献2】
特開2001−189238号公報
【特許文献3】
特開2001−338843号公報
【0014】
【発明が解決しようとする課題】
しかしながら、特開2001−338843号公報(特許文献3)に開示されている方法では、10mm以上のある程度幅の広い帯状のパターンの未エッチング部を形成することができたとしても、より幅の狭いパターンの未エッチング部または複雑な図形のパターンの未エッチング部を形成することが困難であった。また、エッチング部と未エッチング部との間の境界が不明確であった。
【0015】
このような問題を解決するために、化学エッチング法または電解エッチング法において、レジストをパターン印刷した後、その印刷されたレジスト層をマスクとして用いてエッチング処理し、その後、レジスト層を除去する方法が考えられる。また、いわゆるブラスト法を採用してアルミニウム箔の表面を粗くする方法において、マスクフィルムを介してブラスト処理を行なうことが考えられる。
【0016】
しかし、上記のいずれの方法でも、製造コストが高くなるだけでなく、マスクフィルムまたはレジスト層を除去する工程において、初期設計時に設定したアルミニウム箔の表面の電気的特性または機械的特性が損なわれるという問題があった。また、電解エッチング法を採用してアルミニウム箔の表面を粗くする方法では純度の高いアルミニウム箔を用いる必要性があるので、薄い箔を用いて一定の機械強度を確保するためにアルミニウム合金箔を用いることができないという問題があった。
【0017】
そこで、この発明の目的は、電気的特性または機械的特性を向上させることができ、任意の形状で表面粗さの異なる領域を有することが可能なアルミニウム箔の製造方法を提供することである。
【0018】
また、この発明の目的は、任意の形状の領域で電極活物質との密着性を高めることが可能なアルミニウム箔の製造方法を提供することである。
【0019】
さらに、この発明の目的は、任意の形状の領域で電極活物質との間の接触抵抗値を低下させることが可能なアルミニウム箔の製造方法を提供することである。
【0022】
【課題を解決するための手段】
本発明者は、上述した課題を解決するために鋭意検討し、研究を重ねた結果、アルミニウム箔の表面に所定の前処理を施した後で所定の後処理を施すことによってエッチング処理を行なうと、表面粗さの異なる領域を形成することができることを見出した。この知見に基づいて本発明はなされたものであり、以下の特徴的な構成を備える。
【0036】
この発明に従ったアルミニウム箔の製造方法は、アルミニウム箔の表面上で第1の領域にフッ化水素を含む酸性の第1の液を接触させる工程と、第1の領域と第1の領域に隣接する第2の領域とを含むアルミニウム箔の表面上に塩酸を含む酸性の第2の液を接触させる工程とを備える。
【0037】
この発明の製造方法によれば、レジスト層の印刷またはマスクフィルムの形成および除去という複雑な工程を経ることなく、任意の形状で表面粗さの異なる領域を簡単な工程で形成することができる。また、アルミニウム箔の純度に影響されずに広範囲な種類のアルミニウム箔またはアルミニウム合金箔に表面粗さの異なる領域を形成することができる。
【0038】
この発明に従ったアルミニウム箔の製造方法において、第1の液はフッ化水素を0.1質量%以上5.0質量%含み、第2の液は塩酸を3質量%以上20質量%以下、塩化アルミニウムを5質量%以上25質量%以下含み、第1の液を接触させる工程は第1の液をアルミニウム箔の表面積に対して5g/m2以上で塗布することを含むのが好ましい。
【0039】
【発明の実施の形態】
フッ化水素を少なくとも含む酸性の前処理液を所定のパターンでアルミニウム箔の表面上に印刷または塗布し、アルミニウム箔の表面を水洗した後、塩酸を含む酸性の後処理液にアルミニウム箔を浸漬することによってエッチング処理を行なう。これにより、前処理液を塗布したアルミニウム箔の表面部分を後処理液によって優先的に化学エッチングすることができる。結果として、第1の領域として弱エッチング部と第2の領域として強エッチング部を有するアルミニウム箔を作製することができる。すなわち、アルミニウム箔の表面の残油量と酸化皮膜の厚みとを前処理液の塗布の有無で変化させ、後処理液による化学エッチング時のエッチング速度に差を生じさせて、弱エッチング部と強エッチング部を任意のパターン形状で形成することができることを本発明者は見出した。
【0040】
具体的には、フッ化水素を0.1質量%以上5.0質量%以下含む酸性の前処理液をアルミニウム箔の表面積に対して5g/m2以上でアルミニウム箔の表面上に所定のパターンで塗布し、アルミニウム箔の表面を水洗した後、塩酸を3質量%以上20質量%以下、塩化アルミニウムを5質量%以上25質量%以下含む後処理液にアルミニウム箔を浸漬することによってエッチング処理を行なう。
【0041】
ここで、前処理液の組成としてはフッ化水素を0.1質量%以上含むことが必要であり、0.1質量%未満であれば、上述した前処理の効果を得ることが困難となる。フッ化水素の含有量が5.0質量%を超える場合には、過度にアルミニウム箔の腐食が進行し、塗布部に孔食が発生して不均一になり、あるいは液のにじみができ、結果として強エッチング部と弱エッチング部の境界が所定のパターンどおりに得られない恐れがある。なお、前処理液の組成において残部は水であればよく、その他の成分として必要に応じて界面活性剤等を適量添加してもよい。 前処理液の塗布量としては、濃度の関係もあるが、5g/m2以上が好ましく、より好ましくは10〜20g/m2であればよい。前処理液の塗布量が5g/m2未満であれば、強エッチング部と弱エッチング部との差異が乏しくなり、20g/m2を超えると、液のにじみができ、結果として強エッチング部と弱エッチング部の境界が所定のパターンどおりに得られない恐れがある。
【0042】
前処理液を塗布する手段としては、特に限定されないが、たとえば、刷毛塗り、スプレー吹き付け法、ゴム版による転写、スポンジ版による塗布などを採用することができる。ロール状のゴム版またはスポンジ版を用いることにより、連続的に塗布することができる。前処理液の塗布後は、直ちにまたは所定時間放置後、アルミニウム箔の表面を水洗すればよいが、必要に応じて室温から80℃までの温度範囲で数秒〜数十分間乾燥させた後にアルミニウム箔の表面を水洗してもよい。
【0043】
後処理液は、その組成として塩酸を3質量%以上20質量%以下、塩化アルミニウムを5質量%以上25質量%以下含む酸性の水溶液である。後処理液は塩酸を5質量%以上12質量%以下含むのが好ましい。また、後処理液は塩化アルミニウムを12質量%以上18質量%以下含むのが好ましい。ここで、塩酸の含有量が3質量%未満では、化学エッチングの速度が極端に遅くなり、目的とする強エッチング部を得ることが困難で、20質量%を超えると、過度の孔食が起こりやすくなり、局部的なエッチングが進行し、エッチングが不均一になることによってアルミニウム箔の機械強度が低下し、後加工を行なうことが困難になる恐れがある。後処理液は室温のままで用いてもよいが、30〜80℃程度に加熱して用いてもよい。後処理液を用いた処理時間は、最終的に目的とする表面粗さ等により適宜設定すればよいが、通常10〜2000秒間程度の範囲内で調整すればよい。後処理液を用いた処理は、公知の方法で、たとえば、浸漬、スプレー吹き付け、塗布等によって行なえばよいが、工業的には、前処理したアルミニウム箔をエッチング槽中に連続的に浸漬する方法を採用するのが好ましい。後処理液による処理後は、適宜、水洗工程、通常60〜120℃程度の乾燥工程を施せばよい。
【0044】
強エッチング部においては、圧延油等のアルミニウム箔の表面上の残油に起因して表面に残存する炭素(カーボン)の量が1mg/m2以下、表面酸化膜の皮膜耐電圧が0.2V以上1.5V以下、表面積12.5cm2あたりのプレーン容量が100μF以上であるのが好ましい。このようにアルミニウム箔の表面の性質を改善することにより、特に、表面に残存する炭素(カーボン)の量で評価される油膜量と、表面酸化膜の皮膜耐電圧で評価される酸化皮膜の厚みとを限定することによって、後工程で電極活物質等からなる膜を塗布加工する際に、その膜の密着性を改善することができ、本来のアルミニウム箔の特性を十分に活かすことができる。
【0045】
ここで、表面に残存する炭素(カーボン)の量が1mg/m2を超える場合には、アルミニウム箔の表面の上に形成される活物質の膜の密着性が良好ではなく、結果として、その膜との間の接触抵抗が増大する。また、表面酸化膜の皮膜耐電圧が0.2V未満の場合には、アルミニウム箔の表面が安定ではなく、集電体として使用中に電解質中に不純物金属成分等が溶解しやすい。表面酸化膜の皮膜耐電圧が1.5Vを超える場合には、集電体の表面の内部抵抗が上昇し、電気効率の悪化または発熱等の弊害を生じる恐れがある。
【0046】
プレーン容量は表面粗さの指標になる。表面酸化膜の皮膜耐電圧が一定の場合、プレーン容量が大きいほど単位表面積が大きくなる。ここで、表面積12.5cm2あたりのプレーン容量が100μF未満であれば、得られる表面粗さが十分ではなく、結果として電極活物質との密着性が不十分で電池またはコンデンサの耐久性に悪影響を及ぼす。
【0047】
前処理液で処理されるアルミニウム箔としては、厚みが10〜100μm、好ましくは15〜40μmのものが使用される。厚みが10μm未満では、アルミニウム箔自体の機械強度が低く、エッチング処理の作業が困難になり、100μmを超えると、機能上、不必要な厚みとなり、コスト的に不利になる。なお、アルミニウム箔は硬質箔、軟質箔、半硬質箔のいずれでもよいが、機械強度を考慮すると、硬質箔を用いるのが好ましい。
【0048】
アルミニウム箔の組成としては、アルミニウムの純度が96.5質量%以上99.9質量%以下で、合金成分としてマンガンを1.5質量%以下、鉄を2.0質量%以下、シリコンを0.5質量%以下、銅を0.2質量%以下含み、マンガン、鉄、シリコンおよび銅の合計の含有量が0.1質量%以上3.5質量%以下のものが用いられる。ここで、アルミニウムの純度が96.5質量%未満で合金成分が所定の量を超えると、アルミニウム箔の薄箔圧延、エッチング特性の制御が困難になるだけでなく、集電体として用いた場合に使用中に電解液への溶解量が多くなり、電池またはコンデンサの特性に悪影響を及ぼす。アルミニウムの純度が99.9質量%を超えると、化学エッチングの速度が遅くなり、結果として強エッチング部と弱エッチング部との差異が乏しくなる。
【0049】
合金成分元素の役割としては、銅、鉄およびシリコンは含有量が多くなるほど、化学エッチングの速度が速くなる傾向があり、過度に含むとエッチング処理の制御が困難となる。これに対して、マンガンは化学エッチングの速度を抑制する働きがあり、アルミニウムの純度と合金成分元素の配合により反応速度とエッチング処理される表面の形状とを制御することができる。しかし、アルミニウム箔の表面に残存する鉄、シリコンおよび銅が多くなると、二次電池の集電体として用いた場合、電解質による充放電時にアルミニウム箔の腐食量が多くなるので、電極の寿命を低下させ、また特性を大きく劣化させる。このため、エッチング処理が終了した後では、アルミニウム箔の表面に残存する鉄、シリコンおよび銅は極力少ない方が好ましい。
【0050】
本発明に従って表面粗さが異なる領域を有するアルミニウム箔は、リチウムイオン電池およびポリマーイオン電池等の二次電池ならびに電気二重層コンデンサに用いられる集電体として好適であり、その他、電解コンデンサの電極材料、各種電池の外装容器またはタブ材、ICカードまたは高周波(RF)IDタグの構成部品等に用いてもよい。
【0051】
【実施例】
以下に述べるように、エッチング処理の有無、エッチング処理の条件およびアルミニウムの純度を変えてアルミニウム箔を実施例1〜3と比較例1〜4で準備または作製した。
【0052】
(実施例1)
厚みが30μmのアルミニウム硬質箔(JIS A1085−H18、組成:アルミニウム99.90質量%、シリコン0.02質量%、鉄0.05質量%、銅0.01質量%、その他0.02質量%)の一部表面上に、液温が25℃の前処理液としてフッ化水素を0.3質量%、ノニオン界面活性剤を0.5質量%含有する酸性水溶液をポリオレフィンスポンジに染み込ませて塗布量10g/m2で塗布加工し、20秒後にアルミニウム硬質箔の表面を水洗した。その後、塩酸を12質量%、塩化アルミニウムを15質量%含有する液温が35℃の後処理液中にアルミニウム硬質箔を140秒間浸漬した。
【0053】
(実施例2)
厚みが22μmのアルミニウム硬質箔(JIS A3003−H18、組成:アルミニウム96.90質量%、シリコン0.6質量%、鉄0.7質量%、銅0.2質量%、マンガン1.5質量%、その他0.1質量%)の一部表面上に、液温が25℃の前処理液としてフッ化水素を0.3質量%、ノニオン界面活性剤を0.5質量%含有する酸性水溶液をポリオレフィンスポンジに染み込ませて塗布量10g/m2で塗布加工し、20秒後にアルミニウム硬質箔の表面を水洗した。その後、塩酸を12質量%、塩化アルミニウムを15質量%含有する液温が35℃の後処理液中にアルミニウム硬質箔を70秒間浸漬した。
【0054】
(実施例3)
厚みが30μmのアルミニウム硬質箔(JIS A8021−H18、組成:アルミニウム98.50質量%、シリコン0.1質量%、鉄1.3質量%、銅0.05質量%、その他0.05質量%)の一部表面上に、液温が25℃の前処理液としてフッ化水素を0.3質量%、ノニオン界面活性剤を0.5質量%含有する酸性水溶液をポリオレフィンスポンジに染み込ませて塗布量10g/m2で塗布加工し、20秒後にアルミニウム硬質箔の表面を水洗した。その後、塩酸を12質量%、塩化アルミニウムを15質量%含有する液温が35℃の後処理液中にアルミニウム硬質箔を80秒間浸漬した。
【0055】
(比較例1)
厚みが30μmのアルミニウム硬質箔(JIS A1085−H18、組成:アルミニウム99.90質量%、シリコン0.02質量%、鉄0.05質量%、銅0.01質量%、その他0.02質量%)を準備した。
【0056】
(比較例2)
厚みが22μmのアルミニウム硬質箔(JIS A3003−H18、組成:アルミニウム96.90質量%、シリコン0.6質量%、鉄0.7質量%、銅0.2質量%、マンガン1.5質量%、その他0.1質量%)を準備した。
【0057】
(比較例3)
厚みが30μmのアルミニウム硬質箔(JIS A8021−H18、組成:アルミニウム98.50質量%、シリコン0.1質量%、鉄1.3質量%、銅0.05質量%、その他0.05質量%)を準備した。
【0058】
(比較例4)
日本ケミコン株式会社製の電解エッチングアルミニウム箔(製品呼称:40C045、厚み40μm、JIS A1085−H18相当)を準備した。
【0059】
上述の実施例1〜3と比較例1〜4で準備または作製したアルミニウム箔の機械的特性と電気的特性を調べた。その測定結果として、各アルミニウム箔の組成(アルミニウム合金種類)、表面粗さ(JIS B 0601−1994に準じた測定による)、引張強度、アルミニウム箔の表面上に残存するカーボン残量を表1に示す。また。アルミニウム箔の表面に形成された酸化膜の皮膜耐電圧とプレーン容量の測定結果も表1に示す。実施例1〜3においては、エッチング処理されて形成された強エッチング部と弱エッチング部について各測定結果を示す。
【0060】
なお、カーボン残量は、アルミニウム箔を高温加熱し、各アルミニウム箔の表面の油分が完全燃焼したときに発生する二酸化炭素を赤外分光分析で定量し、カーボンに換算することによって求めた。酸化膜の皮膜耐電圧は、各アルミニウム箔を陽極として用いて低電流で陽極酸化処理した際に測定される電流電圧特性曲線にて電圧が増加して飽和するときの変曲点における電圧を求めることによって評価した。プレーン容量は、各アルミニウム箔を表面積が12.5cm2の正電極とし、対極の負電極として同一表面積のスズ板を用いてコンデンサを構成し、液温が30℃±2℃の8%のホウ酸アンモニウム溶液中で静電容量を測定することによって評価した。測定器としてNFエレクトロニック製の型番2321のLCZメータを用いて、測定条件は120Hz,50mVとした。
【0061】
【表1】

Figure 0004210556
以上のようにして準備されたアルミニウム箔を用いて集電体としての性能を確認した。
【0062】
実施例1〜3と比較例1〜4で準備した各アルミニウム箔の表面に電気二重層コンデンサ用の活物質を塗布加工した。活物質の塗布加工は活物質をエタノールで混錬した後に行ない、乾燥後の塗布厚みは60μmとなるように調整した。活物質の組成は、比表面積が1500m2/gの活性炭を90質量%、PTFE(ポリテトラフルオロエチレン)を10質量%含むものを用いた。その後、圧延ロールにて約20%の圧下を加えて活物質の塗膜を各アルミニウム箔の表面に圧着させた。圧延後の活物質の塗膜の密着性を観察した。
【0063】
また、アルミニウム箔と活物質の塗膜との間の接触抵抗値を測定した、接触抵抗値の測定は、図1に示すように、黄銅製の上部電極1(重量:500g)と下部電極2の間に各試料を挟んだ状態でAB間をデジタルマルチメータにより測定することによって行なわれた。この場合、厳密には接触抵抗のみを測定するものではないが、電極や試料の体積抵抗は無視し得る程度に小さいものであるので、その測定値を接触抵抗値とみなすことができる。
【0064】
活物質の塗膜の密着性の観察結果と接触抵抗値の測定結果を表2に示す。
【0065】
【表2】
Figure 0004210556
表2から、実施例1〜3で作製したアルミニウム箔の強エッチング部は、圧延後において活物質の塗膜は良好な密着性を示し、塗膜との間の接触抵抗値も低いことがわかる。また、表1から、実施例1〜3で作製したアルミニウム箔の弱エッチング部は、引張強度の値が比較例1〜3のエッチング処理されていないアルミニウム箔と同じ値を示し、エッチング処理後において機械強度がほぼ維持されていることがわかる。比較例4の電解エッチング箔は、表2から、圧延後の活物質の塗膜の密着性と接触抵抗値で良好な結果が得られているが、表1から、引張強度の値は低く、機械強度が低下していることがわかる。
【0066】
以上に開示された実施の形態や実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は、以上の実施の形態や実施例ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものである。
【0067】
【発明の効果】
以上のように、この発明によれば、レジスト層の印刷またはマスクフィルムの形成および除去という複雑な工程を経ることなく、任意の形状で表面粗さの異なる領域を簡単な工程で形成することができ、アルミニウム箔の純度に影響されずに広範囲な種類のアルミニウム箔またはアルミニウム合金箔に表面粗さの異なる領域を形成することができる。
【図面の簡単な説明】
【図1】 実施例で行なわれた接触抵抗値の測定方法を概略的に示す図である。
【符号の説明】
1:上部電極、2:下部電極。[0001]
BACKGROUND OF THE INVENTION
The present invention generally relates to a method for producing an aluminum foil , and more particularly to a method for producing an aluminum foil for a current collector used in a secondary battery such as a lithium ion battery and a polymer lithium ion battery, and an electric double layer capacitor. Is.
[0002]
[Prior art]
In recent years, lithium ion batteries or polymer lithium ion batteries have been used as power sources for mobile phones, personal computers, cameras, automobiles, and the like as secondary batteries with high energy efficiency.
[0003]
As an example of a secondary battery, a lithium ion battery uses a positive electrode material in which an active material made of, for example, carbon, a lithium metal oxide salt, or a fluorine-based binder is coated on the surface of an aluminum foil as a current collector. . In polymer lithium ion batteries, a positive electrode material in which a conductive polymer electrode active material such as polyaniline or polyacetylene is coated on the surface of an aluminum foil as a current collector is used.
[0004]
In an electric double layer capacitor, a surface of an aluminum foil coated with a mixture of carbon as an electrode active material and a polymer resin binder is used as an electrode.
[0005]
Thus, aluminum foil is used as a current collector material for secondary batteries, electric double layer capacitors and the like. However, if the adhesion between the electrode coating material such as the active material and the surface of the aluminum foil is low, the contact resistance value between the electrode coating material and the aluminum foil increases, and the electrode active material peels off during charging and discharging, and the battery or There is a risk of adversely affecting the characteristics such as the performance and life of the capacitor.
[0006]
In order to further improve the performance as a current collector by improving the adhesion with the active material, an aluminum foil having a large number of through holes having a diameter of about 1 to 1.5 mm has been developed. However, the aluminum foil in which the through hole is formed has a drawback that its strength is remarkably lowered. In addition, when an aluminum foil having a through hole formed by using a punch and a die for punching is used as a current collector material, there is a manufacturing problem of generation of burrs or scraps, so that productivity and manufacturing cost are increased. What is satisfactory in terms of reliability and the like cannot be obtained. Furthermore, when an aluminum foil having through holes formed with an etching solution is used as a current collector material, a large amount of resist mask is required, and a process for removing the resist mask is also required. There is a problem that it decreases.
[0007]
Therefore, in order to improve the adhesion with the active material, it has been studied to roughen the surface of the aluminum foil.
[0008]
For example, a method for producing an aluminum foil for a current collector, characterized in that the surface of the aluminum foil is roughened by spraying alumina particles onto the surface of the aluminum foil through water or a nonflammable organic solvent, as disclosed in JP-A-11 -162470 (patent document 1). A method for roughening the surface of an aluminum foil by employing a so-called blast method is disclosed in the above publication.
[0009]
Also, for example, a method for producing an aluminum foil for an electric double layer capacitor current collector in which an aluminum foil is immersed in an electrolytic solution containing chlorine ions, and an alternating current is applied to the aluminum foil to perform an etching process, the etching method Japanese Patent Application Laid-Open No. 2001-189238 (Patent Document 2) discloses that an alternating current having a frequency of 60 Hz or less is used for processing. A method for roughening the surface of the aluminum foil by employing a so-called electrolytic etching method is disclosed in the above publication.
[0010]
The surface of the aluminum foil treated by these methods is uniformly roughened in order to improve the adhesion with the electrode active material.
[0011]
By the way, in order to increase the storage capacity per volume of a battery or the like, it is required to make the aluminum foil itself used as a current collector thin. In addition, it is required to secure a certain mechanical strength necessary for the step of applying the electrode active material, and to ensure certain welding characteristics necessary for joining the electrode lead portions. If the surface of the aluminum foil is made uniform or the entire surface is made rough, it becomes difficult to satisfy these required characteristics.
[0012]
Thus, for example, Japanese Patent Application Laid-Open No. 2001-338843 (Patent Document 3) discloses a method for producing an aluminum etching foil for an electric double layer capacitor current collector, in which an aluminum foil is etched in an electrolytic solution containing chlorine ions. Thus, a method has been proposed in which an unetched portion is left on the surface where an electrically insulating shielding member exists in the vicinity of a part of the surface of the aluminum foil in the electrolytic solution.
[0013]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-162470 [Patent Document 2]
JP 2001-189238 A [Patent Document 3]
JP 2001-338843 A
[Problems to be solved by the invention]
However, the method disclosed in Japanese Patent Laid-Open No. 2001-338843 (Patent Document 3) has a narrower width even if an unetched portion of a band-like pattern having a certain width of 10 mm or more can be formed. It has been difficult to form an unetched portion of a pattern or an unetched portion of a complicated figure pattern. Further, the boundary between the etched portion and the unetched portion was unclear.
[0015]
In order to solve such a problem, there is a method in which a resist is pattern-printed in a chemical etching method or an electrolytic etching method, and then etched using the printed resist layer as a mask, and then the resist layer is removed. Conceivable. Further, in a method of roughening the surface of the aluminum foil by adopting a so-called blasting method, it is conceivable to perform a blasting process through a mask film.
[0016]
However, in any of the above methods, not only the manufacturing cost is increased, but in the step of removing the mask film or the resist layer, the electrical characteristics or mechanical characteristics of the surface of the aluminum foil set at the initial design are impaired. There was a problem. Moreover, since it is necessary to use a highly pure aluminum foil in the method of roughening the surface of the aluminum foil by employing the electrolytic etching method, an aluminum alloy foil is used to ensure a certain mechanical strength using a thin foil. There was a problem that I could not.
[0017]
Accordingly, an object of the present invention is to provide a method for producing an aluminum foil which can improve electrical characteristics or mechanical characteristics and can have regions having different surface roughness in an arbitrary shape.
[0018]
Moreover, the objective of this invention is providing the manufacturing method of the aluminum foil which can improve adhesiveness with an electrode active material in the area | regions of arbitrary shapes.
[0019]
Furthermore, the objective of this invention is providing the manufacturing method of the aluminum foil which can reduce the contact resistance value between electrode active materials in the area | regions of arbitrary shapes.
[0022]
[Means for Solving the Problems]
As a result of intensive studies and researches to solve the above-described problems, the present inventor conducted an etching process by applying a predetermined post-treatment to the surface of the aluminum foil and then performing a predetermined post-treatment. The inventors have found that regions having different surface roughness can be formed. The present invention has been made based on this finding, and has the following characteristic configuration.
[0036]
The method for manufacturing an aluminum foil according to the present invention includes a step of bringing an acidic first liquid containing hydrogen fluoride into contact with the first region on the surface of the aluminum foil, and the first region and the first region. And contacting an acidic second liquid containing hydrochloric acid on the surface of the aluminum foil including the adjacent second region .
[0037]
According to the manufacturing method of the present invention, regions having different shapes and surface roughness can be formed in a simple process without going through a complicated process of printing a resist layer or forming and removing a mask film. In addition, regions having different surface roughness can be formed on a wide variety of types of aluminum foil or aluminum alloy foil without being affected by the purity of the aluminum foil.
[0038]
In the method for producing an aluminum foil according to the present invention, the first liquid contains 0.1% by mass or more and 5.0% by mass of hydrogen fluoride, and the second liquid contains 3% by mass or more and 20% by mass or less of hydrochloric acid. Preferably, the step of bringing the first liquid into contact with aluminum chloride in an amount of 5% by mass or more and 25% by mass or less includes applying the first liquid at 5 g / m 2 or more with respect to the surface area of the aluminum foil.
[0039]
DETAILED DESCRIPTION OF THE INVENTION
An acidic pretreatment liquid containing at least hydrogen fluoride is printed or applied in a predetermined pattern on the surface of the aluminum foil, the surface of the aluminum foil is washed with water, and then the aluminum foil is immersed in an acidic posttreatment liquid containing hydrochloric acid. Thus, an etching process is performed. Thereby, the surface portion of the aluminum foil coated with the pretreatment liquid can be preferentially chemically etched with the posttreatment liquid. As a result, an aluminum foil having a weakly etched portion as the first region and a strong etched portion as the second region can be produced. In other words, the amount of residual oil on the surface of the aluminum foil and the thickness of the oxide film are changed depending on whether or not the pretreatment liquid is applied, thereby causing a difference in the etching rate during chemical etching with the posttreatment liquid, so The inventors have found that the etched portion can be formed in an arbitrary pattern shape.
[0040]
Specifically, an acidic pretreatment liquid containing 0.1% by mass or more and 5.0% by mass or less of hydrogen fluoride with a predetermined pattern on the surface of the aluminum foil at 5 g / m 2 or more with respect to the surface area of the aluminum foil. After the surface of the aluminum foil is washed with water, etching treatment is performed by immersing the aluminum foil in a post-treatment solution containing 3% by mass to 20% by mass of hydrochloric acid and 5% by mass to 25% by mass of aluminum chloride. Do.
[0041]
Here, the composition of the pretreatment liquid needs to contain 0.1% by mass or more of hydrogen fluoride, and if it is less than 0.1% by mass, it is difficult to obtain the effect of the pretreatment described above. . When the content of hydrogen fluoride exceeds 5.0% by mass, the corrosion of the aluminum foil proceeds excessively, pitting corrosion occurs in the coated part, or it becomes non-uniform, or the liquid can bleed. As a result, the boundary between the strong etching portion and the weak etching portion may not be obtained according to a predetermined pattern. In the composition of the pretreatment liquid, the balance may be water, and an appropriate amount of a surfactant or the like may be added as necessary as other components. The coating amount of the pretreatment liquid, there is a concentration related, 5 g / m 2 or more, more preferably as long as 10 to 20 g / m 2. If the application amount of the pretreatment liquid is less than 5 g / m 2 , the difference between the strong etching part and the weak etching part becomes poor, and if it exceeds 20 g / m 2 , the liquid can bleed, resulting in the strong etching part and There is a possibility that the boundary of the weakly etched portion cannot be obtained according to a predetermined pattern.
[0042]
The means for applying the pretreatment liquid is not particularly limited, and for example, brush coating, spray spraying, transfer with a rubber plate, application with a sponge plate, and the like can be employed. By using a roll-shaped rubber plate or sponge plate, it can be applied continuously. After applying the pretreatment liquid, the aluminum foil surface may be washed immediately or after standing for a predetermined time, but if necessary, the aluminum foil is dried for several seconds to several tens of minutes in the temperature range from room temperature to 80 ° C. The surface of the foil may be washed with water.
[0043]
The post-treatment liquid is an acidic aqueous solution containing 3% by mass to 20% by mass of hydrochloric acid and 5% by mass to 25% by mass of aluminum chloride as the composition. The post-treatment liquid preferably contains 5% by mass to 12% by mass of hydrochloric acid. The post-treatment liquid preferably contains 12% by mass or more and 18% by mass or less of aluminum chloride. Here, when the content of hydrochloric acid is less than 3% by mass, the rate of chemical etching becomes extremely slow, and it is difficult to obtain the intended strong etching part. When the content exceeds 20% by mass, excessive pitting corrosion occurs. It becomes easy, local etching progresses, and etching becomes non-uniform, so that the mechanical strength of the aluminum foil is lowered, and post-processing may become difficult. The post-treatment liquid may be used at room temperature, or may be used after being heated to about 30 to 80 ° C. The treatment time using the post-treatment liquid may be appropriately set depending on the final target surface roughness or the like, but may be usually adjusted within a range of about 10 to 2000 seconds. The treatment using the post-treatment liquid may be performed by a known method, for example, by dipping, spraying, coating, or the like. Industrially, the pretreated aluminum foil is continuously dipped in an etching tank. Is preferably adopted. After the treatment with the post-treatment liquid, a water washing step, usually a drying step of about 60 to 120 ° C., may be appropriately performed.
[0044]
In the strongly etched portion, the amount of carbon remaining on the surface due to residual oil on the surface of the aluminum foil such as rolling oil is 1 mg / m 2 or less, and the withstand voltage of the surface oxide film is 0.2V. It is preferable that the plane capacity per 1.5 V or less and the surface area of 12.5 cm 2 is 100 μF or more. By improving the properties of the surface of the aluminum foil in this way, the thickness of the oxide film evaluated by the amount of oil film evaluated by the amount of carbon (carbon) remaining on the surface and the film withstand voltage of the surface oxide film in particular. Therefore, when a film made of an electrode active material or the like is applied and processed in a later step, the adhesion of the film can be improved, and the original characteristics of the aluminum foil can be fully utilized.
[0045]
Here, when the amount of carbon (carbon) remaining on the surface exceeds 1 mg / m 2 , the adhesion of the active material film formed on the surface of the aluminum foil is not good. Contact resistance between the membranes increases. Further, when the surface withstand voltage of the surface oxide film is less than 0.2 V, the surface of the aluminum foil is not stable, and the impurity metal components and the like are easily dissolved in the electrolyte during use as a current collector. When the surface withstand voltage of the surface oxide film exceeds 1.5V, the internal resistance of the surface of the current collector increases, which may cause adverse effects such as deterioration of electric efficiency or heat generation.
[0046]
Plane capacity is a measure of surface roughness. When the withstand voltage of the surface oxide film is constant, the unit surface area increases as the plane capacity increases. Here, if the plane capacity per surface area of 12.5 cm 2 is less than 100 μF, the surface roughness obtained is not sufficient, and as a result, the adhesion with the electrode active material is insufficient and the durability of the battery or capacitor is adversely affected. Effect.
[0047]
The aluminum foil to be treated with the pretreatment liquid has a thickness of 10 to 100 μm, preferably 15 to 40 μm. When the thickness is less than 10 μm, the mechanical strength of the aluminum foil itself is low and the etching process becomes difficult. When the thickness exceeds 100 μm, the thickness is unnecessarily functional and disadvantageous in terms of cost. The aluminum foil may be any of a hard foil, a soft foil, and a semi-hard foil, but it is preferable to use a hard foil in view of mechanical strength.
[0048]
As the composition of the aluminum foil, the purity of aluminum is 96.5% by mass or more and 99.9% by mass or less, manganese is 1.5% by mass or less, iron is 2.0% by mass or less, and silicon is 0.00% by mass as alloy components. 5 mass% or less, 0.2 mass% or less of copper, and the total content of manganese, iron, silicon, and copper are 0.1 mass% or more and 3.5 mass% or less. Here, when the purity of aluminum is less than 96.5% by mass and the alloy component exceeds a predetermined amount, it becomes difficult not only to control the thin foil rolling and etching characteristics of the aluminum foil, but also to use it as a current collector. During use, the amount dissolved in the electrolyte increases, which adversely affects the characteristics of the battery or capacitor. When the purity of aluminum exceeds 99.9% by mass, the rate of chemical etching becomes slow, and as a result, the difference between the strong etching portion and the weak etching portion becomes poor.
[0049]
As the role of the alloy component elements, as the content of copper, iron and silicon increases, the chemical etching rate tends to increase, and if it is excessively contained, it becomes difficult to control the etching process. On the other hand, manganese has a function of suppressing the rate of chemical etching, and the reaction rate and the shape of the surface to be etched can be controlled by the purity of aluminum and the blending of alloy component elements. However, if the amount of iron, silicon, and copper remaining on the surface of the aluminum foil increases, the amount of corrosion of the aluminum foil increases when charging and discharging with an electrolyte when used as a current collector for a secondary battery, reducing the life of the electrode. And greatly deteriorates the characteristics. For this reason, after the etching process is completed, it is preferable that iron, silicon, and copper remaining on the surface of the aluminum foil be as small as possible.
[0050]
The aluminum foil having regions with different surface roughness according to the present invention is suitable as a current collector for use in secondary batteries such as lithium ion batteries and polymer ion batteries, and electric double layer capacitors, and other electrode materials for electrolytic capacitors. Further, it may be used as an external container or tab material for various batteries, a component of an IC card or a radio frequency (RF) ID tag, or the like.
[0051]
【Example】
As described below, aluminum foils were prepared or produced in Examples 1 to 3 and Comparative Examples 1 to 4 by changing the presence or absence of the etching process, the conditions of the etching process, and the purity of aluminum.
[0052]
Example 1
Aluminum hard foil having a thickness of 30 μm (JIS A1085-H18, composition: aluminum 99.90% by mass, silicon 0.02% by mass, iron 0.05% by mass, copper 0.01% by mass, other 0.02% by mass) An aqueous solution containing 0.3% by mass of hydrogen fluoride and 0.5% by mass of a nonionic surfactant as a pretreatment liquid having a liquid temperature of 25 ° C. is impregnated into a polyolefin sponge on a part of the surface of the coating. The coating process was performed at 10 g / m 2 , and after 20 seconds, the surface of the aluminum hard foil was washed with water. Thereafter, the aluminum hard foil was immersed in a post-treatment liquid containing 12% by mass of hydrochloric acid and 15% by mass of aluminum chloride at a temperature of 35 ° C. for 140 seconds.
[0053]
(Example 2)
Aluminum hard foil having a thickness of 22 μm (JIS A3003-H18, composition: aluminum 96.90% by mass, silicon 0.6% by mass, iron 0.7% by mass, copper 0.2% by mass, manganese 1.5% by mass, In addition, an acidic aqueous solution containing 0.3% by mass of hydrogen fluoride and 0.5% by mass of a nonionic surfactant as a pretreatment liquid having a liquid temperature of 25 ° C. on a partial surface of 0.1% by mass of polyolefin The surface of the aluminum hard foil was washed with water after being soaked in a sponge and coated at a coating amount of 10 g / m 2 and after 20 seconds. Thereafter, the aluminum hard foil was immersed in a post-treatment liquid containing 12% by mass of hydrochloric acid and 15% by mass of aluminum chloride at a temperature of 35 ° C. for 70 seconds.
[0054]
(Example 3)
Aluminum hard foil having a thickness of 30 μm (JIS A8021-H18, composition: aluminum 98.50 mass%, silicon 0.1 mass%, iron 1.3 mass%, copper 0.05 mass%, other 0.05 mass%) An aqueous solution containing 0.3% by mass of hydrogen fluoride and 0.5% by mass of a nonionic surfactant as a pretreatment liquid having a liquid temperature of 25 ° C. is impregnated into a polyolefin sponge on a part of the surface of the coating. The coating process was performed at 10 g / m 2 , and after 20 seconds, the surface of the aluminum hard foil was washed with water. Thereafter, the aluminum hard foil was immersed in a post-treatment liquid containing 12% by mass of hydrochloric acid and 15% by mass of aluminum chloride at a temperature of 35 ° C. for 80 seconds.
[0055]
(Comparative Example 1)
Aluminum hard foil having a thickness of 30 μm (JIS A1085-H18, composition: aluminum 99.90% by mass, silicon 0.02% by mass, iron 0.05% by mass, copper 0.01% by mass, other 0.02% by mass) Prepared.
[0056]
(Comparative Example 2)
Aluminum hard foil having a thickness of 22 μm (JIS A3003-H18, composition: aluminum 96.90% by mass, silicon 0.6% by mass, iron 0.7% by mass, copper 0.2% by mass, manganese 1.5% by mass, Other 0.1 mass%) was prepared.
[0057]
(Comparative Example 3)
Aluminum hard foil having a thickness of 30 μm (JIS A8021-H18, composition: aluminum 98.50 mass%, silicon 0.1 mass%, iron 1.3 mass%, copper 0.05 mass%, other 0.05 mass%) Prepared.
[0058]
(Comparative Example 4)
An electrolytically etched aluminum foil (product name: 40C045, thickness 40 μm, equivalent to JIS A1085-H18) manufactured by Nippon Chemi-Con Co., Ltd. was prepared.
[0059]
The mechanical characteristics and electrical characteristics of the aluminum foils prepared or produced in Examples 1 to 3 and Comparative Examples 1 to 4 were examined. As a result of the measurement, the composition of each aluminum foil (type of aluminum alloy), surface roughness (by measurement according to JIS B 0601-1994), tensile strength, and remaining carbon amount remaining on the surface of the aluminum foil are shown in Table 1. Show. Also. Table 1 also shows the measurement results of the withstand voltage and the plain capacity of the oxide film formed on the surface of the aluminum foil. In Examples 1-3, each measurement result is shown about the strong etching part and weak etching part which were formed by the etching process.
[0060]
The remaining amount of carbon was determined by heating the aluminum foil at a high temperature, quantifying the carbon dioxide generated when the oil content on the surface of each aluminum foil was completely burned by infrared spectroscopic analysis, and converting it to carbon. The withstand voltage of the oxide film is the voltage at the inflection point when the voltage increases and saturates in the current-voltage characteristic curve measured when anodizing with low current using each aluminum foil as the anode. Was evaluated by The plain capacity is a capacitor composed of a positive electrode with a surface area of 12.5 cm 2 for each aluminum foil and a tin plate with the same surface area as the negative electrode of the counter electrode, and an 8% boron with a liquid temperature of 30 ° C. ± 2 ° C. Evaluation was made by measuring the capacitance in an acid ammonium solution. An NF Electronic Model 2321 LCZ meter was used as a measuring instrument, and the measurement conditions were 120 Hz and 50 mV.
[0061]
[Table 1]
Figure 0004210556
The performance as a current collector was confirmed using the aluminum foil prepared as described above.
[0062]
An active material for an electric double layer capacitor was applied to the surface of each aluminum foil prepared in Examples 1 to 3 and Comparative Examples 1 to 4. The active material was coated after the active material was kneaded with ethanol, and the coating thickness after drying was adjusted to 60 μm. The composition of the active material used was 90% by mass of activated carbon having a specific surface area of 1500 m 2 / g and 10% by mass of PTFE (polytetrafluoroethylene). Then, about 20% of reduction was applied with the rolling roll, and the coating film of the active material was crimped | bonded to the surface of each aluminum foil. The adhesion of the active material coating film after rolling was observed.
[0063]
Moreover, the contact resistance value between the aluminum foil and the active material coating film was measured. As shown in FIG. 1, the upper electrode 1 made of brass (weight: 500 g) and the lower electrode 2 were measured. The measurement was carried out by measuring the distance between AB with a digital multimeter with each sample sandwiched between them. In this case, strictly speaking, the contact resistance is not only measured, but the volume resistance of the electrode and the sample is so small as to be negligible, so that the measured value can be regarded as the contact resistance value.
[0064]
Table 2 shows the observation results of the adhesiveness of the coating film of the active material and the measurement results of the contact resistance value.
[0065]
[Table 2]
Figure 0004210556
From Table 2, it can be seen that the strongly etched portion of the aluminum foil prepared in Examples 1 to 3 shows that the coating film of the active material shows good adhesion after rolling and the contact resistance value with the coating film is also low. . Moreover, from Table 1, the weakly etched portions of the aluminum foils produced in Examples 1 to 3 showed the same value as the unetched aluminum foils of Comparative Examples 1 to 3 in the tensile strength. It can be seen that the mechanical strength is almost maintained. From Table 2, the electrolytic etching foil of Comparative Example 4 shows good results in the adhesion and contact resistance value of the coated film of the active material after rolling, but from Table 1, the value of tensile strength is low, It can be seen that the mechanical strength is reduced.
[0066]
It should be considered that the embodiments and examples disclosed above are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the scope of claims, and includes all modifications and variations within the scope and meaning equivalent to the scope of claims.
[0067]
【The invention's effect】
As described above, according to the present invention, without going through a complicated process that formation and removal of printing or masking film Les resist layer, forming regions with different surface roughness in any shape by a simple process Thus, regions having different surface roughness can be formed on a wide variety of aluminum foils or aluminum alloy foils without being affected by the purity of the aluminum foil.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a method of measuring a contact resistance value performed in an example.
[Explanation of symbols]
1: Upper electrode, 2: Lower electrode.

Claims (2)

アルミニウム箔の表面上で第1の領域にフッ化水素を含む酸性の第1の液を接触させる工程と、Contacting an acidic first liquid containing hydrogen fluoride in a first region on the surface of the aluminum foil;
前記第1の領域と前記第1の領域に隣接する第2の領域とを含むアルミニウム箔の表面上に塩酸を含む酸性の第2の液を接触させる工程とを備えたアルミニウム箔の製造方法。A method for producing an aluminum foil, comprising: bringing an acidic second liquid containing hydrochloric acid into contact with a surface of an aluminum foil including the first region and a second region adjacent to the first region.
前記第1の液はフッ化水素を0.1質量%以上5.0質量%含み、前記第2の液は塩酸を3質量%以上20質量%以下、塩化アルミニウムを5質量%以上25質量%以下含み、前記第1の液を接触させる工程は前記第1の液をアルミニウム箔の表面積に対して5g/mThe first liquid contains 0.1% by mass to 5.0% by mass of hydrogen fluoride, the second liquid contains 3% by mass to 20% by mass of hydrochloric acid, and 5% by mass to 25% by mass of aluminum chloride. The step of bringing the first liquid into contact with the first liquid is 5 g / m with respect to the surface area of the aluminum foil. 22 以上で塗布することを含む、請求項1に記載のアルミニウム箔の製造方法。The manufacturing method of the aluminum foil of Claim 1 including apply | coating above.
JP2003164291A 2003-06-09 2003-06-09 Method for producing aluminum foil Expired - Fee Related JP4210556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164291A JP4210556B2 (en) 2003-06-09 2003-06-09 Method for producing aluminum foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164291A JP4210556B2 (en) 2003-06-09 2003-06-09 Method for producing aluminum foil

Publications (2)

Publication Number Publication Date
JP2005002371A JP2005002371A (en) 2005-01-06
JP4210556B2 true JP4210556B2 (en) 2009-01-21

Family

ID=34091124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164291A Expired - Fee Related JP4210556B2 (en) 2003-06-09 2003-06-09 Method for producing aluminum foil

Country Status (1)

Country Link
JP (1) JP4210556B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095772A (en) * 2005-09-27 2007-04-12 Hitachi Aic Inc Electric double-layer capacitor
JP2008060125A (en) * 2006-08-29 2008-03-13 Mitsubishi Alum Co Ltd Aluminum foil for electric double layer capacitor and its manufacturing method and surface roughening method
WO2009041074A1 (en) * 2007-09-28 2009-04-02 Nippon Chemi-Con Corporation Polarizable electrode for electric double layer capacitor and electric double layer capacitor using the same
US20120052383A1 (en) * 2009-05-27 2012-03-01 Sumitomo Electric Industries Ltd Positive-electrode member and method for producing the same
JP5463803B2 (en) * 2009-08-31 2014-04-09 日産自動車株式会社 Thin film electrode and laminated battery
JP2011124142A (en) * 2009-12-11 2011-06-23 Nippon Light Metal Co Ltd Aluminum/resin/copper composite article, its manufacturing method, and lid member for sealed battery
WO2012063740A1 (en) * 2010-11-11 2012-05-18 メック株式会社 Method for producing positive electrode collector for nonaqueous electrolyte secondary batteries and method for producing positive electrode for nonaqueous electrolyte secondary batteries
WO2012132999A1 (en) 2011-03-29 2012-10-04 富士フイルム株式会社 Aluminum base for current collector, current collector, positive electrode, negative electrode, and secondary battery
JP5771435B2 (en) * 2011-04-25 2015-08-26 株式会社Uacj Aluminum foil for current collector
WO2012175301A2 (en) * 2011-06-21 2012-12-27 Hydro Aluminium Rolled Products Gmbh Chemically treated current collector foil produced of aluminum or an aluminum alloy
WO2013085526A1 (en) 2011-12-08 2013-06-13 Intel Corporation Energy storage device, method of manufacturing a porous structure for same, and microelectronic assembly and system containing same
WO2013128685A1 (en) * 2012-02-28 2013-09-06 住友軽金属工業株式会社 Aluminum foil for collectors and method for producing same
JP5947593B2 (en) * 2012-03-30 2016-07-06 三菱アルミニウム株式会社 Method for producing aluminum foil for positive electrode current collector of lithium ion secondary battery
JP5917242B2 (en) * 2012-04-05 2016-05-11 株式会社Uacj Aluminum alloy foil for secondary battery electrode and manufacturing method thereof
JP5860174B2 (en) * 2012-04-16 2016-02-16 エルジー・ケム・リミテッド Method for producing electrode for lithium secondary battery
US10418636B2 (en) 2014-06-06 2019-09-17 Uacj Corporation Current-collector metal foil, current collector, and current-collector-metal-foil manufacturing method
WO2016017380A1 (en) * 2014-07-31 2016-02-04 富士フイルム株式会社 Aluminum plate
KR102050250B1 (en) * 2015-09-09 2019-12-17 주식회사 엘지화학 Electrode for Secondary Battery with Improved Production Processability
CN114744208B (en) * 2022-03-29 2023-02-10 佛山市中技烯米新材料有限公司 Current collector etching foil, preparation method thereof, electrode and lithium battery

Also Published As

Publication number Publication date
JP2005002371A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
JP4210556B2 (en) Method for producing aluminum foil
JP3933573B2 (en) Aluminum foil for current collector of lithium ion battery, current collector of lithium ion battery and lithium ion battery
JP3444769B2 (en) Aluminum foil for current collector and manufacturing method thereof, current collector, secondary battery and electric double layer capacitor
JP5625141B1 (en) Copper foil for negative electrode current collector of lithium ion secondary battery
JP2008103132A (en) Aluminum foil for collector of lithium ion cell, and lithium ion cell using it
JP5898616B2 (en) Method for producing copper foil for negative electrode current collector
TWI596220B (en) Copper film, negative electrode collector and negative electrode material of nonaqueous secondary cell
JP2014211960A (en) Current collector material
CN112117128B (en) High-specific-volume and high-strength medium-high voltage corrosion electrode foil and preparation method and application thereof
KR101246584B1 (en) Method for producing porous copper foil
JP3961434B2 (en) Manufacturing method of fuel cell separator
CN108122691B (en) Lithium ion capacitor current collector foil and manufacturing method thereof
JP2011134651A (en) Copper foil for nonaqueous solvent secondary battery negative electrode collector, its manufacturing method, and method of manufacturing nonaqueous solvent secondary battery negative electrode
JP2010097840A (en) Fuel cell separator and method for manufacturing thereof
JP5142254B2 (en) Positive electrode plate of lithium ion battery, method for producing the same, and lithium ion battery using the same
CA2507399A1 (en) Method for producing drawn coated metals and use of said metals in the form of a current differentiator for electrochemical components
WO2022185778A1 (en) Aluminum substrate for collector, capacitor, secondary cell, and method for manufacturing aluminum substrate for collector
WO2022054597A1 (en) Electrolytic copper foil, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP3416099B2 (en) Capacitor and manufacturing method thereof
JP2009087909A (en) Manufacturing method of separator for fuel cell
JP2013185228A (en) Electrolytic copper foil and negative electrode collector for secondary battery
JP2001189238A (en) Method of manufacturing aluminum foil for electrical double-layer capacitor collector body, aluminum foil for electrical-double layer capacitor collector body, and electrical-double layer capacitor
JP2021101037A (en) Surface-treated copper foil and method for manufacturing the same
JP2009238776A (en) Method of manufacturing solid electrolytic capacitor
WO2022118785A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees