JP2007095772A - Electric double-layer capacitor - Google Patents

Electric double-layer capacitor Download PDF

Info

Publication number
JP2007095772A
JP2007095772A JP2005279866A JP2005279866A JP2007095772A JP 2007095772 A JP2007095772 A JP 2007095772A JP 2005279866 A JP2005279866 A JP 2005279866A JP 2005279866 A JP2005279866 A JP 2005279866A JP 2007095772 A JP2007095772 A JP 2007095772A
Authority
JP
Japan
Prior art keywords
current collector
negative electrode
pit
positive electrode
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005279866A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Komata
一義 小又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP2005279866A priority Critical patent/JP2007095772A/en
Publication of JP2007095772A publication Critical patent/JP2007095772A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To ease the movement of an electrolyte, enhance a moisturizing function thereof, give wettability, and improve the adhesion of carbon materials stacked on an electric double-layer capacitor by improving a collector which houses an element wherein a positive electrode sheet formed of a positive electrode collector and a positive electrode carbon material formed on its surface and a negative electrode sheet formed of a negative electrode collector and a negative electrode carbon material are wound or laminated by means of a separator, and an electrolyte in a container. <P>SOLUTION: A tunnel-like pit extending vertically from the surface of a collector and a horizontal pit extending from the side wall of the tunnel-like pit are formed on a positive electrode collector or a negative electrode collector. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気二重層キャパシタに関する。   The present invention relates to an electric double layer capacitor.

電気二重層キャパシタは、正極集電体とその表面に設けた、活性炭を使用する正極炭素材とからなる正極シートと、負極集電体とその表面に設けた活性炭を使用する負極炭素材とからなる負極シートとを、セパレータを介して捲回または積層した素子と、電解液を密閉容器に収容したもので、特に、エネルギー密度や電圧の向上のために、負極炭素材として、活性炭の代わりに、リチウムを吸蔵、離脱しうる炭素材料を主体とする電極とし、リチウム塩を含んだ電解液からなる電気二重層キャパシタも提案されるようになってきた。この場合、負極炭素材にリチウムイオンをあらかじめ吸蔵させておくと、エネルギー密度や電圧の向上が安定するので、リチウムイオンの移動と吸蔵をし易くするために、集電体は、その表面と裏面を貫通した孔を設けたものを使用する方法も提案されている。
また、集電体とその上に積層される炭素材の密着性をもたせる目的で、エッチングしたアルミニウム箔を集電体として用いる場合、エッチング処理されて相対的に粗さが小さい第1の領域と、エッチング処理されて相対的に表面粗さが大きい第2領域とを備えることにより、集電体とその上に積層される炭素材の密着性を改善させる方法も提案されている(たとえば特開2005−2371号)。
特開2005−2371号公報
The electric double layer capacitor is composed of a positive electrode sheet made of a positive electrode current collector and a positive electrode carbon material using activated carbon provided on the surface thereof, and a negative electrode current collector and a negative electrode carbon material using activated carbon provided on the surface thereof. A negative electrode sheet, which is wound or laminated through a separator, and an electrolytic solution is housed in a sealed container, in particular, as a negative electrode carbon material for improving energy density and voltage, instead of activated carbon In addition, an electric double layer capacitor having an electrode mainly composed of a carbon material capable of inserting and extracting lithium and made of an electrolytic solution containing a lithium salt has been proposed. In this case, if the negative electrode carbon material is preliminarily occluded with lithium ions, the improvement in energy density and voltage is stabilized. Therefore, in order to facilitate the movement and occlusion of lithium ions, the current collector has its front and back surfaces. There has also been proposed a method using a hole provided with a through hole.
In addition, when an etched aluminum foil is used as a current collector for the purpose of providing adhesion between the current collector and the carbon material laminated thereon, a first region that is etched and relatively small in roughness is used. In addition, a method for improving the adhesion between the current collector and the carbon material laminated thereon by providing an etching-processed second region having a relatively large surface roughness has also been proposed (for example, JP 2005-2371).
Japanese Patent Laying-Open No. 2005-2371

本発明の目的は、集電体の改善により、電解液の容易な移動と、電解液の保湿作用を高め、濡れ性を与えるたり、その上に積層される炭素材の密着性を向上させることである。
The purpose of the present invention is to improve the current collector, to improve the easy movement of the electrolyte and the moisturizing action of the electrolyte, to give wettability, and to improve the adhesion of the carbon material laminated thereon It is.

本発明は上記の課題を解決するために、正極集電体とその表面に設けた主に正極炭素材からなる正極シートと、負極集電体とその表面に設けた主に負極炭素材からなる負極シートとを、セパレータを介して捲回または積層した素子と、電解液とを容器中に収容した電気二重層キャパシタにおいて、前記正極集電体または前記負極集電体に、その表面から垂直に延びるトンネル状のピットおよびそのトンネル状のピットの側壁から延びる横ピットを設けたアルミニウム集電体からなる電気二重層キャパシタを提供するものである。
また、正極集電体とその表面に設けた主に正極炭素材からなる正極シートと、負極集電体とその表面に設けた主に負極炭素材からなる負極シートとを、セパレータを介して捲回または積層した素子と、電解液とを容器中に収容した電気二重層キャパシタにおいて、前記正極集電体または前記負極集電体に、その一方面から他方面に垂直方向に貫通したトンネル状のピットおよびそのトンネル状のピットの側壁から延びる横ピットを設けたアルミニウム集電体からなる電気二重層キャパシタを提供するものである。
In order to solve the above problems, the present invention comprises a positive electrode current collector, a positive electrode sheet mainly made of a positive carbon material provided on the surface thereof, a negative electrode current collector and a main material of the negative electrode carbon material provided on the surface thereof. In an electric double layer capacitor in which a negative electrode sheet is wound or laminated via a separator and an electrolytic solution is contained in a container, the positive electrode current collector or the negative electrode current collector is perpendicular to the surface thereof. An electric double layer capacitor comprising an aluminum current collector provided with an extending tunnel-like pit and a lateral pit extending from the side wall of the tunnel-like pit is provided.
Further, a positive electrode current collector and a positive electrode sheet mainly made of a positive carbon material provided on the surface thereof, and a negative electrode current collector and a negative electrode sheet mainly made of a negative electrode carbon material provided on the surface of the positive electrode current collector and the negative electrode sheet are interposed through a separator. In an electric double layer capacitor in which a device that is turned or stacked and an electrolytic solution are housed in a container, a tunnel-like shape that penetrates the positive electrode current collector or the negative electrode current collector in a vertical direction from one surface to the other surface. An electric double layer capacitor comprising an aluminum current collector provided with pits and lateral pits extending from the side walls of the tunnel-like pits is provided.

本発明の、集電体の表面から垂直に内部に延びるトンネル状のピットの側壁から延びる横ピットは、使用電解液の保湿作用を高め、トンネル状のピットに十分濡れ性を与える作用を持つ。また、集電体の表面に近い上記横ピットは、くさび形状となってその上に積層される炭素材の密着性を改善することができる。
The lateral pits extending from the side walls of the tunnel-like pits extending vertically from the surface of the current collector of the present invention have the effect of enhancing the moisturizing action of the electrolyte used and providing sufficient wettability to the tunnel-like pits. Moreover, the said horizontal pit close | similar to the surface of an electrical power collector becomes wedge shape, and can improve the adhesiveness of the carbon material laminated | stacked on it.

本発明の集電体は、その上に積層される炭素材が両極とも活性炭の場合の両極用に、負極炭素材として、活性炭の代わりに、リチウムを吸蔵、離脱しうる炭素材料を主体とする電極の場合の陽極用に使用できる。   The current collector of the present invention is mainly composed of a carbon material capable of inserting and extracting lithium instead of activated carbon as a negative electrode carbon material for both electrodes when the carbon material laminated thereon is activated carbon. It can be used for an anode in the case of an electrode.

本発明における集電体は、化学的または電気化学的に耐食性のある導電体で、表面から垂直に内部に延びるトンネル状のピットおよびそのトンネル状のピットの側壁から延びる横ピットを設けたものである。このトンネル状のピットは、集電体の表裏に貫通させると電解液が容易に移動できて好ましい。集電体は、一般には高純度のアルミニウムを使用し、形態としては、箔が一般的に使用され、その厚さは5μmから150μm程度が好ましい。エキスパンドメタル、パンチングメタル状の形態を使用してもかまわないが、この場合、表面から垂直に延びる貫通トンネル状のピットはすでに形成されていることになる。
上記トンネル状のピットの径は、0.5μmから150μm。好ましくは、1μmから30μmである。横ピット径は、0.1μmから100μm。好ましくは、0.3μmから20μmである。エキスパンドメタルやパンチングメタルでは、貫通孔径はもう少し大きくなる場合もある。
The current collector in the present invention is a chemically or electrochemically corrosion-resistant conductor, and is provided with a tunnel-like pit extending inward from the surface vertically and a lateral pit extending from the side wall of the tunnel-like pit. is there. It is preferable that the tunnel-like pits penetrate through the current collector and the back of the current collector because the electrolyte can easily move. The current collector generally uses high-purity aluminum, and as a form, a foil is generally used, and the thickness is preferably about 5 μm to 150 μm. An expanded metal or punching metal shape may be used, but in this case, a through tunnel-like pit extending perpendicularly from the surface is already formed.
The diameter of the tunnel-like pit is 0.5 μm to 150 μm. Preferably, it is 1 μm to 30 μm. The lateral pit diameter is 0.1 μm to 100 μm. Preferably, it is 0.3 μm to 20 μm. In the case of expanded metal or punching metal, the diameter of the through hole may be a little larger.

トンネル状のピットおよび横ピットを設ける方法には、原箔材の構造とその後のエッチング方法またはその両方に分けられる。   The method of providing tunnel-like pits and lateral pits can be divided into the structure of the original foil material and the subsequent etching method or both.

原箔の一般的な工程は、溶解、鋳造、熱間圧延、最終焼鈍の順で行われる製造工程によるが、原箔の構造において、本発明に用いる原箔は、例えば、Al箔表面にAl箔より誘電率の高い導電性金属を不活性ガス中で蒸着させる、蒸発源の距離、蒸着速度で制御する方法、チタン、ジルコニウム、ニオブ、ハフニウムの少なくとも1種の2〜60原子%の金属と回避できない不純物を含有したAl合金を加熱して融解し、融解状態より急冷して固相材料を得る、いわゆる液体急冷法により作製したことを特徴とする方法、不純物として、Fe、Si、Cuを除く残部の純度が99.9%以上である高純度AlからなるAl材料であって、結晶粒の短軸の最大長を制限したことを特徴とする方法。その不純物としてのFe、Si、Cuの含有量が、それぞれ100ppm以下とする方法、通常、最終焼鈍で結晶方位(100)面を揃えた原箔を用いるが、(111)面の配向したものを1〜10%混合し、ピット開始点の制御を意図的に行うが挙げられる。   The general process of the raw foil depends on the manufacturing process performed in the order of melting, casting, hot rolling, and final annealing. In the structure of the raw foil, the raw foil used in the present invention is, for example, Al on the surface of the Al foil. Conductive metal having a dielectric constant higher than that of foil is deposited in an inert gas, a method of controlling by evaporation distance, deposition rate, at least one of titanium, zirconium, niobium, and hafnium 2-60 atomic% metal A method characterized by heating by melting an Al alloy containing impurities that cannot be avoided and quenching from the melted state to obtain a solid phase material, so-called liquid quenching method, Fe, Si, Cu as impurities A method characterized in that it is an Al material made of high-purity Al having a purity of the remaining portion of 99.9% or more, and the maximum length of the short axis of the crystal grains is limited. A method in which the contents of Fe, Si, and Cu as impurities are 100 ppm or less, respectively, and a raw foil having a crystal orientation (100) aligned in final annealing is used. 1 to 10% is mixed and the pit start point is intentionally controlled.

また、原箔の電解エッチングの一般的な方法は、直流、交流または直流と交流を組み合わせた電解エッチングにより、その表面及び内部に無数のピットを形成せしめるようにすることで、その工程は、前処理、ピット形成、ピット拡大、洗浄の順で行われる。電解エッチングに用いる電解液は、塩酸、硫酸、硝酸などの無機塩、或いは各種の有機酸単独又はその2種以上の混合酸から或る適当な濃度の水溶液が使用でき、その夫々に適した電流密度、電圧などが選択される。
本発明に用いるエッチング処理方法では、例えば、前段のエッチングを行う前に、Alよりも自然電位の高い金属イオンを少なくとも1種類以上含ませた酸性溶液中でカソード電流を印加して前処理を行うとともに、前記金属イオンの濃度の総和をppmとしたもので行う方法、前段のエッチングを行う前に、第一段の前処理としてAl原箔をアルカリ性または酸性の水溶液中に浸漬してAl原箔表面の不均一層を除去し、その後、第二段の前処理としてAlよりも自然電位の高い金属イオンを少なくとも1種類以上含ませた酸性水溶液中でAl原箔にカソード電流を印加する方法。前段で直流エッチングを行い、後段で前記Al箔の浸漬処理をした後、交流電解エッチングの電流密度を徐々に上昇させ、その後一定の電流密度でエッチングを行う方法、前段のエッチングを行う前、あるいは前段のエッチングの途中段階で、Al箔表面に皮膜を生成させる水溶液中にAl箔を浸漬するようにする方法、前段のエッチングを行う前、あるいは前記前段の直流エッチングの途中段階で、Al箔表面に皮膜を生成させる水溶液中にAl箔を浸漬し、かつ前記水溶液濃度を0.2〜1%の範囲にすることを特徴とする方法。Al箔表面に皮膜を生成させる水溶液がリンを含む酸、シュウ酸のうちから選択された1種類の酸、それらの混酸、あるいはその塩である前記の製法が挙げられる。
In addition, a general method of electrolytic etching of the raw foil is to form countless pits on the surface and inside by direct current, alternating current, or a combination of direct current and alternating current. Processing, pit formation, pit expansion, and cleaning are performed in this order. As an electrolytic solution used for electrolytic etching, an inorganic salt such as hydrochloric acid, sulfuric acid, nitric acid, or various organic acids can be used alone or an aqueous solution having an appropriate concentration can be used. Density, voltage, etc. are selected.
In the etching method used in the present invention, for example, before performing the pre-etching, pre-treatment is performed by applying a cathode current in an acidic solution containing at least one metal ion having a higher natural potential than Al. In addition, a method in which the total concentration of the metal ions is set to ppm, and before performing the first stage etching, the first Al raw foil is immersed in an alkaline or acidic aqueous solution as a first stage pretreatment. A method in which a nonuniform layer on the surface is removed, and then a cathode current is applied to the Al raw foil in an acidic aqueous solution containing at least one metal ion having a higher natural potential than Al as a second pretreatment. Perform DC etching in the previous stage, and after the immersion treatment of the Al foil in the subsequent stage, gradually increase the current density of AC electrolytic etching and then perform etching at a constant current density, before performing the previous stage etching, or In the middle of the previous etching, the Al foil is immersed in an aqueous solution that forms a film on the surface of the Al foil, the surface of the Al foil before the previous etching, or in the middle of the previous DC etching. A method of immersing an Al foil in an aqueous solution for forming a film on the substrate and setting the concentration of the aqueous solution in the range of 0.2 to 1%. The above-mentioned production method is an example in which the aqueous solution for forming a film on the surface of the Al foil is one acid selected from an acid containing phosphorus and oxalic acid, a mixed acid thereof, or a salt thereof.

集電体の上には電極となる炭素材積層するが、集電体に炭素材が密着するように圧着させる。圧着は、炭素材をよく乾燥させてから行うのが好ましい。   A carbon material to be an electrode is laminated on the current collector, and the current collector is pressure-bonded so that the carbon material is in close contact with the current collector. The pressure bonding is preferably performed after the carbon material is thoroughly dried.

集電体の上に積層される炭素材が両極とも活性炭の通常の電気二重層キャパシタは、正極と負極との間に、例えば微多孔膜等のセパレータを介在させ、捲回または積層して素子とし、外装体に収納後に電解液を注液し、封口することで得られる。外装体はステンレスやアルミニウムなどの金属製缶でもよい。   A normal electric double layer capacitor in which the carbon material laminated on the current collector is activated carbon for both electrodes is formed by winding or laminating a separator such as a microporous film between the positive electrode and the negative electrode. Then, after being stored in the exterior body, the electrolyte is injected and sealed. The outer package may be a metal can such as stainless steel or aluminum.

負極炭素材へのリチウム吸蔵するタイプの電気二重層キャパシタでは、負極集電体として、多孔質金属の材料は、リチウムと合金を形成せず、負極側の使用条件で安定な材料であればよく、好ましくは気孔率が80〜99.5%のニッケル、銅又はこれらの合金が使用される。
Liイオンを吸蔵、脱離しうる炭素材料に化学的方法及び/又は電気化学的方法でLiイオンを吸蔵させた炭素質材料と多孔質金属の集電体からなる負極を用いる。負極を製造するには、好ましくは、海綿状のシート状多孔質金属に、炭素材料に結合材、溶媒を加えて混練したスラリを塗布等によって気孔中に注入し、負極材料と集電体とを一体化する。負極材へド−プするのに用いるリチウムは、箔、線、棒材形状のものを利用する。リチウムのド−プ方法は、表面にリチウム金属箔を貼り付け、表面に真空蒸着やスパッタリングによってリチウム薄膜を形成した負極とセパレータと正極を容器に予め収め、電解液を注液して局部電池を作製しド−プする方法や、予めLiIなどによって化学的に所定量のリチウムを負極にド−プする方法があるが、好ましくは局部電池を作製する方法であり、更に好ましくは表面にリチウム金属箔を張り付けた負極によって局部電池を作成する方法である。この方法の中でも化学的手法がもっとも好ましく、容器内においてリチウムをドープしたい素子に金属リチウムを予め負極電極はみ出し構造とした捲回素子底面にド−プ必要量以上の過剰量貼り付け、何らかの方法で接触を保った状態で収納し、電解液で満たす。
In an electric double layer capacitor of the type that stores lithium in the negative electrode carbon material, the porous metal material may be any material that does not form an alloy with lithium and is stable under the use conditions on the negative electrode side as the negative electrode current collector. Preferably, nickel, copper or an alloy thereof having a porosity of 80 to 99.5% is used.
A negative electrode composed of a carbonaceous material in which Li ions are occluded by a chemical method and / or an electrochemical method and a porous metal current collector is used. In order to produce the negative electrode, preferably, a slurry obtained by adding a binder and a solvent to a carbon material and kneading into a sponge-like sheet-like porous metal is injected into the pores by coating or the like, and the negative electrode material, the current collector, Is integrated. Lithium used for doping to the negative electrode material is in the form of foil, wire, or bar. In the lithium doping method, a lithium metal foil is attached to the surface, and a negative electrode, a separator, and a positive electrode on which a lithium thin film is formed by vacuum deposition or sputtering are placed in a container in advance. There are a method of manufacturing and doping, and a method of chemically doping a predetermined amount of lithium to the negative electrode in advance by LiI or the like, preferably a method of manufacturing a local battery, and more preferably a lithium metal on the surface. This is a method of creating a local battery with a negative electrode attached with a foil. Among these methods, the chemical method is most preferable, and in the container, metallic lithium is preliminarily attached to the bottom surface of the wound element having a negative electrode protruding structure on the element to be doped with lithium. Store in contact and fill with electrolyte.

以下、実施例により本発明を説明する。
以下、本発明を実施例によって具体的に説明するが、本発明はこれらによって限定されない。
すなわち、フェノール樹脂系の水蒸気賦活処理活性炭粉末(比表面積2000m2 /g、平均粒径5μm、以下、活性炭Aとする)80重量%、導電助剤(電気化学工業社製の導電性カーボンブラック、以下、CBとする)10重量%、ポリフッ化ビニリデン(以下、PVDFとする)10重量%からなる混合物にN−メチル−2ピロリドン(以下、NMPとする)を添加して混練し、スラリを得た。このスラリを厚さ100μm、350耐圧で静電容量0.93μF/cm、目付け量5mg/cm2 、貫通トンネル状のピットのエッチングアルミニウム集電体(以下、貫通ピット+横ピットAl箔という)のシートに塗布し、100℃で1時間乾燥した。乾燥後、ロールプレスし、幅2.6cm長さ81cm、厚さ0.25mmの正極とした。
この実施例の貫通ピット+横ピットAl箔(正極集電体)は、純度99.98%、厚み50μmで、最終焼鈍で結晶方位(100)面を揃えた原箔で、(111)面の配向したものを約3%混合し、Al原箔に1重量%の塩酸と2重量%の硝酸の混酸に鉛イオン15ppmと亜鉛イオン23ppmを添加した50℃の液中で、5A/dmのカソード電流を180秒印加して前処理を行い、続いて85℃の酸性溶液(塩酸10%、硫酸10%)中に浸漬し、電流密度20A/dmの直流を250秒印加して前段のエッチング処理を行った後、濃度10%、60℃の硝酸で洗浄し、次に80℃、5%の塩酸水溶液中に浸漬し、かつ電流密度10A/dmの直流を600秒印加して後段、すなわち最終段のエッチング処理を行って作製した。貫通孔径は10μmから20μm程度で、横ピット径は1μmから10μm程度であった。
捲回型EDLCの正極の単極容量は151F、すなわち2Vあたりの容量は84.1mAhであった。
次に負極を次のように作製した。
炭素材料は難黒鉛性炭素材料(以下、炭素材料Aとする)を負極に用い95重量%、PVDF5重量%からなる混合物にNMPを重量比で3倍量加え、撹拌混合し、炭素材料AがPVDFのNMP溶液に分散したスラリを得た。
このスラリを厚さ20μm、目付け量5mg/cm 、エキスパンド銅のシート(以下、貫通Cu箔とする)に塗布し、80℃で1時間乾燥させた後、ロールプレスし、幅3.0cm長さ95cm、厚さ0.16mmの負極とした。
この圧縮された負極の炭素材料Aの担持量は5.4mg/cm2 であった。
正極側はアルミニウムリードを穴あきAl箔未塗工部に超音波溶接で接続、負極側はニッケルリードを用いた穴あきCu箔未塗工部に超音波溶接で接続。一対のセパレータを挟んだ構造で捲回素子を作製した。 このあと、各リードとキャップを超音波接続した。
捲回素子は負極電極はみ出し構造の特徴をもつ。
これらをアルゴン雰囲気のグローブボックスに移し、負極のはみ出し部分のリチウム接触面を揃えた。揃えた負極集電体端面とリチウム金属箔8を接触させた状態で、1.5mol/LのLiPF6 を溶かしたエチレンカーボネート(以下、ECという)とエチルメチルカーボネート(以下、EMCという)の容積比1:3の電解液をガラス缶容器中に満たして注入し捲回素子に含浸した。そのあと温度40℃で20時間放置した。
この加温操作で負極電極に直向してあった必要充電量より過剰なリチウム箔がイオン化した状態で負極電極に化学的に取り込まれる。
この負極が脱離しうるLi+ 量は890mAhであり、負極総充電量当たり充電量50%であった。
ガラス缶容器から捲回素子を取り出し、リチウム箔を剥がし、素子をAl容器中に入れレーザー溶接で封口した。
Hereinafter, the present invention will be described by way of examples.
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these.
That is, phenol resin-based steam activated activated carbon powder (specific surface area 2000 m 2 / g, average particle size 5 μm, hereinafter referred to as activated carbon A) 80% by weight, conductive assistant (conductive carbon black manufactured by Denki Kagaku Kogyo Co., Ltd.) Hereinafter, N-methyl-2pyrrolidone (hereinafter referred to as NMP) is added to a mixture of 10% by weight of CB and 10% by weight of polyvinylidene fluoride (hereinafter referred to as PVDF) and kneaded to obtain a slurry. It was. This slurry has a thickness of 100 μm, 350 withstand voltage, capacitance of 0.93 μF / cm 2 , basis weight of 5 mg / cm 2 , etched tunnel-shaped aluminum collector (hereinafter referred to as “through pit + lateral pit Al foil”) And then dried at 100 ° C. for 1 hour. After drying, it was roll-pressed to obtain a positive electrode having a width of 2.6 cm, a length of 81 cm, and a thickness of 0.25 mm.
The penetrating pit + transverse pit Al foil (positive electrode current collector) of this example is a raw foil having a purity of 99.98%, a thickness of 50 μm, and aligned in the crystal orientation (100) in the final annealing. About 3% of the oriented material is mixed, and 5 A / dm 2 in a 50 ° C. liquid in which 15 ppm of lead ions and 23 ppm of zinc ions are added to a mixed acid of 1% by weight hydrochloric acid and 2% by weight nitric acid in an Al raw foil. Pretreatment was performed by applying a cathode current for 180 seconds, followed by immersion in an acidic solution (85% hydrochloric acid, 10% sulfuric acid) at 85 ° C., and applying a direct current with a current density of 20 A / dm 2 for 250 seconds. After the etching process, the substrate was washed with nitric acid having a concentration of 10% and 60 ° C., then immersed in an aqueous solution of hydrochloric acid at 80 ° C. and 5%, and a direct current having a current density of 10 A / dm 2 was applied for 600 seconds. That is, it was fabricated by performing the final stage etching process. The through-hole diameter was about 10 μm to 20 μm, and the lateral pit diameter was about 1 μm to 10 μm.
The single electrode capacity of the positive electrode of the wound EDLC was 151 F, that is, the capacity per 2 V was 84.1 mAh.
Next, the negative electrode was produced as follows.
As the carbon material, a non-graphitizable carbon material (hereinafter referred to as carbon material A) is used as a negative electrode, and NMP is added 3 times by weight to a mixture composed of 95% by weight and PVDF 5% by weight. A slurry dispersed in an NMP solution of PVDF was obtained.
This slurry was applied to a 20 μm thick, weight per unit area 5 mg / cm 2 , expanded copper sheet (hereinafter referred to as penetrating Cu foil), dried at 80 ° C. for 1 hour, then roll-pressed, and the width was 3.0 cm long. The negative electrode was 95 cm thick and 0.16 mm thick.
The amount of carbon material A supported on the compressed negative electrode was 5.4 mg / cm 2 .
On the positive side, an aluminum lead is connected by ultrasonic welding to an uncoated part of Al foil, and on the negative side, it is connected to an uncoated part of Cu foil using a nickel lead by ultrasonic welding. A wound element was fabricated with a structure sandwiching a pair of separators. Thereafter, each lead and cap were ultrasonically connected.
The winding element has a feature of a negative electrode protruding structure.
These were transferred to a glove box in an argon atmosphere, and the lithium contact surface of the protruding portion of the negative electrode was aligned. Volumes of ethylene carbonate (hereinafter referred to as EC) and ethyl methyl carbonate (hereinafter referred to as EMC) in which 1.5 mol / L LiPF 6 is dissolved in a state where the prepared negative electrode current collector end face and lithium metal foil 8 are in contact with each other. The electrolyte solution having a ratio of 1: 3 was filled in a glass can container and injected to impregnate the wound element. Thereafter, it was left at a temperature of 40 ° C. for 20 hours.
In this heating operation, an excess lithium foil is ionized in a state of being ionized more than the necessary charge amount facing directly to the negative electrode.
The amount of Li + that can be detached from the negative electrode was 890 mAh, and the charge amount was 50% per the total negative electrode charge amount.
The wound element was taken out from the glass can container, the lithium foil was peeled off, and the element was put in an Al container and sealed by laser welding.

例1と同様の正極電極を正負極とし、貫通ピット+横ピットAl集電体とその表面に設けた主に活性炭素材とからなるシートとした。正極側はアルミニウムリードを穴あきAl箔集電体未塗工部に超音波溶接で接続、負極側はアルミニウムリードを穴あきAl箔未塗工部に超音波溶接で接続。一対のセパレータ(紙)を挟んだ構造で捲回素子を作製した。 このあと、各リードとキャップ7を超音波接続した。
これらをアルゴン雰囲気のグローブボックスに移し、1.0mol/LのTEABF4/PCの 電解液をガラス缶容器中に満たして注入し捲回素子に含浸した。
素子をAl容器中に入れレーザー溶接で封口した。
The positive electrode similar to Example 1 was made into the positive / negative electrode, and it was set as the sheet | seat which mainly consists of an activated carbon raw material provided in the surface through pit + horizontal pit Al collector. On the positive electrode side, an aluminum lead is connected to the uncoated part of the Al foil current collector with ultrasonic welding, and on the negative electrode side, the aluminum lead is connected to the non-coated part of the aluminum foil with ultrasonic welding. A wound element was fabricated with a structure sandwiching a pair of separators (paper). Thereafter, each lead and the cap 7 were ultrasonically connected.
These were transferred to a glove box in an argon atmosphere, and 1.0 mol / L of TEABF 4 / PC electrolyte was filled in a glass can container and injected to impregnate the wound element.
The element was placed in an Al container and sealed by laser welding.

発明の効果として、純度99.98%、厚み100μmで、最終焼鈍で結晶方位(100)面を揃えた原箔を使用して貫通孔のみの集電体を制作し、実施例1,2とそのほかは同様に制作し、表1の項目で比較したところ、実施例1の貫通ピット+横ピットAl集電体を使用した方が、貫通ピットだけAl集電体を使用したものより負極シートにLi吸蔵させる時間が短縮された。また、実施例2の貫通ピット+横ピットAl集電体を使用した方が、貫通ピットだけのAl集電体を使用したものよりレート増加時の容量維持率(%)大きかった。
また、実施例1の正極シートと、貫通孔のみの集電体でその他は実施例1と同様な正極シートの表面に、セロテープをはりつけ直角方向に引きはがすセロテープ剥離テストを行うと、実施例1の正極シートでは正極炭素材が集電体から剥がれなかったが、貫通孔のみの集電体でその他は実施例1と同様な正極シートでは、一部正極炭素材が集電体から剥がれた。
As an effect of the invention, a current collector having only through-holes was produced using a raw foil having a purity of 99.98%, a thickness of 100 μm, and aligned in the crystal orientation (100) by final annealing. Others were produced in the same manner and compared in the items of Table 1. When the through pit + lateral pit Al current collector of Example 1 was used, the negative electrode sheet was made by using only the through pit and the Al current collector. Li storage time was shortened. Further, the capacity retention rate (%) at the time of rate increase was larger in the case of using the through current pit + lateral pit Al current collector of Example 2 than in the case of using the Al current collector with only the through pit.
Moreover, when the cellophane peeling test which peels off the right-angled direction by sticking a cello tape on the surface of the positive electrode sheet of Example 1 and the collector of a positive electrode sheet which is the same as that of Example 1 except for a through-hole, Example 1 In the positive electrode sheet, the positive electrode carbon material was not peeled off from the current collector. However, in the positive electrode sheet similar to Example 1 except that the current collector had only through holes, a part of the positive electrode carbon material was peeled off from the current collector.

Figure 2007095772
Figure 2007095772

本発明の集電体の一例を示す断面図である。It is sectional drawing which shows an example of the electrical power collector of this invention.

符号の説明Explanation of symbols

1:トンネル状のピット、2:横ピット。   1: Tunnel-like pit, 2: Horizontal pit.

Claims (2)

正極集電体とその表面に設けた主に正極炭素材からなる正極シートと、負極集電体とその表面に設けた主に負極炭素材からなる負極シートとを、セパレータを介して捲回または積層した素子と、電解液とを容器中に収容した電気二重層キャパシタにおいて、前記正極集電体または前記負極集電体に、その表面から垂直方向に延びるトンネル状のピットおよびそのトンネル状のピットの側壁から延びる横ピットを設けたアルミニウム集電体からなる電気二重層キャパシタ。   A positive electrode current collector and a positive electrode sheet mainly made of a positive carbon material provided on the surface thereof, and a negative electrode current collector and a negative electrode sheet mainly made of a negative electrode carbon material provided on the surface of the positive electrode current collector and In an electric double layer capacitor in which a stacked element and an electrolytic solution are housed in a container, a tunnel-like pit extending vertically from the surface of the positive-electrode current collector or the negative-electrode current collector and the tunnel-like pit Electric double layer capacitor comprising an aluminum current collector provided with lateral pits extending from the side wall of the substrate. 正極集電体とその表面に設けた主に正極炭素材からなる正極シートと、負極集電体とその表面に設けた主に負極炭素材からなる負極シートとを、セパレータを介して捲回または積層した素子と、電解液とを容器中に収容した電気二重層キャパシタにおいて、前記正極集電体または前記負極集電体に、その一方面から他方面に垂直方向に貫通したトンネル状のピットおよびそのトンネル状のピットの側壁から延びる横ピットを設けたアルミニウム集電体からなる電気二重層キャパシタ。   A positive electrode current collector and a positive electrode sheet mainly made of a positive carbon material provided on the surface thereof, and a negative electrode current collector and a negative electrode sheet mainly made of a negative electrode carbon material provided on the surface of the positive electrode current collector and In the electric double layer capacitor in which the stacked element and the electrolytic solution are housed in a container, a tunnel-like pit that penetrates the positive electrode current collector or the negative electrode current collector from one surface to the other surface in the vertical direction, and An electric double layer capacitor comprising an aluminum current collector provided with a lateral pit extending from the side wall of the tunnel-like pit.
JP2005279866A 2005-09-27 2005-09-27 Electric double-layer capacitor Pending JP2007095772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005279866A JP2007095772A (en) 2005-09-27 2005-09-27 Electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005279866A JP2007095772A (en) 2005-09-27 2005-09-27 Electric double-layer capacitor

Publications (1)

Publication Number Publication Date
JP2007095772A true JP2007095772A (en) 2007-04-12

Family

ID=37981144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005279866A Pending JP2007095772A (en) 2005-09-27 2005-09-27 Electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JP2007095772A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105372A (en) * 2007-10-19 2009-05-14 Young Joo Oh Metal capacitor, and manufacturing method therefor
JP2009105371A (en) * 2007-10-19 2009-05-14 Young Joo Oh Metal capacitor, and manufacturing method therefor
JP2009170861A (en) * 2008-01-11 2009-07-30 Young Joo Oh Metal capacitor and its manufacturing method
JP2011023710A (en) * 2009-06-19 2011-02-03 Semiconductor Energy Lab Co Ltd Method for manufacturing electric storage device
JP2020064971A (en) * 2018-10-17 2020-04-23 Tdk株式会社 Active material for electric double layer capacitor, electrode for electric double layer capacitor, and electric double layer capacitor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219721A (en) * 1984-04-17 1985-11-02 松下電器産業株式会社 Method of producing electrode foil for aluminum electrolyticcondenser
JPS60243300A (en) * 1984-05-15 1985-12-03 Marcon Electronics Co Ltd Etching method of aluminum foil for electrolytic capacitor
JPH0557360A (en) * 1991-08-30 1993-03-09 Nkk Corp Method and device for restriking by detonation elastic pressure
JPH11186102A (en) * 1997-12-24 1999-07-09 Honda Motor Co Ltd Electric double layer capacitor
JP2002246274A (en) * 2001-02-14 2002-08-30 Matsushita Electric Ind Co Ltd Electrode foil for aluminum electrolytic capacitor and its producing method
JP2002299182A (en) * 2001-04-04 2002-10-11 Matsushita Electric Ind Co Ltd Aluminum solid electrolytic capacitor and method of manufacturing the same
JP2004238659A (en) * 2003-02-04 2004-08-26 Toyo Aluminium Kk Metallic foil stacked body for etching, and method of producing etched metallic foil
JP2005002371A (en) * 2003-06-09 2005-01-06 Toyo Aluminium Kk Aluminum foil, its production method, charge collector, secondary battery and electric double layer capacitor
JP2005259726A (en) * 2004-03-09 2005-09-22 Yuasa Corp Electrochemical device and manufacturing method therefor
JP2005256026A (en) * 2004-03-09 2005-09-22 Toyo Aluminium Kk Metal foil laminate for etching

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219721A (en) * 1984-04-17 1985-11-02 松下電器産業株式会社 Method of producing electrode foil for aluminum electrolyticcondenser
JPS60243300A (en) * 1984-05-15 1985-12-03 Marcon Electronics Co Ltd Etching method of aluminum foil for electrolytic capacitor
JPH0557360A (en) * 1991-08-30 1993-03-09 Nkk Corp Method and device for restriking by detonation elastic pressure
JPH11186102A (en) * 1997-12-24 1999-07-09 Honda Motor Co Ltd Electric double layer capacitor
JP2002246274A (en) * 2001-02-14 2002-08-30 Matsushita Electric Ind Co Ltd Electrode foil for aluminum electrolytic capacitor and its producing method
JP2002299182A (en) * 2001-04-04 2002-10-11 Matsushita Electric Ind Co Ltd Aluminum solid electrolytic capacitor and method of manufacturing the same
JP2004238659A (en) * 2003-02-04 2004-08-26 Toyo Aluminium Kk Metallic foil stacked body for etching, and method of producing etched metallic foil
JP2005002371A (en) * 2003-06-09 2005-01-06 Toyo Aluminium Kk Aluminum foil, its production method, charge collector, secondary battery and electric double layer capacitor
JP2005259726A (en) * 2004-03-09 2005-09-22 Yuasa Corp Electrochemical device and manufacturing method therefor
JP2005256026A (en) * 2004-03-09 2005-09-22 Toyo Aluminium Kk Metal foil laminate for etching

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105372A (en) * 2007-10-19 2009-05-14 Young Joo Oh Metal capacitor, and manufacturing method therefor
JP2009105371A (en) * 2007-10-19 2009-05-14 Young Joo Oh Metal capacitor, and manufacturing method therefor
JP2009170861A (en) * 2008-01-11 2009-07-30 Young Joo Oh Metal capacitor and its manufacturing method
JP2011023710A (en) * 2009-06-19 2011-02-03 Semiconductor Energy Lab Co Ltd Method for manufacturing electric storage device
JP2020064971A (en) * 2018-10-17 2020-04-23 Tdk株式会社 Active material for electric double layer capacitor, electrode for electric double layer capacitor, and electric double layer capacitor

Similar Documents

Publication Publication Date Title
TWI573157B (en) Electrode material, solid electrolytic capacitor and cathode foil
JP3496338B2 (en) Electric double layer capacitor
EP2099043B1 (en) Coated electrode and organic electrolyte capacitor
JP6134917B2 (en) Capacitors
JP2010034384A (en) Method of manufacturing solid-state electrolytic capacitor
JP2008282797A (en) Collector for non-aqueous secondary battery and its manufacturing method
JP2007095772A (en) Electric double-layer capacitor
WO2011099260A1 (en) Electrode foil, process for producing same, and capacitor using electrode foil
JP2005310836A (en) Electrode for electrochemical element and manufacturing method thereof
WO2013146464A1 (en) Electrode material, and capacitor and secondary battery using said electrode material
JP3407130B2 (en) Electrode, secondary battery and manufacturing method thereof
CN114695866B (en) Preparation method of double transition metal oxide negative electrode material of lithium ion battery
JP2007115799A (en) Electric double layer capacitor
JP2007067285A (en) Electric double-layer capacitor
JP2001176757A (en) Electric double-layer capacitor
JPH11283871A (en) Current collector for electric double layer capacitor and electric double layer capacitor provided with the current collector
JP5493712B2 (en) Electrode foil, method for producing the same, and capacitor using the electrode foil
JP2011009608A (en) Nickel aluminum porous collector and electrode using the same, and capacitor
JP2009032429A (en) Lithium reaction electrode
JP3692735B2 (en) Current collector for electric double layer capacitor and electric double layer capacitor
KR100949177B1 (en) Method for fabricating pseudo-capacitor electrode using copper-oxide nanobelt
JP2007109702A (en) Electric double layer capacitor
JPH04274312A (en) Manufacture of solid electrolytic capacitor
JP2007116001A (en) Laminated film, and electrochemical element using same
JP2003151561A (en) Negative electrode, its manufacturing method, and secondary battery using this negative electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809