JP4204420B2 - 可変容量型ターボチャージャの制御装置 - Google Patents

可変容量型ターボチャージャの制御装置 Download PDF

Info

Publication number
JP4204420B2
JP4204420B2 JP2003317224A JP2003317224A JP4204420B2 JP 4204420 B2 JP4204420 B2 JP 4204420B2 JP 2003317224 A JP2003317224 A JP 2003317224A JP 2003317224 A JP2003317224 A JP 2003317224A JP 4204420 B2 JP4204420 B2 JP 4204420B2
Authority
JP
Japan
Prior art keywords
supercharging pressure
control device
variable capacity
turbocharger
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003317224A
Other languages
English (en)
Other versions
JP2005083283A (ja
Inventor
辰久 横井
豊盛 立木
孝好 稲葉
文紀 本城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Denso Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2003317224A priority Critical patent/JP4204420B2/ja
Priority to DE602004026516T priority patent/DE602004026516D1/de
Priority to ES04021379T priority patent/ES2343957T3/es
Priority to EP04021379A priority patent/EP1515021B1/en
Publication of JP2005083283A publication Critical patent/JP2005083283A/ja
Application granted granted Critical
Publication of JP4204420B2 publication Critical patent/JP4204420B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/10Carbon or carbon oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

本発明は、内燃機関の排気ガスを浄化する浄化手段の上流側であって且つタービンホイールの上流側の排気ガスの流路面積を制御することで過給圧を調整する可変容量型ターボチャージャの制御装置に関する。
周知のように、ターボチャージャは、内燃機関の排気通路を流れる排気ガスによって回転するタービンホイールと、同機関の吸気通路内の空気を強制的に燃焼室へと送り込むコンプレッサホイールとを備えている。これらタービンホイール及びコンプレッサホイールは、ロータシャフトを介して一体回転可能に連結されている。そして、タービンホイールに排気ガスが吹き付けられ同ホイールが回転すると、その回転はロータシャフトを介してコンプレッサホイールに伝達される。こうしてコンプレッサホイールが回転することにより、吸気通路内の空気が強制的に燃焼室に送り込まれるようになる。
さらに近年、タービンホイールに吹き付けられる排気ガスの流量、流速等を可変制御することで、内燃機関の運転状態に応じて過給圧を最適なものとする可変容量型ターボチャージャが実用されるに至っている。こうした可変容量型ターボチャージャとしては、例えば可変ノズル型ターボチャージャがある。
この可変ノズル型ターボチャージャは、タービンホイールに吹き付けられる排気ガスが通過する排気ガス流路を備えている。そして、排気ガス流路は、タービンホイールの外周を囲うように同ホイールの回転方向に沿って形成されている。したがって、排気ガス流路を通過した排気ガスは、タービンホイールの軸線へ向かって吹き付けられることになる。このような排気ガス流路には、タービンホイールに吹き付けられる排気ガスの流速を可変とするための複数のノズルベーンが設けられている。これらノズルベーンは、タービンホイールの軸線を中心とする等角度ごとに設置され、互いに同期した状態で開閉動作する。
タービンホイールに吹き付けられる排気ガスの流速は、上記ノズルベーンを同期して開閉動作させ、隣り合うノズルベーン間の隙間の大きさ、すなわちノズルベーンの開度を変化させることで調整される。こうしてノズルベーンを開閉させて上記排気ガスの流速調整を行うことで、タービンホイールの回転速度が調整される。そして、タービンホイールの回転速度が調整されることにより、内燃機関の過給圧が調整される。
一方、内燃機関の排気通路には、排気ガスを浄化する浄化手段が設けられている。ただし、ディーゼルエンジン等、排気ガス中に含まれる微粒子が無視できない内燃機関等にあっては、上記浄化手段につまりが生じるおそれがある。
そこで従来は、例えば下記特許文献1に見られるように、浄化手段につまりが発生したと判断されるときに過給圧を増加させる制御を行うものも提案されている。こうした制御をすることで、過給圧の増加に伴い高温、高圧となった排気ガスにより、浄化手段に付着した上記微粒子等を除去することができる。
特開平11−62602号公報
ところで、上記浄化装置につまりが生じると、ノズルベーンを閉弁側に制御したとしてもタービンホイールの上流側と下流側との間の圧力差を生じにくくなることから、同タービンホイールの回転速度が上昇しにくくなる。このため、例えば実際の過給圧を目標とする過給圧とすべくノズルベーンの開度をフィードバック制御すると、ノズルベーンの開度を閉弁側に過度に制御することにもなりかねない。そして、このようにノズルベーンの開度を閉弁側に過度に制御すると、上記浄化装置の上流側の圧力が過度に上昇し、内燃機関の信頼性を損なう等、様々な不都合が生じる懸念がある。
このように、内燃機関の排気ガスを浄化する浄化手段の上流側であって且つタービンホイールの上流側の排気ガスの流路面積を制御することで過給圧を調整する可変容量型ターボチャージャの制御装置は、浄化手段につまりが生じた際に様々な不都合が生じる懸念を有するものとなっていた。
本発明は、こうした実情に鑑みてなされたものであって、その目的は、内燃機関の排気ガスを浄化する浄化手段の上流側であって且つタービンホイールの上流側の排気ガスの流路面積を制御することで過給圧を調整するに際し、浄化手段につまりが生じた場合であれ、流路面積の制御をより適切に行うことにある。
以下、上記目的を達成するための手段及びその作用効果について記載する。
請求項1記載の発明は、内燃機関の排気ガスを浄化する浄化手段の上流側であって且つタービンホイールの上流側の排気ガスの流路面積を制御することで過給圧を調整する可変容量型ターボチャージャの制御装置において、前記浄化手段のつまり状態に応じて前記流路面積の縮小制御量の下限値を設定し、前記縮小制御量が前記下限値を下回るときに、当該縮小制御量を前記下限値と等しくすることでこれを制限する制限手段を備えることをその要旨とする。
上記構成では、浄化手段のつまり状態に応じて流路面積の縮小制御量の下限値を設定し、縮小制御量が下限値を下回るときに、縮小制御量を下限値と等しくすることでこれを制限するために、上記浄化手段の上流側の圧力の過度の上昇を好適に回避することができるようになる。したがって、上記構成によれば、浄化手段につまりが生じた場合であれ、流路面積の制御をより適切に行うができるようになる。
請求項2記載の発明は、請求項1記載の発明において、当該制御装置は、実際の過給圧を目標とする過給圧とすべく前記流路面積をフィードバック制御するものであり、前記制限手段は、前記実際の過給圧と前記目標とする過給圧との乖離度に基づいて算出されるフィードバック補正量についての前記流路面積の縮小制御量を制限するものであることをその要旨とする。
浄化手段につまりが生じるとタービンホイールの上流側と下流側との圧力差が生じにくくなることから、同タービンホイールの回転速度が上昇しにくくなる。このため、実際の過給圧を目標とする過給圧とすべく流路面積をフィードバック制御する際、実際の過給圧の目標とする過給圧に対する追従性が低下する。そして、このように実際の過給圧の目標する過給圧に対する追従性が低下すると、フィードバック補正量(の絶対値)が大きな値となりやすい。
この点、上記構成では、フィードバック補正量についての流路面積の縮小制御量を制限することで、流路面積を過度に縮小することによる浄化手段の上流側の圧力の過度の上昇を好適に回避することができるようになる。
請求項3記載の発明は、請求項2記載の発明において、前記フィードバック制御は、積分制御を含むものであり、前記制限する縮小制御量は、前記積分制御にかかる縮小制御量であることをその要旨とする。
実際の過給圧と目標とする過給圧との乖離度に基づいて流路面積を積分制御をする際、上記乖離度が速やかに解消されない場合、積分制御にかかるフィードバック補正量(の絶対値)が大きくなりやすい。
この点、上記構成によれば、積分制御にかかる縮小制御量を制限することで、浄化手段のつまりに起因して実際の過給圧の目標とする過給圧に対する追従性が低下した場合であれ、流路面積を過度に縮小制御することを好適に回避することができるようになる。
請求項4記載の発明は、請求項1記載の発明において、当該制御装置は、実際の過給圧を目標とする過給圧とすべく前記流路面積をフィードバック制御するものであり、前記制限手段は、前記目標とする過給圧の設定態様を前記浄化手段のつまり状態に応じて制限することで前記流路面積の縮小制御量を制限するものであることをその要旨とする。
浄化手段につまりが生じるとタービンホイールの上流側と下流側との圧力差が生じにくくなることから、同タービンホイールの回転速度が上昇しにくくなる。このため、実際の過給圧を目標とする過給圧とすべく流路面積をフィードバック制御する際、実際の過給圧の目標とする過給圧に対する追従性が低下する。そして、このように実際の過給圧の目標する過給圧に対する追従性が低下すると、浄化手段のつまりに起因した追従性の低下を補償すべく流路面積を過度に縮小制御しやすくなる。
この点、上記構成では、浄化手段のつまり状態に応じて目標とする過給圧の設定態様を制限することで、流路面積の過度の縮小制御がなされることを好適に回避することができるようになる。
請求項5記載の発明は、請求項1〜4のいずれか1項に記載の発明において、前記縮小制御量に対する制限の設定態様を当該機関の運転状態に応じて可変とすることをその要旨とする。
浄化手段につまりが生じているときの流路面積の縮小制御が同浄化手段の上流側の圧力の上昇等に与える影響は内燃機関の運転状態に応じて異なる。
この点、上記構成によれば、縮小制御量に対する制限の設定態様を当該機関の運転状態に応じて可変とすることで、上記制限をより適切に設定することができるようになる。
請求項6記載の発明は、実際の過給圧を目標とする過給圧とすべく、内燃機関の排気ガスを浄化する浄化手段の上流側であって且つタービンホイールの上流側の排気ガスの流路面積を制御する可変容量型ターボチャージャの制御装置において、前記浄化手段のつまりの度合いの上昇に伴う前記目標とする過給圧に対する前記実際の過給圧の追従性の低下を補償する補償手段を備えることをその要旨とする。
浄化手段につまりが生じるとタービンホイールの上流側と下流側との圧力差が生じにくくなることから、同タービンホイールの回転速度が上昇しにくくなる。このため、実際の過給圧を目標とする過給圧とすべく流路面積を制御する際、実際の過給圧の目標とする過給圧に対する追従性が低下する。
この点、上記構成では、浄化手段のつまりの度合いの上昇に伴う目標とする過給圧に対する実際の過給圧の追従性の低下を補償することで、実際の過給圧を目標とする過給圧により適切に制御することができるようになる。したがって、上記構成によれば、浄化手段につまりが生じた場合であれ、流路面積の制御をより適切に行うことができるようになる。
なお、上記請求項6記載の発明は、請求項7記載の発明によるように、前記補償手段は、前記浄化手段のつまり状態に応じて前記流路面積の制御態様を変更するようにしてもよい。
ここで、流路面積の制御態様としては、例えばその上限ガード及び下限ガードの少なくとも一方を備えるものである場合には、これを変更するようにしてもよい。また、当該機関の運転状態に応じて流路面積についての基本となる値を設定するとともに、これをベースとしつつフィードバック等により最終的な流路面積の制御態様を決定するものにあっては、上記基本となる値を浄化手段のつまり状態に応じて補正するようにしてもよい。
上記請求項6記載の発明は、請求項8記載の発明によるように、当該制御装置は、実際の過給圧を目標とする過給圧とすべく前記流路面積をフィードバック制御するものであり、前記補償手段は、前記浄化手段のつまり状態に応じて前記目標とする過給圧の設定態様を変更するようにしてもよい。
ここで、目標とする過給圧の設定態様の変更としては、例えば当該機関の運転状態に応じて目標過給圧についての基本となる値を設定するとともに、これをベースとしつつフィードバック等により最終的な目標過給圧を決定するものにあっては、上記基本となる値を浄化手段のつまり状態に応じて補正するようにしてもよい。また、目標過給圧の上限ガード及び下限ガードの少なくとも一方を備えるものである場合には、これを補正するようにしてもよい。
請求項9記載の発明は、請求項1〜8のいずれか1項に記載の発明において、前記浄化手段のつまり状態は、前記浄化手段の上流側と下流側との差圧を吸入空気量で除算することで定量化されることをその要旨とする。
浄化手段のつまり状態が一定であっても、浄化手段の上流側と下流側との差圧は、内燃機関の排気系に排出される排気ガス量に応じて変化する。
この点、上記構成では、浄化手段の上流側と下流側との差圧を吸入空気量で除算することで定量化することで、こうした実情を反映しつつ浄化手段のつまり状態をより適切に定量化することができるようになる。
請求項10記載の発明は、請求項1〜9のいずれか1項に記載の発明において、前記浄化手段は、前記排気ガスに含まれる微粒子を捕捉するフィルタを備えることをその要旨とする。
上記フィルタが微粒子を捕捉するに伴いつまりの度合いが増大する。
このため、上記構成によれば、請求項1〜9のいずれか1項に記載の発明の作用効果を好適に奏することができる。
(第1実施形態)
以下、本発明にかかる可変容量型ターボチャージャの制御装置を、ディーゼルエンジンに設けられる可変ノズル型ターボチャージャの制御装置に適用した第1の実施形態について説明する。
図1は、上記可変ノズル型ターボチャージャの制御装置の概略構成を表すブロック図である。ディーゼルエンジン2は複数気筒、ここでは4気筒#1,#2,#3,#4からなる。各気筒#1〜#4の燃焼室4は吸気マニホールド6を介してサージタンク8に連結されている。そしてサージタンク8は、吸気通路10を介して、インタークーラ12及び可変ノズル型ターボチャージャVNTのコンプレッサホイール64の出口側に連結されている。コンプレッサホイール64の入口側はエアクリーナ14に連結されている。
なお、吸気通路10のうち上記サージタンク8とインタークーラ12との間には、モータ15aによって駆動されるスロットルバルブ15が設けられており、このスロットルバルブ15の近傍には同スロットルバルブ15の開度を検出するスロットル開度センサ16が設けられている。また、吸気通路10のうち吸気マニホールド6とサージタンク8との間には、同吸気通路10内の圧力を検出する吸気圧センサ18が設けられている。更に、吸気通路10のうちコンプレッサホイール64の上流側であって且つエアクリーナ14の下流側には吸入空気量を検出する吸気量センサ19が設けられている。
また、上記各気筒#1〜#4の燃焼室4は排気マニホールド20及び排気通路22を介して可変ノズル型ターボチャージャVNTのタービンホイール60の入口側に連結され、タービンホイール60の出口側には、排気ガスを浄化する3つの触媒が設けられている。
すなわち、最上流には、NOx吸蔵還元触媒30が設けられている。このNOx吸蔵還元触媒30により、ディーゼルエンジン2の通常の運転時において排気ガスが酸化雰囲気(リーン)にある時には、NOxはNOx吸蔵還元触媒に吸蔵される。そして還元雰囲気(ストイキあるいはリッチ)ではNOx吸蔵還元触媒に吸蔵されたNOxがNOとして離脱しHCやCOにより還元される。これによりNOxの浄化を行っている。
そして中間には、排気フィルタ32が設けられている。この排気フィルタ32は、モノリス構造に形成された壁部を有するフィルタであって、この壁部の微小孔を排気ガスが通過するように構成されている。この排気フィルタ32の表面にはNOx吸蔵還元触媒がコーティングされているため、前述したごとくにNOxの浄化が行われる。更に、排気フィルタ32の表面には排気ガス中のPM(パティキュレートマター:微粒子)が捕捉されるので、酸化雰囲気ではNOx吸蔵時に発生する活性酸素によりPMの酸化が開始され、更に周囲の過剰酸素によりPM全体が酸化される。還元雰囲気(ストイキあるいはリッチ)ではNOx吸蔵還元触媒から発生する大量の活性酸素によりPMの酸化が促進される。これよりNOxの浄化とともに、PMの浄化も実行している。
更に、最下流には酸化触媒34が設けられており、ここではHCやCOが酸化されて浄化される。
上記排気フィルタ32の上流側と下流側には差圧センサ36の配管がそれぞれ設けられている。そして、差圧センサ36による排気フィルタ32の上下流での差圧の検出に基づき、排気フィルタ32内部の目詰まりを把握するようにしている。
一方、上記排気通路22とサージタンク8との間には、EGR通路40が設けられている。そして、EGR通路40には、EGRガスを冷却するためのEGRクーラ42や、EGR弁44が配置されている。このEGR弁44の開度調節により排気通路22側からサージタンク8側へのEGRガス供給量の調節が可能となる。
上記各気筒#1〜#4に配置されて、各燃焼室4内に直接燃料を噴射する燃料噴射弁50は、燃料供給管を介してコモンレールに連結されている。このコモンレール内へは電気制御式の吐出量可変燃料ポンプから燃料が供給され、吐出量可変燃料ポンプからコモンレール内に供給された高圧燃料は各燃料供給管を介して各燃料噴射弁50に分配供給される。
次に、上記可変ノズル型ターボチャージャVNTについて更に説明する。
可変ノズル型ターボチャージャVNTは、排気通路22を流れる排気ガスによって回転するタービンホイール60と、吸気通路10に配置され、かつロータシャフト62を介してタービンホイール60に一体回転可能に連結されたコンプレッサホイール64とを備えている。可変ノズル型ターボチャージャVNTでは、タービンホイール60に排気ガスが吹付けられて同タービンホイール60が回転する。この回転は、ロータシャフト62を介してコンプレッサホイール64に伝達される。その結果、ディーゼルエンジン2では、ピストンの移動にともなって燃焼室4内に発生する負圧によって空気が燃焼室4に送り込まれるだけでなく、その空気が可変ノズル型ターボチャージャVNTのコンプレッサホイール64の回転によって強制的に燃焼室4に送り込まれる(過給される)。このようにして、燃焼室4への空気の充填効率が高められる。
また、可変ノズル型ターボチャージャVNTでは、タービンホイール60の外周を囲うように、タービンホイール60の回転方向に沿って排気ガス流路が形成されている。このため、排気ガスは排気ガス流路を通過し、タービンホイール60の軸線に向かって吹付けられる。排気ガス流路には、弁機構からなる可変ノズル機構71が設けられている。可変ノズル機構71は開閉動作することで、排気ガス流路の排気ガスの流路面積を変更し、タービンホイール60に吹付けられる排気ガスの流速を可変とする。このように排気ガスの流速を可変とすることで、タービンホイール60の回転速度が調整され、ひいては燃焼室4に強制的に送り込まれる空気の量が調整される。
ここで、可変ノズル機構71の構造について図2を用いて説明する。
図2(a)は可変ノズル機構71の側断面構造を、図2(b)は可変ノズル機構71の正面構造を示している。図2(a)に示されるように、可変ノズル機構71はリング形状をしたノズルバックプレート72を備えている。このノズルバックプレート72には、複数の軸73がノズルバックプレート72の円心を中心とした等角度ごとに設けられている。これらの軸73は、ノズルバックプレート72をその厚さ方向に貫通して回動可能に支持されている。また、これら軸73の一端(図2(a)中の左側端)には、ノズルベーン74が固定されている。また、軸73の他端には、同軸と直交してノズルバックプレート72外縁方向に延びる開閉レバー75が設けられている。この開閉レバー75の先端は、二股に分岐した一対の狭持部75aが形成されている。
各開閉レバー75とノズルバックプレート72との間に狭持されるように、環状のリングプレート76が設けられている。このリングプレート76は、円心を中心として回転可能となっている。また、リングプレート76にはその円心を中心として等角度ごとに複数のピン77が設けられている。これらピン77は、上記開閉レバー75の狭持部75aの間に挟み込まれており、同開閉レバー75を回動可能に支持している。
このリングプレート76が先の図1に示すアクチュエータ68によって円心を中心として回動されると、各ピン77は狭持部75aをその回動方向へ押す。その結果、開閉レバー75は軸73を回動させることとなる。この軸73の回動に伴い各ノズルベーン74も同軸73の軸線を中心として回動する。こうした機構により、各ノズルベーン74をそれぞれ同期した状態で回動させることができる。また、こうしたノズルベーン74の回動によって、隣り合うノズルベーン74間の隙間の大きさが調整される。
そして、例えばノズルベーン74間の隙間が狭められるほど、上記排気ガスの流路面積が縮小され、タービンホイール60に吹き付けられる排気ガスの流速が大きくなる。また、例えばノズルベーン74間の隙間が拡大されるほど、上記排気ガスの流路面積が拡大され、タービンホイール60に吹き付けられる排気ガスの流速が小さくなる。
次に、上記可変ノズル型ターボチャージャVNTの制御装置について説明する。
ECU(電子制御ユニット)80は、CPU、ROM、RAM等を備えたディジタルコンピュータと、各装置を駆動するための駆動回路とを主体として構成されている。そしてECU80は、上記差圧センサ36やスロットル開度センサ16、吸気圧センサ18、吸気量センサ19をはじめ、ディーゼルエンジン2のクランク軸の回転速度を検出する回転速度センサ82やアクセルペダルの開度を検出するアクセルセンサ84等、様々なセンサの検出信号を読み込んでいる。
そしてこれらの信号から得られるディーゼルエンジン2の運転状態に基づいて、ECU80は燃料噴射弁50による燃料噴射時期制御や燃料噴射量制御を実行し、更にEGR弁44の開度制御、モータ15aによるスロットルバルブ15の制御、アクチュエータ68を操作する処理等を実行する。例えば、EGR率がエンジン負荷(または燃料噴射量)とエンジン回転速度NEとに基づいて設定される目標EGR率となるようにスロットル開度センサ16の信号から検出されるスロットル開度TAとEGR開度(EGR弁56の開度)とが調節されるEGR制御が行われる。更にエンジン負荷(または燃料噴射量)とエンジン回転速度NEとに基づいて設定される目標吸入空気量(ディーゼルエンジン2の1回転当たりの目標値)となるようにEGR開度が調節される吸入空気量フィードバック制御が行われる。なお、EGR制御に伴う燃焼モードとしては、通常燃焼モード、低温燃焼モードとの2種類の燃焼モードを実行する。ここで低温燃焼モードとは、大量のEGRガスの導入により燃焼温度の上昇を緩慢にしてNOxとスモークとを同時低減させる燃焼モードである。本実施の形態では低負荷で中高回転領域にて実行している。これ以外の燃焼モードが通常のEGR制御(EGRしない場合も含める)を実行する通常燃焼モードである。
ここで、上記ECU80によって行われる上記可変ノズル型ターボチャージャVNTの制御について説明する。
図3に、上記可変ノズル型ターボチャージャVNTを制御するに際して設定される目標過給圧APの算出にかかる処理の手順を示す。この処理は、上記ECU80によって所定の周期で繰り返し実行されるものである。
この一連の処理では、まずステップ100において上記回転速度センサ82によって検出されるディーゼルエンジン2の回転速度と、燃料噴射量とに基づいて目標過給圧APを算出する。この処理は、例えば回転速度及び燃料噴射量をマップ点とし目標過給圧APをマップ値とする2次元マップを用いて算出するようにすればよい。
続くステップ110〜140では、ステップ100において算出した目標過給圧APをディーゼルエンジン2の信頼性の維持等の観点から許容される範囲内に制限する処理を行う。すなわち、ステップ110において目標過給圧APが上限値UAPよりも大きいと判断されると、ステップ130において目標過給圧APを上限値UAPと置き換える。また、ステップ120において目標過給圧APが下限値DAPよりも小さいと判断されると、ステップ140において目標過給圧APを下限値DAPと置き換える。
なお、ステップ120において目標過給圧APが下限値DAP以上であると判断されたときや、ステップ130、140の処理が終了したときにはこの一連の処理を一旦終了する。
図4に、上記吸気圧センサ18の検出値である実過給圧を目標過給圧とすべく、上記排気ガス流路の流路面積をフィードバック制御する処理の手順を示す。この処理は、上記ECU80によって所定の周期で繰り返し実行されるものである。
同図4に示す一連の処理では、まずステップ200において上記回転速度センサ82によって検出されるディーゼルエンジン2の回転速度と、燃料噴射量とに基づいて隣接するノズルベーン74間の隙間の大きさ(以下、ノズルベーン74の開度)のベース値BVNを算出する。ここでベース値、ディーゼルエンジン2の回転速度と燃料噴射量とに基づいて、上記吸気圧センサ18によって検出される実過給圧を、予め定められている目標過給圧とするために必要であると想定される流路面積に対応する値である。ここでは、例えば回転速度及び燃料噴射量をマップ点とし、ノズルベーン74のベース値BVNをマップ値とする2次元マップに基づいて上記ベース値BVNを算出するようにする。
続くステップ210では、目標過給圧と実過給圧との乖離度とに基づき上記ベース値BVNに対するフィードバック補正量を算出する。ここでは、上記フィードバック制御として、PID制御を想定しているため、目標過給圧と実過給圧との乖離度に基づいて比例項P、積分項I、微分項Dをそれぞれ算出する。
そして、ステップ220においては、上記ステップ200にて算出されたベース値BVNに上記ステップ210において算出されたフィードバック補正量を加算することでノズルベーン74の開度FVNを算出する。
続くステップ230〜260の処理では、ステップ230において算出したノズルベーン74の開度FVNが、ディーゼルエンジン2の信頼性の観点等から許容し得る範囲内に納める処理を行う。すなわち、ステップ230においてノズルベーン74の開度FVNが上限値UVNよりも大きいと判断されると、ステップ240においてノズルベーン74の開度FVNを上限値UVNと置き換える。また、ステップ250においてノズルベーン74の開度FVNが下限値DVNよりも小さいと判断されると、ステップ260においてノズルベーン74の開度FVNを下限値DVNと置き換える。
なお、上記ステップ250においてノズルベーン74の開度FVNが下限値DVN以上であると判断されたときや、ステップ240、260の処理が終了したきにはこの一連の処理を一旦終了する。
上記態様にてノズルベーン74の開度FVNが算出されると、これに基づいてノズルベーン74を制御する。ただし、上記排気フィルタ32にPMが捕捉されることでつまりが生じると、タービンホイール60の上流側と下流側との圧力差が生じにくくなることから、同タービンホイール60の回転速度が上昇しにくくなる。このため、実過給圧を目標過給圧とすべくノズルベーン74の開度をフィードバック制御する際、実過給圧の目標過給圧に対する追従性が低下する。そして、このように実過給圧の目標過給圧に対する追従性が低下すると、フィードバック補正量(の絶対値)が大きな値となりやすい。特に積分項Iについては、図4に示す一連の処理の各周期毎に実過給圧と目標過給圧との乖離度に基づく値が積算されていくために、大きな値となりやすい。
そして、積分項Iの値が大きなものとなると、ノズルベーン74の開度が過度に縮小制御され、排気通路22のうちの排気フィルタ32の上流側の圧力が過度に上昇することとなる。そして、このように排気フィルタ32の上流側の圧力が過度に上昇すると、例えば排気バルブのバルブステムをシールするステムシール等にダメージを与えたり、過給圧が目標過給圧に対してオーバーシュートしたりする等、ディーゼルエンジン2の信頼性が低下する懸念がある。
そこで、本実施形態では、排気フィルタ32のつまり状態に応じて積分項Iの下限値を制限するようにする。換言すれば、排気フィルタ32のつまり状態に応じて積分項Iによるノズルベーン74の開度の縮小制御量を制限するようにする。そしてこれにより、積分項Iに起因して、ノズルベーン74の開度の過度の縮小制御の回避を図る。
ここで、上記ステップ210におけるフィードバック補正量の算出にかかる処理のうち、特に積分項の算出にかかる処理について図5を用いて更に詳述する。
図5は、本実施形態にかかる積分項の算出の処理手順を示すフローチャートである。この一連の処理は所定周期で繰り返し実行される。
この一連の処理においては、まずステップ300において目標過給圧と実過給圧との乖離に基づき積分項Iを算出する。続くステップ310ではステップ300において算出された積分項Iが上限ガード値UG以下であるか否かを判断する。ここで上限ガード値UGは、先の図4に示した一回の処理において積分項Iによるノズルベーン74の開度の拡大量として許容できる最大値に設定される。そして、上限ガード値UGよりも大きいと判断されると、ステップ320において積分項Iを上限ガード値UGに置き換える。
一方、ステップ310において積分項Iが正の値を有する上限ガード値UG以下であると判断されると、ステップ330に移行する。このステップ330においては、ステップ300で算出された積分項Iが負の値を有する下限ガード値DG以上であるか否かを判断する。この下限ガード値DGは、下限ガードベース値DGBと背圧項BPと背圧補正項RTとの積として算出される。ここで、下限ガードベース値DGBは、先の図4に示した一回の処理において積分項Iによるノズルベーン74の開度の縮小量として許容できる最小値に設定され、本実施形態では、上限ガード値UGとその絶対値が等しい負の値に設定されている。また、背圧項BPは、上記排気フィルタ32のつまり状態に基づいて下限ガード値DGを補正するための補正項であり、正の値を有する。更に、背圧補正項RTは、ディーゼルエンジン2の回転速度と燃料噴射量とに基づいて上記背圧項BPによる下限ガード値DGの補正量を補正するための補正項であり、正の値を有する。
そして、ステップ330において積分項Iが下限ガード値DGよりも小さいと判断されると、ステップ340において積分項Iを下限ガード値DGに置き換える。
なお、上記ステップ330において積分項Iが下限ガード値DG以上であると判断されたときや、ステップ320、340の処理が終了したときにはこの一連の処理を一旦終了する。
次に、上記背圧項BPの算出にかかる処理手順について図6に基づいて説明する。図6は、上記ECU80にて所定周期で繰り返し実行される。
この一連の処理においては、まずステップ400で上記差圧センサ36の検出値ΔP(n)を読み込む。また、ステップ410で上記吸気量センサ19によって検出される吸入空気量G(n)を読み込む。続くステップ420では、排気フィルタ32のつまり状態を定量化したものである「つまり状態量RQ(n)」を算出する。このつまり状態量RQ(n)は、基本的には上記差圧センサ36の検出値ΔP(n)を上記吸入空気量で除算したものである。これは、排気フィルタ32のつまり状態が一定であっても、上記検出値ΔP(n)は、ディーゼルエンジン2の排気通路22に排出される排気ガス量に応じて変化することを反映し、つまり状態をより適切に定量化するために行うものである。
更に、つまり状態量RQ(n)の算出に際しては、前回算出されたつまり状態量RQ(n−1)と今回の検出値R(n)/G(n)との加重平均処理であるいわゆるなまし処理を行う。これは、上記検出値ΔP(n)や吸入空気量G(n)の値がノイズの混入により急変することを等を考慮するためである。具体的には、前回算出されたつまり状態量RQ(n−1)に対する今回の検出値R(n)/G(n)の変化分に所定の重みαを乗算したものと、前回算出されたつまり状態量RQ(n−1)との和を今回のつまり状態量RQ(n)とする。なお、この所定の重みαは、「1」より小さいことが望ましい。
続くステップ430では、つまり状態量RQ(n)に基づいて上記背圧項BPを算出する。ここでは、RQ(n)の値が大きいほど、換言すれば、つまりの度合いが大きいほど背圧項BPを正の小さな値とすることで、ノズルベーン74の開度の過度の縮小制御を抑制するようにする。
なお、ステップ430の処理が終了すると、この一連の処理を一旦終了する。
こうした態様にて積分項Iに起因したノズルベーン74の開度の縮小制御量を制限することで、ノズルベーン74の開度が過度に縮小制御されることを回避することができるようになる。しかも積分項Iに起因したノズルベーン74の開度の縮小制御量のみを制限するために、可変ノズル型ターボチャージャVNTの制御にかかる適合については、基本的に排気フィルタ32のつまり状態を考慮せずに行うことができる。したがって、例えば排気フィルタ32を有しない可変ノズル型ターボチャージャVNTの制御にかかる適合値を既に取得している場合、基本的にはこれを流用しつつ積分項Iの下限ガード値DGのみを変更するようにすることもできる。
ちなみに、こうした排気フィルタ32を有しない可変ノズル型ターボチャージャVNTの制御にかかる適合値は、ディーゼルエンジン2の様々な運転状態においてその信頼性や制御性を確保することのできる値となっている。すなわち、例えば排気通路22側からサージタンク8側へのEGRガスの供給を停止することによるタービンホイール60の上流側の圧力の急上昇や、加減速の繰り返しによる積分項Iの増大等に対してもディーゼルエンジン2の信頼性や制御性を確保することのできる値となっている。しかし、上記適合値は、排気フィルタ32につまり生じた場合に想定される様々な事態を考慮した値とはなっていない。
これに対し、本実施形態によれば、積分項Iの下限ガード値DGに背圧項BPを設けるという簡易な変更にて、排気フィルタ32を有する可変ノズル型ターボチャージャVNTの制御にかかる適合を行うことができる。
以上説明した本実施形態によれば、以下の効果が得られるようになる。
(1)排気フィルタ32のつまり状態に応じて積分項Iの下限値を制限するようにしたことで、積分項Iに起因したノズルベーン74の開度の過度の縮小制御を回避することができる。
(2)差圧センサ36の検出値ΔP(n)を吸入空気量G(n)で除算することで、つまり状態を定量化した。これにより、排気フィルタ32のつまり状態が一定であっても、上記検出値ΔP(n)は、ディーゼルエンジン2の排気通路22に排出される排気ガス量に応じて変化することを反映してより適切な定量化をすることができるようになる。
(3)つまり状態量RQ(n)の算出に際して、前回算出されたつまり状態量RQ(n−1)と今回の検出値R(n)/G(n)との加重平均処理を行うことで、検出値ΔP(n)や吸入空気量G(n)へのノイズの混入の影響を好適に抑制することができるようになる。
(第2の実施形態)
以下、本発明にかかる可変容量型ターボチャージャの制御装置を、ディーゼルエンジンに設けられる可変ノズル型ターボチャージャの制御装置に適用した第2の実施形態について、上記第1の実施形態との相違点を中心に説明する。
上記実施形態では、排気フィルタ32のつまり状態に応じて積分項Iの下限値を制限するようにして、ノズルベーン74の開度の過度の縮小制御の回避を図った。これに対し、本実施形態では、上記目標過給圧APの値を上記つまり状態量RQに基づいて制限することで、ノズルベーン74の開度の過度の縮小制御の回避を図る。
図7に、本実施形態にかかる目標過給圧APの算出にかかる処理の手順を示す。この処理は、上記ECU80によって所定の周期で繰り返し実行される。
この一連の処理では、まずステップ500において先の図3のステップ100と同様にして目標過給圧APを算出する。続くステップ510では、上記ステップ500において算出した目標過給圧APに過給圧補正項BPAP(RQ)を乗算することで目標過給圧APを補正する。ちなみに、この過給圧補正項BPAP(RQ)は、先の図6に示した処理と同様の処理によって算出されるつまり状態量RQに基づいて設定されるものである。また、この過給圧補正項BPAP(RQ)は、つまりの度合いが大きいほど小さな値に設定されている。換言すれば、つまりの度合いが大きいほど目標過給圧APの値が大きくなることを制限するような値に設定されている。
こうしてステップ510の処理が終了すると、ステップ520〜550の処理において、先の図3のステップ110〜140の処理と同様の処理を行う。
なお、こうして算出された目標過給圧APに実過給圧を一致させるような制御を先の図4に示す手順にて行う。ただし、この際、積分項Iの算出にかかる処理としては、先の図5に示す処理のうち下限ガード値DGを背圧項BPや背圧補正項RTにて補正する処理は行わない。
以上説明した本実施形態によれば、先の第1の実施形態の上記(2)及び(3)の効果に加えて更に以下の効果が得られるようになる。
(4)目標過給圧APの値を上記つまり状態量RQに基づいて制限することで、ノズルベーン74の開度が過度に縮小制御されることを回避することができるようになる。
(第3の実施形態)
以下、本発明にかかる可変容量型ターボチャージャの制御装置を、ディーゼルエンジンに設けられる可変ノズル型ターボチャージャの制御装置に適用した第3の実施形態について、上記第1の実施形態との相違点を中心に説明する。
本実施形態では、先の図4のステップ200において算出されるノズルベーン74の開度のベース値BVNを、つまり状態量RQに基づいて補正する。
図8に、本実施形態にかかるノズルベーン74の開度FVNの算出にかかる処理手順を示す。この処理は、上記ECU80によって所定の周期で繰り返し実行される。
この一連の処理では、まずステップ600において先の図4のステップ200と同様の処理によってノズルベーンの開度のベース値BVNを算出する。
続くステップ610においては上記つまり状態量RQに基づいて上記ベース値BVNを補正する処理を行う。すなわち、ステップ600において算出したベース値BVNにベース補正項BPVNを乗算したものを新たなベース値BVNとする。
ここでベース補正項BPVNの設定態様は、例えば以下のようにする。
(ア)ディーゼルエンジンの信頼性を確保すべくベース値BVNを補正する場合。
この場合、排気フィルタ32のつまりの度合いが大きいほどベース補正項BPVNが小さくなるようにする。換言すれば、排気フィルタ32のつまりの度合いが大きいほどベース値BVNが小さくなるようにする。
(イ)排気フィルタ32のつまり度合いの上昇に伴う目標過給圧に対する実過給圧の追従性の低下を補償する場合。
この場合、排気フィルタ32のつまりの度合いが大きいほどベース補正項BPVNが大きくなるようにする。換言すれば、排気フィルタ32のつまりの度合いが大きいほどベース値BVNが大きくなるようにする。
なお、実際にはディーゼルエンジン2の運転状態等に応じて上記(ア)及び上記(イ)の双方を適宜用いた適合がなされることが望ましい。
こうしてベース値の補正がなされると、ステップ620〜670において先の図4のステップ210〜260と同様の処理を行う。
以上説明した本実施形態によれば、先の第1の実施形態の上記(2)及び(3)の効果に加えて、更に以下の効果が得られるようになる。
(5)排気フィルタ32のつまりの度合いに応じてベース値BVNを補正することで、排気フィルタ32のつまりの度合いを考慮してノズルベーン74の開度をより適切に制御することができるようになる。
(その他の実施形態)
なお、上記各実施形態は以下のように変更して実施してもよい。
・内燃機関の排気ガスを浄化する浄化手段としては、上記排気フィルタ32に限らない。
・実際の過給圧を目標とする過給圧とすべく流路面積をフィードバック制御するものとしては、PID制御に限らない。
・実際の過給圧と目標とする過給圧との乖離度に基づいて算出されるフィードバック補正量についての流路面積の縮小制御量を制限するものとしては、上記第1の実施形態で例示したものに限らない。例えば比例項P等にかかる縮小制御量を制限してもよい。
・目標とする過給圧の設定態様を浄化手段のつまり状態に応じて制限することで流路面積の縮小制御量を制限するものとしては、上記第2の実施形態で例示するものに限らない。例えば先の図7における目標過給圧APの上限値UAPを、つまり状態量RQに応じて補正するようにしてもよい。
・浄化手段のつまり状態に応じて流路面積の縮小制御量を制限する制限手段としては、上記第1〜第3の実施形態やその変形例で例示したものに限らない。
・浄化手段のつまり状態を、浄化手段の上流側と下流側との差圧を吸入空気量で除算することで定量化する手法としては、上記つまり状態量RQを用いるものに限らない。例えば上記差圧に対する除算値である吸入空気量は、例えばサージタンク8の下流側の気体の流量に基づいて算出される値としてもよい。
・浄化手段のつまりの度合いの上昇に伴う目標とする過給圧に対する実際の過給圧の追従性の低下を補償すべく、浄化手段のつまり状態に応じて流路面積の制御態様を変更する補償手段としては、上記第3の実施形態で例示したものに限らない。例えば浄化手段のつまり状態に応じてフィードバックゲインを変更するものでもよい。
・浄化手段のつまりの度合いの上昇に伴う目標とする過給圧に対する実際の過給圧の追従性の低下を補償する補償手段としては、浄化手段のつまり状態に応じて流路面積の制御態様を変更するものに限らず、例えば浄化手段のつまり状態に応じて目標とする過給圧の設定態様を変更するものであってもよい。
・内燃機関の排気ガスを浄化する浄化手段の上流側であって且つタービンホイールの上流側の排気ガスの流路面積を制御することで過給圧を調整する可変容量型ターボチャージャの制御装置としては、上記可変ノズル型ターボチャージャVNTの制御装置に限らない。
本発明にかかる可変容量型ターボチャージャの制御装置を可変ノズル型ターボチャージャの制御装置に適用した第1の実施形態の構成を示す図。 (a)(b)上記可変ノズル型ターボチャージャの可変ノズル機構の構成を示す図。 同実施形態における目標過給圧の算出にかかる処理の手順を示すフローチャート。 同実施形態におけるノズルベーンの開度の算出にかかる処理の手順を示すフローチャート。 同実施形態における積分項の算出にかかる処理の手順を示すフローチャート。 同実施形態における背圧項の算出にかかる処理の手順を示すフローチャート。 第2の実施形態における目標過給圧の算出にかかる処理の手順を示すフローチャート。 第3の実施形態におけるノズルベーンの開度の算出にかかる処理の手順を示すフローチャート。
符号の説明
2…ディーゼルエンジン、4…燃焼室、6…吸気マニホールド、8…サージタンク、10…吸気通路、12…インタークーラ、14…エアクリーナ、15…スロットルバルブ、15a…モータ、16…スロットル開度センサ、18…吸気圧センサ、19…吸気量センサ、20…排気マニホールド、22…排気通路、30…NOx吸蔵還元触媒、32…排気フィルタ、34…酸化触媒、36…差圧センサ、40…EGR通路、42…EGRクーラ、44…EGR弁、50…燃料噴射弁、60…タービンホイール、62…ロータシャフト、64…コンプレッサホイール、68…アクチュエータ、71…可変ノズル機構、72…ノズルバックプレート、73…軸、74…ノズルベーン、75…開閉レバー、75a…狭持部、76…リングプレート、77…ピン、80…ECU、82…回転速度センサ、84…アクセルセンサ。

Claims (10)

  1. 内燃機関の排気ガスを浄化する浄化手段の上流側であって且つタービンホイールの上流側の排気ガスの流路面積を制御することで過給圧を調整する可変容量型ターボチャージャの制御装置において、
    前記浄化手段のつまり状態に応じて前記流路面積の縮小制御量の下限値を設定し、前記縮小制御量が前記下限値を下回るときに、当該縮小制御量を前記下限値と等しくすることでこれを制限する制限手段を備える
    ことを特徴とする可変容量型ターボチャージャの制御装置。
  2. 請求項1記載の可変容量型ターボチャージャの制御装置において、
    当該制御装置は、実際の過給圧を目標とする過給圧とすべく前記流路面積をフィードバック制御するものであり、
    前記制限手段は、前記実際の過給圧と前記目標とする過給圧との乖離度に基づいて算出されるフィードバック補正量についての前記流路面積の縮小制御量を制限するものである
    ことを特徴とする可変容量型ターボチャージャの制御装置。
  3. 前記フィードバック制御は、積分制御を含むものであり、
    前記制限する縮小制御量は、前記積分制御にかかる縮小制御量である
    請求項2記載の可変容量型ターボチャージャの制御装置。
  4. 請求項1記載の可変容量型ターボチャージャの制御装置において、
    当該制御装置は、実際の過給圧を目標とする過給圧とすべく前記流路面積をフィードバック制御するものであり、
    前記制限手段は、前記目標とする過給圧の設定態様を前記浄化手段のつまり状態に応じて制限することで前記流路面積の縮小制御量を制限するものである
    ことを特徴とする可変容量型ターボチャージャの制御装置。
  5. 前記縮小制御量に対する制限の設定態様を当該機関の運転状態に応じて可変とする
    請求項1〜4のいずれか1項に記載の可変容量型ターボチャージャの制御装置。
  6. 実際の過給圧を目標とする過給圧とすべく、内燃機関の排気ガスを浄化する浄化手段の上流側であって且つタービンホイールの上流側の排気ガスの流路面積を制御する可変容量型ターボチャージャの制御装置において、
    前記浄化手段のつまりの度合いの上昇に伴う前記目標とする過給圧に対する前記実際の過給圧の追従性の低下を補償する補償手段を備える
    ことを特徴とする可変容量型ターボチャージャの制御装置。
  7. 前記補償手段は、前記浄化手段のつまり状態に応じて前記流路面積の制御態様を変更する
    請求項6記載の可変容量型ターボチャージャの制御装置。
  8. 請求項6記載の可変容量型ターボチャージャの制御装置において、
    当該制御装置は、実際の過給圧を目標とする過給圧とすべく前記流路面積をフィードバック制御するものであり、
    前記補償手段は、前記浄化手段のつまり状態に応じて前記目標とする過給圧の設定態様を変更する
    ことを特徴とする可変容量型ターボチャージャの制御装置。
  9. 前記浄化手段のつまり状態は、前記浄化手段の上流側と下流側との差圧を吸入空気量で除算することで定量化される
    請求項1〜8のいずれか1項に記載の可変容量型ターボチャージャの制御装置。
  10. 前記浄化手段は、前記排気ガスに含まれる微粒子を捕捉するフィルタを備える
    請求項1〜9のいずれか1項に記載の可変容量型ターボチャージャの制御装置。
JP2003317224A 2003-09-09 2003-09-09 可変容量型ターボチャージャの制御装置 Expired - Fee Related JP4204420B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003317224A JP4204420B2 (ja) 2003-09-09 2003-09-09 可変容量型ターボチャージャの制御装置
DE602004026516T DE602004026516D1 (de) 2003-09-09 2004-09-08 Steuerung für Turbolader mit variabler Kapazität
ES04021379T ES2343957T3 (es) 2003-09-09 2004-09-08 Aparato de control para turbocompresor de capacidad variable.
EP04021379A EP1515021B1 (en) 2003-09-09 2004-09-08 Control apparatus for variable capacity turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003317224A JP4204420B2 (ja) 2003-09-09 2003-09-09 可変容量型ターボチャージャの制御装置

Publications (2)

Publication Number Publication Date
JP2005083283A JP2005083283A (ja) 2005-03-31
JP4204420B2 true JP4204420B2 (ja) 2009-01-07

Family

ID=34131974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003317224A Expired - Fee Related JP4204420B2 (ja) 2003-09-09 2003-09-09 可変容量型ターボチャージャの制御装置

Country Status (4)

Country Link
EP (1) EP1515021B1 (ja)
JP (1) JP4204420B2 (ja)
DE (1) DE602004026516D1 (ja)
ES (1) ES2343957T3 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2902467A1 (fr) * 2006-06-19 2007-12-21 Renault Sas Systeme de regulation de la pression de suralimentation d'un moteur et procede de regulation
JP2008051042A (ja) * 2006-08-25 2008-03-06 Mitsubishi Motors Corp 過給機付きエンジンの制御装置
JP4885118B2 (ja) 2007-12-21 2012-02-29 三菱重工業株式会社 可変ノズル機構を備えた可変容量型排気ターボ過給機
GB2460224A (en) * 2008-05-19 2009-11-25 Ford Global Tech Llc Reducing the transient specific fuel consumption of an engine
JP4818341B2 (ja) * 2008-10-16 2011-11-16 本田技研工業株式会社 内燃機関の制御装置
JP4941498B2 (ja) * 2009-04-15 2012-05-30 株式会社デンソー 燃料噴射システムの制御装置
DE102011087179B4 (de) 2011-11-28 2023-03-30 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben eines Kraftfahrzeugs
JP5724942B2 (ja) * 2012-05-08 2015-05-27 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5724943B2 (ja) * 2012-05-08 2015-05-27 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6024211B2 (ja) * 2012-05-30 2016-11-09 いすゞ自動車株式会社 内燃機関とその制御方法
CN105986844B (zh) * 2015-01-30 2018-11-02 上海汽车集团股份有限公司 可变喷嘴涡轮增压器控制方法及装置
US20190128176A1 (en) 2017-11-01 2019-05-02 Borgwarner Inc. Guard Band Control of an Actuator in a Turbocharger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4014398A1 (de) * 1990-05-04 1991-11-07 Porsche Ag Turbolader an einer brennkraftmaschine
JPH1162602A (ja) * 1997-08-09 1999-03-05 Toyota Motor Corp 可変容量型ターボチャージャの制御装置
EP1077319B1 (en) * 1999-08-16 2005-04-20 Mazda Motor Corporation Method and system for controlling a diesel engine
US6843055B2 (en) * 2001-06-22 2005-01-18 Nissan Motor Co., Ltd. Regeneration of diesel particulate filter for diesel engine

Also Published As

Publication number Publication date
JP2005083283A (ja) 2005-03-31
DE602004026516D1 (de) 2010-05-27
EP1515021B1 (en) 2010-04-14
EP1515021A1 (en) 2005-03-16
ES2343957T3 (es) 2010-08-13

Similar Documents

Publication Publication Date Title
US7448205B2 (en) Exhaust gas purifying device and exhaust gas purifying method in internal combustion engine
US6941755B2 (en) Integrated bypass and variable geometry configuration for an exhaust gas turbocharger
US8001953B2 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
JP4204420B2 (ja) 可変容量型ターボチャージャの制御装置
JP5434142B2 (ja) 可変ノズルターボ過給機の制御装置
JP4630861B2 (ja) 内燃機関の排気浄化装置
KR20080059499A (ko) 내부 egr 시스템을 갖는 엔진
JP2009002275A (ja) 内燃機関の制御装置
JP4209350B2 (ja) 過給機の制御装置
JP4461074B2 (ja) 内燃機関における排気ガス浄化装置
JP4250824B2 (ja) ターボ過給機付エンジンの制御装置
JP4911432B2 (ja) 内燃機関の制御装置
JP6123657B2 (ja) 排気ガス還流制御装置
JP2008031860A (ja) 内燃機関の制御装置
JP5365264B2 (ja) 内燃機関の制御装置
JP5796277B2 (ja) 排気ガス浄化システム
JP6073644B2 (ja) 排圧調整バルブの制御装置
JP4131637B2 (ja) Egr装置付エンジン
JP4032773B2 (ja) 内燃機関
JP2008169753A (ja) 内燃機関の排気浄化システム
JP4207013B2 (ja) 過給機の制御装置
JP2008038622A (ja) 内燃機関の排気浄化装置、及び方法
WO2024004108A1 (ja) 内燃機関システムおよび車両
JP6183392B2 (ja) 過給機付き内燃機関
JP6406337B2 (ja) エンジンの制御方法及び制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4204420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees