JP4197783B2 - Method for producing fluorinated halogen compound - Google Patents

Method for producing fluorinated halogen compound Download PDF

Info

Publication number
JP4197783B2
JP4197783B2 JP33095398A JP33095398A JP4197783B2 JP 4197783 B2 JP4197783 B2 JP 4197783B2 JP 33095398 A JP33095398 A JP 33095398A JP 33095398 A JP33095398 A JP 33095398A JP 4197783 B2 JP4197783 B2 JP 4197783B2
Authority
JP
Japan
Prior art keywords
fluorine
halogen
gas
reaction
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33095398A
Other languages
Japanese (ja)
Other versions
JP2000159505A5 (en
JP2000159505A (en
Inventor
冬彦 石井
真一郎 内山
亮 茂木
貴志 飯田
雅道 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kyogyo Co.,Ltd.
Original Assignee
Kanto Denka Kyogyo Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kyogyo Co.,Ltd. filed Critical Kanto Denka Kyogyo Co.,Ltd.
Priority to JP33095398A priority Critical patent/JP4197783B2/en
Publication of JP2000159505A publication Critical patent/JP2000159505A/en
Publication of JP2000159505A5 publication Critical patent/JP2000159505A5/ja
Application granted granted Critical
Publication of JP4197783B2 publication Critical patent/JP4197783B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、フッ素化剤、あるいは半導体産業におけるエッチングガス、クリーニングガスとして有用な七フッ化ヨウ素、五フッ化臭素、三フッ化塩素、一フッ化塩素等のフッ素化ハロゲン化合物の製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
五フッ化臭素、三フッ化塩素、一フッ化塩素等のフッ素化ハロゲン化合物の製造方法としては、フッ素と対応する当量数のハロゲン元素を気相、または液相で反応させることが知られている[例えば、L.Stein: J.Am.Chem.Soc.,81,1269(1959),H.E.Kluksdahl,G.H.Cady:J.Am.Chem.Soc.,81,5285(1959),J.W.Mellor(ed):A Comprehensive Treatise on Inorganic and Theoretical Chemistry,Supplement II,part I,(1956),147]。しかし、気相反応の場合、反応温度は 200℃以上が必要で、特に原料(フッ素以外のハロゲン元素またはフッ素化ハロゲン)とフッ素ガスの接触部分で局部的に反応が進行して、温度が上昇し、時には赤熱状態にまで達し、激しい反応器の腐食を生じる場合がある。また、液相反応の場合、原料溶液中に溶解したフッ素が爆発的に反応する危険性が高い。
さらに七フッ化ヨウ素のように最高原子価まで酸化されたフッ素化ハロゲン化合物の製造方法としては、加熱した五フッ素ヨウ素の液中にフッ素を吹き込み、フッ素に帯同された五フッ化ヨウ素とフッ素を 300℃の反応ゾーンへ導き、七フッ化ヨウ素を得ることが知られている[例えば、W.C.Schumb,M.A.Lynch Jr.,Ind.Eng.Chem.,42,1383(1950)]。この場合、五フッ化ヨウ素中に溶解したフッ素が爆発的に反応したり、高温の五フッ化ヨウ素液を保持する容器の腐食が起こる等の問題点があり、工業的に適した反応方法とは言えない。また、消費された五フッ化ヨウ素の補給のために反応を停止する必要もある。さらにまた、ヨウ素とフッ素の直接反応により製造する場合は、反応熱が大きく、反応の制御が難しい上、ヨウ素が固体であることからその取り扱い方法も容易ではない。
【0003】
【課題を解決するための手段】
本発明の目的は、安全にかつ容易に連続的に七フッ化ヨウ素、五フッ化臭素、三フッ化塩素、一フッ化塩素等のフッ素化ハロゲン化合物を効率良く製造することにある。
本発明は、上述の課題を解決すべくなされた発明である。
即ち本発明は、以下の(1)〜(4)に述べるフッ素化ハロゲン化合物の製造方法である。
(1)100 130 ℃に設定した蒸発器に導入したフッ素ガス気流中にフッ素以外のハロゲンを加え蒸発・混合させた後の混合ガスを、フッ素ガスとフッ素以外のハロゲンとの反応温度以上の温度に加熱された反応器に導入し、フッ素ガスとフッ素以外のハロゲンとを反応させることを特徴とするフッ素化ハロゲン化合物の製造方法。
(2)100 130 ℃に設定した蒸発器に導入したフッ素ガス気流中にフッ素化ハロゲンを加え蒸発・混合させた後の混合ガスを、フッ素ガスとフッ素化ハロゲンとの反応温度以上の温度に加熱された反応器に導入し、フッ素ガスとフッ素化ハロゲンとを反応させることを特徴とするフッ素化ハロゲン化合物の製造方法。
(3)100 130 ℃に設定した蒸発器に導入したフッ素ガス気流中にフッ素以外のハロゲン及びフッ素化ハロゲンを加え蒸発・混合させた後の混合ガスを、フッ素ガスとフッ素以外のハロゲン及びフッ素化ハロゲンとの反応温度以上の温度に加熱された反応器に導入し、フッ素ガスとフッ素以外のハロゲン及びフッ素化ハロゲンとを反応させることを特徴とするフッ素化ハロゲン化合物の製造方法。
(4)蒸発器内のフッ素ガスの線速度を30cm/sec.以下とし、反応器内のガス線速度を10cm/sec.以下とすることを特徴とする上記(1)、(2)又は(3)記載のフッ素化ハロゲン化合物の製造方法。
本発明では、緩やかに流れ、かつ原料(フッ素以外のハロゲン元素またはフッ素化ハロゲン)の沸点付近まで加熱されたフッ素ガス気流中に五フッ化ヨウ素等の反応原料を加え、蒸発・混合させた後に、これらのガスを高温の反応器に導入し、反応させることによって、効率良く、連続的に七フッ化ヨウ素等の目的物を得ることができる。これにより、原料とフッ素ガスの混合部の温度を原料の沸点付近程度(100 〜130 ℃)に抑えることができ、混合部の腐食を大幅に低減することができる。また、原料とフッ素ガスの混合部と反応部を分離し、十分に攪拌・混合および緩やかに加熱された化学量論量の原料を反応器に供給することによって爆発的な反応を防止することができる。
【0004】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明は、七フッ化ヨウ素のみならず、その他のフッ素化ハロゲン物、例えば、五フッ化臭素、三フッ化塩素、一フッ化塩素等の製造方法にも有効に使用できる。
本発明に使用される製造装置は、三フッ化臭素、五フッ化ヨウ素、臭素等の原料を蒸発させ、かつ、フッ素ガスと混合させる蒸発器(塩素の場合には予備加熱器で良い)とフッ素化反応を行う反応器の二つから成り立っている。
蒸発器と反応器の材質は、ニッケル、インコネル、ハステロイ、モネル、アルミニウム、銅、鉄等が使用できるが、ニッケル、インコネル、モネル等が最も望ましい。
【0005】
蒸発器は、一定の温度に保てるように加熱と冷却が可能なジャケット式の保温装置を備えたものが望ましい。蒸発器内のフッ素ガスの線速度は、30cm/sec.以下、望ましくは5cm/sec.以下に押さえる必要がある。さもなくば、フッ素と原料の急激な反応が起こり、その反応熱により蒸発器の腐食が発生する可能性がある。
【0006】
一方、反応器中のガス線速度は、反応に必要な滞留時間が取れるように設定されるが、10cm/sec.以下に押さえることが望ましい。また、反応器内には、ガスの攪拌・混合が効率良くなされるような構造とすることが好ましく、例えば、ジャマ板等が設置される。
【0007】
【実施例】
以下、実施例により本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
実施例1(三フッ化塩素の製造)
図1に示す反応装置を用い、 100℃に設定したニッケル製の予備加熱器にフッ素ガスを1cm/sec.の線速度になるように導入し、この気流中に塩素ガスを0.31cm/sec.の線速度になるように導入した。この混合ガスを 300℃に加熱した反応器に2cm/sec.の線速度で導入した。8時間反応を続け、反応器より排出されたガスを冷却捕集し、分析を行ったところ、三フッ化塩素が塩素基準の収率95%で得られた。1000時間反応を行っても、蒸発器及び反応器には、腐食現象が全く見られず、爆発も観測されず、安定した反応を行うことができた。
【0008】
比較例1
実施例1の反応器より予備加熱器を除き、同様の条件で反応を行った。この場合には、反応開始直後より、反応温度が急激に上昇し、塩素とフッ素の混合部が赤熱状態まで温度上昇した。さらに反応が円滑に持続せず、ハンチングによって系内圧力および流量が大きく変化し、反応を続けることができなかった。
【0009】
実施例2(五フッ化臭素の製造)
100℃に設定したニッケル製の蒸発器にフッ素ガスを2cm/sec.の線速度になるように導入し、この気流中に臭素を0.35cm/sec.の線速度になるように滴下した。この混合ガスを 200℃に加熱した反応器に 3.5cm/sec.の線速度で導入した。6時間反応を継続して、反応器より排出されたガスを冷却捕集し、分析を行ったところ、五フッ化臭素が臭素基準の収率90%で得られた。この場合にも、反応を30時間行っても蒸発器及び反応器には、腐食現象、爆発現象が全く観測されず、安定した反応を行うことができた。この場合、臭素に変えて、三フッ化臭素を 130℃に設定したニッケル製の蒸発器中のフッ素気流中に滴下しても同様の結果が得られた。
【0010】
比較例2
実施例2の反応器より蒸発器を取り除き、他は同様の条件で反応を行った。この時、反応開始後、30分で臭素の導入口付近が赤熱状態まで上昇し、反応を続行することができなくなった。
【0011】
実施例3(七フッ化ヨウ素の製造)
120℃に設定したニッケル製の蒸発器にフッ素ガスを2cm/sec.の線速度になるように導入し、この気流中に五フッ化ヨウ素を 1.9cm/sec.の線速度になるように滴下した。この混合ガスを 300℃に加熱した反応器に 5.6cm/sec.の線速度で導入した。8時間反応を行い、反応器より排出されたガスを冷却捕集し、分析を行ったところ、七フッ化ヨウ素が五フッ化ヨウ素基準の収率60%で得られた。この場合にも、反応を50時間行っても蒸発器及び反応器には、腐食現象、爆発現象が全く観測されず、安定した反応を行うことができた。
【0012】
比較例3
実施例3の反応器より蒸発器を取り除き、他は同様の条件で反応を行った。この場合も反応開始直後より五フッ化ヨウ素の導入口付近が赤熱状態まで上昇し、反応を続行することができなくなった。
【図面の簡単な説明】
【図1】 本発明に方法に用いる反応装置の一例を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a fluorinated halogen compound such as iodine heptafluoride, bromine pentafluoride, chlorine trifluoride, chlorine monofluoride and the like useful as a fluorinating agent, or as an etching gas or cleaning gas in the semiconductor industry.
[0002]
[Prior art and problems to be solved by the invention]
As a method for producing a fluorinated halogen compound such as bromine pentafluoride, chlorine trifluoride, or chlorine monofluoride, it is known to react fluorine and a corresponding equivalent number of halogen elements in a gas phase or a liquid phase. [For example, L. Stein: J. Am. Chem. Soc., 81 , 1269 (1959), HEKluksdahl, GHCady: J. Am. Chem. Soc., 81 , 5285 (1959), JWMellor (ed): A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Supplement II, part I, (1956), 147]. However, in the case of a gas phase reaction, the reaction temperature needs to be 200 ° C. or higher, and the reaction proceeds locally at the contact portion of the raw material (halogen other than fluorine or fluorinated halogen) and fluorine gas, and the temperature rises However, sometimes it reaches a red hot condition and may cause severe reactor corrosion. In the liquid phase reaction, there is a high risk that fluorine dissolved in the raw material solution reacts explosively.
Furthermore, as a method for producing a fluorinated halogen compound that has been oxidized to the maximum valence, such as iodine heptafluoride, fluorine is blown into a heated pentafluoro iodine solution, and iodine pentafluoride and fluorine associated with fluorine are used. It is known to lead to a reaction zone at 300 ° C. to obtain iodine heptafluoride [eg WCSchumb, MALynch Jr., Ind. Eng. Chem., 42, 1383 (1950)]. In this case, there is a problem that fluorine dissolved in iodine pentafluoride reacts explosively or corrosion of a container holding a high-temperature iodine pentafluoride solution occurs. I can't say that. It is also necessary to stop the reaction to replenish consumed iodine pentafluoride. Furthermore, in the case of producing by direct reaction of iodine and fluorine, the reaction heat is large, the reaction is difficult to control, and the handling method is not easy because iodine is solid.
[0003]
[Means for Solving the Problems]
An object of the present invention is to efficiently and efficiently produce fluorinated halogen compounds such as iodine heptafluoride, bromine pentafluoride, chlorine trifluoride, and chlorine monofluoride continuously and safely.
The present invention has been made to solve the above-described problems.
That is, the present invention is a method for producing a fluorinated halogen compound described in the following (1) to (4).
(1) The mixed gas after the halogen gas other than fluorine is added to the fluorine gas stream introduced into the evaporator set to 100 to 130 ° C and evaporated and mixed is made to exceed the reaction temperature of fluorine gas and halogen other than fluorine. A method for producing a fluorinated halogen compound, which is introduced into a reactor heated to a temperature and reacts a fluorine gas with a halogen other than fluorine.
(2) the 100 ~ 130 ° C. mixed gas after fluorination halogen was added and evaporated and mixed into the fluorine gas stream introduced to the set evaporator, the reaction temperature above the temperature of fluorine gas and fluorine halogen A method for producing a fluorinated halogen compound, which is introduced into a heated reactor and reacts a fluorine gas and a fluorinated halogen.
(3) Fluorine gas introduced into an evaporator set to 100 to 130 ° C, and then the mixture gas after the halogen gas other than fluorine and fluorinated halogen is added and evaporated and mixed into the fluorine gas stream is mixed with fluorine gas and halogen other than fluorine and fluorine. A method for producing a fluorinated halogen compound, comprising introducing into a reactor heated to a temperature equal to or higher than a reaction temperature with a halogenated fluoride, and reacting a fluorine gas with a halogen other than fluorine and a fluorinated halogen.
(4) The linear velocity of the fluorine gas in the evaporator is 30 cm / sec or less, and the gas linear velocity in the reactor is 10 cm / sec or less, (1), (2) or ( 3) The manufacturing method of the fluorinated halogen compound of description.
In the present invention, after adding a reaction raw material such as iodine pentafluoride in a fluorine gas stream heated to near the boiling point of the raw material (halogen element other than fluorine or fluorinated halogen), and evaporating and mixing the raw material By introducing these gases into a high-temperature reactor and allowing them to react, the desired product such as iodine heptafluoride can be obtained efficiently and continuously. Thereby, the temperature of the mixing part of the raw material and the fluorine gas can be suppressed to around the boiling point of the raw material (100 to 130 ° C.), and the corrosion of the mixing part can be greatly reduced. In addition, the mixing part and the reaction part of the raw material and fluorine gas are separated, and an explosive reaction can be prevented by supplying a stoichiometric amount of raw material that is sufficiently stirred and mixed and gently heated to the reactor. it can.
[0004]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The present invention can be effectively used not only for iodine heptafluoride but also for other fluorinated halides such as bromine pentafluoride, chlorine trifluoride and chlorine monofluoride.
The production apparatus used in the present invention includes an evaporator (a preheater may be used in the case of chlorine) that evaporates raw materials such as bromine trifluoride, iodine pentafluoride, and bromine, and mixes with fluorine gas. It consists of two reactors that perform the fluorination reaction.
As materials for the evaporator and the reactor, nickel, inconel, hastelloy, monel, aluminum, copper, iron and the like can be used, but nickel, inconel, monel and the like are most desirable.
[0005]
The evaporator is preferably provided with a jacket-type heat retaining device capable of heating and cooling so as to maintain a constant temperature. The linear velocity of the fluorine gas in the evaporator needs to be suppressed to 30 cm / sec. Or less, preferably 5 cm / sec. Or less. Otherwise, a rapid reaction between the fluorine and the raw material occurs, and the reaction heat may cause corrosion of the evaporator.
[0006]
On the other hand, the gas linear velocity in the reactor is set so that the residence time required for the reaction can be obtained, but it is desirable to suppress it to 10 cm / sec or less. Further, it is preferable that the reactor has a structure that allows gas to be efficiently stirred and mixed. For example, a jammer plate or the like is installed.
[0007]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these.
Example 1 (Production of chlorine trifluoride)
Using the reactor shown in FIG. 1, fluorine gas was introduced into a nickel preheater set at 100 ° C. so as to have a linear velocity of 1 cm / sec., And chlorine gas was introduced into this air stream at 0.31 cm / sec. Introduced to achieve a linear velocity of. This mixed gas was introduced into a reactor heated to 300 ° C. at a linear velocity of 2 cm / sec. The reaction was continued for 8 hours, and the gas discharged from the reactor was collected by cooling and analyzed. As a result, chlorine trifluoride was obtained in a yield of 95% based on chlorine. Even when the reaction was performed for 1000 hours, no corrosion phenomenon was observed in the evaporator and the reactor, no explosion was observed, and a stable reaction could be performed.
[0008]
Comparative Example 1
The reaction was carried out under the same conditions except that the preheater was removed from the reactor of Example 1. In this case, immediately after the start of the reaction, the reaction temperature rapidly increased, and the temperature of the mixed portion of chlorine and fluorine increased to a red hot state. Furthermore, the reaction did not continue smoothly, and the system pressure and flow rate changed greatly due to hunting, and the reaction could not be continued.
[0009]
Example 2 (Production of bromine pentafluoride)
Fluorine gas was introduced into a nickel evaporator set at 100 ° C. so as to have a linear velocity of 2 cm / sec., And bromine was dropped into this air stream so as to have a linear velocity of 0.35 cm / sec. This mixed gas was introduced into a reactor heated to 200 ° C. at a linear velocity of 3.5 cm / sec. The reaction was continued for 6 hours, and the gas discharged from the reactor was collected by cooling and analyzed. As a result, bromine pentafluoride was obtained in a yield of 90% based on bromine. In this case, even if the reaction was performed for 30 hours, no corrosion phenomenon or explosion phenomenon was observed in the evaporator and the reactor, and a stable reaction could be performed. In this case, the same result was obtained when bromine trifluoride was dropped into a fluorine stream in a nickel evaporator set at 130 ° C. instead of bromine.
[0010]
Comparative Example 2
The evaporator was removed from the reactor of Example 2, and the reaction was performed under the same conditions as the others. At this time, 30 minutes after the start of the reaction, the vicinity of the bromine inlet rose to a red hot state, and the reaction could not be continued.
[0011]
Example 3 (Production of iodine heptafluoride)
Fluorine gas is introduced into a nickel evaporator set at 120 ° C so that the linear velocity is 2 cm / sec., And iodine pentafluoride is dropped into this air stream so that the linear velocity is 1.9 cm / sec. did. This mixed gas was introduced into a reactor heated to 300 ° C. at a linear velocity of 5.6 cm / sec. When the reaction was carried out for 8 hours, the gas discharged from the reactor was collected by cooling and analyzed, iodine heptafluoride was obtained in a yield of 60% based on iodine pentafluoride. Also in this case, even if the reaction was carried out for 50 hours, no corrosion phenomenon or explosion phenomenon was observed in the evaporator and the reactor, and a stable reaction could be carried out.
[0012]
Comparative Example 3
The evaporator was removed from the reactor of Example 3, and the reaction was carried out under the same conditions as above. Also in this case, immediately after the start of the reaction, the vicinity of the iodine pentafluoride inlet rose to a red hot state, and the reaction could not be continued.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a reaction apparatus used in the method of the present invention.

Claims (4)

100 130 ℃に設定した蒸発器に導入したフッ素ガス気流中にフッ素以外のハロゲンを加え蒸発・混合させた後の混合ガスを、フッ素ガスとフッ素以外のハロゲンとの反応温度以上の温度に加熱された反応器に導入し、フッ素ガスとフッ素以外のハロゲンとを反応させることを特徴とするフッ素化ハロゲン化合物の製造方法。Heat the mixed gas after evaporating and mixing halogen other than fluorine into the fluorine gas stream introduced into the evaporator set to 100 to 130 ° C to a temperature higher than the reaction temperature of fluorine gas and halogen other than fluorine. A method for producing a fluorinated halogen compound, wherein the fluorine gas and a halogen other than fluorine are allowed to react with each other. 100 130 ℃に設定した蒸発器に導入したフッ素ガス気流中にフッ素化ハロゲンを加え蒸発・混合させた後の混合ガスを、フッ素ガスとフッ素化ハロゲンとの反応温度以上の温度に加熱された反応器に導入し、フッ素ガスとフッ素化ハロゲンとを反応させることを特徴とするフッ素化ハロゲン化合物の製造方法。 After the fluorinated halogen was added to the fluorine gas stream introduced into the evaporator set to 100-130 ° C and evaporated and mixed, the mixed gas was heated to a temperature higher than the reaction temperature of the fluorine gas and the fluorinated halogen. A method for producing a fluorinated halogen compound, which is introduced into a reactor and reacts a fluorine gas and a fluorinated halogen. 100 130 ℃に設定した蒸発器に導入したフッ素ガス気流中にフッ素以外のハロゲン及びフッ素化ハロゲンを加え蒸発・混合させた後の混合ガスを、フッ素ガスとフッ素以外のハロゲン及びフッ素化ハロゲンとの反応温度以上の温度に加熱された反応器に導入し、フッ素ガスとフッ素以外のハロゲン及びフッ素化ハロゲンとを反応させることを特徴とするフッ素化ハロゲン化合物の製造方法。After mixing and evaporating and mixing halogen other than fluorine and fluorinated halogen in a fluorine gas stream introduced into an evaporator set to 100 to 130 ° C, the mixed gas is mixed with fluorine gas, halogen other than fluorine, and fluorinated halogen. A method for producing a fluorinated halogen compound, which is introduced into a reactor heated to a temperature equal to or higher than the above reaction temperature and reacts a fluorine gas with a halogen other than fluorine and a fluorinated halogen. 蒸発器内のフッ素ガスの線速度を30cm/sec.以下とし、反応器内のガス線速度を10cm/sec.以下とすることを特徴とする請求項1、2又は3記載のフッ素化ハロゲン化合物の製造方法。  The fluorinated halogen compound according to claim 1, 2 or 3, wherein the linear velocity of the fluorine gas in the evaporator is 30 cm / sec or less and the gas linear velocity in the reactor is 10 cm / sec or less. Manufacturing method.
JP33095398A 1998-11-20 1998-11-20 Method for producing fluorinated halogen compound Expired - Lifetime JP4197783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33095398A JP4197783B2 (en) 1998-11-20 1998-11-20 Method for producing fluorinated halogen compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33095398A JP4197783B2 (en) 1998-11-20 1998-11-20 Method for producing fluorinated halogen compound

Publications (3)

Publication Number Publication Date
JP2000159505A JP2000159505A (en) 2000-06-13
JP2000159505A5 JP2000159505A5 (en) 2005-10-06
JP4197783B2 true JP4197783B2 (en) 2008-12-17

Family

ID=18238256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33095398A Expired - Lifetime JP4197783B2 (en) 1998-11-20 1998-11-20 Method for producing fluorinated halogen compound

Country Status (1)

Country Link
JP (1) JP4197783B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4693823B2 (en) 2007-06-18 2011-06-01 セントラル硝子株式会社 Production method of iodine heptafluoride
JP5163190B2 (en) * 2008-03-10 2013-03-13 セントラル硝子株式会社 Method for producing oxygen-containing halogenated fluoride
WO2010055769A1 (en) * 2008-11-12 2010-05-20 セントラル硝子株式会社 Inter-halogen compound synthesis method
JP2010116281A (en) * 2008-11-12 2010-05-27 Central Glass Co Ltd Method for producing interhalogen compound
JP2010116280A (en) * 2008-11-12 2010-05-27 Central Glass Co Ltd Method for synthesizing interhalogen compound
JP6201496B2 (en) * 2013-08-02 2017-09-27 セントラル硝子株式会社 IF7-derived iodine fluoride compound recovery method and recovery device
JP6210039B2 (en) 2014-09-24 2017-10-11 セントラル硝子株式会社 Deposit removal method and dry etching method
JP6467955B2 (en) * 2015-01-30 2019-02-13 セントラル硝子株式会社 Method for producing iodine pentafluoride
CN112537755A (en) * 2020-12-16 2021-03-23 中船重工(邯郸)派瑞特种气体有限公司 Preparation method and device of iodine pentafluoride
CN114314513B (en) * 2021-12-31 2023-05-12 四川红华实业有限公司 Method for fluoridation of low-valence fluoride by using chlorine trifluoride
CN115448256B (en) * 2022-09-16 2023-03-21 福建德尔科技股份有限公司 Method and reaction device for synthesizing chlorine trifluoride by one-step method

Also Published As

Publication number Publication date
JP2000159505A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
EP3024779B1 (en) Synthesis of hydrogen bis(fluorosulfonyl)imide
CA2677304C (en) Method of manufacturing phosphorous pentafluoride and hexafluorophosphate
JP3023343B2 (en) Method for producing lithium hexafluorophosphate
JP4197783B2 (en) Method for producing fluorinated halogen compound
EP2406177A2 (en) Methods and reactor designs for producing phosphorus pentafluoride
RU2430877C1 (en) Method of producing iodine heptafluoride
JP5341425B2 (en) Method for producing fluoride gas
US4584181A (en) Process and apparatus for obtaining silicon from fluosilicic acid
EP2628709A1 (en) Method for producing phosphorus pentafluoride
KR20020025192A (en) Process for producing nitrogen trifluoride and use thereof
KR100961587B1 (en) Process for synthesis of halogenated nitrogen
JPS6137202B2 (en)
US5302360A (en) Method of working up antimony halide catalyst solutions
JPS6344686B2 (en)
RU2182556C1 (en) Method of obtaining nitrogen trifluoride
JPH03218917A (en) Production of boron trichloride
JP2856636B2 (en) Production method of ammonium cryolite
US4034069A (en) Method of preparing arsenic trifluoride
JP2930351B2 (en) Manufacturing method of NF (3)
JPH01153501A (en) Production of hydrogen fluoride and silicon tetrafluoride
IL47643A (en) Oxidation of magnesium chloride
RU2182555C1 (en) Method of production of nitrogen trifluoride
宮崎達夫 Study on NF3 synthesis using CIF3 as a mediator
US4146577A (en) Process of producing a sulfonate of sodium, potassium, or calcium
CN103443065A (en) Method for purifying difluoroacetic acid chloride

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term