JP4207064B2 - 電気光学装置、画像処理回路、画像処理方法、及び電子機器 - Google Patents

電気光学装置、画像処理回路、画像処理方法、及び電子機器 Download PDF

Info

Publication number
JP4207064B2
JP4207064B2 JP2006201665A JP2006201665A JP4207064B2 JP 4207064 B2 JP4207064 B2 JP 4207064B2 JP 2006201665 A JP2006201665 A JP 2006201665A JP 2006201665 A JP2006201665 A JP 2006201665A JP 4207064 B2 JP4207064 B2 JP 4207064B2
Authority
JP
Japan
Prior art keywords
correction data
data
correction
image
input image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006201665A
Other languages
English (en)
Other versions
JP2008028889A (ja
Inventor
青木  透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006201665A priority Critical patent/JP4207064B2/ja
Priority to US11/769,498 priority patent/US20080024652A1/en
Publication of JP2008028889A publication Critical patent/JP2008028889A/ja
Application granted granted Critical
Publication of JP4207064B2 publication Critical patent/JP4207064B2/ja
Priority to US13/227,836 priority patent/US20120001959A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/312Driving therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Description

本発明は、例えば、色ムラが低減可能な液晶プロジェクタのライトバルブとして用いられる電気光学装置、そのような電気光学装置に搭載される画像処理回路及びその方法、並びに3枚のライトバルブを備えたプロジェクタ等の電子機器の技術分野に関する。
この種の電気光学装置の一例であるアクティブマトリクス型の液晶表示装置は、主に、液晶パネル、画像信号処理回路およびタイミング発生回路から構成されている。このうち、液晶パネルは、一対の基板間に液晶が挟持された構成となっており、詳細には、一対の基板のうち、一方の基板に、複数の走査線と複数のデータ線とが互いに絶縁を保って交差するように設けられるとともに、これらの交差部分の各々に対応してスイッチング素子の一例たる薄膜トランジスタ(Thin Film Transistor:以下「TFT」と称する)と画素電極との対が設けられ、また、他方の基板には画素電極に対向する透明な対向電極(共通電極)が設けられて、一定電位に維持されている。
液晶パネルでは、液晶層の厚さが不均一であったり、TFTの動作特性が面内においてバラついたりするなどの理由により液晶パネルの表示領域に輝度ムラが発生する。このような液晶パネルを備えた液晶表示装置をRGB3板式のプロジェクタのライトバルブとして用いた場合、スクリーン等の投射面に投射された投射画像に各ライトバルブの輝度ムラに起因した色ムラが発生してしまう問題点がある。特許文献1は、投射画像に生じる色ムラを低減するための技術の一例を開示している。
特開2001−343954号公報
この種の電気光学装置を備えたプロジェクタでは、電気光学装置の表示領域に表示された画像を、レンズを含む光学系の拡大機能及び望遠機能によって、スクリーン等の投射面に拡大或いは縮小して投射することが可能である。
しかしながら、特許文献1に開示された技術によれば、電気光学装置の表示領域における輝度ムラを低減する技術を開示しているのみであり、例えばレンズを含む光学系の光学特性に起因して生じる投射画像の色ムラを十分に低減することが困難である。
また、電気光学装置の表示領域における輝度ムラを低減するための各種データと共に、レンズのズーム量に応じて生じる投射画像の色ムラを低減するための各種データをメモリに記憶した場合、当該メモリの容量が増大してしまい、コスト及び回路設計の観点からみて好ましくない。加えて、レンズのズーム量に応じて高速で投射画像の色ムラを低減することも困難である。
よって、本発明は上記問題点等に鑑みてなされたものであり、例えば、投射画像の色ムラを低減するための各種データが記憶されたメモリの容量を増大させることなく、且つ高速で当該投射画像の色ムラを低減できる電気光学装置、画像処理回路、画像処理方法及びそのような電気光学装置を備えたプロジェクタ等の電子機器を提供することを課題とする。
本発明に係る電気光学装置は上記課題を解決するために、表示装置によってサイズが可変とされる投射画像として投射面に投射される画像が入力画像データに応じて表示領域に表示される電気光学装置であって、前記サイズを変更することによって生じる前記投射画像の色ムラを低減するための第1補正データを、第1基準補正データを用いて前記サイズに応じて生成すると共に、該生成された第1補正データによって前記入力画像データを補正する第1入力画像補正回路と、前記入力画像データが取り得るレベルのうち複数の特定レベルの夫々に対応し、且つ前記表示領域における複数の基準座標毎に設定された複数の第2基準補正データに基づいて、前記色ムラを低減するように、前記補正された入力画像データを補正する第2入力画像補正回路とを備える。
本発明に係る電気光学装置は、例えば、スクリーン等の投射面に投射される投射画像を、レンズ等の光学系の拡大機能及び望遠機能によって拡大及び縮小表示可能なプロジェクタ等の投射型表示装置のライトバルブとして用いられる液晶表示装置である。このような液晶表示装置の表示領域には、当該装置に入力される入力画像データに応じて画像が表示される。表示領域に表示された画像は、上述した光学系を介して投射画像としてスクリーン等に投射される。
第1入力画像補正回路は、例えば第2入力画像補正回路の前段に設けられており、投射画像のサイズを変更することによって生じる投射画像の色ムラを低減するための第1補正データを生成する。第1入力画像補正回路は、投射画像のサイズに応じて第1補正データを生成することから、第2入力画像補正回路が実行する各種信号処理に比べて高速で第1補正データを生成できる。より具体的には、第1入力画像補正回路は、投射画像のサイズを第1補正データを生成するための基準値として採用しているため、表示領域における複数の基準座標及び入力画像データのレベル等の両方を基準値として第1補正データを生成する場合に比べて基準値の種類が少ない。したがって、基準値が少ない分、高速で投射画像の色ムラを低減できる。
加えて、例えばレンズ等の光学系の光学特性に起因する投射画像の色ムラを低減できるため、表示領域に表示された画像の輝度ムラを低減するだけでは困難であった投射画像の色ムラを格段に低減できる。
第1補正データを生成するために参照される各種データは、第2入力画像補正回路によって記憶及び処理されることがないため、第2入力画像補正回路が備える、例えばメモリ等の記憶手段の容量を増大させることがない。加えて、第2入力画像処理回路に含まれる各種回路の構成を複雑化させることもない。
第2入力画像補正回路は、入力画像データが取り得るレベルのうち複数の特定レベルの夫々に対応し、且つ表示領域における複数の基準座標毎に設定された複数の第2基準補正データに基づいて、投射画像の色ムラを低減するように、補正された入力画像データを補正する。入力画像データのレベルとは、表示領域に表示される画像の輝度レベルを規定する、例えば液晶等の電気光学物質に印加される電圧を規定する信号レベルである。このような入力画像データのレベルのうち複数の特定レベルの夫々に対応して第2基準補正データを設定しておくことにより、第2入力画像補正回路が予め用意しておくべき第2基準補正データのデータ量を低減できる。
複数の基準座標とは、表示領域を構成する複数の画素の夫々を座標と定義した場合、これら複数の座標、即ち複数の画素から選択された特定の画素の夫々を意味する。このような複数の基準座標は、複数の座標から等間隔で選択されている。
第2入力画像補正回路は、上述した複数の特定レベルに加えて、複数の基準座標毎に設定された複数の第2基準補正データに基づいて、投射画像の色ムラを低減するように、補正された入力画像データを補正する。したがって、各特定レベルについて全ての座標について第2基準補正データを用意しておく場合に比べて、第2基準補正データのデータ量を低減できる。第2入力画像補正回路によれば、第2入力画像補正回路が用意する第2基準補正データのデータ量を総合的に、即ち入力画像データのレベル及び座標の両方について低減できる。
よって、本発明に係る電気光学装置によれば、電気光学装置が備える各種回路の構成を複雑化させることなく、且つ投射画像のサイズが変更される旅に高速で投射画像の色ムラを低減でき、高品位の投射画像を投射可能である。
本発明に係る電気光学装置の一の態様では、前記表示装置は、前記投射画像のサイズを変更するズーム機能を備えた投射型表示装置であり、前記第1入力画像補正回路は、前記表示装置のズーム機能のズーム量を検出するズーム量検出回路と、前記ズーム量のうち複数の特定ズーム量の夫々に対応して設定された複数の前記第1基準補正データを前記特定ズーム量毎に記憶した第1基準補正データ記憶回路と、前記検出されたズーム量に応じて前記複数の第1基準補正データを補間することによって前記第1補正データを生成する第1補正データ生成回路と、前記第1補正データを前記入力画像データに加算する第1補正データ加算回路とを備えていてもよい。
この態様によれば、第1基準補正データ記憶回路は、複数の第1基準補正データの夫々を複数の特定ズーム量の夫々に対応して記憶した、例えば複数のルックアップテーブルを備えている。このような複数のルックアップテーブルは、投射画像の拡大表示するワイド(拡大)側に設定されたレンズの一のズーム量と、投射画像を縮小表示するテレ(望遠)側に設定された他のズーム量との夫々について、予めスクリーンに投射画像を表示した状態で色ムラが人間の目で感知されない程度に設定された第1基準補正データを記憶している。
第1補正データ生成回路は、例えば上述したワイド(拡大)側に設定されたレンズの一のズーム量と、テレ(望遠)側に設定された他のズーム量との夫々について設定された第1基準補正データを補間することによって、当該ズーム量について最適な、即ち当該ズーム量において投射画像の色ムラが感知されないように入力画像データを補正できる第1補正データを生成する。第1補正データは、投射画像のサイズを変更する度に、言い換えればレンズのズーム量を変更する度に算出される。したがって、第1入力画像補正手段は、レンズのズーム量を変更する度に必要となる第1補正データを記憶しておく必要がない。加えて、ワイド(拡大)側に設定されたレンズの一のズーム量と、テレ(望遠)側に設定された他のズーム量との夫々について設定された第1基準補正データを補間する処理は、第2入力画像補正回路で実行される処理に比べて高速で実行可能である。
第1補正データ加算回路は、第1補正データを入力画像データに加算する。これにより、レンズのズーム量に起因して投射画像に生じる色ムラを低減できる。
この態様では、前記第1基準補正データ記憶回路は、前記入力画像データの特定のレベル毎、又は前記基準座標毎に前記第1基準補正データを記憶しており、前記第1補正データ生成回路は、互いに異なる前記特定レベル間で、又は互いに異なる前記基準座標間で、前記複数の第1基準補正データを補間してもよい。
この態様によれば、第2入力画像補正回路が入力画像データを補正するに先立って、表示領域に表示される画像の輝度ムラも低減できる。ここで、ズーム量に応じて、互いに異なる特定レベル毎、又は互いに異なる基準座標毎に第1基準補正データを補間することによって生成される第1補正データは、第2補正データに比べて荒い。より具体的には、第1入力画像補正回路では、ズーム量に応じて生じる色ムラが感知されない程度に第1補正データが生成されていればよいため、複数の特定レベル及び複数の基準座標レベルの両方に基づいて生成される第2補正データに比べて、少ない基準値に基づいて補間を行うことによって、入力画像データに対する補正精度が荒くなっていてもよい。
本発明に係る電気光学装置の他の態様では、前記第2補正回路は、前記第2基準補正データを、前記複数の基準座標毎に記憶する第2基準補正データ記憶回路と、前記第2基準補正データに対しレベルについての補間処理を施して、前記レベルの各々に対応した第2補正データを、前記基準座標毎に生成する第2補正データ生成回路と、前記第2補正データを基準座標とレベルとに対応づけて記憶する第2補正データ記憶回路と、前記第2補正データ記憶回路に記憶された第2補正データの中から、前記表示領域においてアドレス情報に基づいて特定される座標の近傍に位置する複数の基準座標に対応し、且つ、前記レベルに対応する第2補正データを選択する第2補正データ選択回路と、前記第2補正データ選択回路により選択された第2補正データに対し座標についての補間処理を施して、前記入力画像データに対応する第3補正データを生成する第3補正データ生成回路と、前記第3補正データを前記補正された入力画像データに加算する第3補正データ加算回路とを備えていてもよい。
この態様によれば、第2基準補正データ記憶回路は、例えば、相互に異なるレベルについて第2基準補正データを複数の基準座標毎に記憶する複数のルックアップテーブルを含むメモリである。第2補正データ生成回路は、第2基準補正データに対しレベル方向に補間処理を施して、レベルの各々に対応した第2補正データを、前記基準座標毎に生成する。即ち特定レベルとして選択されなかったレベルに対応した第2補正データを、補間処理によって生成する。
第2補正データ選択回路は、第2補正データの中から、例えば複数の基準座標し、且つレベルに対応する第2補正データを選択する。このような基準座標は、例えばクロック信号に基づいて生成されたアドレス情報で特定される座標の近傍に位置する。
第3補正データ生成回路は、第2補正データ選択回路により選択された第2補正データに対し座標方向の補間処理を施して、入力画像データに対応する第3補正データを生成する。これにより、予め補正データが設定されていなかった座標について、輝度ムラを補正するための第3補正データが生成される。第3補正データ加算回路が、第1入力画像補正回路によって、投射画像のサイズに応じて色ムラが低減されるように補正された補正済みの入力画像データに第3補正データを加算する。
したがって、この態様によれば、投射画像のサイズ、入力画像データのレベル、表示領域内の座標の夫々について入力画像データが補正され、投射画像の色ムラが低減される。
本発明に係る電気光学装置は上記課題を解決するために、サイズが可変とされる投射画像として投射面に投射される画像が入力画像データに応じて表示領域に表示される電気光学装置であって、前記入力画像データが取り得るレベルのうち複数の特定レベルに対応し、且つ前記表示領域における複数の基準座標毎に設定された複数の基準補正データに基づいて、前記投射画像の色ムラを低減するための補正データを生成する第1補正回路と、前記サイズの変更に応じて設定された補正係数によって前記補正データを補正する第2補正回路とを備える。
本発明に係る電気光学装置は、上述した電気光学装置と同様に、例えば、スクリーン等の投射面に投射される投射画像を、レンズ等の光学系の拡大機能及び望遠機能によって拡大及び縮小表示可能なプロジェクタ等の投射型表示装置のライトバルブとして用いられる液晶表示装置である。
第1補正回路は、複数の特定レベル及び複数の基準座標毎に設定された複数の基準補正データに基づいて、補正データを生成する。「特定レベル」とは、上述した電気光学装置と同様に、表示領域における輝度レベルに対応している。このような特定レベルは、表示領域内の全ての座標、より具体的には全ての画素について予め設定されているのでは、複数の基準座標毎に設定されている。したがって、第1補正回路は、例えば入力画像データのレベル及び基準座標について複数の基準補正データを補間することによって、所定のレベル及び座標について補正データを生成できる。
第2補正回路は、投射画像のサイズの変更に応じて設定された補正係数によって補正データを補正する。「補正係数」とは、例えば、投射画像のサイズ、より具体的には、投射画像を拡大及び縮小表示するためのレンズのズーム量に応じて生じる投射画像の色ムラを低減するように、予めルックアップテーブルに記憶された、或いは演算処理によって生成された数値である。このような補正係数は、例えば投射画像の色ムラの発生傾向が一様な場合、より具体的には、例えば投射画像内における色ムラの分布、即ち傾向が一定で、且つ投射画像のサイズに応じて輝度が変化する場合に適用される。したがって、例えば、第3補正データに補正係数が乗算されるだけで色ムラを低減可能なように補正データが補正される。加えて、投射画像のサイズに応じて選択、或いは生成された補正係数によって第3補正データを補正可能であるため、例えば、レンズのズーム量に応じて高速で投射画像の色ムラを低減できる。
本発明に係る電気光学装置の一の態様では、前記第1補正回路は、前記基準補正データを、前記複数の基準座標毎に記憶する基準補正データ記憶回路と、前記基準補正データに対しレベルについての補間処理を施して、前記レベルの各々に対応した第1補正データを、前記基準座標毎に生成する第1補正データ生成回路と、前記第1補正データを基準座標とレベルとに対応づけて記憶する第1補正データ記憶回路と、前記第1補正データ記憶回路に記憶された第1補正データの中から、前記表示領域においてアドレス情報に基づいて特定される座標の近傍に位置する複数の基準座標に対応し、且つ、前記レベルに対応する第1補正データを選択する選択回路と、前記選択回路により選択された第1補正データに対し座標についての補間処理を施すことによって、前記補正データを生成する補正データ生成回路とを備えていてもよい。
この態様によれば、基準補正データ記憶回路は、例えば、相互に異なるレベルについて基準補正データを複数の基準座標毎に記憶する複数のルックアップテーブルを含むメモリである。第1補正データ生成回路は、基準補正データに対しレベル方向に補間処理を施して、レベルの各々に対応した第1補正データを、前記基準座標毎に生成する。即ち特定レベルとして選択されなかったレベルに対応した第1補正データを、補間処理によって生成する。
第1補正データ選択回路は、第1補正データの中から、例えば複数の基準座標し、且つレベルに対応する第1補正データを選択する。このような基準座標は、例えばクロック信号に基づいて生成されたアドレス情報で特定される座標の近傍に位置する。
補正データ生成回路は、第1補正データ選択回路により選択された第1補正データに対し座標方向の補間処理を施して、入力画像データに対応する補正データを生成する。これにより、予め補正データが設定されていなかった座標について、輝度ムラを補正するための補正データが生成される。
したがって、この態様によれば、投射画像のサイズ、入力画像データのレベル、表示領域内の座標の夫々について入力画像データが補正され、投射画像の色ムラが低減される。
本発明に係る画像処理回路は上記課題を解決するために、入力画像データに応じて電気光学装置の表示領域に表示される画像が投射面に投射画像として投射される際に前記投射画像のサイズに応じて生じる前記投射画像の色ムラを低減するための画像処理回路であって、前記サイズを変更することによって生じる前記投射画像の色ムラを低減するための第1補正データを前記サイズに応じて生成すると共に、該生成された第1補正データによって前記入力画像データを補正する第1入力画像補正回路と、前記入力画像データが取り得るレベルのうち複数の特定レベルの夫々に対応し、且つ前記表示領域における複数の基準座標毎に設定された複数の第2基準補正データに基づいて、前記色ムラを低減するように前記補正された入力画像データを補正する第2入力画像補正回路とを備える。
本発明に係る画像処理回路によれば、上述した本発明の電気光学装置と同様に、投射画像のサイズに応じて高速で当該投射画像の色ムラを低減できる。
本発明に係る画像処理回路は上記課題を解決するために、入力画像データに応じて電気光学装置の表示領域に表示される画像が投射面に投射画像として投射される際に前記投射画像のサイズに応じて生じる前記投射画像の色ムラを低減するための画像処理回路であって、前記入力画像データが取り得るレベルのうち複数の特定レベルに対応し、且つ前記表示領域における複数の基準座標毎に設定された複数の基準補正データに基づいて、前記投射画像の色ムラを低減するための補正データを生成する第1補正回路と、前記サイズの変更に応じて設定された補正係数によって前記補正データを補正する第2補正回路とを備える。
本発明に係る画像処理回路によれば、上述した本発明の電気光学装置と同様に、高速で投射画像の色ムラを低減できる。
本発明に係る画像処理方法は上記課題を解決するために、入力画像データに応じて電気光学装置の表示領域に表示される画像が投射面に投射画像として投射される際に前記投射画像のサイズに応じて生じる前記投射画像の色ムラを低減するための画像処理方法であって、前記サイズを変更することによって生じる前記投射画像の色ムラを低減するための第1補正データを前記サイズに応じて生成すると共に、該生成された第1補正データによって前記入力画像データを補正する第1入力画像補正ステップと、前記入力画像データが取り得るレベルのうち複数の特定レベルの夫々に対応し、且つ前記表示領域における複数の基準座標毎に設定された複数の第2基準補正データに基づいて、前記色ムラを低減するように前記補正された入力画像データを補正する第2入力画像補正ステップとを備える。
本発明に係る画像処理方法によれば、上述した本発明の画像処理回路と同様に高速で投射画像の色ムラを低減できる。
本発明に係る画像処理方法は上記課題を解決するために、入力画像データに応じて電気光学装置の表示領域に表示される画像が投射面に投射画像として投射される際に前記投射画像のサイズに応じて生じる前記投射画像の色ムラを低減するための画像処理方法であって、前記入力画像データが取り得るレベルのうち複数の特定レベルに対応し、且つ前記表示領域における複数の基準座標毎に設定された複数の基準補正データに基づいて、前記投射画像の色ムラを低減するための補正データを生成する第1補正ステップと、前記サイズの変更に応じて設定された補正係数によって前記補正データを補正する第2補正ステップとを備える。
本発明に係る画像処理方法によれば、上述した本発明の画像処理回路と同様に高速で投射画像の色ムラを低減できる。
本発明に係る電子機器は上記課題を解決するために、上述した本発明の電気光学装置を具備してなる。
本発明に係る電子機器によれば、上述した本発明の電気光学装置を具備してなるので、色ムラが低減された高品位の画像を表示できるプロジェクタ等の投射型表示装置を提供できる。
本発明に係る投射型表示装置は上記課題を解決するために、上述した本発明の電気光学装置を具備してなる。
本発明に係る投射型表示装置によれば、上述した本発明の電気光学装置を具備してなるので、色ムラが低減された高品位の画像を表示できるプロジェクタ等の投射型表示装置を提供できる。
本発明のこのような作用及び他の利得は次に説明する実施形態から明らかにされる。
<第1実施形態>
先ず、本発明の電気光学装置、画像処理回路、及び画像処理方法、並びにそのような電気光学装置を具備してなる電子機器の各実施形態を説明する。本実施形態は、電気光学装置の一例である液晶表示パネルをライトバルブに用いた3板式のプロジェクタ(投射型表示装置)を例に挙げる。このようなプロジェクタは、本発明の電子機器の一例であり、R(赤色光)、G(緑色光)及びB(青色光)の夫々に対応した3枚のライトバルブの夫々を透過した透過画像の合成像をスクリーン等の投射面に拡大投射可能である。
<1−1:プロジェクタの電気的構成>
先ず、図1を参照しながら、本実施形態に係るプロジェクタ1100の電気的な構成を説明する。図1は、本実施形態に係るプロジェクタ1100の電気的な構成を示すブロック図である。プロジェクタ1100は、3枚の液晶表示パネル100R、100G、及び100B、タイミング回路200、並びに画像信号処理回路300を備えている。
液晶表示パネル100R、100G、100Bの各々は、それぞれR(赤)、G(緑)、B(青)の原色光に対応しており、各色によって画像を表示する。液晶表示パネル100R、100G、100Bの各々は、素子基板と対向基板との間に液晶を挟持してなり、素子基板の表示領域103の周縁部分には、データ線駆動回路101および走査線駆動回路102が設けられている。
表示領域103には、複数のデータ線及び複数の走査線が相互に交差するように形成される。各データ線と各走査線との交差に対応して、スイッチング素子として機能するTFTが設けられ、そのゲート電極は走査線に、そのソース電極はデータ線に、そのドレイン電極は画素電極に夫々電気的に接続されている。TFT、画素電極及び対向基板に設けられる対向電極によって1つの画素が形成されている。このような画素の表示領域103内における位置が、本発明の「座標」の一例である。
データ線駆動回路101及び走査線駆動回路102は、表示領域103に形成された複数のデータ線及び複数の走査線に各種信号を供給し、各画素を駆動する。尚、本実施形態では、説明の便宜上、表示領域103のドット数は、XGA(横1024ドット×縦768ドット)である。
タイミング回路200は、プロジェクタ1100の動作時に、データ線駆動回路101、走査線駆動回路102及び画像信号処理回路300に各種タイミング信号を供給する。画像信号処理回路300は、ガンマ補正回路301、色ムラ補正回路302、S/P変換回路303R、303G、及び303B、並びに反転増幅回路304R、304G及び304Bを備えている。
ガンマ補正回路301は、ディジタル信号である入力画像データDR、DG、DBに対し、液晶表示パネル100R、100G、100Bの各々の表示特性に対応してガンマ補正を施した画像データDR´、DG´、DB´を出力する。
色ムラ補正回路302は、「第1入力画像補正回路」の一例である第1色ムラ補正回路302−1、及び「第2入力画像補正回路」の一例である第2色ムラ補正回路302−2を備えている。
色ムラ補正回路302は、「補正された入力画像データ」の夫々一例である画像データDR´、DG´、DB´に対し、後述する色ムラ補正を施すとともに、補正されたデータをD/A変換して、画像信号VIDR、VIDG、VIDBとして出力する。第1色ムラ補正回路302−1及び第2色ムラ補正回路302−2の夫々の構成及び動作については、後に詳細に説明する。
Rに対応するS/P変換回路303Rは、1系統の画像信号VIDRを6系統に分配するとともに、時間軸に6倍に伸長(シリアル−パラレル変換)して出力する。ここで、6系統の画像信号に変換する理由は、液晶表示パネルのサンプリング回路(データ線駆動回路101に内蔵)において、TFTに供給される画像信号の印加時間を長くして、液晶表示パネルのデータ信号のサンプリング時間および充放電時間を十分に確保するためである。
Rに対応する反転増幅回路304Rは、画像信号を極性反転させた後、増幅して、画像信号VIDr1〜VIDr6として液晶表示パネル100Rに供給する。
尚、色ムラ補正回路302によるGの画像信号VIDGについても、同様に、S/P変換回路303Gによって6系統に変換された後に、反転増幅回路304Gによって反転・増幅されて、画像信号VIDg1〜VIDg6として液晶表示パネル100Gに供給される。同様に、Bの画像信号VIDBについても、S/P変換回路303Bによって6系統に変換された後に、反転増幅回路304Bによって反転・増幅されて、画像信号VIDb1〜VIDb6として液晶表示パネル100Bに供給される。
反転・増幅回路304R、304G、304Bにおける極性反転とは、画像信号の振幅中心電位を基準として、その電圧レベルを交互に反転させることをいう。また、極性反転の周期は、データ信号の印加方式が走査線単位の極性反転、データ信号線単位の極性反転、あるいは1フレーム単位での極性反転など、任意に設定される。
<1−2:プロジェクタの具体的な構成>
次に、図2を参照しながら、プロジェクタ1100の具体的な構成を説明する。図2は、プロジェクタ1100の構成を示す平面図である。図2に示すように、プロジェクタ1100内部には、ハロゲンランプ等の白色光源からなるランプユニット1102が設けられている。ランプユニット1102から射出された投射光は、ライトガイド1104内に配置された4枚のミラー1106および2枚のダイクロイックミラー1108によってRGBの各原色に分離されて、ライトバルブとしての液晶パネル100R、100Bおよび100Gに入射する。
液晶パネル100R、100Bおよび100Gには、画像信号処理回路300(図2では省略)により処理されたR、G、Bの画像信号(VIDr1〜VIDr6、VIDg1〜VIDg6、VIDb1〜VIDb6)がそれぞれ供給される。これにより、液晶パネル100R、100G、100Bは、それぞれRGBの各原色画像を生成する光変調器として機能することになる。これらの液晶表示パネルによって変調された光は、ダイクロイックプリズム1112に3方向から入射される。ダイクロイックプリズム1112では、R及びBの光が90度に屈折する一方、Gの光が直進する。これにより、各原色画像の合成像が、投射レンズ1114を介して、スクリーン等に投射される。プロジェクタ1110は、投射レンズ1114のズーム量に応じて合成像をワイド(拡大)投射及びテレ(縮小)投射し、投射画像とされる合成像をスクリーン等の投射面に拡大及び縮小して投射するズーム機能を有する。
なお、このズーム機能については、投射レンズのズーム動作による光学的ズームの他に、信号処理によるデジタルズームを用いることも可能である。
<1−3:画像処理回路の構成>
次に、図3乃至図8を参照しながら、色ムラ補正回路302が備える第1色ムラ補正回路302−1及び第2色ムラ補正回路302−2の構成を説明する。第1色ムラ補正回路302−1及び第2色ムラ補正回路302−2は、本発明に係る画像処理回路の一例を構成している。図3は、第1色ムラ補正回路302−1の構成を示すブロック図である。図4は、第1色ムラ補正回路302−1で生成される第1補正データと、図2に示した投射レンズ1114のズーム量との関係を示した図である。図5は、第2色ムラ補正回路302−1の構成を示すブロック図である。図6は、本実施形態における基準座標を説明するための図である。図7は、液晶表示パネルの表示特性と基準補正データに対応する3つの電圧レベルとの関係を示す図である。図8は、第2色ムラ補正回路が備えるROMに記憶されたルックアップテーブルを示す図である。
尚、以下では、主としてR(赤色)に関する画像データに施される処理、及び当該処理を実行する各回路部を説明するが、G(緑色)及びB(青色)に関する画像データについてもRの場合と同様の回路構成によって同様の処理がなされる。
図3において、第1色ムラ補正回路302−1は、ズーム量検出回路310、補正ユニットUR1、UG1およびUB1を備えている。補正ユニットUR1は、「第1基準補正データ記憶回路」の一例であるメモリ311、「第1補正データ生成回路」の一例である演算部313、「第1補正データ加算回路」の一例である加算部314を備えている。
ズーム量検出回路310は、投射レンズ1114のズーム量、より具体的には、投射レンズ1114が、ワイド(拡大)側、或いはテレ(縮小)側の夫々に対応してシフトされたシフト量を検出する。
メモリ311は、投射レンズ1114が取り得るズーム量のうち複数の特定ズーム量の夫々に対応して設定された第1基準補正データを含む複数のルックアップテーブルを備えている。本実施形態では、複数のルックアップテーブルの具体例として、投射レンズ1114のワイド側で設定された第1基準補正データを含むLUT312Wと、テレ側で設定された第1基準補正データを含むLUT312Tとを備えている。LUT312W及び3121Tの夫々が含む第1基準補正データは、予め投射レンズ1114をWIDE側及びTELE側の夫々にシフトさせた状態でスクリーンに投射像を投射し、当該投射画像に色ムラが発生しないように入力画像データDR´を補正した際の入力画像データDR´に対する補正値である。
尚、本実施形態では、投射レンズ1114をズーム量、即ち投射レンズ1114がワイド側及びテレ側の夫々の側にシフトされた際のシフト量の絶対値の特定の値について第1基準補正データが設定されているが、投射レンズ1114のズーム量のうち入力画像データDR´に補正を施さない、即ち補正しなくても投射画像に色ムラが発生しないズーム量を基準として、当該基準からワイド側及びテレ側の夫々の側に投射レンズ1114をシフトさせたズーム量のうち複数の特定ズーム量について設定されていてもよい。
演算部313は、ズーム量検出回路310から投射レンズ1114のズーム量に関する情報を取得する。演算部313は、LUT312w及び3121tの夫々に記憶されたデータを読み出し、ズーム量検出回路310から取得したズーム量に基づいて、当該ズーム量に対応した第1補正データを算出する。
より具体的には、図4に示すように、演算部313は、TELE側で設定された第1補正データXtと、WIDE側で設定された第1補正データXwとを補間することによって、ズーム量Z0に対応した第1補正データX0を算出する。図4中、横軸にとったズーム量において、TELE及びWIDEで示したズーム量が「特定ズーム量」の夫々一例である。
再び、図3において、加算部314は、演算部313から供給された第1補正データX0を入力画像データDR´に加算し、入力画像データDR´´を第2色ムラ補正回路302−2に供給する。同様に、第1色ムラ補正回路302−1によって、補正された入力画像データDG´及びDB´が第2色ムラ補正回路302−2に出力される。第1色ムラ補正回路302−1によれば、投射画像のサイズ、言い換えれば投射レンズ1114のズーム量に応じて生じる色ムラが低減された投射画像をスクリーンに表示できる。加えて、投射画像のサイズに応じて生じる色ムラを低減するための補正データを、後述する第2色ムラ補正回路302−2が備えるルックアップテーブルに記憶させておく必要がないため、第2色ムラ補正回路302−2が備えるメモリの記憶容量を増大させることもない。また、投射画像のサイズに応じて生じる色ムラの発生状態は、各色に対応した光の波長、及び当該光をスクリーンに投射する投射レンズ1114等を含む光学系の光学特性に依存するため、表示領域103に表示される画像の色ムラに比べて、粗い補正で済み、高速で色ムラの補正が可能となる。
尚、本実施形態では、メモリ311は、入力画像データDR´の輝度レベル毎、又は基準座標毎に第1基準補正データを記憶しており、演算部313は、複数の特定レベルに含まれる互いに異なる特定レベル毎、又は複数の基準座標のうち互いに異なる基準座標毎に、複数の第1基準補正データを補間してもよい。このような場合、後段の第2色ムラ補正回路302−2が入力画像データDR´´を補正するに先立って、表示領域103に表示される画像の輝度ムラも低減できる。投射レンズ1114のズーム量に応じて、互いに異なる特定レベル毎、又は互いに異なる基準座標毎に第1基準補正データを補間することによって生成される第1補正データは、第2色ムラ補正回路302−2が生成する第2補正データに比べて荒い。より具体的には、第1色ムラ補正回路302−1では、投射レンズ1114のズーム量に応じて生じる色ムラが感知されない程度に第1補正データが生成されていればよいため、複数の特定レベル及び複数の基準座標レベルの両方に基づいて生成される第2補正データに比べて、少ない基準値に基づいて補間を行うことによって、入力画像データDR´に対する補正精度が荒くなっていてもよい。
次に、図5乃至図8を参照しながら、第2色ムラ補正回路302−2の構成を説明する。図5において、第2色ムラ補正回路302−2は、Xカウンタ10、Yカウンタ11、ROM(Read Only Memory)12、補間処理部13および補正ユニットUR2、UG2、UB2を備えている。
Xカウンタ10は、プロジェクタ1100の動作時に、ドット周期に同期するドットクロック信号DCLKをカウントして、入力画像データのX座標を示すX座標データDxを出力する。Yカウンタ11は、水平走査に同期する水平クロック信号HCLKをカウントして、入力画像データのY座標を示すY座標データDyを出力する。したがって、X座標データDxとY座標データDyとを参照することによって、当該入力画像データに対応するドット(画素)の座標を検知できる。
ROM12は不揮発性のメモリであり、プロジェクタ1100の電源投入時に、「第2基準補正データ」の一例である基準補正データDrefを出力する。基準補正データDrefは、予め定められた複数の基準座標毎に対応し、かつ、RGBの色毎において特定レベルに対応するものであって、第2色むら補正回路302−2において色ムラを補正する際の基準となるデータである。
ここで、図6を参照しながら、本実施形態における基準座標について説明する。図6において、表示領域103は横1024ドット×縦768ドットで構成されるが、この表示領域103を、横8個×縦6個のブロックに分割し、これらブロックの頂点に位置する計63点の座標(図において黒丸で示される)を、本実施形態では基準座標と称呼する。
次に、図7を参照しながら、RGBの色毎における特定のレベルについて説明する。図7は、液晶容量に印加される電圧実効値と透過率(又は輝度)との関係を示す表示特性Wにおいて、基準補正データDrefに対応する電圧レベルが、どの地点に相当するかを示すための図である。尚、図7は、液晶容量に印加される電圧実効値がゼロである場合に、透過率が最大(白表示)となるノーマリーホワイトモードについて示している。
図7に示されるように、表示特性Wは、液晶容量に印加される電圧実効値がゼロから次第に大きくなると、透過率が緩やかに低下し、電圧レベルV1を越えると急峻に透過率が低下し、さらに、電圧レベルV3を越えると透過率が緩やかに低下する。ここで、電圧レベルV0は、画像データが最小レベルとなる場合に液晶容量に印加される電圧実効値であり、電圧レベルV4は、画像データが最大レベルとなる場合に液晶容量に印加される電圧実効値である。このような表示特性Wにおいて、本実施形態における基準補正データDrefは、電圧レベルV1、V2およびV3のそれぞれに対して、後述する手法により設定されたものである。尚、電圧レベルV1およびV3は、表示特性Wにおいて急峻に変化する点に対応するものであり、電圧レベルV2は、透過率が略50%となる点に対応している。
ここで、上述した3つの電圧レベルを選んだ理由は、次の通りである。第1に、電圧レベルV1未満の領域、または、電圧レベルV3を越える領域においては、画像データのレベル(階調或いは輝度)が大きく相違しても、透過率変化が小さいので、電圧レベルV1またはV3に対応する基準補正データDrefを用いれば、通常では十分である、と考えられるからである。第2に、仮に電圧レベルV1、V3の替わりに電圧レベルV0、V4に対応する基準補正データDrefを記憶して、電圧レベルV0〜V4の範囲における各レベルに対応する補正データを補間処理して算出すると、表示特性Wが、電圧レベルV1、V3にて急峻に変化するため、補正データを全域にわたって正確に算出することができないからである。第3に、透過率が略50%となる電圧レベルV2を用いることによって、補間処理の精度を高めることができるからである。
このような理由を考慮すると、第2色ムラ補正回路302−2は、一般に、液晶表示パネルが電気光学物質である液晶の組成に応じた表示特性を有するので、画像データのある1つのレベルに対応する補正データを用いて、画像データが取り得るレベルのすべてを補正しても、正確な補正を行うことができない。加えて、画像データのすべてのレベルに対応して補正データを格納するのは理想的ではあるが、ROM12において必要とする記憶容量が増大してしまうことになる。そこで、色ムラ補正回路302−2は、3つの相異なるレベルに対応して基準補正データDrefを記憶しておき、上述した相異なる3つのレベル以外のレベルに対応する補正データを、記憶した基準補正データDrefに対して補間処理することによって求める。
次に、図8を参照しながら、ROM12の記憶内容を説明する。図8に示すように、ROM12は、63点の基準座標毎に9個の基準補正データDrefを格納している。より具体的には、1個の基準座標に対応する9個の基準補正データDrefは、RGBの色毎に、さらに白基準レベル、中央基準レベルおよび黒基準レベルにそれぞれ対応して格納されている。尚、図8では、データを示す「D」に続く第1番目の添字「R」、「G」、「B」は、どの色に対応しているかを示している。第2番目の添字のうち、「w」は白基準レベルに、「c」は中央基準レベルに、「b」は黒基準レベルに対応していることを示している。さらに、第3番目および第4番目の添字「i、j」は、対応する基準座標を示している。例えば、「DRc256、1」とは、R(赤)色であって、中央基準レベルに対応し、かつ、基準座標(256、1)に対応する基準補正データであることを示している。以下の説明では、基準補正データについて、RGBの各色で区別する場合、Rに対応するものをDrefrと、Gに対応するものをDrefgと、Bに対応するものをDrefbとそれぞれ表記する一方、RGBの各色で区別しない場合、単にDrefと表記する。
次に、図10を参照しながら、基準補正データDrefの設定について説明する。図10は、基準補正データDrefを設定する際に用いるシステムの構成を示す図である。図10に示すように、システム1000は、実施形態に係るプロジェクタ1100、CCDカメラ500、パーソナルコンピュータ600およびスクリーンSから構成されるが、色ムラ補正回路302については動作を停止させている。システム1100において、CCDカメラ500は、プロジェクタ1100により投射されてスクリーンSに写し出された画像を撮像して、画像信号Vsに変換出力する。パーソナルコンピュータ600は、画像信号Vsを解析して次のような手順で基準補正データDrefを生成する。
先ず、システム1000に、図示せぬ信号発生器を接続して、白基準レベルに対応するRの画像データDR´を供給する(画像データDG´、DB´については、最低透過率の電圧レベルV4に対応させて固定する)。これにより、スクリーンSに赤一色の投射画像が表示される。次に、この投射画像は、CCDカメラ500によって撮像され、画像信号Vsとして、パーソナルコンピュータ600に供給される。そして、パーソナルコンピュータ600は、画像信号Vsから、1フレームの画面を図6に示すような縦6個×横8個のブロックに分割して各ブロックの平均輝度レベルを求め、これに基づいて、各基準座標の輝度レベルを算出する。詳細には、パーソナルコンピュータ600は、ある基準座標の輝度レベルについて、当該基準座標に隣接する1、2または4つのブロックの平均輝度レベルを平均して求める。
続いて、パーソナルコンピュータ600は、基準座標の輝度レベルと予め定められた輝度レベルとを比較し、その比較結果に基づいて基準補正データDrefを算出する。尚、パーソナルコンピュータ600は、この算出動作を、63点のすべての基準座標について、さらに、中央基準レベル(電圧レベルV2)、黒基準レベル(V3)についても同様に実行して、Rに対応する基準補正データDrefrを算出する。
引き続き、画像データDR´、DB´を最低透過率の電圧レベルV4に対応させて固定し、Gの画像データDG´を白基準レベル、中央基準レベル、黒基準レベルに対応するように順次切り替えて、パーソナルコンピュータ600に対し、Gに対応する基準補正データDrefgを算出させる。同様に、画像データDR´、DG´を最低透過率の電圧レベルV4に対応させて固定し、Bの画像データDB´を白基準レベル、中央基準レベル、黒基準レベルに対応するように順次切り替えて、パーソナルコンピュータ600に対し、Bに対応する基準補正データDrefbを算出させる。そして、このように算出された基準補正データDrefr、Drefg、Drefbが、当該プロジェクタ1100におけるROM12に格納される。このようにして、ROM12に基準補正データが記憶される。
再び、図5において、補間処理部13は、白基準レベル、中央基準レベルおよび黒基準レベルに対応する基準補正データDrefを補間処理することによって、補正データDHを基準座標毎に、かつ、RGBの色毎に算出するものである。具体的には、補間処理部13は、白基準レベルに対応する基準補正データDrefと中央基準レベルに対応する基準補正データDrefとから、白基準レベルから中央基準レベルまでの各レベルに対応する補正データDHを算出し、同様に、中央基準レベルに対応する基準補正データDrefと黒基準レベルに対応する基準補正データDrefとから、中央基準レベルから黒基準レベルまでの各レベルに対応する補正データDHを算出する。以下の説明では、RGBの各色に対応する補正データDHを、DHr、DHg、DHbと表記する。
次に、図5において、補正ユニットUR2、UG2、及びUB2は、補間処理部13で生成された補正データに基づいて、RGBの各色に対応する画像データDR´´、DG´´、DB´´に補正処理を施すとともに、補正されたデータをDA変換して画像信号VIDR、VIDG、VIDBとして出力する。ここで、各補正ユニットUR2、UG2、及びUB2は、本実施形態では共通構成であるので、代表して補正ユニットUR2について説明する。補正ユニットUR2は、補正テーブル14R、演算部15R、加算部16R、アドレス発生部17R及びDA変換器18Rを備えている。
補正テーブル14Rは、補間処理部13による補正データDHrについて、基準座標を行アドレスとし、レベルを座標軸とする列アドレスとした領域に記憶する一方、読出アドレスで指定された記憶領域から4点の補正データDHr1〜DHr4を出力する。
ここで、図11を参照しながら、補正テーブル14Rが記憶する記憶内容を説明する。図11において、「m」は電圧レベルV1に対応する画像データを示し、「n」は電圧レベルV3に対応する画像データを示す。図11に示すように、補正テーブル14Rは、各基準座標に対応付けて補正データDHrを記憶している。補正データDHrに続く第1番目および第2番目の添字「i、j」は、対応する基準座標を示すものであり、第3番目の添字「(X)」は、対応する画像データのレベルを示している。例えば、DHr1、128(m+2)とは、基準座標(1、128)、画像データのレベル(m+2)に対応する補正データであることを示している。
図5及び図11において、アドレス発生部17Rは、X座標データDx、Y座標データDy、及び画像データDR´´に基づいて、以下の手順で4つの読出アドレスを順次生成する。第1に、アドレス発生部17Rは、X座標データDxおよびY座標データDyによって特定される座標の近傍に位置する4点の基準座標を特定する。例えば、X座標データDxおよびY座標データDyによって特定される座標が(64、64)であるならば(図6参照)、基準座標として4つの(1、1)、(128、1)、(1、128)、(128、128)を特定する。これにより、第1行、第2行、第10行、第11行を指示する4つの行アドレスが生成される。
第2に、アドレス発生部17Rは、画像データDR´´のレベルに対応する列アドレスを生成する。例えば、画像データDR´´のレベルが「m+1」であるならば、第2列を指示する列アドレスを生成する。但し、画像データDR´´が「m」未満の場合には第1列を指示する列アドレスを生成し、画像データDR´´が「n」を越える場合には「n」に対応する列アドレスを生成する。
第3に、アドレス発生部17Rは、4つの行アドレスと1つの列アドレスを組み合わせて4つの読出アドレスを生成する。アドレス発生部14Rによって、補正テーブル14Rに記憶されている補正データDHrの中から、4つの補正データDHr1〜DHr4が選択される。例えば、画像データDR´´が「m+1」であり、X座標データDxおよびY座標データDyによって特定される座標が(64、64)である場合、図11において、DHr1,1(m+1)と、DHr128,1(m+1)と、DHr1,128(m+1)と、DHr128,128(m+1)とが補正データDHr1〜DHr4として補正テーブル14Rから読み出される。
次に、演算部15Rは、読み出された4点の補正データDHr1〜DHr4を用いて、X座標データDxおよびY座標データDyによって特定される座標(当該画像データDR´´に対応する座標)に相当する補正データDhを補間処理により求める。より具体的には、演算部15Rは、4点の補正データDHr1〜DHr4に対し、X座標データDxおよびY座標データDyによって特定される座標から、補正データDHr1〜DHr4に対応する座標までの各距離に応じて直線補間することにより、補正データDhを求める。
加算部16Rは、画像データDR´´と補正データDhとを加算して、補正済画像データを生成する。この補正済画像データは、D/A変換器18Rを介してアナログの画像信号VIDRとして出力される。尚、本実施形態では、R(赤)の画像データDR´´を補正する場合を詳細に説明したが、G(緑)の画像データDG´´やB(青)の画像データDB´´についても同様な色ムラ補正の処理が施されて、アナログの画像信号VIDG、VIDBとして出力される。
<1−4:画像処理方法>
次に、図9を参照しながら、本発明に係る画像処理方法の一実施形態を説明する。図9は、本実施形態に係る画像処理方法のフローチャートである。第1色ムラ補正回路302−1及び第2色ムラ補正回路302−2の夫々における処理が、本発明に係る画像処理方法の一例を構成している。ここでは、Rに対応する色ムラ補正の動作について説明するが、B、Gについても同様である。
先ず、第1色ムラ補正回路302−1において実行される処理を説明する。プロジェクタ1100に電源が投入され(ステップS100)、プロジェクタ1100がスクリーンに投射画像を投射可能となった状態で、ズーム量検出回路310が、投射レンズ1114のズーム量を検出する(S111)。演算部313は、メモリ311から第1基準補正データを読み込み、ズーム量検出回路310から読み出したズーム量に基づいて補正データを生成する(S112)。加算器314は、生成された補正データを入力画像データDR´に加算することによって入力画像データDR´を補正し、ズーム量に応じた色ムラを低減可能な入力画像データDR´´を後段の第2色ムラ補正回路302−2に出力する。
次に、第2色ムラ補正回路302−2において実行される処理を説明する。プロジェクタ1100に電源が投入され(ステップS100)、プロジェクタ1100がスクリーンに投射画像を投射可能となった状態で、ROM12から各基準座標に対応する基準補正データDref(Drefr、Drefg、Drefb)が読み出される(ステップS121)。次に、補間処理部13は、基準補正データDrefに基づいて、階調(レベル)方向の補間処理を実行して、補正データDHr、DHg、DHbを生成する(ステップS122)。即ち、基準補正データDrefr、Drefg、Drefrの各々は、それぞれ、63点の基準座標において3つの電圧レベルV1、V2、V3にしか対応していないので、電圧レベルV1から電圧レベルV3までの各レベルに対応する補正データDHr、DHg、DHbについては、それぞれ補間処理によって生成する。
次に、補正ユニットUR2、UG2、UB2の各々における補正テーブルに、補正データDHr、DHg、DHbがそれぞれ格納されると、ドットクロック信号DCLKがXカウンタ10に、水平クロック信号HCLKがYカウンタ11に、それぞれ供給されるとともに(ステップS123)、これらのクロック信号に同期して、画像データDR´´、DG´´、及びDB´´が供給される。ここで、Xカウンタ10から出力されるXデータ座標DxおよびYカウンタ11から出力されるYデータ座標Dyによって、あるタイミングにおける画像データDR´´、DG´´、及びDB´´が、表示領域103上において、どのドット(画素)に対応しているのかが特定される。
続いて、座標についての補間処理の元になる4つの補正データDHr1〜DHr4が、X座標データDxおよびY座標データDyと、画像データDR´´のレベルとに基づいて、補正テーブル14Rから読み出される(ステップS124)。他の色についても同様である。この後、補正データDHr1〜DHr4が、X座標データDx及びY座標データDyに基づき、演算部15Rによって補間処理されて(ステップS125)、補正データDhが生成される(ステップS126)。そして、画像データDR´´に補正データDhが加算部16Rによって加算され(ステップS127)、D/A変換器18Rによりアナログ変換されて、R(赤)の画像信号VIDRとして出力される。G(緑)およびB(青)についても、同様な処理が施された後に、画像信号VIDG、VIDBとして出力される。
このような本実施形態に係る画像処理方法によれば、投射レンズ1114のズーム量に応じて生じる色ムラを低減できるように入力画像データを高速で補正できる。加えて、基準座標毎に対応し、かつ、3つの電圧レベルV1、V2、V3に対応する基準補正データDrefから、画像データの各レベルに対応する補正データDHが基準座標毎に生成されるとともに、4点の補正データDHr1〜DHr4に対し、X座標データDxおよびY座標データDyに応じ補間処理が施されて、補正データDhが生成される。このため、画像データDR´´、DG´´、及びDB´´の各レベルに応じて、きめ細かい補正が施されるので、すべての階調にわたって色ムラや輝度ムラを大幅に低減できる。
補正データDhは、画像データDR´´、DG´´、DB´´毎に生成されるため、Rの補正量が足らない場合に、これをG、Bで補って、ホワイトバランスを保つといったことも可能である。例えば、画像データDR´´、DG´´、DB´´のビット数が10ビットである場合に、補正データDhのビット数を4ビットに制限すると、色毎の補正では、完全に色ムラを補正しきれないこともあり得るが、他の色とのバランスで補正すれば、色ムラを解消することができる。
本実施形態によれば、階調等のレベルに対応する補間処理を実行した後に、座標に対応する補間処理が実行されるので、即ち、2段階の補間処理が実行されるので、ROM12及び補正テーブル14Rのメモリ容量が大幅に削減される。加えて、Xカウンタ10、Yカウンタ11、ROM12及び補間処理部13は、各補正ユニットUR2、UG2、UB2で兼用しているので、その分、構成が簡易となる結果、低コストを図ることが可能である。
<第2実施形態>
<2−1:プロジェクタの電気的構成>
次に、図12乃至図15を参照しながら、本発明に係る電気光学装置、画像処理回路、及び画像処理方法の他の実施形態を説明する。尚、以下では、第1実施形態に係る電気光学装置と共通する部分に共通の参照符号を付し、詳細な説明を省略する。
図12を参照しながら、本実施形態に係るプロジェクタ1400の電気的な構成を説明する。図12は、本実施形態に係るプロジェクタ1400の電気的な構成を示すブロック図である。プロジェクタ1400は、プロジェクタ1100と同様に3枚の液晶表示パネル100R、100G、及び100B、タイミング回路200、並びに画像信号処理回路400を備えている。
画像信号処理回路400は、ガンマ補正回路301、色ムラ補正回路402、赤(R)、緑(G)及び青(B)の夫々に対応したS/P変換回路303、反転増幅回路304を備えている。
色ムラ補正回路402は、入力画像データDR´、DG´、DB´に対し、後述する色ムラ補正を施し、補正された入力画像データをD/A変換して、画像信号VIDR、VIDG、VIDBとして出力する。ガンマ補正回路301、S/P変換回路303、及び反転増幅回路304は、第1実施形態と同様の処理を実行する。以下では赤(R)の入力画像データを補正する場合について詳細に説明する。
<2−2:画像処理回路の構成>
図13を参照しながら、本実施形態に係る画像処理回路を構成する色ムラ補正回路402の構成を説明する。図13は、色ムラ補正回路402の構成を示すブロック図である。
図13において、色ムラ補正回路302は、ROM12、補間処理部13、Xカウンタ10、Yカウンタ11、補正ユニットUR3、UG3、UB3を備えている。補正ユニットUR3は、アドレス発生回路17R、補正テーブル14R、演算部15R、補正係数生成部19R、加算部16R、D/A変換期器18Rを備えている。ROM12、補間処理部13、補正テーブル14R、アドレス発生回路17R、及び演算部15Rが、「第1補正回路」の一例を構成する。補正係数生成部19Rが、「第2補正回路」の一例である。
メモリ12は、「基準補正データ記憶回路」の一例であり、後述する入力画像データDR´を補正するための基準補正データを、複数の基準座標毎に記憶する。基準座標とは、第1実施形態で説明した基準座標を同様の意味である。補間処理部13は、「第1補正データ生成回路」の一例であり、入力画像データの階調レベルについて当該基準補正データに補間処理を施し、入力画像データDR´のレベルの各々に対応した第1補正データを基準座標毎に生成する。補正テーブル14Rは、「第1補正データ記憶回路」の一例であり、補間処理部13で生成された第1補正データを基準座標とレベルとに対応づけて記憶する。演算部15Rは、「選択回路」及び「補正データ生成回路」の夫々を兼ねており、補正テーブル14Rに記憶された第1補正データの中から、表示領域103においてアドレス情報に基づいて特定される座標の近傍に位置する複数の基準座標に対応し、且つ、入力画像データDR´のレベルに対応する第1補正データを選択する。より具体的には、演算部15Rは、アドレス発生回路17Rから供給されるアドレス情報、即ち、クロック信号DCLK及びHCLKの夫々に基づいて特定される入力画像データDR´に対応する画素のアドレス情報に基づいて、補正テーブル14Rから第1補正データDHr1、DHr2、DHr3、及びDHr4を選択する。
補正係数生成部19Rは、「第2補正回路」の一例であり、演算部15Rから出力された補正データDhに補正係数を乗算し、補正データDh´を生成する。加算部16Rは、補正データDh´を入力画像データDR´に加算する。補正データDh´によって補正された入力画像データDR´は、D/A変換器18Rによってアナログ信号に変換され、画像信号VIDRとして出力される。
次に、図14を参照しながら、補正係数生成部19Rの構成を説明する。図14は、補正係数生成部19Rの構成を示したブロック図である。図14において、補正係数生成部19Rは、ルックアップテーブル(LUT)21R、ズーム量検出回路22R、及び演算部23Rを備えて構成されている。
LUT21Rは、入力画像データDR´に対応してスクリーンに投射される投射画像のサイズに応じて生じる色ムラを低減するための補正係数Kを記憶している。ズーム量検出回路22Rは、投射レンズ1114のズーム量を検出する。演算部23Rは、ズーム量検出回路22Rから、投射レンズ1114のズーム量、即ち投射画像のサイズを検出し、当該サイズに応じた補正係数KをLUT21Rから読み出し、補正データDhに乗算する。これにより、スクリーンに投射される投射画像のサイズに応じて生じる色ムラを低減可能な補正データDh´が生成される。加算部16Rは、補正データDh´を入力画像データDR´に加算することによって入力画像データDR´を補正する。緑(G)及び青(B)の夫々に対応する入力画像データに対しても同様の処理が実行され、投射画像の色ムラが低減される。加えて、補正データDhに補正係数Kを乗算することによって色ムラを低減できる補正データが生成されるため、予めメモリ12に、投射画像のサイズに応じた補正データを個別に記憶させておくことなく、高速で補正データを補正できる。このような補正データによれば、入力画像データを高速で補正可能である。
<2−3:画像処理方法>
次に、図15を参照しながら、プロジェクタ1400で実行される画像処理方法を説明する。図15は、本実施形態に係る画像処理方法のフローチャートである。ここでは、Rに対応する色ムラ補正の動作について説明するが、B、Gについても同様の処理が実行される。
先ず、プロジェクタ1100に電源が投入され(ステップS100)、プロジェクタ1400がスクリーンに投射画像を投射可能となった状態で、ズーム量検出回路22Rが、投射レンズ1114のズーム量を検出する(ステップS131)。演算部313は、ズーム量検出回路22Rからズーム量を読み出し、読み出したズーム量に対応した補正係数Kをメモリ21Rから読み出したデータに基づいて生成する(ステップS132)。ステップS131及び132と並行して、或いは相前後して、第1実施形態と同様にステップS121からS126が実行され、補正データDhが補正係数Kによって補正される(ステップS128)。続いて、加算部16Rが入力画像データDR´に補正済みの補正データDh´を加算することによって補正済み入力画像データが生成される(ステップS127)。このようにして補正された入力画像データは、D/A変換機18Rによってデジタルデータからアナログデータに変換された後、出力される。
このような画像処理方法によれば、補正データDhを補正係数Kによって補正するだけであるため、高速で補正データを補正でき、投射画像のサイズに応じて生じる色ムラを効果的に低減できる。
第1実施形態に係るプロジェクタの電気的な構成を示すブロック図である。 第1実施形態に係るプロジェクタの構成を示す平面図である。 第1実施形態に係るプロジェクタが備える第1色ムラ補正回路の構成を示すブロック図である。 第1色ムラ補正回路で生成される第1補正データと、投射レンズのズーム量との関係を示した図である。 第1実施形態に係るプロジェクタが備える第2色ムラ補正回路の構成を示すブロック図である。 第1実施形態における基準座標を説明するための図である。 液晶表示パネルの表示特性と基準補正データに対応する3つの電圧レベルとの関係を示す図である。 第2色ムラ補正回路が備えるROMに記憶されたルックアップテーブルを示す図である。 第1実施形態に係る画像処理方法のフローチャートである。 基準補正データDrefを設定する際に用いるシステムの構成を示す図である。 第1色ムラ補正回路が備える補正テーブルの記憶内容を示す図である。 第2実施形態に係るプロジェクタの電気的な構成を示すブロック図である。 第2実施形態に係るプロジェクタが備える色ムラ補正回路402の構成を示すブロック図である。 第2実施形態に係るプロジェクタが備える補正係数生成部の構成を示したブロック図である。 第2実施形態に係る画像処理方法のフローチャートである。
符号の説明
1100・・・プロジェクタ、100R,100G,100B・・・液晶表示パネル、200・・・タイミング回路、300・・・画像信号処理回路

Claims (8)

  1. 表示装置によってサイズが可変とされる投射画像として投射面に投射される画像が入力画像データに応じて表示領域に表示される電気光学装置であって、
    マトリクス状に設けられた複数の画素と、
    前記入力画像データが取り得るレベルのうち複数の第1特定レベル毎か、又は前記表示領域における前記複数の画素に対応する座標のうち複数の第1基準座標毎に設定された複数の第1基準補正データを、前記可変サイズのうちの複数のサイズ毎に記憶した第1基準補正データを補間して、前記投射画像のサイズを変更することによって生じる前記投射画像の色ムラを低減するための第1補正データを生成し、前記第1補正データによって前記入力画像データを前記サイズに応じて補正する第1入力画像補正回路と、
    前記入力画像データが取り得るレベルのうち複数の第2特定レベルの夫々に対応し、且つ前記表示領域における前記複数の画素に対応する座標のうち所定の複数の第2基準座標毎に設定された複数の第2基準補正データに基づいて、前記複数の画素の位置に対応する前記投射画像の色ムラを低減するための第2補正データを生成し、前記補正された入力画像データを前記画素毎に補正する第2入力画像補正回路と
    を備え
    前記第1基準補正データは、前記第2基準補正データよりも粗く設定されていること
    を特徴とする電気光学装置。
  2. 前記表示装置は、前記投射画像のサイズを変更するズーム機能を備えた投射型表示装置であり、
    前記第1入力画像補正回路は、
    前記表示装置のズーム機能のズーム量を検出するズーム量検出回路と、
    前記ズーム量のうち複数の特定ズーム量の夫々に対応して設定された複数の前記第1基準補正データを前記特定ズーム量毎に記憶した第1基準補正データ記憶回路と、
    前記検出されたズーム量に応じて前記複数の第1基準補正データを補間することによって前記第1補正データを生成する第1補正データ生成回路と、
    前記第1補正データを前記入力画像データに加算する第1補正データ加算回路と
    を備えたことを特徴とする請求項1に記載の電気光学装置。
  3. 前記第1基準補正データ記憶回路は、前記入力画像データの特定のレベル毎、又は前記基準座標毎に前記第1基準補正データを記憶しており、
    前記第1補正データ生成回路は、互いに異なる前記特定レベル間で、又は互いに異なる前記基準座標間で、前記複数の第1基準補正データを補間すること
    を特徴とする請求項2に記載の電気光学装置。
  4. 前記第2補正回路は、
    前記第2基準補正データを、前記複数の基準座標毎に記憶する第2基準補正データ記憶回路と、
    前記第2基準補正データに対しレベルについての補間処理を施して、前記レベルの各々に対応した第2補正データを、前記基準座標毎に生成する第2補正データ生成回路と、
    前記第2補正データを基準座標とレベルとに対応づけて記憶する第2補正データ記憶回路と、
    前記第2補正データ記憶回路に記憶された第2補正データの中から、前記表示領域においてアドレス情報に基づいて特定される座標の近傍に位置する複数の基準座標に対応し、且つ、前記レベルに対応する第2補正データを選択する第2補正データ選択回路と、
    前記第2補正データ選択回路により選択された第2補正データに対し座標についての補間処理を施して、前記入力画像データに対応する第3補正データを生成する第3補正データ生成回路と、
    前記第3補正データを前記補正された入力画像データに加算する第3補正データ加算回路と
    を備えたことを特徴とする請求項1から3の何れか一項に記載の電気光学装置。
  5. 入力画像データに応じてマトリクス状に設けられた複数の画素を含む電気光学装置の表示領域に表示される画像が投射面に投射画像として投射される際に、前記投射画像のサイズに応じて生じる前記投射画像の色ムラを低減するための画像処理回路であって、
    前記入力画像データが取り得るレベルのうち複数の第1特定レベル毎か、又は前記表示領域における前記複数の画素に対応する座標のうち複数の第1基準座標毎に設定された複数の第1基準補正データを、前記サイズのうちの複数のサイズ毎に記憶した第1基準補正データを補間して、前記投射画像の前記サイズを変更することによって生じる前記投射画像の色ムラを低減するための第1補正データを生成すると共に、該生成された第1補正データによって前記入力画像データを前記サイズに応じて補正する第1入力画像補正回路と、
    前記入力画像データが取り得るレベルのうち複数の特定レベルの夫々に対応し、且つ前記表示領域における前記複数の画素に対応する座標のうち所定の複数の基準座標毎に設定された複数の第2基準補正データに基づいて、前記複数の画素の位置に対応する前記投射画像の色ムラを低減するための第2補正データを生成し、前記補正された入力画像データを前記画素毎に補正する第2入力画像補正回路と
    を備え
    前記第1基準補正データは、前記第2基準補正データよりも粗く設定されていること
    を特徴とする画像処理回路。
  6. 入力画像データに応じてマトリクス状に設けられた複数の画素を含む電気光学装置の表示領域に表示される画像が投射面に投射画像として投射される際に、前記投射画像のサイズに応じて生じる前記投射画像の色ムラを低減するための画像処理方法であって、
    前記入力画像データが取り得るレベルのうち複数の第1特定レベル毎か、又は前記表示領域における前記複数の画素に対応する座標のうち複数の第1基準座標毎に設定された複数の第1基準補正データを、前記サイズのうちの複数のサイズ毎に記憶した第1基準補正データを補間して、前記投射画像の前記サイズを変更することによって生じる前記投射画像の色ムラを低減するための第1補正データを生成すると共に、該生成された第1補正データによって前記入力画像データを前記サイズに応じて補正する第1入力画像補正ステップと、
    前記入力画像データが取り得るレベルのうち複数の特定レベルの夫々に対応し、且つ前記表示領域における前記複数の画素に対応する座標のうち所定の複数の基準座標毎に設定された複数の第2基準補正データに基づいて、前記複数の画素の位置に対応する前記投射画像の色ムラを低減するための第2補正データを生成し、前記補正された入力画像データを前記画素毎に補正する第2入力画像補正ステップと
    を備え
    前記第1基準補正データは、前記第2基準補正データよりも粗く設定されていること
    を特徴とする画像処理方法。
  7. 請求項1からの何れか一項に記載の電気光学装置を具備してなること
    を特徴とする電子機器。
  8. 請求項2に記載の電気光学装置を備えた投射型表示装置。
JP2006201665A 2006-07-25 2006-07-25 電気光学装置、画像処理回路、画像処理方法、及び電子機器 Expired - Fee Related JP4207064B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006201665A JP4207064B2 (ja) 2006-07-25 2006-07-25 電気光学装置、画像処理回路、画像処理方法、及び電子機器
US11/769,498 US20080024652A1 (en) 2006-07-25 2007-06-27 Electro-optical device, image processing circuit, and electronic device
US13/227,836 US20120001959A1 (en) 2006-07-25 2011-09-08 Electro-optical device, image processing circuit, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006201665A JP4207064B2 (ja) 2006-07-25 2006-07-25 電気光学装置、画像処理回路、画像処理方法、及び電子機器

Publications (2)

Publication Number Publication Date
JP2008028889A JP2008028889A (ja) 2008-02-07
JP4207064B2 true JP4207064B2 (ja) 2009-01-14

Family

ID=38985815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006201665A Expired - Fee Related JP4207064B2 (ja) 2006-07-25 2006-07-25 電気光学装置、画像処理回路、画像処理方法、及び電子機器

Country Status (2)

Country Link
US (2) US20080024652A1 (ja)
JP (1) JP4207064B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5282434B2 (ja) * 2008-04-01 2013-09-04 セイコーエプソン株式会社 画像処理装置、画像表示装置及び画像処理方法
JP5320865B2 (ja) * 2008-07-04 2013-10-23 セイコーエプソン株式会社 プロジェクタおよびプロジェクタの制御方法
JP5542203B2 (ja) * 2009-07-15 2014-07-09 コンダクティクス−バンプフラー ゲーエムベーハー 電子的位置決め支援装置を備えた車両の誘導充電システム
JP5906889B2 (ja) * 2012-03-29 2016-04-20 富士通株式会社 画像補正装置、画像補正方法、画像補正プログラム、及び画像読取装置
JP6222939B2 (ja) * 2012-04-06 2017-11-01 キヤノン株式会社 ムラ補正装置及びその制御方法
JP6314439B2 (ja) * 2013-11-19 2018-04-25 セイコーエプソン株式会社 表示装置、及び、表示装置の制御方法
KR102535803B1 (ko) * 2018-08-13 2023-05-24 삼성디스플레이 주식회사 얼룩 보정을 수행하는 표시 장치 및 표시 장치의 구동 방법
CN113776673B (zh) * 2021-11-12 2022-02-22 国科天成科技股份有限公司 大变倍比红外热像仪的非均匀校正***

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519518A (en) * 1993-12-27 1996-05-21 Kabushiki Kaisha Toshiba Display apparatus with a variable aperture stop means on each side of the modulator
JP3632505B2 (ja) * 1999-06-18 2005-03-23 セイコーエプソン株式会社 画像表示装置
JP2001209358A (ja) * 2000-01-26 2001-08-03 Seiko Epson Corp 表示画像のムラ補正
JP3661584B2 (ja) * 2000-01-28 2005-06-15 セイコーエプソン株式会社 電気光学装置、画像処理回路、画像データ補正方法、および、電子機器
JP2002090880A (ja) * 2000-09-20 2002-03-27 Seiko Epson Corp プロジェクタ
JP3473600B2 (ja) * 2000-12-01 2003-12-08 セイコーエプソン株式会社 液晶表示装置、画像データ補正回路、画像データ補正方法および電子機器
US7374290B2 (en) * 2003-06-13 2008-05-20 Sony Corporation Projection type display device

Also Published As

Publication number Publication date
JP2008028889A (ja) 2008-02-07
US20080024652A1 (en) 2008-01-31
US20120001959A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP3661584B2 (ja) 電気光学装置、画像処理回路、画像データ補正方法、および、電子機器
JP4207064B2 (ja) 電気光学装置、画像処理回路、画像処理方法、及び電子機器
KR101929001B1 (ko) 표시 패널의 얼룩 보상 방법, 이를 포함하는 표시 패널의 구동 방법 및 이를 수행하기 위한 표시 장치
JP3473600B2 (ja) 液晶表示装置、画像データ補正回路、画像データ補正方法および電子機器
JP4196959B2 (ja) 電気光学装置及びその駆動回路並びに電子機器
JP5922160B2 (ja) 表示較正システム、プログラム、記録媒体
US20070268524A1 (en) Display device, display panel driver and method of driving display panel
KR101930880B1 (ko) 액정 표시 장치 및 그 구동 방법
KR101600495B1 (ko) 신호 처리 장치 및 신호 처리 방법
JP2006003867A (ja) 画像補正量検出装置、電気光学装置用駆動回路、電気光学装置及び電子機器
JP2002090880A (ja) プロジェクタ
JP5924478B2 (ja) 画像処理装置、プロジェクターおよび画像処理方法
JP2007333770A (ja) 電気光学装置、電気光学装置用駆動回路、及び電気光学装置の駆動方法、並びに電子機器
JP2001343955A (ja) 電気光学装置、画像処理回路、画像データ補正方法、および、電子機器
JP2004133177A (ja) 焼き付け抑制回路及び焼き付け抑制方法、液晶表示装置およびプロジェクタ
JP2006030600A (ja) 多画面表示システム、多画面表示方法、輝度補正方法及びプログラム
US20180336812A1 (en) Image display apparatus, liquid crystal display method, and liquid crystal display program
JP3821152B2 (ja) 電気光学装置、画像処理回路、画像データ補正方法、および、電子機器
JP2006005524A (ja) 画像処理装置及び表示装置
JP3879714B2 (ja) 液晶表示装置、画像データ補正回路、および電子機器
JP3675298B2 (ja) 表示装置
JP2009300961A (ja) 投写型表示装置
JP5298944B2 (ja) 液晶パネルの温度検出装置、液晶表示装置および電子機器。
WO2012147602A1 (ja) 液晶表示装置
JP6398162B2 (ja) 画像処理回路、電気光学装置及び電子機器

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Ref document number: 4207064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees