JP2011134651A - Copper foil for nonaqueous solvent secondary battery negative electrode collector, its manufacturing method, and method of manufacturing nonaqueous solvent secondary battery negative electrode - Google Patents

Copper foil for nonaqueous solvent secondary battery negative electrode collector, its manufacturing method, and method of manufacturing nonaqueous solvent secondary battery negative electrode Download PDF

Info

Publication number
JP2011134651A
JP2011134651A JP2009294318A JP2009294318A JP2011134651A JP 2011134651 A JP2011134651 A JP 2011134651A JP 2009294318 A JP2009294318 A JP 2009294318A JP 2009294318 A JP2009294318 A JP 2009294318A JP 2011134651 A JP2011134651 A JP 2011134651A
Authority
JP
Japan
Prior art keywords
copper foil
negative electrode
secondary battery
solvent secondary
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009294318A
Other languages
Japanese (ja)
Inventor
Kensaku Shinozaki
健作 篠崎
Akitoshi Suzuki
昭利 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2009294318A priority Critical patent/JP2011134651A/en
Priority to PCT/JP2010/073417 priority patent/WO2011078356A1/en
Priority to TW099146218A priority patent/TW201145660A/en
Publication of JP2011134651A publication Critical patent/JP2011134651A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper foil for a nonaqueous solvent secondary battery negative electrode collector, capable of maintaining a superior charge and discharge cycle life and a high battery capacity, since the charge and discharge cycle life of a nonaqueous solvent secondary battery and the battery capacity at the initial stage of charging are influenced by the surface condition of the copper foil for negative electrode; and to provide its manufacturing method. <P>SOLUTION: The copper foil for nonaqueous solvent secondary battery negative electrode collector has an organic compound film formed on the surface of the copper foil and an inverse number (1/C) of the electric double layer capacity on at least one side is 0.31-0.9 cm<SP>2</SP>/μF. The organic compound film is a film containing a triazole compound or a film containing the triazole compound and an amine compound. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は非水溶媒二次電池の負極集電体用銅箔とその製造方法に関し、更に詳しくは、Liイオン二次電池の負極集電体として用いると、当該電池の負極活物質との密着性に優れ、充放電特性を向上させることができる銅箔と該銅箔を製造する方法に関するものである。
また、本発明は非水溶媒二次電池負極電極の製造方法に関し、特に銅箔と負極活物質との密着性に優れ、充放電特性が向上する負極電極の製造方法に関するものである。
The present invention relates to a copper foil for a negative electrode current collector of a non-aqueous solvent secondary battery and a method for producing the same, and more specifically, when used as a negative electrode current collector of a Li ion secondary battery, it adheres to the negative electrode active material of the battery. The present invention relates to a copper foil that is excellent in performance and can improve charge / discharge characteristics and a method for producing the copper foil.
Moreover, this invention relates to the manufacturing method of a nonaqueous solvent secondary battery negative electrode, and is related with the manufacturing method of the negative electrode which is excellent in the adhesiveness of copper foil and a negative electrode active material especially, and a charging / discharging characteristic improves.

従来から、各種の電気・電子機器の駆動電源として非水電解液を用いた二次電池が用いられている。この非水電解液を用いた二次電池(以後、非水溶媒二次電池という)は、一般に、起電力が高く、またエネルギー密度も高いという特徴を備えており、その代表例としてLiイオン二次電池がある。   Conventionally, secondary batteries using non-aqueous electrolytes have been used as driving power sources for various electric and electronic devices. A secondary battery using this non-aqueous electrolyte (hereinafter referred to as a non-aqueous solvent secondary battery) is generally characterized by high electromotive force and high energy density. There is a next battery.

Liイオン二次電池は、一般に、正極と負極の間に電気絶縁性と保液性を備えたセパレータを介装して成る電極群を負極端子も兼ねる電池缶の中に所定の非水電解液と一緒に収容し、前記電池缶の開口部を、正極端子を備えた封口板で絶縁性のガスケットを介して密閉した構造になっている。   Li-ion secondary batteries generally have a predetermined non-aqueous electrolyte in a battery can that also serves as a negative electrode terminal as an electrode group formed by interposing a separator having electrical insulation and liquid retention between a positive electrode and a negative electrode. And the opening of the battery can is sealed with an insulating gasket with a sealing plate provided with a positive electrode terminal.

ここで、正極は、次のようにして製造されている。まず、正極活物質として例えばLiCoO2粉末と、炭素導電剤と、ポリフッ化ビニリデンのような結着剤とをN−メチルピロリドンのような非水溶媒で混練して所定組成の正極スラリーを調製する。ついで、このスラリーの所定量を、正極集電体であるアルミニウム箔の両面に塗布し、乾燥したのちプレス成形して、所定厚みの正極シートとし、その正極シートの所定箇所にリードを取り付けて正極とする。 Here, the positive electrode is manufactured as follows. First, as a positive electrode active material, for example, LiCoO 2 powder, a carbon conductive agent, and a binder such as polyvinylidene fluoride are kneaded with a non-aqueous solvent such as N-methylpyrrolidone to prepare a positive electrode slurry having a predetermined composition. . Next, a predetermined amount of this slurry is applied to both surfaces of an aluminum foil as a positive electrode current collector, dried and press-molded to obtain a positive electrode sheet having a predetermined thickness, and a lead is attached to a predetermined portion of the positive electrode sheet. And

一方、負極製造には水溶液系スラリーを使う場合と溶剤系スラリーを使う場合がある。 水溶液系スラリーは、まず、カルボキシメチルセルロース(CMC)の水溶液を作成し、この水溶液中に黒鉛粉末や無定形炭素粉末を混合し、スチレンブタジエンラバー(SBR)を追加して、負極スラリーを調製する。
溶剤系スラリーの場合は、溶剤であるN−メチルピロリドン中に黒鉛粉末や無定形炭素粉末を混合し、結着剤としてポリフッ化ビニリデンを追加して、負極スラリーを調製する。
次いで、このスラリーの所定量を負極集電体である銅箔の両面に塗布し、乾燥したのちプレス成形して所定厚みの負極シートとし、その所定箇所にリードを取り付けて負極とする。
On the other hand, the negative electrode may be produced using an aqueous slurry or a solvent slurry. First, an aqueous solution of carboxymethyl cellulose (CMC) is prepared as the aqueous slurry, and graphite powder and amorphous carbon powder are mixed in this aqueous solution, and styrene butadiene rubber (SBR) is added to prepare a negative electrode slurry.
In the case of a solvent-based slurry, graphite powder or amorphous carbon powder is mixed in N-methylpyrrolidone as a solvent, and polyvinylidene fluoride is added as a binder to prepare a negative electrode slurry.
Next, a predetermined amount of this slurry is applied to both surfaces of a copper foil as a negative electrode current collector, dried and press-molded to form a negative electrode sheet having a predetermined thickness, and a lead is attached to the predetermined portion to form a negative electrode.

負極スラリーには上述のように、水を溶媒とする負極スラリーと有機溶剤を溶媒とする負極スラリーの二種類があるが、最近では環境問題、防爆性の観点から水を溶媒とする負極スラリーの使用が主流になりつつある。   As described above, there are two types of negative electrode slurry: a negative electrode slurry using water as a solvent and a negative electrode slurry using an organic solvent as a solvent. Recently, negative electrode slurries using water as a solvent from the viewpoint of environmental problems and explosion-proof properties. Use is becoming mainstream.

ここで、負極の集電体として一般に銅箔が採用されるのは次の理由による。銅箔は導電性が優れており、またその機械的強度も高いので製造時の取り扱いが容易である。また、充放電の過程で出入りするLiイオンとの間で合金を生成しない性質がある。更には、銅箔は低コストで薄箔にすることが可能であり、かつ電池の大量生産に必要な広幅な銅箔であっても、容易に製造することができる。以上のような理由により銅箔が負極集電体として採用されている。   Here, the copper foil is generally adopted as the negative electrode current collector for the following reason. Copper foil is excellent in electrical conductivity and has high mechanical strength, so that it can be easily handled during production. In addition, there is a property that an alloy is not generated between Li ions entering and exiting in the process of charge and discharge. Furthermore, the copper foil can be made thin at low cost, and even a wide copper foil necessary for mass production of batteries can be easily manufactured. For the reasons described above, copper foil is used as the negative electrode current collector.

ところで、Liイオン二次電池を代表例とする非水溶媒二次電池に対しても、最近では、更なる高エネルギー密度化と充放電サイクル寿命の長期化への要望が強まり、それに対応すべく研究が進められている。このような動向の中で、負極集電体として銅箔を用いた場合の電池特性に関して、最近、次のような点が指摘されている。   By the way, with respect to non-aqueous solvent secondary batteries, typically Li-ion secondary batteries, recently, there has been an increasing demand for higher energy density and longer charge / discharge cycle life. Research is ongoing. In such a trend, the following points have recently been pointed out regarding battery characteristics when copper foil is used as the negative electrode current collector.

即ち、電池にとって最も重要な特性である充放電サイクル寿命特性と充電初期の電池容量は、負極集電体である銅箔の表面状態(表面粗さ、表面皮膜の種類等)によって左右されることが明らかになってきた。即ち、銅箔の表面状態によって該銅箔の表面に設ける負極活物質の密着性に問題があることが分かった。   In other words, the charge / discharge cycle life characteristics, which are the most important characteristics for the battery, and the battery capacity at the initial stage of charging depend on the surface condition (surface roughness, type of surface film, etc.) of the copper foil as the negative electrode current collector Has become clear. That is, it has been found that there is a problem in the adhesion of the negative electrode active material provided on the surface of the copper foil depending on the surface state of the copper foil.

負極集電体としての銅箔には電解銅箔と圧延銅箔がある。電解銅箔は回転するチタンドラム上に硫酸銅−硫酸を主成分とするめっき液により銅めっきを行い、この銅めっきを引き剥がして箔状になった銅を連続的に巻き取ることにより製造を行う。これに対して圧延銅箔は銅を溶解してインゴットを鋳造し、熱間圧延を行い、その後冷間圧延、中間焼鈍を繰り返し行い、最終冷間圧延を行って銅箔を製造する。   The copper foil as the negative electrode current collector includes an electrolytic copper foil and a rolled copper foil. Electrolytic copper foil is manufactured by performing copper plating on a rotating titanium drum with a plating solution containing copper sulfate-sulfuric acid as a main component, and stripping off the copper plating to continuously wind up the copper in the form of a foil. Do. On the other hand, a rolled copper foil melts copper, casts an ingot, performs hot rolling, then repeatedly performs cold rolling and intermediate annealing, and performs final cold rolling to produce a copper foil.

製箔後の銅箔は、その表面に防錆処理として例えばベンゾトリアゾール皮膜或いはクロメート皮膜等が施される(特許文献1、2参照)。   For example, a benzotriazole film or a chromate film is applied to the surface of the copper foil after foil formation as a rust preventive treatment (see Patent Documents 1 and 2).

したがって、電池の負極製造時に、防錆皮膜に覆われた銅箔が負極集電体として負極活物質を塗布する負極スラリー塗布ラインに供給され、その表面に負極スラリーが塗布される。この防錆皮膜の種類、或いは生成方法により負極活物質との密着性が異なり、密着性の良いものほど充放電サイクルを繰り返した後の容量低下が小さい傾向にある。   Therefore, when manufacturing the negative electrode of the battery, the copper foil covered with the rust preventive film is supplied to the negative electrode slurry application line for applying the negative electrode active material as the negative electrode current collector, and the negative electrode slurry is applied to the surface thereof. The adhesiveness with the negative electrode active material differs depending on the kind of the rust preventive film or the generation method, and the better the adhesiveness, the smaller the decrease in capacity after repeating the charge / discharge cycle.

負極集電体である銅箔と負極活物質との密着性を高めるための表面処理としては、上記特許文献1、2に記載されているようにベンゾトリアゾール皮膜或いはクロメート皮膜があり、また銅箔と溶剤系負極スラリーの濡れ性を高める処理としてカルボニル基を有するアゾール化合物を含有する皮膜が提案されている(特許文献3参照)。   As the surface treatment for enhancing the adhesion between the copper foil as the negative electrode current collector and the negative electrode active material, there is a benzotriazole film or a chromate film as described in Patent Documents 1 and 2, and the copper foil. As a treatment for improving the wettability of the solvent-based negative electrode slurry, a film containing an azole compound having a carbonyl group has been proposed (see Patent Document 3).

上述したように近年、負極活物質用のスラリーは水を溶媒としている。水を溶媒とする負極活物質は特許文献1に記載されている皮膜の種類及び皮膜厚さでは銅箔と負極活物質との密着性が充分とは言えず、また銅箔表面の耐防錆性の点でも問題があった。
また、特許文献3に記載されている皮膜は、有機溶剤を溶媒とする負極スラリーを塗布したとき、銅箔と負極スラリーとの濡れ性は良好であるが、濡れ性が良いことと銅箔と負極活物質との密着性は必ずしも一致するわけではなく、銅箔と負極活物質の密着性に対しては充分とは言えないものであった。
As described above, in recent years, slurries for negative electrode active materials use water as a solvent. The negative electrode active material using water as a solvent cannot be said to have sufficient adhesion between the copper foil and the negative electrode active material with the type and thickness of the film described in Patent Document 1, and rust resistance on the surface of the copper foil. There was also a problem in terms of sex.
In addition, the coating described in Patent Document 3 has good wettability between the copper foil and the negative electrode slurry when a negative electrode slurry using an organic solvent as a solvent is applied, but the good wettability and the copper foil Adhesiveness with the negative electrode active material does not always match, and it cannot be said that the adhesiveness between the copper foil and the negative electrode active material is sufficient.

特開平11−273683号公報Japanese Patent Laid-Open No. 11-273683 特開2008−226800号公報JP 2008-226800 A 特開2008−251469号公報JP 2008-251469 A

本発明は非水溶媒二次電池の負極用として銅箔を用いたときに、電池の充放電サイクル寿命と充電初期の電池容量が銅箔の表面状態によって左右される現象を解決し、優れた充放電サイクル寿命と高い電池容量の保持を可能とする非水溶媒二次電池負極集電体用銅箔とその製造方法とを提供することを目的とする。   The present invention solves a phenomenon in which when a copper foil is used for a negative electrode of a non-aqueous solvent secondary battery, the charge / discharge cycle life of the battery and the battery capacity at the initial stage of charging are influenced by the surface state of the copper foil. It aims at providing the copper foil for non-aqueous solvent secondary battery negative electrode electrical power collectors which makes it possible to hold | maintain a charging / discharging cycle life and a high battery capacity, and its manufacturing method.

本発明の非水溶媒二次電池負極集電体用銅箔は、銅箔の表面に有機化合物皮膜が形成され、少なくとも片面における電気二重層容量の逆数(1/C)が0.31〜0.9cm/μFであることを特徴とする。 The copper foil for a non-aqueous solvent secondary battery negative electrode current collector of the present invention has an organic compound film formed on the surface of the copper foil, and the reciprocal (1 / C) of the electric double layer capacity on at least one side is 0.31 to 0. .9 cm 2 / μF.

前記有機化合物皮膜がトリアゾール化合物を含有する皮膜、あるいは、トリアゾール化合物及びアミン化合物を含有する皮膜であることが望ましい。   The organic compound film is preferably a film containing a triazole compound or a film containing a triazole compound and an amine compound.

本発明の非水溶媒二次電池負極集電体用銅箔の製造方法は、銅箔の表面に有機化合物を含む溶液を接触させた後乾燥し、銅箔の少なくとも片面に電気二重層容量の逆数(1/C)が0.31〜0.9cm/μFである皮膜を形成することを特徴とする。 The method for producing a copper foil for a negative electrode current collector of a non-aqueous solvent secondary battery according to the present invention is a method of bringing a solution containing an organic compound into contact with the surface of the copper foil and then drying it. A film having a reciprocal number (1 / C) of 0.31 to 0.9 cm 2 / μF is formed.

前記有機化合物がトリアゾール化合物を含有する皮膜、あるいは、トリアゾール化合物及びアミン化合物を含有する皮膜であることが好ましい。   The organic compound is preferably a film containing a triazole compound or a film containing a triazole compound and an amine compound.

本発明の非水溶媒二次電池負極電極の製造方法は、少なくとも片面に電気二重層容量の逆数(1/C)が0.31〜0.9cm/μFである有機化合物皮膜が形成された銅箔の表面に、水を溶媒とする負極活物質スラリーを塗布し、乾燥することを特徴とする。 In the method for producing a negative electrode of a nonaqueous solvent secondary battery of the present invention, an organic compound film having an electric double layer capacity reciprocal (1 / C) of 0.31 to 0.9 cm 2 / μF is formed on at least one surface. A negative electrode active material slurry using water as a solvent is applied to the surface of the copper foil and dried.

本発明の非水溶媒二次電池の負極用としての銅箔は、負極活物質との密着性に優れ、非水溶媒二次電池の充放電サイクル寿命と高い電池容量の保持を可能とする優れた効果を有するものである。
また、非水溶媒二次電池負極集電体用銅箔の製造方法は、非水溶媒二次電池の充放電サイクル寿命と高い電池容量の保持が可能な優れた非水溶媒二次電池の負極用銅箔を容易に提供できる優れた製造方法である。
更に、非水溶媒二次電池負極電極の製造方法は、銅箔と負極活物質との密着性に優れ、充放電特性が向上する負極電極を提供することができる。
The copper foil for the negative electrode of the non-aqueous solvent secondary battery of the present invention is excellent in adhesion to the negative electrode active material, and is capable of maintaining the charge / discharge cycle life and high battery capacity of the non-aqueous solvent secondary battery. It has the effect.
Moreover, the manufacturing method of the copper foil for the non-aqueous solvent secondary battery negative electrode current collector is an excellent non-aqueous solvent secondary battery negative electrode capable of maintaining the charge / discharge cycle life of the non-aqueous solvent secondary battery and high battery capacity. It is the outstanding manufacturing method which can provide the copper foil for water easily.
Furthermore, the method for producing a negative electrode for a non-aqueous solvent secondary battery can provide a negative electrode having excellent adhesion between the copper foil and the negative electrode active material and improved charge / discharge characteristics.

本発明者らは銅箔表面上に一定厚さの有機化合物皮膜を形成し、負極活物質との密着性を高めたLiイオン二次電池の負極集電体用銅箔の開発を行った。   The present inventors have developed a copper foil for a negative electrode current collector of a Li-ion secondary battery in which an organic compound film having a certain thickness is formed on the surface of the copper foil to improve adhesion with the negative electrode active material.

近年、例えば電気自動車用電池として開発されているLiイオン二次電池等では更なる性能向上が要望されている。Liイオン二次電池等の更なる性能向上には上記有機化合物皮膜の厚さが負極活物質の密着性を高め、銅箔表面の耐食性に対して重要な要因となってきている。特許文献1に記載されている誘電体層の厚さ1/Cが0.1〜0.3cm/μFでは、有機化合物皮膜の厚さが薄いために銅箔と負極活物質との密着性を高める効果が充分ではなく、また銅箔の防錆についても不充分となってきている。特に負極活物質を水を溶媒としたスラリーとして銅箔表面に塗布する製法では両者の密着性、銅箔表面の耐食性が不十分となってきている。
このため、特許文献1に記載されている誘電体層の厚さよりさらに厚い誘電体層を皮膜した銅箔につき負極活物質との密着性、銅箔表面の耐食性につき検討した結果、1/C値にして0.31〜0.9cm/μFの皮膜を有する銅箔が、銅箔と活物質間の密着性を向上し、銅箔の耐食性も向上する、との結論を得た。
In recent years, for example, Li ion secondary batteries developed as batteries for electric vehicles have been demanded to further improve performance. In order to further improve the performance of Li ion secondary batteries and the like, the thickness of the organic compound film increases the adhesion of the negative electrode active material and has become an important factor for the corrosion resistance of the copper foil surface. When the thickness 1 / C of the dielectric layer described in Patent Document 1 is 0.1 to 0.3 cm 2 / μF, the adhesion between the copper foil and the negative electrode active material because the organic compound film is thin. The effect of increasing the resistance is not sufficient, and the rust prevention of the copper foil has become insufficient. In particular, in the production method in which the negative electrode active material is applied to the copper foil surface as a slurry using water as a solvent, the adhesion between them and the corrosion resistance of the copper foil surface have become insufficient.
For this reason, as a result of examining the adhesion with the negative electrode active material and the corrosion resistance of the copper foil surface with respect to the copper foil coated with a dielectric layer thicker than the thickness of the dielectric layer described in Patent Document 1, the 1 / C value The copper foil which has a film | membrane of 0.31-0.9cm < 2 > / F improved the adhesiveness between copper foil and an active material, and the conclusion that the corrosion resistance of copper foil also improved was obtained.

なお、有機化合物皮膜の厚みは、市販の直読式電気二重層容量測定器で銅箔表面の電気二重層容量(C:μF)を測定し、(1)式で示すように、その逆数値(1/C)として算出した。
1/C=A・d+B ……(1)
(dは銅箔表面に形成されている電気二重層の厚み、A,Bは定数)
The thickness of the organic compound film was measured by measuring the electric double layer capacitance (C: μF) on the surface of the copper foil with a commercially available direct-reading electric double layer capacitance measuring device. 1 / C).
1 / C = A · d + B (1)
(D is the thickness of the electric double layer formed on the copper foil surface, A and B are constants)

本発明の銅箔は、この1/C値が0.31〜0.9cm/μFの範囲内に設定される。1/C値が0.31cm/μFよりも小さい値として計測される有機皮膜層が形成された銅箔の場合は、活物質との密着性が低くなり、耐食性にも劣る傾向にある。また1/C値が0.9cm/μFより大きい銅箔は、それ以上高めても(皮膜を厚くしても)密着性は飽和してしまい改善効果がなくなるためである。 In the copper foil of the present invention, this 1 / C value is set within the range of 0.31 to 0.9 cm 2 / μF. In the case of a copper foil on which an organic film layer is measured with a 1 / C value smaller than 0.31 cm 2 / μF, the adhesion with the active material tends to be low and the corrosion resistance tends to be poor. In addition, a copper foil having a 1 / C value greater than 0.9 cm 2 / μF is because even if it is further increased (even if the film is thickened), the adhesiveness is saturated and the improvement effect is lost.

まず、本発明の銅箔について説明する。銅箔を製造するための素材は、電解銅箔、圧延銅箔のいずれであってもよい。電解銅箔の場合には、低コストで広幅なものが製箔できるので、生産性を高め大量生産することが必要な例えば電気自動車用電池の負極集電体として使用するのに適している。   First, the copper foil of the present invention will be described. The material for producing the copper foil may be either an electrolytic copper foil or a rolled copper foil. In the case of an electrolytic copper foil, a wide product can be manufactured at low cost, and is suitable for use as, for example, a negative electrode current collector of a battery for an electric vehicle that requires high productivity and mass production.

また、本発明の銅箔の表面粗さは、JISB0601−1994で規定する10点平均粗さ(Rz)で2.5μm以下であることが好適である。そのような銅箔は有機化合物皮膜を薄く均一な厚みで形成することができ、しかもその上に担持される負極活物質も均一となって、負極活物質との密着性に優れ電池の充放電サイクル寿命特性と充電初期の電池容量が向上する。   Moreover, it is suitable for the surface roughness of the copper foil of this invention that it is 2.5 micrometers or less by 10-point average roughness (Rz) prescribed | regulated by JISB0601-1994. Such a copper foil can form an organic compound film with a thin and uniform thickness, and the negative electrode active material carried thereon is also uniform, and has excellent adhesion to the negative electrode active material, and charging / discharging of the battery. Cycle life characteristics and initial battery capacity are improved.

銅箔の厚みは薄ければ薄いほど全体としての電極面積が大きくなり、また、上記した表面粗さを小さくできるので、高エネルギー密度化や充放電サイクル寿命特性にとって有利である。例えば、携帯用の電気・電子機器用の小型の電池、あるいは電気自動車用などの大型電池の場合でも銅箔の厚みは20μm以下にすることが好ましい。
しかしながら、銅箔の厚みをあまり薄くすると、その機械的強度が低下し、またピンホールなども多くなってくるので、実使用に耐え得る銅箔としての厚みの下限は、6μm程度である。
The thinner the copper foil, the larger the electrode area as a whole, and the above-described surface roughness can be reduced, which is advantageous for high energy density and charge / discharge cycle life characteristics. For example, the thickness of the copper foil is preferably 20 μm or less even in the case of a small battery for a portable electric / electronic device or a large battery for an electric vehicle.
However, if the thickness of the copper foil is made too thin, its mechanical strength decreases and pinholes and the like increase, so the lower limit of the thickness of the copper foil that can withstand actual use is about 6 μm.

この銅箔の表面に形成される有機化合物皮膜は、トリアゾール化合物を含有する皮膜である。あるいはトリアゾール化合物及びアミン化合物を含有する皮膜である。
トリアゾール化合物、あるいはトリアゾール化合物とアミン化合物は、水あるいは有機溶剤に溶解し、溶液温度を一定に保ち、銅箔を一定時間浸漬した後乾燥することにより、銅箔表面に有機化合物皮膜を形成させる。
The organic compound film formed on the surface of the copper foil is a film containing a triazole compound. Alternatively, it is a film containing a triazole compound and an amine compound.
The triazole compound, or the triazole compound and the amine compound are dissolved in water or an organic solvent, the solution temperature is kept constant, the copper foil is immersed for a predetermined time, and then dried to form an organic compound film on the surface of the copper foil.

トリアゾール化合物溶液、トリアゾール化合物及びアミン化合物溶液の濃度は、10〜10,000ppmが良い。さらに好ましくは50〜5,000ppmである。
10ppmを下回ると負極活物質との密着性を保持できるほどの有機化合物皮膜厚さとならず、10,000ppmをこえても有機化合物皮膜厚さは飽和してしまい、密着性向上の効果も期待できないからである。
また、溶液の温度は室温であればよいが、必要に応じては加温して使用してもよい。
The concentration of the triazole compound solution, triazole compound, and amine compound solution is preferably 10 to 10,000 ppm. More preferably, it is 50-5,000 ppm.
If it is less than 10 ppm, the organic compound film thickness is not sufficient to maintain the adhesion to the negative electrode active material, and even if it exceeds 10,000 ppm, the organic compound film thickness is saturated, and the effect of improving the adhesion cannot be expected. Because.
Further, the temperature of the solution may be room temperature, but may be used after heating if necessary.

トリアゾール化合物に更にアミン化合物を加えた溶液を銅箔上に塗布すると、トリアゾール化合物単独の場合に比べ銅箔と負極活物質との密着性が更に良好になるとともに、銅箔の耐食性も向上し、より好ましい。
トリアゾール化合物とアミン化合物の配合割合は、重量にしてトリアゾール化合物に対しアミン化合物を0.5〜2倍位が有効である。2倍以上アミン化合物を加えても最早密着性、耐食性の向上が望めず、また、0.5倍を下回ると密着性、耐食性の効果が発現しないためである。
When a solution in which an amine compound is further added to the triazole compound is applied onto the copper foil, the adhesion between the copper foil and the negative electrode active material is further improved as compared to the case of the triazole compound alone, and the corrosion resistance of the copper foil is also improved. More preferred.
The mixing ratio of the triazole compound and the amine compound is about 0.5 to 2 times as much as the amine compound relative to the triazole compound in terms of weight. This is because even if the amine compound is added twice or more, improvement in adhesion and corrosion resistance can no longer be expected, and if it is less than 0.5 times, the effect of adhesion and corrosion resistance is not exhibited.

溶液への銅箔の浸漬時間は、トリアゾール化合物、トリアゾール化合物及びアミン化合物の溶解濃度、溶液温度や形成する有機化合物皮膜の厚みとの関係で適宜に決められるが、通常、0.5〜30秒程度であればよい。   The immersion time of the copper foil in the solution is appropriately determined depending on the relationship between the dissolution concentration of the triazole compound, the triazole compound and the amine compound, the solution temperature, and the thickness of the organic compound film to be formed, but is usually 0.5 to 30 seconds. Any degree is acceptable.

トリアゾール化合物としては、ベンゾトリアゾール、トリルトリアゾール、カルボキシベンゾトリアゾール、クロロベンゾトリアゾール、エチルベンゾトリアゾール、ナフトトリアゾール等が挙げられる。   Examples of the triazole compound include benzotriazole, tolyltriazole, carboxybenzotriazole, chlorobenzotriazole, ethylbenzotriazole, and naphthotriazole.

また、アミン化合物としては、モノアルキルアミン、ジアルキルアミン、トリアルキルアミン、モノシクロヘキシルアミン、ジシクロヘキシルアミンなどのモノアミン類、1〜4個のアルキル基で置換されたジアミン類、アルキル基の少なくとも1個が水酸基やポリオキシエチレン基のような親水性基を有するアルキルモノアミン、アルキルジアミンなどがある。これらのうち、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、モノメチルエタノールアミン、モノエチルエタノールアミン、モノブチルエタノールアミン等が挙げられる。   Examples of the amine compound include monoamines such as monoalkylamine, dialkylamine, trialkylamine, monocyclohexylamine, and dicyclohexylamine, diamines substituted with 1 to 4 alkyl groups, and at least one of alkyl groups. Examples include alkyl monoamines and alkyl diamines having a hydrophilic group such as a hydroxyl group or a polyoxyethylene group. Among these, monoethanolamine, diethanolamine, triethanolamine, dimethylethanolamine, diethylethanolamine, monomethylethanolamine, monoethylethanolamine, monobutylethanolamine and the like can be mentioned.

この有機化合物皮膜は、一般に、銅箔の両面に形成するが、電池の製造工程、負極としての形態や使用目的との関係で片面だけであってもよい。しかしながら、通常のLiイオン二次電池の正極、負極の場合には、いずれも各集電体の両面に活物質が担持された構造になっているので、銅箔の両面に上記したような有機皮膜層が形成されていることをもって好適とする。   This organic compound film is generally formed on both sides of the copper foil, but it may be only on one side in relation to the manufacturing process of the battery, the form as the negative electrode and the purpose of use. However, in the case of a positive electrode and a negative electrode of a normal Li ion secondary battery, both have a structure in which an active material is supported on both surfaces of each current collector. A film layer is preferably formed.

・〔銅箔の製造〕
電解液
銅: 70〜130g/l
硫酸: 80〜140g/l
添加剤: 3−メルカプト1−プロパンスルホン酸ナトリウム=1〜10ppm
ヒドロキシエチルセルロース=1〜100ppm
低分子量膠(分子量3,000)=1〜50ppm
塩化物イオン濃度=10〜50ppm
温度: 50〜60度
この電解液を用いて、アノードには貴金属酸化物被覆チタン電極、カソードにはチタン製回転ドラムを用いて、電流密度=50〜100A/dmで厚さ6〜20μm、両面の表面粗度(Rz)2.5μm以下の電解銅箔を製造した。
・ [Manufacture of copper foil]
Electrolytic copper: 70-130 g / l
Sulfuric acid: 80-140 g / l
Additive: 3-Mercapto1-sodium propanesulfonate = 1-10 ppm
Hydroxyethyl cellulose = 1-100ppm
Low molecular weight glue (molecular weight 3,000) = 1-50ppm
Chloride ion concentration = 10-50ppm
Temperature: 50-60 degrees Using this electrolytic solution, using a noble metal oxide-coated titanium electrode for the anode and a titanium rotating drum for the cathode, current density = 50-100 A / dm 2 and thickness 6-20 μm, An electrolytic copper foil having a surface roughness (Rz) of 2.5 μm or less on both sides was produced.

・〔被膜形成用有機化合物〕
1:トリアゾール化合物(そのうちの一種としてBTA)
2:トリアゾール化合物(そのうちの一種としてBTA)+アミン化合物(そのうちの一種としてTEA)
BTA:ベンゾトリアゾール
TEA:トリエタノールアミン
テトラゾール:1H−テトラゾール・モノエタノールアミン塩
・ [Organic compounds for film formation]
1: Triazole compound (BTA as one of them)
2: Triazole compounds (BTA as one of them) + amine compounds (TEA as one of them)
BTA: benzotriazole TEA: triethanolamine tetrazole: 1H-tetrazole monoethanolamine salt

・〔クロメート処理〕
CrO=1〜50g/lを溶解した水溶液中に銅箔を浸漬した後乾燥を行った。
・ [Chromate treatment]
It was dried after immersing the foil in an aqueous solution prepared by dissolving CrO 3 = 1~50g / l.

上記銅箔に被膜形成用有機化合物、CrOを表1に示す条件で塗布した。 An organic compound for film formation, CrO 3 , was applied to the copper foil under the conditions shown in Table 1.

Figure 2011134651
Figure 2011134651

作成した14種類の電極上に下記活物質を塗工し密着性の評価を行った。
・〔負極活物質層の作製〕
先ず、プライミクス製ホモミクサーを用いて、カルボキシメチルセルロース(CMC)〔ダイセル化学工業製#1380〕を脱イオン水に溶解させることにより、濃度1.0質量%のCMC水溶液を得た。次に、このCMC水溶液1000gと、人造黒鉛(平均粒径21μm、表面積4.0m/g)980gとを秤量し、プライミクス製ホモミクサーを用いて混合した後、スチレンブタジエンラバー(SBR)(固形分濃度50質量%)20gを追加して、負極スラリーを調製した。なお、人造黒鉛とCMCとSBRとの質量比は、人造黒鉛:CMC:SBR=98.0:1.0:1.0である。
上記負極スラリーを、リバースコート方式を用いて、両面に有機化合物を塗布した銅箔から成る負極集電体の両面に塗工し、更に乾燥、圧延(プレス成形)することにより、負極集電体の両面に負極活物質層を形成した。なお、負極活物質の塗布量は226mg/10cm2であり、負極充填密度は1.60g/ccとした。
The following active materials were applied on the 14 types of electrodes prepared, and the adhesion was evaluated.
・ [Preparation of negative electrode active material layer]
First, a CMC aqueous solution having a concentration of 1.0% by mass was obtained by dissolving carboxymethyl cellulose (CMC) [# 1380 manufactured by Daicel Chemical Industries, Ltd.] in deionized water using a homomixer manufactured by PRIMIX. Next, 1000 g of this CMC aqueous solution and 980 g of artificial graphite (average particle diameter 21 μm, surface area 4.0 m 2 / g) were weighed and mixed using a Primex homomixer, and then styrene butadiene rubber (SBR) (solid content) A negative electrode slurry was prepared by adding 20 g of a 50 mass% concentration. In addition, the mass ratio of artificial graphite, CMC, and SBR is artificial graphite: CMC: SBR = 98.0: 1.0: 1.0.
The negative electrode current collector is coated on both sides of a negative electrode current collector made of a copper foil coated with an organic compound on both sides using a reverse coating method, and further dried and rolled (press-molded). A negative electrode active material layer was formed on both sides of the substrate. The coating amount of the negative electrode active material was 226 mg / 10 cm 2 and the negative electrode filling density was 1.60 g / cc.

・〔負極活物質密着性の測定〕
集電体と有機化合物皮膜との間の密着強度を、以下のように90度剥離試験法によって評価した。具体的には、70mm×20mmサイズの両面テープ(ニチバン株式会社社製「ナイスタック NW−20」)を用いて120mm×30mmサイズのアクリル板に負極を貼付し、貼り付けられた負極の端部を日本電産シンポ株式会社社製小型卓上試験機(「FGS−TV」及び「FGP−5」)で有機化合物皮膜表面に対して90度の方向に、一定速度(50mm/min)で上方に55mm引っ張り、剥離時の強度を測定した。この剥離強度測定を3回行い、3回の測定結果を平均した値を90度剥離強度とし表2に測定結果を示す。
表2から各実施例は標準とした比較例2と略同等の密着性を示している。
・ [Measurement of adhesion of negative electrode active material]
The adhesion strength between the current collector and the organic compound film was evaluated by a 90-degree peel test method as follows. Specifically, a negative electrode is attached to an acrylic plate of 120 mm × 30 mm size using a 70 mm × 20 mm double-sided tape (“Nystack NW-20” manufactured by Nichiban Co., Ltd.), and the end of the negative electrode attached. With Nidec Sympo Co., Ltd. small desktop tester (“FGS-TV” and “FGP-5”) in the direction of 90 degrees with respect to the surface of the organic compound film at a constant speed (50 mm / min) The strength at the time of peeling was measured by 55 mm. This peel strength measurement was performed three times, and the value obtained by averaging the three measurement results was 90 ° peel strength. Table 2 shows the measurement results.
From Table 2, each example shows substantially the same adhesion as Comparative Example 2 as a standard.

Figure 2011134651
Figure 2011134651

・〔表面に有機化合物被膜を形成した誘電体層の厚み〕
上述したように、表面に有機化合物皮膜を形成した銅箔表面の誘電体層の厚みを、電気二重層容量(C:μF)を測定し、次式:
1/C=A・d+B ……(1)
(dは銅箔表面に形成されている電気二重層の厚み、A,Bは定数)
に基づいて厚みを確認した。
なお、1/Cの測定には日置電機(株)製ケミカルインピーダンスメーター HIOKI3532−80を用いた。1/Cの測定値を表3に示す。また、クロメート皮膜は1/Cでは評価できないのでクロメート付着量を表4に示す。
・ [Thickness of dielectric layer with organic compound film formed on the surface]
As described above, the thickness of the dielectric layer on the surface of the copper foil having the organic compound film formed on the surface thereof, the electric double layer capacitance (C: μF) is measured, and the following formula:
1 / C = A · d + B (1)
(D is the thickness of the electric double layer formed on the copper foil surface, A and B are constants)
The thickness was confirmed based on
In addition, the Hioki Electric Co., Ltd. chemical impedance meter HIOKI3532-80 was used for the measurement of 1 / C. The measured value of 1 / C is shown in Table 3. Further, since the chromate film cannot be evaluated at 1 / C, the amount of chromate attached is shown in Table 4.

Figure 2011134651
Figure 2011134651

Figure 2011134651
Figure 2011134651

・〔耐酸化性比較〕
Liイオン二次電池の電極製造工程に於いては乾燥が重要となる。この乾燥が不十分であり水分がLiイオン二次電池に持ち込まれた場合、電池のサイクル特性及び充放電容量に大きな影響を与える。このため銅箔にはこの乾燥工程に於いて酸化し難い事が要求される。そこでトリアゾール系化合物で処理した銅箔とクロメート防錆で処理した銅箔の耐酸化性を測定した。
なお、測定は銅箔を大気オーブン中で150℃×1Hr加熱した後カソード還元法を用いて測定した。測定結果を表5に示す。
・ [Oxidation resistance comparison]
Drying is important in the electrode manufacturing process of the Li ion secondary battery. When this drying is insufficient and moisture is brought into the Li ion secondary battery, the battery cycle characteristics and charge / discharge capacity are greatly affected. For this reason, the copper foil is required to be difficult to oxidize in this drying process. Therefore, the oxidation resistance of the copper foil treated with the triazole compound and the copper foil treated with chromate rust was measured.
The measurement was performed using a cathode reduction method after heating the copper foil in an atmospheric oven at 150 ° C. × 1 Hr. Table 5 shows the measurement results.

Figure 2011134651
Figure 2011134651

このデータよりトリアゾール化合物含有皮膜及びトリアゾール化合物及びアミン化合物含有皮膜がクロメート防錆よりも耐酸化性に優れていることが明らかである。   From this data, it is clear that the triazole compound-containing coating and the triazole compound and amine compound-containing coating have better oxidation resistance than chromate rust prevention.

・〔恒温恒湿試験とその結果〕
60℃×90%の環境下での恒温恒湿評価を行った。評価結果を表6に示す。
評価は5段階で行い3以下は茶点及び変色にて電池としての使用は困難である、と評価した。
・ [Constant temperature and humidity test and results]
The constant temperature and humidity evaluation in an environment of 60 ° C. × 90% was performed. The evaluation results are shown in Table 6.
Evaluation was carried out in 5 stages, and 3 or less were evaluated as being difficult to use as a battery due to brown point and discoloration.

Figure 2011134651
Figure 2011134651

比較例2(No.14)のM面は9日目で茶点に変色して電池としての使用は困難な状態となったが、各実施例はほとんど変色がなく、電池用銅箔として十分に使用できることが明らかとなった。   The M surface of Comparative Example 2 (No. 14) turned brown on the 9th day, making it difficult to use as a battery, but each example had almost no discoloration and was sufficient as a copper foil for batteries. It became clear that it could be used.

・〔酸化量を測定〕
また、この時の酸化量を測定した。測定結果を表7に示す。
・ [Measurement of oxidation amount]
Further, the amount of oxidation at this time was measured. Table 7 shows the measurement results.

Figure 2011134651
Figure 2011134651

各実施例の酸化する速度は比較例2(No.14)と比較して明らかに緩やかで、電池用電極として十分に使用可能であることが明らかになった。   The oxidation rate in each example was clearly moderate as compared with Comparative Example 2 (No. 14), and it was revealed that the examples could be used satisfactorily as battery electrodes.

上述したように、本発明の非水溶媒二次電池負極用銅箔は、負極活物質との密着性、耐酸化性に優れ、高温、高湿の環境下においても変色せず、非水溶媒二次電池の充放電サイクル寿命と高い電池容量の保持を可能とする優れた効果を有するものである。   As described above, the non-aqueous solvent secondary battery negative electrode copper foil of the present invention is excellent in adhesion to the negative electrode active material and oxidation resistance, and does not change color even in a high temperature and high humidity environment. The secondary battery has an excellent effect of enabling the charge / discharge cycle life of the secondary battery and maintaining a high battery capacity.

Claims (7)

表面に有機化合物皮膜が形成された銅箔の、少なくとも片面における電気二重層容量の逆数(1/C)が0.31〜0.9cm/μFであることを特徴とする非水溶媒二次電池の負極集電体用銅箔。 Non-aqueous solvent secondary characterized in that the reciprocal (1 / C) of the electric double layer capacity on at least one side of a copper foil having an organic compound film formed on the surface is 0.31 to 0.9 cm 2 / μF Copper foil for battery negative electrode current collector. 前記有機化合物皮膜がトリアゾール化合物を含有する皮膜である請求項1記載の非水溶媒二次電池の負極集電体用銅箔。   The copper foil for a negative electrode current collector of a non-aqueous solvent secondary battery according to claim 1, wherein the organic compound film is a film containing a triazole compound. 前記有機化合物皮膜がトリアゾール化合物及びアミン化合物を含有する皮膜である請求項1記載の非水溶媒二次電池の負極集電体用銅箔。   The copper foil for a negative electrode current collector of a non-aqueous solvent secondary battery according to claim 1, wherein the organic compound film is a film containing a triazole compound and an amine compound. 銅箔の表面に有機化合物を含む溶液を接触させた後乾燥し、銅箔の少なくとも片面に電気二重層容量の逆数(1/C)が0.31〜0.9cm/μFである皮膜を形成することを特徴とする非水溶媒二次電池の負極集電体用銅箔の製造方法。 A solution containing an organic compound is brought into contact with the surface of the copper foil and then dried, and a film having an electric double layer capacity reciprocal (1 / C) of 0.31 to 0.9 cm 2 / μF is formed on at least one surface of the copper foil. A method for producing a copper foil for a negative electrode current collector of a nonaqueous solvent secondary battery. 前記有機化合物を含む溶液がトリアゾール化合物を含有する溶液である請求項4記載の非水溶媒二次電池の負極集電体用銅箔の製造方法。   The method for producing a copper foil for a negative electrode current collector of a nonaqueous solvent secondary battery according to claim 4, wherein the solution containing the organic compound is a solution containing a triazole compound. 前記有機化合物を含む溶液がトリアゾール化合物及びアミン化合物を含有する溶液である請求項4記載の非水溶媒二次電池の負極集電体用銅箔の製造方法。   The method for producing a copper foil for a negative electrode current collector of a non-aqueous solvent secondary battery according to claim 4, wherein the solution containing the organic compound is a solution containing a triazole compound and an amine compound. 少なくとも片面に電気二重層容量の逆数(1/C)が0.31〜0.9cm/μFである有機化合物皮膜が形成された銅箔の表面に、水を溶媒とする負極活物質スラリーを塗布し、乾燥することを特徴とする非水溶媒二次電池負極電極の製造方法。 A negative electrode active material slurry containing water as a solvent is formed on the surface of a copper foil on which an organic compound film having an electric double layer capacity reciprocal (1 / C) of 0.31 to 0.9 cm 2 / μF is formed on at least one surface. The manufacturing method of the non-aqueous solvent secondary battery negative electrode characterized by apply | coating and drying.
JP2009294318A 2009-12-25 2009-12-25 Copper foil for nonaqueous solvent secondary battery negative electrode collector, its manufacturing method, and method of manufacturing nonaqueous solvent secondary battery negative electrode Pending JP2011134651A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009294318A JP2011134651A (en) 2009-12-25 2009-12-25 Copper foil for nonaqueous solvent secondary battery negative electrode collector, its manufacturing method, and method of manufacturing nonaqueous solvent secondary battery negative electrode
PCT/JP2010/073417 WO2011078356A1 (en) 2009-12-25 2010-12-24 Copper foil for negative electrode current collector for use in non-aqueous solvent secondary battery, process for production of the copper foil, and process for production of non-aqueous solvent secondary battery negative electrode
TW099146218A TW201145660A (en) 2009-12-25 2010-12-27 Copper foil for nonaqueous solvent secondary battery negative electrode collector, its manufacturing method, and method of manufacturing nonaqueous solvent secondary battery negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009294318A JP2011134651A (en) 2009-12-25 2009-12-25 Copper foil for nonaqueous solvent secondary battery negative electrode collector, its manufacturing method, and method of manufacturing nonaqueous solvent secondary battery negative electrode

Publications (1)

Publication Number Publication Date
JP2011134651A true JP2011134651A (en) 2011-07-07

Family

ID=44195881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009294318A Pending JP2011134651A (en) 2009-12-25 2009-12-25 Copper foil for nonaqueous solvent secondary battery negative electrode collector, its manufacturing method, and method of manufacturing nonaqueous solvent secondary battery negative electrode

Country Status (3)

Country Link
JP (1) JP2011134651A (en)
TW (1) TW201145660A (en)
WO (1) WO2011078356A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140590A1 (en) * 2012-03-23 2013-09-26 株式会社 東芝 Negative electrode for non-aqueous electrolytic secondary cell, non-aqueous electrolytic secondary cell, and cell pack
WO2014156362A1 (en) * 2013-03-28 2014-10-02 古河電気工業株式会社 Surface-treated copper foil
US9705155B2 (en) 2012-03-15 2017-07-11 Kabushiki Kaisha Toshiba Electrode for solid electrolyte secondary battery, solid electrolyte secondary battery, and battery pack
CN106973570A (en) * 2015-11-09 2017-07-21 Ls美创有限公司 Electrolytic copper foil includes the manufacture method of the electrode of the electrolytic copper foil including the secondary cell of the electrolytic copper foil and the electrolytic copper foil
JP2018037379A (en) * 2016-09-02 2018-03-08 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery electrode assembly
KR20210082228A (en) 2018-10-29 2021-07-02 제이엑스금속주식회사 Rolled copper foil for lithium ion battery current collector and lithium ion battery
WO2022230517A1 (en) * 2021-04-27 2022-11-03 日産化学株式会社 Composition for forming thin film for energy storage device electrode
US11984606B2 (en) 2018-10-29 2024-05-14 Jx Metals Corporation Rolled copper foil for lithium ion battery current collector, and lithium ion battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220238884A1 (en) * 2019-05-29 2022-07-28 Daicel Corporation Slurry

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273683A (en) * 1998-03-19 1999-10-08 Furukawa Electric Co Ltd:The Copper foil for negative electrode current collector of nonaqueous solvent secondary battery and its manufacture

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021928A (en) * 1996-06-28 1998-01-23 Furukawa Circuit Foil Kk Electrode material for secondary battery
JP5090028B2 (en) * 2007-03-16 2012-12-05 福田金属箔粉工業株式会社 Copper foil for negative electrode current collector of lithium secondary battery and method for producing the same
JP5081481B2 (en) * 2007-03-30 2012-11-28 Jx日鉱日石金属株式会社 Copper foil with excellent wettability and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273683A (en) * 1998-03-19 1999-10-08 Furukawa Electric Co Ltd:The Copper foil for negative electrode current collector of nonaqueous solvent secondary battery and its manufacture

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9705155B2 (en) 2012-03-15 2017-07-11 Kabushiki Kaisha Toshiba Electrode for solid electrolyte secondary battery, solid electrolyte secondary battery, and battery pack
WO2013140590A1 (en) * 2012-03-23 2013-09-26 株式会社 東芝 Negative electrode for non-aqueous electrolytic secondary cell, non-aqueous electrolytic secondary cell, and cell pack
WO2014156362A1 (en) * 2013-03-28 2014-10-02 古河電気工業株式会社 Surface-treated copper foil
CN106973570A (en) * 2015-11-09 2017-07-21 Ls美创有限公司 Electrolytic copper foil includes the manufacture method of the electrode of the electrolytic copper foil including the secondary cell of the electrolytic copper foil and the electrolytic copper foil
JP2019065400A (en) * 2015-11-09 2019-04-25 ケイシーエフ テクノロジース カンパニー リミテッド Electrolytic copper foil, electrode containing the same, secondary battery containing the same, and method for producing the same
CN106973570B (en) * 2015-11-09 2021-03-19 Sk纳力世有限公司 Electrolytic copper foil, electrode comprising the electrolytic copper foil, secondary battery comprising the electrolytic copper foil, and method for manufacturing the electrolytic copper foil
US11355757B2 (en) 2015-11-09 2022-06-07 Sk Nexilis Co., Ltd. Electrolytic copper foil, electrode comprising the same, secondary battery comprising the same, and method for manufacturing the same
JP2018037379A (en) * 2016-09-02 2018-03-08 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery electrode assembly
KR20210082228A (en) 2018-10-29 2021-07-02 제이엑스금속주식회사 Rolled copper foil for lithium ion battery current collector and lithium ion battery
DE112019005377T5 (en) 2018-10-29 2021-07-15 Jx Nippon Mining & Metals Corporation Rolled copper foil for lithium-ion battery current collector, and lithium-ion battery
US11984606B2 (en) 2018-10-29 2024-05-14 Jx Metals Corporation Rolled copper foil for lithium ion battery current collector, and lithium ion battery
WO2022230517A1 (en) * 2021-04-27 2022-11-03 日産化学株式会社 Composition for forming thin film for energy storage device electrode

Also Published As

Publication number Publication date
TW201145660A (en) 2011-12-16
WO2011078356A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
WO2011078356A1 (en) Copper foil for negative electrode current collector for use in non-aqueous solvent secondary battery, process for production of the copper foil, and process for production of non-aqueous solvent secondary battery negative electrode
CN103649378B (en) Electrolytic copper foil, the manufacture method of this electrolytic copper foil and using this electrolytic copper foil as the lithium rechargeable battery of collector body
KR101555090B1 (en) Negative electrode for secondary battery, negative electrode collector, method for producing negative electrode for secondary battery, method for producing negative electrode collector, and secondary battery
JP3581784B2 (en) Copper foil for negative electrode current collector of non-aqueous solvent secondary battery
TWI466367B (en) A lithium ion secondary battery, an electrode for the secondary battery, an electrode for an electrolytic copper foil
CN1839497B (en) Electrode, and method for preparing the same
WO2012057031A1 (en) Conductive undercoating agent composition
US20110159361A1 (en) Nonaqueous electrolyte secondary battery and method for producing the same
JP5334156B2 (en) Method for producing non-aqueous electrolyte secondary battery
KR101782737B1 (en) Electrolytic copper foil, the negative electrode for a lithium ion secondary battery and a lithium ion secondary battery, printed circuit board and an electromagnetic shielding material
CN104342724A (en) Electrolytic copper foil
WO2006085416A1 (en) Binder resin emulsion for energy device electrode, and energy device electrode and energy device using the same
TWI593826B (en) Copper foil for lithium ion secondary battery negative electrode current collector
Aliahmad et al. Poly (vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications
Wen et al. Carbon coated stainless steel mesh as a low-cost and corrosion-resistant current collector for aqueous rechargeable batteries
JP2010043333A (en) Aluminum foil for positive electrode collector
WO2015104999A1 (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material
KR101828880B1 (en) Surface-treated electrolytic copper foil for lithium-ion secondary cell, electrode for lithium-ion secondary cell in which same is used, and lithium-ion secondary cell
JP2008251469A (en) Copper foil excellent in wettability and its manufacturing method
JP2012212528A (en) Copper foil, negative electrode collector and negative electrode material for lithium ion secondary battery having the same, and lithium ion secondary battery
JP2010027304A (en) Aluminum foil for positive current collector
TWI686002B (en) Current collector for electricity storage device, its manufacturing method and coating liquid used for its manufacture
WO2019077995A1 (en) Aluminum foil and aluminum member for electrodes
TWI684651B (en) Electrolytic copper foil, method for manufacturing the same, and anode for lithium secondary battery of high capacity
TW201701517A (en) Composition for lithium secondary battery electrodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001