JP4186493B2 - Liquid crystalline compound having naphthalene ring, liquid crystal composition and liquid crystal display element - Google Patents

Liquid crystalline compound having naphthalene ring, liquid crystal composition and liquid crystal display element Download PDF

Info

Publication number
JP4186493B2
JP4186493B2 JP2002096781A JP2002096781A JP4186493B2 JP 4186493 B2 JP4186493 B2 JP 4186493B2 JP 2002096781 A JP2002096781 A JP 2002096781A JP 2002096781 A JP2002096781 A JP 2002096781A JP 4186493 B2 JP4186493 B2 JP 4186493B2
Authority
JP
Japan
Prior art keywords
compound
replaced
hydrogen
independently
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002096781A
Other languages
Japanese (ja)
Other versions
JP2003286217A (en
Inventor
弘毅 佐郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Petrochemical Corp
Original Assignee
Chisso Petrochemical Corp
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Petrochemical Corp, Chisso Corp filed Critical Chisso Petrochemical Corp
Priority to JP2002096781A priority Critical patent/JP4186493B2/en
Publication of JP2003286217A publication Critical patent/JP2003286217A/en
Application granted granted Critical
Publication of JP4186493B2 publication Critical patent/JP4186493B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は液晶性化合物、液晶組成物および液晶表示素子に関する。さらに詳しくはジフルオロメチレンオキシとナフタレン環とが結合した構造を有する液晶性化合物、これを含有する液晶組成物、およびこの組成物を含有する液晶表示素子に関する。
【0002】
液晶性化合物の用語は、液晶相を有する化合物および液晶相を有しないが液晶組成物の成分として有用な化合物の総称として用いる。液晶性化合物、液晶組成物、液晶表示素子をそれぞれ化合物、組成物、素子と表記することがある。式(1)から式(12)で表わされる化合物をそれぞれ化合物(1)から化合物(12)と表記することがある。式(1)から式(12)において、六角形で囲んだA、B、D、Eなどの記号はA、B、D、Eなどが環状の2価基であることを示す。
【0003】
【従来の技術】
液晶表示素子は、表示方式に基づいてTN(Twisted nematic)、TN−TFT(Twisted nematic-Thin film transistor)、BTN(Bistable twisted nematic)、STN(Super twisted nematic)、IPS(In-plane switching)、GH(Guest host)、DS(Dynamic scattering)、VA(Vertical alignment)、OCB(Optically compensated bend)、ECB(Electrically controlled birefringence)、PC(Phase change)などのモードに分類される。
【0004】
素子に用いる液晶組成物に適切な物性は、これらのモードによって異なる。物性には粘度(η)、光学異方性(Δn)、誘電率異方性(Δε)、電気伝導度、および弾性定数比K33/K11(K33:ベンド弾性定数、K11:スプレイ弾性定数)などがある。化学的な安定性、液晶相の広い温度範囲、低温における優れた相溶性などの物性も組成物に必要である。この組成物は多くの液晶性化合物を含有する。この化合物の物性は組成物の物性に影響する。そこで、適切な物性を有する化合物が開発されてきた。
【0005】
既知の液晶性化合物において、透明点が高い化合物は一般的に大きな光学異方性を有する。透明点は、液晶相−等方相の転移温度である。透明点が低い化合物は一般的に小さい光学異方性を有する。一方、低い透明点および大きな光学異方性を有する化合物の例は多くない。3環または4環を有する化合物においてはこのような例が特に少ない。
【0006】
【発明が解決しようとする課題】
本発明の第一の目的は、低い透明点、小さい粘度、大きな光学異方性、正の誘電率異方性、および他の液晶性化合物との優れた相溶性を有する化合物を提供することにある。第二の目的は、この化合物を含有し、小さい粘度、大きな光学異方性、適切な誘電率異方性、および低いしきい値電圧を有する液晶組成物を提供することにある。第三の目的は、この組成物を含有し、そして短い応答時間、高いコントラスト、および低い駆動電圧を有する液晶表示素子を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、化合物(1)が低い透明点、小さい粘度、大きな光学異方性、正の誘電率異方性、および他の液晶性化合物との優れた相溶性を有することを見いだした。この化合物を含有する液晶組成物が小さい粘度、大きな光学異方性、適切な誘電率異方性、および低いしきい値電圧を有することも見いだした。さらに、この組成物を含有する液晶表示素子が短い応答時間、高いコントラスト、および低い駆動電圧を有することも見いだした。本発明の目的を達するための本発明の態様は下記のとおりである。化合物(1)における末端基、環、および結合基に関して、好ましい例も述べた。
【0008】
1.下記の式(1)で表わされる化合物。

Figure 0004186493
式(1)において、RおよびRは炭素数1〜20のアルキルであり、このアルキルにおいて任意の−CH2−は−O−、−S−、−CO−、−CH=CH−、または−C≡C−で置き換えられてもよく、そして任意の水素はハロゲンまたは−CNで置き換えられてもよい。
【0009】
「アルキルにおいて任意の−CH−は−O−、−CH=CH−などで置き換えられてもよい」の句の意味を一例で示す。C−において任意の−CH−を−O−または−CH=CH−で置き換えた基の一部は、CO−、CH−O−(CH−、CH−O−CH−O−、HC=CH−(CH−、CH−CH=CH−(CH−、およびCH−CH=CH−CH−O−である。このように「任意の」語は、「区別なく選択された少なくとも1つの」を意味する。化合物の安定性を考慮して、酸素と酸素とが隣接したCH−O−O−CH−よりも、酸素と酸素とが隣接しないCH−O−CH−O−の方が好ましい。
【0010】
好ましいRまたはRは、アルキル、アルコキシ、アルコキシアルキル、アルコキシアルコキシ、アルキルチオ、アルキルチオアルコキシ、アシル、アシルオキシ、アシルアルキル、アルケニル、アルケニルオキシ、アルケニルオキシアルキル、アルコキシアルケニル、アルキニル、アルキニルオキシなどである。少なくとも1つの水素がハロゲンで置き換えられたこれらの基も好ましい。好ましいハロゲンはフッ素および塩素である。少なくとも1つの水素が−CNで置き換えられたこれらの基も好ましい。これらの基は分岐鎖よりも直鎖の方が好ましい。分岐したRまたはRは化合物(1)が光学活性であるときに好ましい。特に好ましいRまたはRはアルキル、アルコキシ、アルケニル、およびアルケニルオキシである。
【0011】
アルケニルにおける−CH=CH−の好ましい立体配置は、二重結合の位置に依存する。1−プロペニル、1−ブテニル、1−ペンテニル、1−ヘキセニル、3−ペンテニル、3−ヘキセニルのようなアルケニルにおいてはトランス配置が好ましい。2−ブテニル、2−ペンテニル、2−ヘキセニルのようなアルケニルにおいてはシス配置が好ましい。好ましい立体配置を有するアルケニルは、高い透明点または液晶相の広い温度範囲を有する。Mol. Cryst. Liq. Cryst., 1985, 131, 109.を参照。
【0012】
またはRにおける好ましい具体例は、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、メトキシメチル、メトキシエチル、メトキシプロピル、エトキシメチル、エトキシエチル、エトキシプロピル、プロポキシメチル、ビニル、1−プロペニル、2−プロペニル、1−ブテニル、2−ブテニル、3−ブテニル、1−ペンテニル、2−ペンテニル、3−ペンテニル、4−ペンテニル、2−プロペニルオキシ、2−ブテニルオキシ、2−ペンテニルオキシ、1−プロピニル、1−ペンチニルなどである。
【0013】
またはRにおける好ましい具体例は、2−フルオロエチル、3−フルオロプロピル、2,2,2−トリフルオロエチル、2−フルオロビニル、2,2−ジフルオロビニル,2−フルオロ−2−シアノビニル、3−フルオロ−1−プロペニル、3,3,3−トリフルオロ−1−プロペニル、4−フルオロ−1−プロペニル、4,4−ジフルオロ−3−ブテニルなどでもある。好ましい具体例において、特に好ましいRまたはRは、エチル、プロピルおよびペンチルである。
【0014】
1、A2、およびA3は独立して、1,4−シクロヘキシレン、1,4−シクロヘキセニレンまたは1,4−フェニレンであり、これらの環において任意の−CH−は−O−で置き換えられてもよく、任意の−CH=は−N=で置き換えられてもよく、そして任意の水素はハロゲンで置き換えられてもよい。
【0015】
「これらの環において任意の−CH−は−O−で置き換えられてもよく、任意の−CH=は−N=で置き換えられてもよく」の句の意味を例で示す。1,4−シクロヘキシレンにおいて2つの−CH−が−O−で置き換えられた環の一例は1,3−ジオキサン−2,5−ジイルである。これらの環において任意の−CH=が−N=で置き換えられた環の一例はピリジン−2,5−ジイルである。
【0016】
好ましいA、A、またはA3は、下記の環(r−1)から環(r−25)およびピリダジン−3,6−ジイルである。1,4−シクロヘキシレン、1,3−ジオキサン−2,5−ジイルなどにおける黒い丸印は立体配置がトランスであることを示す。
【0017】
Figure 0004186493
【0018】
特に好ましいA、A、またはA3は、1,4−シクロヘキシレン、1,4−シクロヘキセニレン、1,3−ジオキサン−2,5−ジイル、1,4−フェニレン、2−フルオロ−1,4−フェニレン、2,3−ジフルオロ−1,4−フェニレン、2,5−ジフルオロ−1,4−フェニレン、2,6−ジフルオロ−1,4−フェニレン、2,3,5−トリフルオロ−1,4−フェニレン、ピリジン−2,5−ジイル、3−フルオロピリジン−2,5−ジイル、ピリミジン−2,5−ジイル、およびピリダジン−3,6−ジイルである。1,4−シクロヘキシレンおよび1,3−ジオキサン−2,5−ジイルの立体配置はシスよりもトランスが好ましい。
【0019】
1およびZ2は独立して単結合、−(CH22−、−(CF22−、−COO−、−OCO−、−CH2O−、−OCH2−、−CFO−、−OCF−、−CH=CH−、−CF=CF−、−C≡C−、−(CH24−、−(CH23O−、または−O(CH23−である。
【0020】
好ましいZ1またはZ2は単結合、−(CH22−、−(CF22−、−COO−、−OCO−、−OCF−、−CFO−、−CH=CH−、−CF=CF−、−C≡C−、および−(CH24−である。−CH=CH−および−CF=CF−の立体配置はシスよりもトランスが好ましい。
【0021】
1およびZ2は独立して単結合、−(CH22−、−(CF22−、−COO−、−OCO−、−CH2O−、−OCH2−、−CFO−、−OCF−、−CH=CH−、−CF=CF−、−C≡C−、または−(CH24−である。好ましいZ1またはZ2は独立して単結合、−(CH22−、−(CF22−、−COO−、−OCO−、−CFO−、−OCF−、−CH=CH−、−CF=CF−、−C≡C−、および−(CH24−である。
【0022】
およびYは独立して水素またはフッ素である。pおよびqは独立して0または1である。ナフタレン環を1つの環として数える。pおよびqが0である化合物は2環を有する。pが0であり、そしてqが1である化合物は3環を有する。pが1であり、そしてqが0である化合物も3環を有する。pが1であり、そしてqが1である化合物は4環を有する。化合物の物性に大きな差異がないので、化合物(1)はH(重水素)、13Cなどの同位体を天然存在比の量より多く含んでもよい。
【0023】
2. 式(1)において、RおよびRは炭素数1〜10のアルキルであり、このアルキルにおいて任意の−CH2−は−O−または−CH=CH−で置き換えられてもよく、そして任意の水素はハロゲンで置き換えられてもよく;A1、A2およびA3は独立して、1,4−シクロヘキシレン、1,3−ジオキサン−2,5−ジイル、1,4−フェニレン、任意の水素がハロゲンで置き換えられた1,4−フェニレン、ピリジン−2,5−ジイル、任意の水素がハロゲンで置き換えられたピリジン−2,5−ジイル、またはピリミジン−2,5−ジイルであり;Z1およびZ2は独立して単結合、−(CH22−、−COO−、−OCO−、−CFO−、−OCF−、−CH=CH−、−C≡C−、または−(CH24−であり;YおよびYは独立して水素またはフッ素であり;そしてpおよびqは独立して0または1である項1に記載の化合物。
【0024】
3. 項1に記載の式(1)において、pおよびqが0である項1または項2に記載の化合物。
4. 項1に記載の式(1)において、pが0であり、そしてqが1である項1または項2に記載の化合物。
5. 項1に記載の式(1)において、pが1であり、そしてqが0である項1または項2に記載の化合物。
6. 項1に記載の式(1)において、pが1であり、そしてqが1である項1または項2に記載の化合物。
【0025】
7. 下記の式(1−a−1)〜(1−d−4)で表される化合物。
Figure 0004186493
【0026】
Figure 0004186493
【0027】
これらの式において、RおよびRは炭素数1〜10のアルキルであり、このアルキルにおいて任意の−CH2−は−O−または−CH=CH−で置き換えられてもよく、そして任意の水素はハロゲンで置き換えられてもよく;A1、A2およびA3は独立して、1,4−シクロヘキシレン、1,3−ジオキサン−2,5−ジイル、1,4−フェニレン、任意の水素がハロゲンで置き換えられた1,4−フェニレン、ピリジン−2,5−ジイル、任意の水素がハロゲンで置き換えられたピリジン−2,5−ジイル、またはピリミジン−2,5−ジイルであり;Z1およびZ2は独立して単結合、−(CH22−、−COO−、−OCO−、−CFO−、−OCF−、−CH=CH−、−C≡C−、または−(CH24−であり;YおよびYは独立して水素またはフッ素であり;pおよびqは独立して0または1であり;そして、かっこの中のFが垂直な線で連結した1,4−フェニレン(下を参照。)は、任意の水素がフッ素で置き換えられてもよい1,4−フェニレンである。
Figure 0004186493
【0028】
8. 項1〜7のいずれか1項に記載した化合物の少なくとも1つを含有する液晶組成物。
【0029】
9. 下記の式(2)、(3)および(4)で表される化合物群から選択された少なくとも1つの化合物をさらに含有する項8に記載の組成物。
Figure 0004186493
【0030】
これらの式において、Rは炭素数1〜10のアルキルであり、このアルキルにおいて任意の−CH−は−O−または−CH=CH−で置き換えられてもよく、そして任意の水素はフッ素で置き換えられてもよく;Xはフッ素、塩素、−OCF、−OCHF、−CF、−CHF、−CHF、−OCFCHF、または−OCFCHFCFであり;BおよびDは独立して1,4−シクロヘキシレン、1,3−ジオキサン−2,5−ジイルまたは任意の水素がフッ素で置き換えられてもよい1,4−フェニレンであり、Eは1,4−シクロヘキシレンまたは任意の水素がフッ素で置き換えられてもよい1,4−フェニレンであり;ZおよびZは独立して−(CH)−、−(CH)−、−COO−、−CFO−、−OCF−、−CH=CH−、または単結合であり;そしてLおよびLは独立して水素またはフッ素である。
【0031】
10. 下記の式(5)および(6)で表される化合物群から選択された少なくとも1つの化合物をさらに含有する項8に記載の組成物。
Figure 0004186493
【0032】
これらの式において、RおよびRは独立して炭素数1〜10のアルキルであり、このアルキルにおいて任意の−CH−は−O−または−CH=CH−で置き換えられてもよく、そして任意の水素はフッ素で置き換えられてもよく;Xは−CNまたは−C≡C−CNであり;Gは1,4−シクロヘキシレン、1,4−フェニレン、1,3−ジオキサン−2,5−ジイル、またはピリミジン−2,5−ジイルであり;Jは1,4−シクロヘキシレン、ピリミジン−2、5−ジイルまたは任意の水素がフッ素で置き換えられてもよい1,4−フェニレンであり;Kは1,4−シクロヘキシレンまたは1,4−フェニレンであり;Zは−(CH)−、−COO−、−CFO−、−OCF−、または単結合であり;L、LおよびLは独立して水素またはフッ素であり;そしてb、cおよびdは独立して0または1である。
【0033】
11. 下記の式(7)、(8)および(9)で表される化合物群から選択された少なくとも1つの化合物をさらに含有する項8に記載の組成物。
Figure 0004186493
式中、RおよびR5は独立して炭素数1〜10のアルキルであり、このアルキルにおいて任意の−CH−は−O−または−CH=CH−で置き換えられてもよく、そして任意の水素はフッ素で置き換えられてもよく;MおよびPは独立して1,4−シクロヘキシレンまたは1,4−フェニレンであり;ZおよびZは独立して−(CH)−、−COO−または単結合であり;そしてLおよびLは独立して水素またはフッ素であり、LとLの少なくとも1つはフッ素である。
12. 下記の式(10)、(11)および(12)で表される化合物群から選択された少なくとも1つの化合物をさらに含有する項9に記載の組成物。
Figure 0004186493
【0034】
これらの式において、RおよびRは独立して炭素数1〜10のアルキルであり、このアルキルにおいて任意の−CH−は−O−または−CH=CH−で置き換えられてもよく、そして任意の水素はフッ素で置き換えられてもよく;Q、TおよびUは独立して1,4−シクロヘキシレン、ピリミジン−2、5−ジイル、または任意の水素がフッ素で置き換えられてもよい1,4−フェニレンであり;そしてZおよびZ10は独立して、−C≡C−、−COO−、−(CH)−、−CH=CH−、または単結合である。
【0035】
13. 項12に記載の式(10)、(11)および(12)で表される化合物群から選択された少なくとも1つの化合物をさらに含有する項10に記載の組成物。
14. 項12に記載の式(10)、(11)および(12)で表される化合物群から選択された少なくとも1つの化合物をさらに含有する項11に記載の組成物。
15. 項10に記載の式(5)および(6)で表される化合物群から選択された少なくとも1つの化合物をさらに含有する項12に記載の組成物。
【0036】
16. 少なくとも1つの光学活性化合物をさらに含有する項8〜項15のいずれか1項に記載の組成物。
17. 項8〜16のいずれか1項に記載の組成物を含有する液晶表示素子。
【0037】
化合物(2)から化合物(12)において、好ましい基は次のとおりである。分岐のアルキルよりも直鎖のアルキルが好ましい。1,4−シクロヘキシレンおよび1,3−ジオキサン−2,5−ジイルの立体配置はシスよりもトランスが好ましい。「アルキルにおいて任意の−CH−は−O−または−CH=CH−で置き換えられてもよい」の句の意味は、本発明の態様の項1において述べた。R、Bなどの記号を複数の化合物において用いたが、これらのR(またはBなど)は同一であってもよいし、異なってもよい。化合物の物性に大きな差異がないので、これらの化合物はH(重水素)、13Cなどの同位体を天然存在比の量より多く含んでもよい。
【0038】
【発明の実施の形態】
第一に、本発明の化合物(1)をさらに説明する。化合物(1)はジフルオロメチレンオキシとナフタレン環とが結合した構造を有する。この化合物は、素子が通常使用される条件下で物理的および化学的に安定である。この化合物は低い透明点、小さい粘度、大きな光学異方性、正の誘電率異方性、および低いしきい値電圧を有する。この化合物は他の液晶性化合物との相溶性に優れる。この化合物を含有する組成物は、素子が通常使用される条件下で安定である。この組成物を−20℃以下の低温で保管しても、この化合物が固体として析出しない。
【0039】
2環〜4環を有する化合物(1)の特徴、およびこの化合物を組成物に添加したときの効果は次のとおりである。2環を有する化合物(1)は、低い透明点、小さい粘度、比較的大きな誘電率異方性、および−20℃以下における優れた相溶性を有する。そこで、この化合物は組成物の透明点を下げるまたはしきい値電圧を下げることができる。
【0040】
3環を有する化合物(1)は、小さい粘度、大きな光学異方性、および−20℃以下における優れた相溶性を有する。この化合物の透明点は他の3環を有する化合物に比べると比較的低い。そこで、この化合物は組成物の透明点を大幅に上げることなく光学異方性を大きくすることができる。
【0041】
4環を有する化合物(1)は、大きな光学異方性および、他の化合物との優れた相溶性を有する。この化合物の透明点は他の4環を有する化合物に比べると比較的低い。そこで、この化合物は組成物の透明点を大幅に上げることなく光学異方性を大きくすることができる。化合物(1)は他の化合物との相溶性に優れるので、組成物のその他の物性を調整する目的で添加されることもある。
【0042】
化合物(1)の末端基、環および結合基を適当に選択することによって、物性を任意に調整することが可能である。末端基R、R、環A〜A、および結合基Z、Zの種類が、化合物(1)の物性に与える効果を以下に説明する。化合物(1)を組成物に添加すると、化合物(1)の物性が組成物のそれに影響する。
【0043】
化合物(1)のRまたはRが直鎖であるときは液晶相の温度範囲が広く、そして粘度が小さい。RまたはRが分岐鎖であるときは他の液晶性化合物との相溶性がよい。RまたはRが光学活性基である化合物は、キラルドーパントとして有用である。この化合物を組成物に添加することによって、素子に発生するリバース・ツイスト・ドメイン(Reverse twisted domain)を防止することができる。RまたはRが光学活性基でない化合物は組成物の成分として有用である。
【0044】
化合物(1)のA、AまたはAが、任意の水素がハロゲンで置き換えられた1,4−フェニレン、ピリジン−2,5−ジイルまたは1,3−ジオキサン−2,5−ジイルのときは、誘電率異方性が大きい。この環が、任意の水素がハロゲンで置き換えられてもよい1,4−フェニレン、ピリジン−2,5−ジイル、ピリミジン−2,5−ジイル、またはピリダジン−3,6−ジイルのときは光学異方性が大きい。この環が、1,4−シクロヘキシレン、1,4−シクロヘキセニレンまたは1,3−ジオキサン−2,5−ジイルのときは光学異方性が小さい。
【0045】
少なくとも2つの環が1,4−シクロヘキシシレンであるときは、透明点が高く、光学異方性が小さく、そして粘度が小さい。少なくとも1つの環が1,4−フェニレンのときは、光学異方性が比較的大きく、そして配向秩序パラメーター(orientational order parameter)が大きい。少なくとも2つの環が1,4−フェニレンのときは、光学異方性が大きく、液晶相の温度範囲が広く、そして透明点が高い。
【0046】
結合基ZまたはZが単結合、−(CH22−、−CH2O−、−OCH2−、−CFO−、−OCF−、−CH=CH−、−CF=CF−、または−(CH2−のときは粘度が小さい。結合基が単結合、−(CH22−、−OCF−、−CFO−、−CH=CH−、または−(CH24−のときは粘度がより小さい。結合基が−CF=CF−または−CH=CH−のときは液晶相の温度範囲が広く、そして弾性定数比が大きい。結合基が−C≡C−のときは光学異方性が大きい。
【0047】
化合物(1)が2環または3環を有するときは粘度が小さく、3環または4環を有するときは透明点が高い。以上のように、末端基、環および結合基の種類、環の数を適当に選択することにより目的の物性を有する化合物を得ることができる。したがって、化合物(1)はTN、STNおよびTN−TFTのモードの素子に用いられる組成物の成分として好適である。
【0048】
化合物(1)の好ましい例は、化合物(1−1)〜(1−94)である。これらの化合物におけるRおよびRの記号の意味は、本発明の態様の項1に記載した記号の意味と同一である。かっこの中のFが垂直な線で連結した1,4−フェニレンは、任意の水素がフッ素で置き換えられてもよい1,4−フェニレンである。かっこの中のFが直線で連結したナフタレン環は、水素がフッ素で置き換えられてもよいナフタレン環である。
【0049】
Figure 0004186493
【0050】
Figure 0004186493
【0051】
Figure 0004186493
【0052】
Figure 0004186493
【0053】
Figure 0004186493
【0054】
Figure 0004186493
【0055】
Figure 0004186493
【0056】
Figure 0004186493
【0057】
化合物(1)は有機合成化学における手法を適当に組み合わせることによって合成できる。出発物質に目的の末端基、環および結合基を導入する方法は、オーガニックシンセシーズ(Organic Syntheses, John Wiley & Sons, Inc)、オーガニックリアクションズ(Organic Reactions, John Wiley & Sons, Inc)、コンプリヘンシブオーガニックシンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などの成書に記載されている。
【0058】
化合物(1)を合成する方法の二例を下記のスキーム1,2に示す。これらのスキームにおいて、R、R、A、A、A3、Z、Z2、p、およびqの記号の意味は本発明の態様における項1の記号の意味と同一である。これらのスキームを説明したあと、結合基を生成する方法の一例を述べる。
Figure 0004186493
スキーム1.化合物(1)の合成−1
【0059】
US6,231,785B1に記載された方法に従い、化合物(13)にn−ブチルリチウム、次いでジブロモジフルオロメタンを反応させて、ブロモジフルオロメタン誘導体(14)を得る。一方、パラジウム触媒の存在下で、化合物(15)とマグネシウムブロミドまたはボロン酸誘導体(16)とのカップリング反応により、ナフタレン誘導体(17)を得る。この化合物(17)を三臭化ホウ素などで脱保護して、ナフトール誘導体(18)を得る。このナフトール誘導体(18)とブロモジフルオロメタン誘導体(14)とを炭酸パラジウムなどの塩基の存在下で反応させて化合物(1)を得る。
【0060】
Figure 0004186493
スキーム2.化合物(1)の合成−2
【0061】
化合物(1)は、P. Kirsch et al., Angew. Chem. Int. Ed., 2001, 40, 1480.に記載された方法によっても合成できる。化合物(19)にアルカンジチオールとトリフルオロメタンスルホン酸を反応させてジチアニリウム塩(20; dithianylium salt)を得る。スキーム1の方法で得たナフトール誘導体(18)にジチアニリウム塩(20)、次いでEt3N・3HFを反応させ、臭素で処理して化合物(1)を得る。
【0062】
結合基ZまたはZを生成する方法の一例に関して、最初にスキームを示し、次に項(I)〜項(XI)でスキームを説明する。このスキームにおいて、MSGまたはMSGは少なくとも1つの環を有する1価の有機基である。スキームで用いた複数のMSG(またはMSG)は、同一であってもよいし、異なってもよいし。化合物(1A)から(1K)は化合物(1)に相当する。
【0063】
Figure 0004186493
【0064】
Figure 0004186493
【0065】
Figure 0004186493
【0066】
Figure 0004186493
【0067】
Figure 0004186493
【0068】
(I)単結合の生成
アリールホウ酸(21)と公知の方法で合成される化合物(22)とを、炭酸塩水溶液とテトラキス(トリフェニルホスフィン)パラジウムのような触媒の存在下で反応させて化合物(1A)を合成する。この化合物(1A)は、公知の方法で合成される化合物(23)にn−ブチルリチウムを、次いで塩化亜鉛を反応させ、ジクロロビス(トリフェニルホスフィン)パラジウムのような触媒の存在下で化合物(22)を反応させることによっても合成される。
【0069】
(II)−COO−と−OCO−の生成
化合物(23)にn−ブチルリチウムを、続いて二酸化炭素を反応させてカルボン酸(24)を得る。化合物(24)と、公知の方法で合成されるフェノール(25)とをDDC(1,3−ジシクロヘキシルカルボジイミド)とDMAP(4−ジメチルアミノピリジン)の存在下で脱水させて−COO−を有する化合物(1B)を合成する。この方法によって−OCO−を有する化合物も合成できる。
【0070】
(III)−CFO−と−OCF−の生成
化合物(1B)をローソン試薬のような硫黄化剤で処理して化合物(26)を得る。化合物(26)をフッ化水素ピリジン錯体とNBS(N−ブロモスクシンイミド)でフッ素化し、−CFO−を有する化合物(1C)を合成する。M. Kuroboshi et al., Chem. Lett., 1992,827.を参照。化合物(1C)は化合物(26)を(ジエチルアミノ)サルファ トリフルオリドでフッ素化しても合成される。William H. Bunnelle et al., J. Org. Chem. 1990, 55, 768.を参照。この方法によって−OCF−を有する化合物も合成できる。
【0071】
(IV)−CH=CH−の生成
化合物(23)をn−ブチルリチウムで処理したあと、N,N−ジメチルホルムアミドなどのホルムアミドと反応させてアルデヒド(28)を得る。公知の方法で合成されるホスホニウム塩(27)をカリウムt−ブトキシドのような塩基で処理して発生させたリンイリドを、アルデヒド(28)に反応させて化合物(1D)を合成する。反応条件によってはシス体が生成するので、必要に応じて公知の方法によりシス体をトランス体に異性化する。
【0072】
(V)−(CH−の生成
化合物(1D)をパラジウム炭素のような触媒の存在下で水素化することにより、化合物(1E)を合成する。
【0073】
(VI)−(CH−の生成
ホスホニウム塩(27)の代わりにホスホニウム塩(29)を用い、項(IV)の方法に従って−(CH−CH=CH−を有する化合物を得る。これを接触水素化して化合物(1F)を合成する。
【0074】
(VII)−C≡C−の生成
ジクロロパラジウムとハロゲン化銅との触媒存在下で、化合物(23)に2−メチル−3−ブチン−2−オールを反応させたのち、塩基性条件下で脱保護して化合物(30)を得る。ジクロロパラジウムとハロゲン化銅との触媒存在下、化合物(30)を化合物(22)と反応させて、化合物(1G)を合成する。
【0075】
(VIII)−CF=CF−の生成
化合物(23)をn−ブチルリチウムで処理したあと、テトラフルオロエチレンを反応させて化合物(31)を得る。化合物(22)をn−ブチルリチウムで処理したあと化合物(31)と反応させて化合物(1H)を合成する。
【0076】
(IX)−CHO−または−OCH−の生成
化合物(28)を水素化ホウ素ナトリウムなどの還元剤で還元して化合物(32)を得る。これを臭化水素酸などでハロゲン化して化合物(33)を得る。炭酸カリウムなどの存在下で、化合物(33)を化合物(25)と反応させて化合物(1J)を合成する。
【0077】
(X)−(CH23O−または−O(CH23−の生成
化合物(32)の代わりに化合物(34)を用いて、項(IX)の方法に従って化合物(1K)を合成する。
【0078】
(XI)−(CF22−の生成
J. Am. Chem. Soc., 2001, 123, 5414.に記載された方法に従い、ジケトン(−COCO−)をフッ化水素触媒の存在下、四フッ化硫黄でフッ素化して−(CF22−を有する化合物を得る。
【0079】
第二に、本発明の組成物をさらに説明する。以下で述べる化合物の量(百分率)は組成物の全重量に基づいた重量%である。この組成物は化合物(1)から選ばれる複数の化合物のみを成分として含有してもよい。好ましい組成物は化合物(1)から選択された少なくとも1つの化合物を1〜99%の割合で含有する。この組成物は化合物(2)、(3)および(4)の群から選択された少なくとも1つの化合物、化合物(5)および(6)の群から選択された少なくとも1つの化合物、または化合物(7)、(8)および(9)の群から選択された少なくとも1つの化合物をさらに含有してもよい。この組成物は、液晶相の温度範囲、粘度、光学異方性、誘電率異方性、しきい値電圧などを調整する目的で、化合物(10)、(11)および(12)の群から選択された少なくとも1つの化合物をさらに含有してもよい。この組成物は、物性を調整する目的で、その他の化合物をさらに含有してもよい。
【0080】
化合物(2)、(3)および(4)は、誘電率異方性が正で大きく、熱的安定性と化学的安定性が優れるので、主としてTN−TFTモード用の組成物に用いられる。この組成物において、これらの化合物の量は1〜99%である。好ましい量は10〜97%である。より好ましい量は40〜95%である。液晶相の温度範囲、粘度、光学異方性、誘電率異方性、しきい値電圧を調整する、などの目的で化合物(10)、(11)または(12)を組成物にさらに添加してもよい。
【0081】
化合物(5)および(6)は、誘電率異方性が正で非常に大きいので、主としてSTNおよびTNモード用の組成物に用いられる。これらの化合物は組成物の液晶相の温度範囲を広げる、粘度と光学異方性とを調整する、しきい値電圧を下げる、しきい値電圧の急峻性を改良する、などの目的に使用される。STNまたはTNモード用の組成物において、化合物(5)または(6)の量は1〜99%の範囲である。好ましい量は10〜97%である。より好ましい量は10〜70%である。液晶相の温度範囲、粘度、光学異方性、誘電率異方性、またはしきい値電圧を調整する目的で化合物(10)、(11)または(12)を組成物にさらに添加してもよい。
【0082】
化合物(7)、(8)および(9)は誘電率異方性が負であるので、主としてVAモード用の組成物に用いられる。化合物(7)は粘度、光学異方性、およびしきい値電圧を調整する目的で使用される。化合物(8)は透明点を高くする、光学異方性を大きくする、しきい値電圧を下げる、などの目的に使用される。これらの化合物の量を増加させるとしきい値電圧が小さくなるが、粘度が大きくなる。従って、しきい値電圧の要求値を満たすかぎり、より少ない量が好ましい。これらの化合物は誘電率異方性が負であり、かつその絶対値は5以下であるので、好ましい量は40%以上である。より好ましい量は40〜80%である。弾性定数および電圧透過率曲線を調整する目的で、これらの化合物を誘電率異方性が正である組成物に添加してもよい。この場合の好ましい量は30%以下である。
【0083】
化合物(10)、(11)および(12)において、誘電率異方性の絶対値は小さい。化合物(10)は粘度または光学異方性を調整する目的で主に使用される。化合物(11)および(12)は透明点をあげて液晶相の温度範囲を広げる、または光学異方性を調整する目的で使用される。化合物(10)、(11)および(12)の量を増加させると組成物のしきい値電圧が高くなり、粘度が小さくなる。したがって、組成物のしきい値電圧の要求値を満たすかぎり多量に使用してもよい。TN−TFTモード用の組成物において、これらの化合物の好ましい量は40%以下である。より好ましい量は35%以下である。STNまたはTNモード用の組成物において、これらの化合物の好ましい量は70%以下である。より好ましい量は60%以下である。
【0084】
好ましい化合物(2)から(12)は、それぞれ化合物(2−1)〜(2−9)、化合物(3−1)〜(100)、化合物(4−1)〜(4−36)、化合物(5−1)〜(5−60)、化合物(6−1)〜(6−3)、化合物(7−1)〜(7−3)、化合物(8−1)〜(8−5)、化合物(9−1)〜(9−3)、化合物(10−1)〜(10−11)、化合物(11−1)〜(11−16)、および化合物(12−1)〜(12−6)である。これらの化合物において、R1、R、R、R4、R、R6、R、X1、およびXの記号の意味は、本発明の態様の項で記載した記号の意味と同一である。
【0085】
Figure 0004186493
【0086】
Figure 0004186493
【0087】
Figure 0004186493
【0088】
Figure 0004186493
【0089】
Figure 0004186493
【0090】
Figure 0004186493
【0091】
Figure 0004186493
【0092】
Figure 0004186493
【0093】
Figure 0004186493
【0094】
Figure 0004186493
【0095】
Figure 0004186493
【0096】
Figure 0004186493
【0097】
Figure 0004186493
【0098】
Figure 0004186493
【0099】
Figure 0004186493
本発明の組成物は公知の方法によって調製される。例えば、成分である化合物を混合し、加熱によって互いに溶解させる。組成物に適当な添加物を加えて組成物の物性を調整してもよい。このような添加物は当業者によく知られている。液晶のらせん構造を誘起して必要なねじれ角を与える目的でキラルドーパントが添加される。キラルドーパントの例は上記の光学活性化合物(Op−1)〜(Op−12)である。
【0100】
キラルドーパントを組成物に添加してねじれのピッチを調整する。TNおよびTN−TFTモード用の好ましいピッチは40〜200μmの範囲である。STNモード用の好ましいピッチは6〜20μmの範囲である。BTNモード用の好ましいピッチは1.5〜4μmの範囲である。PCモード用の組成物にはキラルドーパントを比較的多量に添加する。ピッチの温度依存性を調整する目的で少なくとも2つのキラルドーパントを添加してもよい。
【0101】
本発明の組成物は、TN、TN−TFT、STN、GH、DS、ECBなどのモード用に使用できる。メロシアニン、スチリル、アゾ、アゾメチン、アゾキシ、キノフタロン、アントラキノン、テトラジンなどの化合物である二色性色素を添加してGHモード用の組成物を調製する。本発明の組成物は、ネマチック液晶をマイクロカプセル化して作製したNCAPおよび液晶中に三次元網目状高分子を形成させたポリマー分散型液晶表示素子(PD−LCD)、例えばポリマーネットワーク液晶表示素子(PN−LCD)など、にも使用できる。
【0102】
【実施例】
第三に、実施例により本発明をさらに詳しく説明する。本発明はこれらの実施例によって制限されない。No.22などの化合物番号は、実施例8で示した化合物に対応する。化合物の相転移温度において、Cr、S、NおよびIsoは、それぞれ、結晶、スメクチック相、ネマチック相、および等方相である。温度の単位は℃である。得られた化合物は核磁気共鳴スペクトル、質量スペクトルなどのデータに基づいて同定した。核磁気共鳴スペクトルにおいて、sはシングレット、dはダブレット、tはトリプレット、qはカルテット、mはマルチプレットである。反応は乾燥した窒素雰囲気下でおこなった。「後処理」は、得られた有機層(抽出液)を炭酸水素ナトリウム水溶液で1回、水で3回洗浄したあと、無水硫酸マグネシウムで乾燥したことを意味する。
【0103】
実施例1
2−(4−(4’−プロピル−3,5−ジフルオロビフェニル)ジフルオロメトキシ)−6−エチルナフタレン(化合物No.22)の合成
Figure 0004186493
1−1段
4’−プロピル−3,5−ジフルオロビフェニル(50.0 g;0.2216 mol)のTHF(500 mL)溶液を−65℃に冷却し、n−ブチルリチウムのヘキサン溶液(165 mL;0.248 mol)をゆっくりと滴下した。同じ温度でさらに1時間攪拌したあと、ジブロモジフルオロメタン(52.1 g;0.248 mol)をゆっくりと滴下した。同じ温度でさらに1時間攪拌したあと、反応混合物を水1Lに加え、n−ヘプタンで抽出した。抽出液を水で3回洗浄し、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去したあと、残査をシリカゲルクロマトグラフィー(溶出液:ヘプタン)で精製し、4’−プロピル−3,5−ジフルオロ−(4−ブロモジフルオロメチル)ビフェニル(60.9 g;0.169 mol;収率 68%)を得た。
【0104】
1−2段
2−メトキシ−6−ブロモナフタレン(20.0 g;0.0842 mol)、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(Pd(dppf)Cl2;0.200g)のTHF(100 mL)溶液に、25℃でエチルマグネシウムブロミドのTHF溶液(126 mL;0.126 mol)を滴下し、さらに2時間攪拌した。反応終了後、反応混合物を1N−塩酸に注ぎ、トルエンで抽出した。抽出液を後処理し、そして減圧下で溶媒を留去したあと、残査を分取用液体クロマトグラフィー(溶出液:メタノール)で精製し、2−メトキシ−6−エチルナフタレン(5.95 g;0.0160 mol;収率 38%)を得た。
【0105】
1−3段
前段で得た2−メトキシ−6−エチルナフタレン(5.95 g;0.0320 mol)のジクロロメタン溶液を−65℃に冷却し、ゆっくりと三臭化ホウ素(9.60 g;0.0384 mol)を滴下した。さらに25℃で7時間攪拌したあと、反応混合物を水に注ぎ、トルエンで抽出した。抽出液を後処理し、そして減圧下で溶媒を留去したあと、残査をシリカゲルクロマトグラフィー(溶出液:トルエン/酢酸エチル)で精製し、6−エチル−2−ナフトール(5.20 g;0.0304 mol;収率 95%)を得た。
【0106】
1−4段
1−1段で得られた4’−プロピル−3,5−ジフルオロ−(4−ブロモジフルオロメチル)ビフェニル(5.00 g;0.0139 mol)、1−3段で得られた6−エチル−2−ナフトール(2.85 g;0.0166 mol)、炭酸カリウム(4.22 g;0.0306 mol)、およびDMF(50 mL)の混合物を110℃で2時間攪拌した。反応終了後、反応混合物を水に加え、トルエンで抽出した。抽出液を後処理し、そして減圧下で溶媒を留去したあと、残査をシリカゲルカラムクロマトグラフィー(溶出液:n−ヘプタン)で精製し、標題の化合物(1.13 g;0.00250 mol;収率 18%)を得た。
【0107】
Cr−S:91.9℃、S−N:96.3℃、N−Iso:101.9℃.
1H−NMR(δppm、CDCl3):0.953−0.983(t, 3H), 1.25−1.34(t, 3H), 1.62−1.71(m, 2H), 2.62−2.66(t, 2H), 2.79−2.82(m, 2H), 7.18(s, 1H), 7.20(s, 1H), 7.27−7.29(d, 2H), 7.37−7.41(m, 2H), 7.47−7.49(m, 2H), 7.62(s, 1H), 7.71(s, 1H), 7.75−7.78(t, 2H).
19F−NMR(δppm):-60.5−-60.7(t, 2F), -111.0−-111.1(m, 2H).
GC−MS(EI):452(M+, 10%), 281(100%).
【0108】
実施例2
2−(4−(4’−プロピル−3,5−ジフルオロビフェニル)ジフルオロメトキシ)−6−エチニルナフタレン(化合物No.23)の合成
Figure 0004186493
2−1段
2−メトキシ−6−ブロモナフタレン(5.00g;0.0211 mol)、ビストリフェニルホスフィンパラジウムクロリド(Pd(PPh3)2Cl2; 0.100 g)トリメチルシリルアセチレン(3.10 g;0.0317 mol)、よう化銅(II)(0.0500 g)、およびトリエチルアミン(50 mL)の混合物を、80℃で6時間攪拌した。反応終了後、反応混合物を水に加え、トルエンで抽出した。有機層を1N−塩酸で1回、水で3回洗浄したあとあと、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去し、残査(5.10 g)と1N−水酸化カリウム溶液(30 mL)、およびメタノール(50 mL)の混合物を、70℃で5時間攪拌した。反応終了後、反応混合物を水に加え、トルエンで抽出した。有機層を1N−塩酸で1回洗浄し、さらに後処理をした。減圧下で溶媒を留去したあと、残査をシリカゲルカラムクロマトグラフィー(溶出液:n−ヘプタン/トルエン)で精製し、2−メトキシ−6−エチニルナフタレン(1.83 g;0.0101 mol;収率 48%)を得た。
【0109】
2−2段
前段で得た2−メトキシ−6−エチニルナフタレン(1.83 g;0.0101 mol)のジクロロメタン(100 mL)溶液を−65℃に冷却し、−60℃以下を維持しながら三臭化ホウ素 3.03 g(0.0121 mol)を滴下した。25℃で7時間攪拌したあと、反応混合物を水に加え、トルエンで抽出した。抽出液を処理し、そして減圧下で溶媒を留去したあと、残査をシリカゲルクロマトグラフィー(溶出液:トルエン/酢酸エチル)で精製し、6−メチニル−2−ナフトール(1.66 g;0.00988 mol;収率 98%)を得た。
【0110】
2−3段
実施例1の1−1段で得られた4’−プロピル−3,5−ジフルオロ−(4−ブロモジフルオロメチル)ビフェニル(2.97 g;0.00825 mol)、前段で得られた6−メチニル−2−ナフトール(1.66 g;0.00988 mol)、炭酸カリウム(2.50 g;0.0182 mol)、およびDMF(30 mL)の混合物を110℃で2時間加熱した。反応終了後、反応混合物を水に加え、トルエンで抽出した。抽出液を後処理し、そして減圧下で溶媒を留去したあと、残査をシリカゲルカラムクロマトグラフィー(溶出液:n−ヘプタン)で精製し、標題の化合物(1.47 g;0.0033 mol;収率 40%)を得た。
【0111】
Cr−N:119.4℃、N−Iso:156.2℃.
1H−NMR(δppm、CDCl3):0.954−0.983(t, 3H), 1.64−1.71(m, 2H), 2.63−2.66(t, 2H), 7.19(s, 1H), 7.21(s, 1H), 7.28−7.29(d, 2H), 7.44−7.45(d, 1H), 7.47−7.49(m, 4H), 7.54(d, 1H), 7.56(d, 1H), 7.73(s, 1H), 7.77−7.81(m, 4H), 8.02(s, 1H).
19F−NMR(δppm):-60.78−-60.86(t, 2F), -110.98−-111.1(m, 2F).
GLC−MS(EI):448(M+).
【0112】
実施例3
2−(4−(4’−ペンチル−3,5−ジフルオロビフェニル)ジフルオロメトキシ)−6−プロピルナフタレン(化合物No.24)の合成
Figure 0004186493
3−1段
4’−ペンチル−3,5−ジフルオロビフェニル(15.0 g;0.0577 mol)のTHF(150 mL)溶液を−65℃に冷却し、n−ブチルリチウムのヘキサン溶液(46.1 mL;0.0692 mol)をゆっくりと滴下した。さらに同じ温度で1時間攪拌したあと、ジブロモジフルオロメタン(14.5 g;0.0692 mol)をゆっくりと滴下した。同じ温度でさらに1時間攪拌しあと、反応混合物を水1Lに注ぎ、n−ヘプタンで抽出した。抽出液を後処理し、そして減圧下で溶媒を留去したあと、残査をシリカゲルクロマトグラフィー(溶出液:ヘプタン)で精製し、4’−ペンチル−3,5−ジフルオロ−(4−ブロモジフルオロメチル)ビフェニル(15.0 g;0.0386 mol;収率 67%)を得た。
【0113】
3−2段
前段で得た2−メトキシ−6−ブロモナフタレン(20.0 g;0.0843 mol)、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(Pd(dppf)Cl2;0.200 g)およびTHFの混合物に、25℃でプロピルマグネシウムクロリドのジエチルエーテル溶液(63.0 mL;0.126 mol)を滴下し、さらに2時間攪拌した。反応終了後、反応混合物を1N−塩酸に加え、トルエンで抽出した。抽出液を後処理し、そして減圧下で溶媒を留去したあと、残査を分取用液体クロマトグラフィー(溶出液:メタノール)で精製し、2−メトキシ−6−プロピルナフタレン(5.70 g;0.0287 mol;収率 38%)を得た。
【0114】
3−3段
前段で得た2−メトキシ−6−プロピルナフタレン(5.70 g;0.0287 mol)のジクロロメタン(50 mL)溶液を−65℃に冷却し、−60℃以下を維持しながら三臭化ホウ素(8.62 g;0.0344 mol)を滴下した。25℃で7時間攪拌したあと、反応混合物を水に注ぎ、トルエンで抽出した。抽出液を水で3回洗浄したあと、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去したあと、シリカゲルクロマトグラフィー(溶出液:トルエン/酢酸エチル)で精製し、6−プロピル−2−ナフトール(5.07 g;0.0273 mol;収率 95%)を得た。
【0115】
3−4段
実施例1の1−1段で得られた4’−ペンチル−3,5−ジフルオロ−(4−ブロモジフルオロメチル)ビフェニル(4.33 g;0.0112 mol)、前段で得られた6−プロピル−2−ナフトール(2.50 g;0.0134 mol)、炭酸カリウム(3.40 g;0.0246 mol)、およびDMF(50 mL)の混合物を110℃で2時間加熱した。反応終了後、反応混合物を水に注ぎ、トルエンで抽出した。抽出液を後処理し、そして減圧下で溶媒を留去したあと、残査をシリカゲルカラムクロマトグラフィー(溶出液:n−ヘプタン)で精製し、標題の化合物(1.65 g;0.00336 mol;収率 30%)を得た。
【0116】
Cr−N:49.2℃、N−Iso:97.4℃.
1H−NMR(δppm、CDCl3):0.891−0.919(t, 3H), 0.959−0.989(t, 3H), 1.34−1.36(m, 4H), 1.65−1.72(m, 2H), 1.72−1.73(m, 2H), 2.64−2.67(t, 2H), 2.72−2.76(t, 2H) 7.18(s, 1H), 7.20(s, 1H), 7.27−7.29(d, 2H), 7.37−7.41(m, 2H), 7.47−7.49(m, 2H), 7.60(s, 1H), 7.71(s, 1H), 7.74−7.77(t, 2H).
19F−NMR(δppm):-60.5−-60.6(t, 2F), -110.9−-111.1(m, 2H).
GC−MS(EI):494(M+, 10%), 309(100%).
【0117】
実施例4
2−(4−(4’−ペンチル−3,5−ジフルオロビフェニル)ジフルオロメトキシ)−5−フルオロ−6−エチルナフタレン(化合物No.45)の合成
Figure 0004186493
4−1段
1−フルオロ−6−メトキシ 2−トリフラート(12.7 g;0.0392 mol)、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(Pd(dppf)Cl2;0.150 g)のTHF(50 mL)溶液に、25℃でエチルマグネシウムブロミドのTHF溶液(59.0 mL;0.0590 mol)を滴下し、さらに2時間攪拌した。反応終了後、反応混合物を1N−塩酸溶液に注ぎ、トルエンで抽出した。抽出液を後処理し、そして減圧下で溶媒を留去したあと、残査を分取用液体クロマトグラフィー(溶出液:メタノール)で精製して、2−メトキシ−5−フルオロ−6−エチルナフタレン(2.16 g;0.0106 mol;収率 27%)を得た。
【0118】
4−2段
前段で得た2−メトキシ−5−フルオロ−6−エチルナフタレン(2.16 g;0.0106 mol)のジクロロメタン(25 mL)溶液を−65℃に冷却し、−60℃以下を維持しながら三臭化ホウ素(3.17 g;0.0126 mol)を滴下した。25℃で7時間攪拌したあと、反応混合物を水に注ぎ、トルエンで抽出した。抽出液を後処理し、そして減圧下で溶媒を留去したあと、残査をシリカゲルクロマトグラフィー(溶出液:トルエン/酢酸エチル)で精製し、5−フルオロ−6−エチル−2−ナフトール(1.89 g;0.0100 mol;収率 94%)を得た。
【0119】
4−3段
実施例3の3−1段で得られた4’−ペンチル−3,5−ジフルオロ−(4−ブロモジフルオロメチル)ビフェニル(2.00 g;0.0051 mol)、前段で得られた6−プロピル−7−フルオロ−2−ナフトール(1.16 g;0.0061 mol)、炭酸カリウム(1.47 g;0.0107 mol)、およびDMF(20 mL)の混合物を110℃で2時間加熱した。反応終了後、反応混合物を水に注ぎ、トルエンで抽出した。抽出液を後処理し、そして減圧下で溶媒を留去したあと、残査をシリカゲルカラムクロマトグラフィー(溶出液:n−ヘプタン)で精製し、標題の化合物(2.08 g;0.00418 mol;収率 82%)を得た。
GC−MS(EI):498(M+, 10%), 309(100%).
【0120】
実施例5
2−(4−(4’−プロピルビフェニル)ジフルオロメトキシ)−6−プロピルナフタレン(化合物No.46)の合成
Figure 0004186493
5−1段
4−(4−プロピルフェニル)ベンゾイックアシッド(10.0 g;0.0417 mol)、トルエン(10 mL)、イソオクタン(10 mL)、プロパンジチオール(5.85 g;0.0542 mol)の混合物に、60℃でトリフルオロメタンスルホン酸無水物(8.12 g;0.0542 mol)を滴下した。生成した水を取り除きながら110℃で2時間加熱した。反応混合物を冷却したあと、ジエチルエーテルを加え、さらに−5℃まで冷却した。生成した結晶を濾過して、2−(4’−プロピルビフェニル)ジチアリニウム・トリフラート(11.6 g;0.0250 mol;収率 60%)を得た。
【0121】
5−2段
実施例3の第3−3段で得た6−プロピル−2−ナフトール(5.12g;0.0275 mol)、トリエチルアミン(3.04 g;0.030 mol)、塩化メチレン(50 mL)の混合物を−70℃に冷却し、−65℃以下を維持しながら、前段で得た2−(4’−プロピルビフェニル)ジチアリニウム・トリフラート(11.5 g;0.0250 mol)の塩化メチレン溶液を滴下し、さらに2時間攪拌した。次に、−65℃以下を維持しながらEt3N・3HF(20.2 mL;0.125 mol)を滴下し、さらに1時間攪拌した。次いで、−65℃以下を維持しながら臭素(20.0 g;0.125 mol)を滴下し、さらに1時間攪拌したあと、徐々に0℃まで温度を上げた。反応混合物を2N−水酸化ナトリウムの水溶液に加えた。有機層を後処理し、そして減圧下で溶媒を留去したあと、残査をシリカゲルクロマトグラフィー(溶出液:n−ヘプタン)で精製し、標題の化合物(2.58 g;0.0063 mol;収率 25%)を得た。このものは液晶相を有した。
GC−MS(EI):414(M+, 10%), 245(100%).
【0122】
実施例6
2−(4−(4−ペンチルシクロヘキシル)ジフルオロメトキシ)−6−エチルナフタレン(化合物No.1)の合成
Figure 0004186493
6−1段
4−ペンチルシクロヘキサンカルボン酸(3.50 g;0.0177 mol)、プロパンジチオール(2.47 g;0.0228 mol)の混合物に、60℃でトリフルオロメタンスルホン酸無水物(2.90 g;0.0193 mol)を滴下した。生成した水を取り除きながら110℃で1時間加熱した。反応終了後、反応混合物を0℃に冷却してジエチルエーテルを加えた。生成した結晶を濾過して、2−(4−ペンチルシクロヘキシル)ジチアリニウム・トリフラート(4.42 g;0.0105 mol;収率 59%)を得た。
【0123】
6−2段
実施例1の1−3段で得た6−エチル−2−ナフトール(1.99g;0.0116 mol)、トリエチルアミン(1.27 g;0.0126 mol)、塩化メチレン(20 mL)の混合物を−70℃に冷却し、−65℃以下を維持しながら、前段で得た2−(4ペンチルシクロヘキシル)ジチアリニウム・トリフラート(4.41 g;0.0105 mol)の塩化メチレン溶液を滴下し、さらに2時間攪拌した。次に、−65℃以下を維持しながらEt3N・3HF(8.47 mL;0.0525 mol)を滴下し、さらに1時間攪拌した。次に、−65℃以下を維持しながら臭素(8.40 g;0.0525 mol)を滴下した。さらに1時間攪拌したあと、徐々に0℃まで温度を上げた。反応終了後、反応混合物を2N−水酸化ナトリウムの水溶液に加えた。有機層を後処理し、そして減圧下で溶媒を留去したあと、残査をシリカゲルクロマトグラフィー(溶出液:n−ヘプタン)で精製し、標題の化合物(1.10 g;0.00294 mol;収率 28%)を得た。このものは液晶相を有した。
GC−MS(EI):374(M+, 10%), 203(100%).
【0124】
実施例7
2−(4−(4’−ペンチル−3,5−ジフルオロビフェニル)ジフルオロメトキシ)−6−(4−エチルフェニル)ナフタレン(化合物No.35)の合成
Figure 0004186493
7−1段
2−メトキシ−6−ブロモナフタレン(2.50 g;0.0105 mol)、4−エチルフェニルボロン酸(1.90 g;0.0127 mol)、テトラキス(トリフェニルホスフィン)パラジウム(Pd(PPh3)4;0.050 g)、炭酸カリウム(3.20 g;0.0232 mol)、トルエン(25 mL)、およびエタノール(25 mL)の混合物を、80℃で6時間加熱した。反応終了後、反応混合物を水に注ぎ、トルエンで抽出した。抽出液を後処理し、そして減圧下で溶媒を留去したあと、残査をシリカゲルカラムクロマトグラフィー(溶出液:トルエン/酢酸エチル)で精製し、2−メトキシ−6−(4−エチルフェニル)ナフタレン(2.62 g;0.0100 mol;収率 95%)を得た。
【0125】
7−2段
前段で得た2−メトキシ−6−(4−エチルフェニル)ナフタレン(2.62 g;0.0100 mol)のジクロロメタン(50 mL)溶液を−65℃に冷却し、−60℃以下の温度を維持しながら三臭化ホウ素(3.01 g;0.0120 mol)を滴下した。25℃で7時間攪拌したあと、反応混合物を水に注ぎ、トルエンで抽出した。有機層を水で3回洗浄したあと、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去したあと、残査をシリカゲルクロマトグラフィー(溶出液:トルエン/酢酸エチル)で精製し、6−(4−エチルフェニル)−2−ナフトール(2.23 g;0.0090 mol;収率 90%)を得た。
【0126】
7−3段
実施例3の3−1段で得られた4’−ペンチル−3,5−ジフルオロ−(4−ブロモジフルオロメチル)ビフェニル(2.85 g;0.0073 mol)、前段で得られた6−(4−エチルフェニル)−2−ナフトール(2.00 g;0.0081 mol)、炭酸カリウム(2.22 g;0.016 mol)、およびDMF(50 mL)の混合物を110℃で2時間加熱した。反応終了後、反応混合物を水に加え、トルエンで抽出した。抽出液を後処理し、そして減圧下で溶媒を留去したあと、残査をシリカゲルクロマトグラフィー(溶出液:n−ヘプタン)で精製し、標題の化合物(1.33 g;0.0028 mol;収率 38%)を得た。このものは液晶相を有した。
GC-MS(EI):480(M+, 10%), 309(100%).
【0127】
実施例8
化合物(1)の合成法に関する記載と実施例1〜7の記載に基づいて、下記の化合物No.1〜No.50を合成する。これらには実施例1〜7で合成された化合物も含まれる。
【0128】
Figure 0004186493
【0129】
Figure 0004186493
【0130】
Figure 0004186493
【0131】
Figure 0004186493
【0132】
実施例9
ネマチック−等方性液体の相転移温度(NI)、粘度(η)、光学異方性(Δn)、誘電率異方性(Δε)、およびしきい値電圧(Vth)の測定法は使用例1の直前に記載した。
【0133】
組成物Aの成分は、4−(4−プロピルシクロヘキシル)ベンゾニトリル(24重量%)、4−(4−ペンチルシクロヘキシル)ベンゾニトリル(36重量%)、4−(4−ヘプチルシクロヘキシル)ベンゾニトリル(25重量%)、および4−(4−(4−ペンチルシクロヘキシル)フェニル)ベンゾニトリル(15重量%)である。組成物Aの物性を測定した。NI=71.7 ℃、η=26.3 mPa・s、Δn=0.137、Δε=11.0、Vth=1.78V(セルギャップは8.8μm)。
【0134】
この組成物A(85重量%)と実施例1で得られた化合物No.22(15重量%)とを混合して組成物Bを調製した。この組成物Bの物性を測定した。NI=72.6℃、Δn=0.145、Δε=10.80。化合物No.22の物性値を混合比と測定値とから、外挿法により算出した。NI=77.7℃、Δn=0.190、Δε=8.5、Vth=1.79V(セルギャップは8.8μm)。この組成物Bを−20℃のフリーザー中で30日間保存したが、結晶は析出しなかった。
【0135】
実施例10
実施例9に記載した組成物A(85重量%)と実施例2で得られた化合物No.23(15重量%)とを混合し、組成物Cを調製した。組成物Cの物性を測定した。NI=84.5℃、Δn=0.161、Δε=10.80。化合物No.23の物性値を混合比と測定値とから、外挿法により算出した。NI=157.0℃、Δn=0.2970、Δε=8.00、Vth=2.02V(セルギャップは8.8μm)。この組成物を−20℃のフリーザー中で30日間保存したが、結晶は析出しなかった。
【0136】
Figure 0004186493
【0137】
本発明の代表的な組成物を使用例1〜38にまとめた。最初に、組成物の成分である化合物とその量(重量%)を示した。化合物は上記の表1の取り決めに従い、左末端基、結合基、環構造、および右末端基の記号によって表示した。1,4−シクロヘキシレンおよび1,3−ジオキサン−2,5−ジイルの立体配置はトランスである。末端基の記号がない場合は、末端基が水素であることを意味する。かっこ中の番号は実施例8で示した化合物に対応する。次に組成物の物性値を示した。物性値の測定は、日本電子機械工業規格(Standard of Electronic Industries Association of Japan)、EIAJ ED−2521Aに記載された方法、またはこれを修飾した方法に従った。
【0138】
ネマチック−等方性液体の相転移温度(NI;℃):偏光顕微鏡を備えた融点測定装置のホットプレートに試料を置き、1℃/分の速度で加熱した。試料の一部がネマチック相から等方性液体に変化したときの温度を測定した。
【0139】
粘度(η;20℃で測定;mPa・s):粘度の測定にはE型粘度計を用いた。
【0140】
光学異方性(屈折率異方性;Δn;25℃で測定):光学異方性は、波長が589nmの光によりアッベ屈折計を用いて測定した。
【0141】
誘電率異方性(Δε;25℃で測定)
1)Δεの値が正の組成物:2枚のガラス基板の間隔(ギャップ)が9μm、ツイスト角が80度の液晶セルに試料を入れた。このセルに20ボルトを印加して、液晶分子の長軸方向における誘電率(ε‖)を測定した。0.5ボルトを印加して、液晶分子の短軸方向における誘電率(ε⊥)を測定した。誘電率異方性の値は、Δε=ε‖−ε⊥、の式から計算した。
【0142】
2)Δεの値が負の組成物:ホメオトロピック配向処理した液晶セルに試料を入れ、0.5ボルトを印加して誘電率(ε‖)を測定した。ホモジニアス配向処理した液晶セルに試料を入れ、0.5ボルトを印加して誘電率(ε⊥)を測定した。誘電率異方性の値は、Δε=ε‖−ε⊥、の式から計算した。
【0143】
しきい値電圧(Vth;25℃で測定;ボルト):2枚のガラス基板の間隔(ギャップ)が(0.5/Δn)μmであり、ツイスト角が80度である、ノーマリーホワイトモード(normally white mode)の液晶表示素子に試料を入れた。Δnは上記の方法で測定した光学異方性の値である。この素子に周波数が32Hzである矩形波を印加した。矩形波の電圧を上昇させ、素子を通過する光の透過率が90%になったときの電圧の値を測定した。
【0144】
使用例1
5−BB(F,F)CF2ONp−3 (No.24) 6.0%
7−BCF2ONp(F,F)B−V (No.9) 10.0%
5−BBCF2ONp−V (No.21) 4.0%
1V2−BEB(F,F)−C 5.0%
3−HB−C 15.0%
1−BTB−3 5.0%
2−BTB−1 10.0%
3−HH−4 11.0%
3−HHB−1 11.0%
3−HHB−3 9.0%
3−H2BTB−2 4.0%
3−H2BTB−3 4.0%
3−HB(F)TB−2 6.0%
NI=90.4(℃);η=23.8(mPa・s);Δn=0.167;
Δε=7.2;Vth=2.09(V).
【0145】
使用例2
7−BCF2ONp(F,F)B−V (No.9) 7.0%
V−HHCF2ONp(F,F)−1 (No.16) 2.0%
5−BB(F,F)CF2ONpB−2 (No.35) 4.0%
2O1−BEB(F)−C 5.0%
3O1−BEB(F)−C 15.0%
4O1−BEB(F)−C 13.0%
5O1−BEB(F)−C 13.0%
2−HHB(F)−C 8.0%
3−HHB(F)−C 15.0%
3−HB(F)TB−3 4.0%
3−HB(F)TB−4 4.0%
3−HHB−1 8.0%
3−HHB−O1 2.0%
NI=87.9(℃);η=83.8(mPa・s);Δn=0.156;
Δε=30.9;Vth=0.85(V).
【0146】
使用例3
5−HCF2ONp−2 (No.1) 2.0%
3−B(F,F)CF2ONp−2 (No.5) 2.0%
3−BB(F,F)CF2ONp−2 (No.22) 3.0%
7−BCF2ONp(F,F)B−V (No.9) 6.0%
5−BBCF2ONp−V (No.21) 5.0%
5−PyB−F 2.0%
3−PyB(F)−F 4.0%
2−BB−C 5.0%
4−BB−C 4.0%
5−BB−C 5.0%
3−PyB−2 2.0%
4−PyB−2 2.0%
6−PyB−O5 3.0%
6−PyB−O6 3.0%
6−PyB−O7 3.0%
3−PyBB−F 6.0%
4−PyBB−F 6.0%
3−HHB−1 6.0%
3−HHB−3 8.0%
2−H2BTB−2 4.0%
2−H2BTB−3 4.0%
3−H2BTB−2 5.0%
3−H2BTB−3 5.0%
3−H2BTB−4 5.0%
NI=92.1(℃);η=33.9(mPa・s);Δn=0.201;
Δε=6.2;Vth=2.26(V).
【0147】
使用例4
3−B(F,F)CF2ONp−2 (No.5) 3.0%
3−BB(F,F)CF2ONp−2 (No.22) 5.0%
7−BCF2ONp(F,F)B−V (No.9) 5.0%
3−HHCF2ONp(F)B(F)−1 (No.27) 3.0%
3−GB−C 10.0%
4−GB−C 5.0%
2−BEB−C 12.0%
3−BEB−C 4.0%
3−PyB(F)−F 3.0%
3−HEB−O4 8.0%
4−HEB−O2 6.0%
5−HEB−O1 6.0%
5−HEB−O2 4.0%
5−HEB−5 5.0%
4−HEB−5 5.0%
1O−BEB−2 4.0%
3−HHB−1 6.0%
3−HHEBB−C 3.0%
3−HBEBB−C 3.0%
NI=71.0(℃);η=37.9(mPa・s);Δn=0.131;
Δε=11.0;Vth=1.33(V).
【0148】
使用例5
5−HCF2ONp−2 (No.1) 2.0%
3−BB(F,F)CF2ONp−T (No.23) 3.0%
7−BCF2ONp(F,F)B−V (No. 9) 9.0%
5−BBCF2ONp−V (No.21) 3.0%
3−HB−C 9.0%
7−HB−C 3.0%
1O1−HB−C 10.0%
3−HB(F)−C 10.0%
3−PyB−2 2.0%
4−PyB−2 2.0%
1O1−HH−3 7.0%
2−BTB−O1 7.0%
3−HHB−1 7.0%
3−HHB−F 4.0%
3−HHB−O1 4.0%
3−HHB−3 8.0%
3−H2BTB−2 3.0%
2−PyBH−3 4.0%
3−PyBB−2 3.0%
NI=82.4(℃);η=20.0(mPa・s);Δn=0.150;
Δε=8.0;Vth=1.78(V).
【0149】
使用例6
3−BB(F,F)CF2ONp−T (No.23) 2.0%
5−BBCF2ONp−V (No.21) 6.0%
2−BEB(F)−C 5.0%
3−BEB(F)−C 4.0%
4−BEB(F)−C 12.0%
1V2−BEB(F,F)−C 10.0%
3−HH−EMe 10.0%
3−HB−O2 18.0%
7−HEB−F 2.0%
3−HHEB−F 2.0%
3−HBEB−F 4.0%
2O1−HBEB(F)−C 2.0%
3−HB(F)EB(F)−C 2.0%
3−HBEB(F,F)−C 2.0%
3−HHB−F 4.0%
3−HHB−O1 4.0%
3−HHB−3 7.0%
3−HEBEB−F 2.0%
3−HEBEB−1 2.0%
NI=78.9(℃);η=36.6(mPa・s);Δn=0.131;
Δε=25.0;Vth=0.89(V).
【0150】
使用例7
3−BB(F,F)CF2ONp−T (No.23) 4.0%
5−BBCF2ONp−V (No.21) 7.0%
2−BEB(F)−C 5.0%
3−BEB(F)−C 4.0%
4−BEB(F)−C 12.0%
1V2−BEB(F,F)−C 16.0%
3−HB−O2 10.0%
3−HH−4 3.0%
3−HHB−F 3.0%
3−HHB−1 8.0%
3−HHB−O1 4.0%
3−HBEB−F 4.0%
3−HHEB−F 7.0%
3−H2BTB−2 4.0%
3−H2BTB−4 4.0%
3−HB(F)TB−2 5.0%
NI=89.0(℃);η=41.6(mPa・s);Δn=0.155;
Δε=28.2;Vth=1.05(V).
【0151】
使用例8
5−HCF2ONp−2 (No.1) 14.0%
3−BB(F,F)CF2ONp−2 (No.22) 6.0%
V−HHCF2ONp(F,F)−1 (No.16) 4.0%
2−BEB−C 12.0%
3−BEB−C 4.0%
4−BEB−C 6.0%
3−HB−C 14.0%
3−HEB−O4 12.0%
4−HEB−O2 8.0%
5−HEB−O1 8.0%
5−HEB−O2 5.0%
3−HHB−1 7.0%
NI=61.8(℃);η=26.7(mPa・s);Δn=0.116;
Δε=10.1;Vth=1.34(V).
【0152】
使用例9
5−HCF2ONp−2 (No.1) 7.0%
3−B(F,F)CF2ONp−2 (No.5) 7.0%
3−BB(F,F)CF2ONp−2 (No.22) 12.0%
5−BBCF2ONp−V (No.21) 6.0%
2−BEB−C 10.0%
5−BB−C 12.0%
2−BTB−1 10.0%
1O−BEB−2 10.0%
2−HHB−1 4.0%
3−HHB−F 4.0%
3−HHB−1 7.0%
3−HHB−O1 4.0%
3−HHB−3 7.0%
NI=63.6(℃);η=21.5(mPa・s);Δn=0.156;
Δε=6.9;Vth=1.74(V).
【0153】
使用例10
5−HCF2ONp−2 (No.1) 6.0%
3−BB(F,F)CF2ONp−T (No.23) 7.0%
5−BB(F,F)CF2ONp−3 (No.24) 4.0%
5−BBCF2ONp−V (No.21) 7.0%
2−HB−C 5.0%
3−HB−C 6.0%
3−HB−O2 15.0%
2−BTB−1 3.0%
3−HHB−1 8.0%
3−HHB−F 4.0%
3−HHB−O1 5.0%
3−HHB−3 7.0%
3−HHEB−F 4.0%
2−HHB(F)−F 7.0%
3−HHB(F)−F 7.0%
3−HHB(F,F)−F 5.0%
NI=100.9(℃);η=23.4(mPa・s);Δn=0.126;
Δε=4.7;Vth=2.54(V).
【0154】
使用例11
3−BB(F,F)CF2ONp−T (No.23) 5.0%
7−BCF2ONp(F,F)B−V (No.9) 4.0%
5−BBCF2ONp−V (No.21) 7.0%
3−BEB(F)−C 8.0%
3−HB−C 8.0%
V−HB−C 8.0%
1V−HB−C 4.0%
3−HB−O2 3.0%
3−HH−2V 14.0%
3−HH−2V1 7.0%
V2−HHB−1 8.0%
3−HHB−1 5.0%
3−HHEB−F 7.0%
3−H2BTB−2 6.0%
3−H2BTB−3 6.0%
NI=99.2(℃);η=19.4(mPa・s);Δn=0.146;
Δε=8.4;Vth=2.22(V).
【0155】
使用例12
5−HCF2ONp−2 (No.1) 6.0%
3−BB(F,F)CF2ONp−2 (No.22) 6.0%
5−BB(F,F)CF2ONp−3 (No.24) 4.0%
7−BCF2ONp(F,F)B−V (No.9) 12.0%
5−BB(F,F)CF2ONpB−2 (No.35) 3.0%
V2−HB−C 6.0%
1V2−HB−C 6.0%
3−HB−C 12.0%
3−HB(F)−C 5.0%
2−BTB−1 2.0%
3−HH−4 8.0%
3−HH−VFF 6.0%
2−HHB−C 3.0%
3−HHB−C 3.0%
3−HB(F)TB−2 8.0%
3−H2BTB−2 5.0%
3−H2BTB−3 5.0%
NI=87.8(℃);η=18.4(mPa・s);Δn=0.164;
Δε=8.3;Vth=2.01(V).
【0156】
使用例13
5−HCF2ONp−2 (No.1) 5.0%
5−BBCF2ONp−V (No.21) 7.0%
3−HHCF2ONp(F)B(F)−1 (No.27) 2.0%
5−BEB(F)−C 5.0%
V−HB−C 6.0%
5−PyB−C 6.0%
4−BB−3 11.0%
3−HH−2V 10.0%
5−HH−V 11.0%
V−HHB−1 7.0%
V2−HHB−1 8.0%
3−HHB−1 9.0%
1V2−HBB−2 10.0%
3−HHEBH−3 3.0%
NI=92.1(℃);η=15.0(mPa・s);Δn=0.123;
Δε=4.8;Vth=2.37(V).
【0157】
使用例14
5−HCF2ONp−2 (No.1) 5.0%
3−BB(F,F)CF2ONp−2 (No.22) 7.0%
3−BB(F,F)CF2ONp−T (No.23) 4.0%
5−BB(F,F)CF2ONpB−2 (No.35) 4.0%
1V2−BEB(F,F)−C 8.0%
3−HB−C 5.0%
V2V−HB−C 7.0%
V2V−HH−3 19.0%
3−HB−O2 4.0%
3−HHB−1 10.0%
3−HHB−3 15.0%
3−HB(F)TB−3 4.0%
3−H2BTB−2 4.0%
3−H2BTB−3 4.0%
NI=102.2(℃);η=22.6(mPa・s);Δn=0.135;
Δε=7.8;Vth=2.12(V).
【0158】
使用例15
5−HCF2ONp−2 (No.1) 5.0%
7−BCF2ONp(F,F)B−V (No.9) 3.0%
5−BBCF2ONp−V (No.21) 3.0%
5−BB(F,F)CF2ONpB−2 (No.35) 5.0%
V2−HB−TC 10.0%
3−HB−TC 10.0%
3−HB−C 5.0%
5−HB−C 4.0%
5−BB−C 3.0%
2−BTB−1 10.0%
2−BTB−O1 5.0%
3−HH−4 5.0%
3−HHB−1 10.0%
3−HHB−3 11.0%
3−H2BTB−2 3.0%
3−HB(F)TB−2 3.0%
5−BTB(F)TB−3 5.0%
NI=101.4(℃);η=15.2(mPa・s);Δn=0.198;
Δε=6.7;Vth=2.13(V).
【0159】
使用例16
5−HCF2ONp−2 (No.1) 9.0%
5−BB(F,F)CF2ONp−3 (No.24) 4.0%
V−HHCF2ONp(F,F)−1 (No.16) 4.0%
5−BBCF2ONp−V (No.21) 5.0%
1V2−BEB(F,F)−C 6.0%
3−HB−C 9.0%
2−BTB−1 10.0%
5−HH−VFF 30.0%
1−BHH−VFF 4.0%
1−BHH−2VFF 6.0%
3−H2BTB−2 5.0%
3−H2BTB−3 4.0%
3−HHB−1 4.0%
NI =80.2(℃);η=13.0(mPa・s);Δn=0.132;
Δε=6.5;Vth=2.05(V).
【0160】
使用例17
5−HCF2ONp−2 (No.1) 9.0%
5−BB(F,F)CF2ONp−3 (No.24) 5.0%
V−HHCF2ONp(F,F)−1 (No.16) 5.0%
5−BB(F,F)CF2ONpB−2 (No.35) 4.0%
5−HBCF2OB(F,F)−C 3.0%
3−HB(F,F)CF2OB(F,F)−C 3.0%
3−HB−C 9.0%
2−BTB−1 10.0%
5−HH−VFF 30.0%
1−BHH−VFF 4.0%
1−BHH−2VFF 6.0%
3−H2BTB−3 4.0%
3−H2BTB−4 4.0%
3−HHB−1 4.0%
NI =83.2(℃);η=15.3(mPa・s);Δn=0.130;
Δε=4.7;Vth=2.50(V).
【0161】
使用例18
3−BB(F,F)CF2ONp−2 (No.22) 17.0%
5−BB(F,F)CF2ONp−3 (No.24) 10.0%
7−BCF2ONp(F,F)B−V (No.9) 13.0%
3−HHB(F)−F 17.0%
5−HHB(F)−F 16.0%
2−H2HB(F)−F 10.0%
3−H2HB(F)−F 5.0%
2−HBB(F)−F 6.0%
3−HBB(F)−F 6.0%
NI=98.6(℃);η=28.1(mPa・s);Δn=0.134;
Δε=5.7;Vth=2.12(V).
【0162】
使用例19
3−BB(F,F)CF2ONp−2 (No.22) 10.0%
5−BB(F,F)CF2ONp−3 (No.24) 16.0%
5−BBCF2ONp−V (No.21) 3.0%
7−HB(F,F)−F 3.0%
3−HB−O2 7.0%
3−HHB(F)−F 10.0%
5−HHB(F)−F 10.0%
2−HBB(F)−F 9.0%
3−HBB(F)−F 9.0%
2−HBB−F 4.0%
3−HBB−F 4.0%
3−HBB(F,F)−F 5.0%
5−HBB(F,F)−F 10.0%
NI=86.5(℃);η=27.9(mPa・s);Δn=0.139;
Δε=5.7;Vth=2.03(V).
【0163】
使用例20
5−HCF2ONp−2 (No.1) 8.0%
3−BB(F,F)CF2ONp−T (No.23) 3.0%
5−BB(F,F)CF2ONp−3 (No.24) 8.0%
5−BB(F,F)CF2ONpB−2 (No.35) 3.0%
5−HB−CL 8.0%
3−HH−4 12.0%
3−HH−5 4.0%
3−HHB−F 4.0%
3−HHB−CL 3.0%
4−HHB−CL 4.0%
3−HHB(F)−F 10.0%
4−HHB(F)−F 9.0%
5−HHB(F)−F 9.0%
5−HBB(F)−F 4.0%
5−HBBH−1O1 3.0%
3−HHBB(F,F)−F 2.0%
4−HHBB(F,F)−F 3.0%
3−HH2BB(F,F)−F 3.0%
NI=115.1(℃);η=21.5(mPa・s);Δn=0.110;
Δε=4.1;Vth=2.54(V).
【0164】
使用例21
5−HCF2ONp−2 (No.1) 5.0%
3−BB(F,F)CF2ONp−2 (No.22) 8.0%
7−BCF2ONp(F,F)B−V (No.9) 10.0%
3−HHB(F,F)−F 9.0%
3−H2HB(F,F)−F 8.0%
4−H2HB(F,F)−F 8.0%
3−HBB(F,F)−F 21.0%
5−HBB(F,F)−F 10.0%
3−H2BB(F,F)−F 5.0%
5−HHBB(F,F)−F 3.0%
5−HHEBB−F 2.0%
3−HH2BB(F,F)−F 3.0%
4−HBBH−1O1 4.0%
5−HBBH−1O1 4.0%
NI=99.3(℃);η=32.7(mPa・s);Δn=0.134;
Δε=8.9;Vth=1.78(V).
【0165】
使用例22
3−BB(F,F)CF2ONp−2 (No.22) 10.0%
5−BB(F,F)CF2ONp−3 (No.24) 7.0%
5−HB−F 12.0%
6−HB−F 9.0%
7−HB−F 7.0%
3−HHB−OCF3 7.0%
4−HHB−OCF3 7.0%
5−HHB−OCF3 5.0%
3−HH2B−OCF3 4.0%
5−HH2B−OCF3 4.0%
3−HHB(F,F)−OCF3 5.0%
3−HBB(F)−F 10.0%
3−HH2B(F)−F 3.0%
3−HB(F)BH−3 3.0%
5−HBBH−3 3.0%
3−HHB(F,F)−OCF2H 4.0%
NI=83.8(℃);η=17.7(mPa・s);Δn=0.105;
Δε=4.5;Vth=2.38(V).
【0166】
使用例23
3−BB(F,F)CF2ONp−2 (No.22) 10.0%
3−BB(F,F)CF2ONp−T (No.23) 5.0%
5−BB(F,F)CF2ONp−3 (No.24) 7.0%
7−BCF2ONp(F,F)B−V (No.9) 10.0%
2−HHB(F)−F 3.0%
2−HBB(F)−F 7.0%
3−HBB(F)−F 7.0%
4−HBB(F)−F 2.0%
5−HBB(F)−F 8.0%
2−H2BB(F)−F 10.0%
3−HBB(F,F)−F 12.0%
5−HBB(F,F)−F 6.0%
2−HHBB(F,F)−F 5.0%
3−HHBB(F,F)−F 5.0%
3−HHB−F 3.0%
NI=97.6(℃);η=35.4(mPa・s);Δn=0.163;
Δε=7.1;Vth=1.95(V).
【0167】
使用例24
3−BB(F,F)CF2ONp−2 (No.22) 3.0%
7−BCF2ONp(F,F)B−V (No.9) 10.0%
V−HHCF2ONp(F,F)−1 (No.16) 3.0%
5−HB−CL 11.0%
3−HH−4 8.0%
3−HBB(F,F)−F 20.0%
5−HBB(F,F)−F 5.0%
3−HHB(F,F)−F 8.0%
3−HHEB(F,F)−F 10.0%
4−HHEB(F,F)−F 3.0%
2−HBEB(F,F)−F 3.0%
3−HBEB(F,F)−F 5.0%
5−HBEB(F,F)−F 3.0%
3−HHBB(F,F)−F 3.0%
3−HHB−1 5.0%
NI=82.2(℃);η=19.5(mPa・s);Δn=0.115;
Δε=8.5;Vth=1.56(V).
【0168】
使用例25
3−B(F,F)CF2ONp−2 (No.5) 3.0%
3−BB(F,F)CF2ONp−2 (No.22) 4.0%
5−BB(F,F)CF2ONp−3 (No.24) 4.0%
5−BBCF2ONp−V (No.21) 11.0%
7−HB(F)−F 6.0%
5−H2B(F)−F 3.0%
3−HB−O2 4.0%
3−HH−4 12.0%
2−HHB(F)−F 11.0%
3−HHB(F)−F 11.0%
2−HBB(F)−F 2.0%
3−HBB(F)−F 2.0%
3−HBB(F,F)−F 3.0%
2−HHBB(F,F)−F 4.0%
3−HHBB(F,F)−F 5.0%
3−HHEB−F 4.0%
3−HHB−1 7.0%
3−HHB−F 4.0%
NI=100.8(℃);η=20.6(mPa・s);Δn=0.111;
Δε=4.4;Vth=2.29(V).
【0169】
使用例26
5−HCF2ONp−2 (No.1) 8.0%
7−BCF2ONp(F,F)B−V (No.9) 16.0%
3−HH−4 4.0%
3−H2HB(F,F)−F 10.0%
4−H2HB(F,F)−F 10.0%
3−HBB(F,F)−F 33.0%
5−HBB(F,F)−F 16.0%
3−HHBB(F,F)−F 3.0%
NI=65.0(℃);η=25.4(mPa・s);Δn=0.122;
Δε=8.7;Vth=1.47(V).
【0170】
使用例27
3−B(F,F)CF2ONp−2 (No.5) 2.0%
3−BB(F,F)CF2ONp−2 (No.22) 10.0%
5−BB(F,F)CF2ONp−3 (No.24) 5.0%
7−BCF2ONp(F,F)B−V (No.9) 3.0%
5−BB(F,F)CF2ONpB−2 (No.35) 3.0%
7−HB(F,F)−F 3.0%
3−H2HB(F,F)−F 12.0%
3−HHB(F,F)−F 10.0%
3−HBB(F,F)−F 10.0%
3−HHEB(F,F)−F 10.0%
4−HHEB(F,F)−F 3.0%
2−HBEB(F,F)−F 3.0%
3−HBEB(F,F)−F 5.0%
5−HBEB(F,F)−F 3.0%
3−HGB(F,F)−F 15.0%
3−HHBB(F,F)−F 3.0%
NI=76.8(℃);η=34.4(mPa・s);Δn=0.112;
Δε=12.9;Vth=1.41(V).
【0171】
使用例28
3−B(F,F)CF2ONp−2 (No.5) 3.0%
3−BB(F,F)CF2ONp−2 (No.22) 5.0%
3−BB(F,F)CF2ONp−T (No.23) 5.0%
5−H4HB(F,F)−F 7.0%
5−H4HB−OCF3 15.0%
3−H4HB(F,F)−CF3 8.0%
5−H4HB(F,F)−CF3 10.0%
3−HB−CL 3.0%
5−HB−CL 4.0%
2−H2BB(F)−F 5.0%
3−H2BB(F)−F 10.0%
3−HHB−OCF3 5.0%
3−H2HB−OCF3 5.0%
V−HHB(F)−F 5.0%
3−HHB(F)−F 5.0%
3−HBEB(F,F)−F 5.0%
NI=70.0(℃);η=30.3(mPa・s);Δn=0.114;
Δε=8.5;Vth=1.74(V).
【0172】
使用例29
3−BB(F,F)CF2ONp−2 (No.22) 5.0%
5−BB(F,F)CF2ONp−3 (No.24) 7.0%
7−BCF2ONp(F,F)B−V (No.9) 3.0%
5−HB−CL 17.0%
7−HB(F,F)−F 3.0%
3−HH−4 10.0%
3−HH−5 5.0%
3−HB−O2 15.0%
3−H2HB(F,F)−F 5.0%
3−HHB(F,F)−F 3.0%
2−HHB(F)−F 7.0%
3−HHB(F)−F 7.0%
3−HHB−1 8.0%
3−HHB−O1 5.0%
NI=70.2(℃);η=14.9(mPa・s);Δn=0.092;
Δε=3.0;Vth=1.98(V).
【0173】
使用例30
5−HCF2ONp−2 (No.1) 11.0%
3−BB(F,F)CF2ONp−2 (No.22) 6.0%
5−BB(F,F)CF2ONp−3 (No.24) 9.0%
7−BCF2ONp(F,F)B−V (No.9) 3.0%
V−HHCF2ONp(F,F)−1 (No.16) 6.0%
5−HB−CL 4.0%
4−HHB(F)−F 4.0%
5−HHB(F)−F 9.0%
3−HHB(F,F)−F 8.0%
3−H2HB(F,F)−F 6.0%
3−HBB(F,F)−F 11.0%
2−HHBB(F,F)−F 6.0%
3−GHB(F,F)−F 3.0%
4−GHB(F,F)−F 8.0%
5−GHB(F,F)−F 6.0%
NI=83.1(℃);η=31.0(mPa・s);Δn=0.114;
Δε=8.7;Vth=1.27(V).
【0174】
使用例31
5−HCF2ONp−2 (No.1) 5.0%
3−BB(F,F)CF2ONp−2 (No.22) 7.0%
5−BB(F,F)CF2ONp−3 (No.24) 3.0%
7−BCF2ONp(F,F)B−V (No.9) 10.0%
3−HHB(F)−F 8.0%
5−HHB(F)−F 7.0%
3−HHB(F,F)−F 8.0%
3−HBB(F,F)−F 11.0%
3−H2HB(F,F)−F 5.0%
3−HHEB(F,F)−F 10.0%
2−HBEB(F,F)−F 2.0%
3−HBEB(F,F)−F 3.0%
3−GHB(F,F)−F 3.0%
4−GHB(F,F)−F 7.0%
5−GHB(F,F)−F 7.0%
3−HHBB(F,F)−F 4.0%
NI=81.5(℃);η=35.7(mPa・s);Δn=0.112;
Δε=10.5;Vth=1.12(V).
【0175】
使用例32
5−HCF2ONp−2 (No.1) 3.0%
3−B(F,F)CF2ONp−2 (No.5) 3.0%
7−HB(F)−F 4.0%
5−HB−CL 3.0%
3−HH−4 9.0%
3−HH−EMe 20.0%
3−HHEB(F,F)−F 10.0%
4−HHEB(F,F)−F 5.0%
3−HHEB−F 8.0%
5−HHEB−F 8.0%
4−HGB(F,F)−F 5.0%
5−HGB(F,F)−F 6.0%
2−H2GB(F,F)−F 4.0%
3−H2GB(F,F)−F 5.0%
5−GHB(F,F)−F 7.0%
NI=77.0(℃);η=20.8(mPa・s);Δn=0.066;
Δε=6.0;Vth=1.46(V).
【0176】
使用例33
5−HCF2ONp−2 (No.1) 10.0%
3−HHCF2ONp(F)B(F)−1 (No.27) 10.0%
3−H2HB(F,F)−F 5.0%
5−H2HB(F,F)−F 5.0%
3−HBB(F,F)−F 30.0%
5−HBB(F,F)−F 20.0%
5−HBB(F)B−2 10.0%
3−BB(F)B(F,F)−F 5.0%
5−B2B(F,F)B(F)−F 5.0%
NI=103.4(℃);η=48.9(mPa・s);Δn=0.144;
Δε=10.4;Vth=1.71(V).
【0177】
使用例34
3−BB(F,F)CF2ONp−T (No.23) 6.0%
5−BB(F,F)CF2ONp−3 (No.24) 2.0%
7−BCF2ONp(F,F)B−V (No.9) 3.0%
3−HB(F,F)CF2OB(F,F)−F 11.0%
5−HB(F,F)CF2OB(F,F)−F 11.0%
5−HB−CL 7.0%
3−HH−4 14.0%
2−HH−5 4.0%
3−HHB−1 4.0%
3−HHEB−F 6.0%
3−HHB(F,F)−F 6.0%
3−HHEB(F,F)−F 8.0%
4−HHEB(F,F)−F 3.0%
2−HBEB(F,F)−F 3.0%
3−HBEB(F,F)−F 3.0%
5−HBEB(F,F)−F 3.0%
2−HHBB(F,F)−F 3.0%
3−HHBB(F,F)−F 3.0%
NI=81.3(℃);η=24.4(mPa・s);Δn=0.098;
Δε=8.3;Vth=1.26(V).
【0178】
使用例35
3−BB(F,F)CF2ONp−2 (No.22) 5.0%
7−BCF2ONp(F,F)B−V (No.9) 5.0%
V−HHCF2ONp(F,F)−1 (No.16) 3.0%
3−HHCF2ONp(F)B(F)−1 (no.27) 3.0%
3−BB(F,F)CF2OB(F,F)−F 35.0%
3−HH−4 8.0%
3−HHB(F,F)−F 5.0%
3−H2HB(F,F)−F 9.0%
3−HBB(F,F)−F 10.0%
2−HHBB(F,F)−F 3.0%
3−HH2BB(F,F)−F 4.0%
3−HHB−1 6.0%
5−HBBH−1O1 4.0%
NI=82.3(℃);η=27.8(mPa・s);Δn=0.126;
Δε=12.2;Vth=1.41(V).
【0179】
使用例36
5−HCF2ONp−2 (No.1) 5.0%
3−HEB−O4 28.0%
4−HEB−O2 20.0%
5−HEB−O1 20.0%
3−HEB−O2 13.0%
5−HEB−O2 14.0%
NI=73.1(℃);η=18.0(mPa・s);Δn=0.088.
【0180】
使用例37
3−BB(F,F)CF2ONp−2 (No.22) 5.0%
5−BBCF2ONp−V (No.21) 9.0%
3−HH−2 5.0%
3−HH−4 6.0%
3−HH−O1 4.0%
3−HH−O3 5.0%
5−HH−O1 4.0%
3−HB(2F,3F)−O2 12.0%
5−HB(2F,3F)−O2 11.0%
3−HHB(2F,3F)−O2 14.0%
5−HHB(2F,3F)−O2 10.0%
3−HHB(2F,3F)−2 15.0%
NI=88.7(℃);Δn=0.097;Δε=−3.7.
【0181】
使用例38
5−BB(F,F)CF2ONp−3 (No.24) 2.0%
5−BBCF2ONp−V (No.21) 5.0%
3−HH−5 5.0%
3−HH−4 5.0%
3−HH−O1 6.0%
3−HH−O3 6.0%
3−HB−O1 5.0%
3−HB−O2 5.0%
3−HB(2F,3F)−O2 10.0%
5−HB(2F,3F)−O2 10.0%
3−HHB(2F,3F)−O2 12.0%
5−HHB(2F,3F)−O2 13.0%
3−HHB(2F,3F)−2 2.0%
2−HHB(2F,3F)−1 4.0%
3−HHEH−5 5.0%
4−HHEH−3 5.0%
NI=86.0(℃);Δn=0.087;Δε=−3.2.
【0182】
上記の使用例1において、組成物に基づいて0.8重量%の光学活性化合物(Op−4)を添加したところ、ピッチの値は11.0μmであった。上記の使用例18において、組成物に基づいて0.3重量%の光学活性化合物(Op−8)を添加したところ、ピッチの値は78.7μmであった。
【0183】
【発明の効果】
本発明の化合物は、低い透明点、小さい粘度、大きな光学異方性、正の誘電率異方性、および他の液晶性化合物との優れた相溶性を有する。この化合物を含有する組成物は、小さい粘度、大きな光学異方性、適切な誘電率異方性、および低いしきい値電圧を有する。この組成物を含有する液晶表示素子は短い応答時間、高いコントラストおよび低い駆動電圧を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal compound, a liquid crystal composition, and a liquid crystal display element. More specifically, the present invention relates to a liquid crystal compound having a structure in which difluoromethyleneoxy and a naphthalene ring are bonded, a liquid crystal composition containing the compound, and a liquid crystal display device containing the composition.
[0002]
The term liquid crystalline compound is used as a general term for a compound having a liquid crystal phase and a compound having no liquid crystal phase but useful as a component of a liquid crystal composition. A liquid crystal compound, a liquid crystal composition, and a liquid crystal display element may be referred to as a compound, a composition, and an element, respectively. The compounds represented by formula (1) to formula (12) may be referred to as compounds (1) to (12), respectively. In Formula (1) to Formula (12), A surrounded by a hexagon1, B, D, E, etc. are A1, B, D, E, etc. are cyclic divalent groups.
[0003]
[Prior art]
The liquid crystal display element is based on a display method such as TN (Twisted nematic), TN-TFT (Twisted nematic-Thin film transistor), BTN (Bistable twisted nematic), STN (Super twisted nematic), IPS (In-plane switching), It is classified into modes such as GH (Guest host), DS (Dynamic scattering), VA (Vertical alignment), OCB (Optically compensated bend), ECB (Electrically controlled birefringence), and PC (Phase change).
[0004]
Appropriate physical properties for the liquid crystal composition used in the device vary depending on these modes. Physical properties include viscosity (η), optical anisotropy (Δn), dielectric anisotropy (Δε), electrical conductivity, and elastic constant ratio K33/ K11(K33: Bend elastic constant, K11: Spray elastic constant). The composition also requires physical properties such as chemical stability, a wide temperature range of the liquid crystal phase, and excellent compatibility at low temperatures. This composition contains many liquid crystalline compounds. The physical properties of this compound affect the physical properties of the composition. Therefore, compounds having appropriate physical properties have been developed.
[0005]
Among known liquid crystalline compounds, a compound having a high clearing point generally has a large optical anisotropy. The clearing point is a liquid crystal phase-isotropic phase transition temperature. A compound having a low clearing point generally has a small optical anisotropy. On the other hand, there are not many examples of compounds having a low clearing point and a large optical anisotropy. There are particularly few examples of such compounds having three or four rings.
[0006]
[Problems to be solved by the invention]
The first object of the present invention is to provide a compound having a low clearing point, a small viscosity, a large optical anisotropy, a positive dielectric anisotropy, and an excellent compatibility with other liquid crystal compounds. is there. The second object is to provide a liquid crystal composition containing this compound and having a low viscosity, a large optical anisotropy, a suitable dielectric anisotropy, and a low threshold voltage. A third object is to provide a liquid crystal display element containing this composition and having a short response time, high contrast, and low driving voltage.
[0007]
[Means for Solving the Problems]
The present inventors have found that the compound (1) has a low clearing point, a small viscosity, a large optical anisotropy, a positive dielectric anisotropy, and an excellent compatibility with other liquid crystal compounds. . It has also been found that liquid crystal compositions containing this compound have a low viscosity, a large optical anisotropy, a suitable dielectric anisotropy, and a low threshold voltage. Furthermore, it has also been found that a liquid crystal display device containing this composition has a short response time, a high contrast, and a low driving voltage. In order to achieve the object of the present invention, embodiments of the present invention are as follows. Preferable examples have been described with respect to the terminal group, ring, and bonding group in the compound (1).
[0008]
1. A compound represented by the following formula (1).
Figure 0004186493
In formula (1), RaAnd RbIs an alkyl having 1 to 20 carbon atoms, and in this alkyl, any —CH2— May be replaced with —O—, —S—, —CO—, —CH═CH—, or —C≡C—, and any hydrogen may be replaced with halogen or —CN.
[0009]
"Any -CH in alkyl2The meaning of the phrase “-may be replaced by —O—, —CH═CH—, etc.” is shown as an example. C4H9Any -CH2Some of the groups in which-is replaced with -O- or -CH = CH-3H7O-, CH3-O- (CH2)2-, CH3-O-CH2-O-, H2C = CH- (CH2)3-, CH3-CH = CH- (CH2)2-And CH3-CH = CH-CH2-O-. Thus, the term “arbitrary” means “at least one selected without distinction”. Considering the stability of the compound, oxygen and oxygen adjacent CH3-O-O-CH2More than -CH where oxygen and oxygen are not adjacent3-O-CH2-O- is preferred.
[0010]
Preferred RaOr RbAre alkyl, alkoxy, alkoxyalkyl, alkoxyalkoxy, alkylthio, alkylthioalkoxy, acyl, acyloxy, acylalkyl, alkenyl, alkenyloxy, alkenyloxyalkyl, alkoxyalkenyl, alkynyl, alkynyloxy and the like. Also preferred are those groups in which at least one hydrogen has been replaced by a halogen. Preferred halogens are fluorine and chlorine. Also preferred are those groups in which at least one hydrogen has been replaced by -CN. These groups are preferably linear rather than branched. Branched RaOr RbIs preferred when the compound (1) is optically active. Particularly preferred RaOr RbAre alkyl, alkoxy, alkenyl, and alkenyloxy.
[0011]
The preferred configuration of —CH═CH— in alkenyl depends on the position of the double bond. In alkenyl such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 3-pentenyl and 3-hexenyl, the trans configuration is preferable. In alkenyl such as 2-butenyl, 2-pentenyl and 2-hexenyl, the cis configuration is preferable. Alkenyl having a preferred configuration has a high clearing point or a wide temperature range of the liquid crystal phase. See Mol. Cryst. Liq. Cryst., 1985, 131, 109.
[0012]
RaOr RbPreferred examples of are methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, heptyloxy, methoxymethyl, methoxyethyl, methoxy Propyl, ethoxymethyl, ethoxyethyl, ethoxypropyl, propoxymethyl, vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4- Pentenyl, 2-propenyloxy, 2-butenyloxy, 2-pentenyloxy, 1-propynyl, 1-pentynyl and the like.
[0013]
RaOr RbPreferable specific examples of 2-fluoroethyl, 3-fluoropropyl, 2,2,2-trifluoroethyl, 2-fluorovinyl, 2,2-difluorovinyl, 2-fluoro-2-cyanovinyl, 3-fluoro- 1-propenyl, 3,3,3-trifluoro-1-propenyl, 4-fluoro-1-propenyl, 4,4-difluoro-3-butenyl and the like. In preferred embodiments, particularly preferred RaOr RbAre ethyl, propyl and pentyl.
[0014]
A1, A2And AThreeIs independently 1,4-cyclohexylene, 1,4-cyclohexenylene or 1,4-phenylene, and in these rings, any —CH2-May be replaced with -O-, optional -CH = may be replaced with -N =, and optional hydrogen may be replaced with halogen.
[0015]
“Any —CH in these rings2The meaning of the phrase “-may be replaced by —O—, and arbitrary —CH═ may be replaced by —N═” is shown as an example. Two —CH in 1,4-cyclohexylene2An example of a ring in which-is replaced by -O- is 1,3-dioxane-2,5-diyl. An example of a ring in which any —CH═ is replaced by —N═ in these rings is pyridine-2,5-diyl.
[0016]
Preferred A1, A2Or AThreeAre the following ring (r-1) to ring (r-25) and pyridazine-3,6-diyl. Black circles in 1,4-cyclohexylene, 1,3-dioxane-2,5-diyl and the like indicate that the configuration is trans.
[0017]
Figure 0004186493
[0018]
Particularly preferred A1, A2Or AThree1,4-cyclohexylene, 1,4-cyclohexenylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro -1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, 2,3,5-trifluoro-1,4-phenylene, pyridine-2, 5-diyl, 3-fluoropyridine-2,5-diyl, pyrimidine-2,5-diyl, and pyridazine-3,6-diyl. The configuration of 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is preferably trans rather than cis.
[0019]
Z1And Z2Are independently a single bond, — (CH2)2-,-(CF2)2-, -COO-, -OCO-, -CH2O-, -OCH2-, -CF2O-, -OCF2-, -CH = CH-, -CF = CF-, -C≡C-,-(CH2)Four-,-(CH2)ThreeO- or -O (CH2)Three-.
[0020]
Preferred Z1Or Z2Is a single bond,-(CH2)2-,-(CF2)2-, -COO-, -OCO-, -OCF2-, -CF2O-, -CH = CH-, -CF = CF-, -C≡C-, and-(CH2)Four-. The configuration of —CH═CH— and —CF═CF— is preferably trans rather than cis.
[0021]
Z1And Z2Are independently a single bond, — (CH2)2-,-(CF2)2-, -COO-, -OCO-, -CH2O-, -OCH2-, -CF2O-, -OCF2-, -CH = CH-, -CF = CF-, -C≡C-, or-(CH2)Four-. Preferred Z1Or Z2Are independently a single bond, — (CH2)2-,-(CF2)2-, -COO-, -OCO-, -CF2O-, -OCF2-, -CH = CH-, -CF = CF-, -C≡C-, and-(CH2)Four-.
[0022]
Y1And Y2Are independently hydrogen or fluorine. p and q are each independently 0 or 1. The naphthalene ring is counted as one ring. A compound in which p and q are 0 has two rings. A compound where p is 0 and q is 1 has 3 rings. Compounds where p is 1 and q is 0 also have three rings. A compound where p is 1 and q is 1 has 4 rings. Since there is no great difference in the physical properties of the compound, the compound (1) is2H (deuterium),13An isotope such as C may be included in an amount greater than the natural abundance.
[0023]
2. In formula (1), RaAnd RbIs alkyl having 1 to 10 carbon atoms, and in this alkyl, any —CH2-May be replaced by -O- or -CH = CH- and any hydrogen may be replaced by halogen; A1, A2And AThreeIs independently 1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 1,4-phenylene in which any hydrogen is replaced by halogen, pyridine-2,5 -Diyl, pyridine-2,5-diyl, where any hydrogen is replaced by halogen, or pyrimidine-2,5-diyl; Z1And Z2Are independently a single bond, — (CH2)2-, -COO-, -OCO-, -CF2O-, -OCF2-, -CH = CH-, -C≡C-, or-(CH2)Four-Is; Y1And Y2Item 2. The compound according to Item 1, wherein is independently hydrogen or fluorine; and p and q are independently 0 or 1.
[0024]
3. Item 3. The compound according to Item 1 or Item 2, wherein p and q are 0 in Formula (1) according to Item 1.
4). Item 3. The compound according to Item 1 or 2, wherein p is 0 and q is 1 in Formula (1) according to Item 1.
5. Item 3. The compound according to Item 1 or Item 2, wherein p is 1 and q is 0 in Formula (1) according to Item 1.
6). Item 3. The compound according to Item 1 or Item 2, wherein p is 1 and q is 1 in Formula (1) according to Item 1.
[0025]
7. Compounds represented by the following formulas (1-a-1) to (1-d-4).
Figure 0004186493
[0026]
Figure 0004186493
[0027]
In these equations, RaAnd RbIs alkyl having 1 to 10 carbon atoms, and in this alkyl, any —CH2-May be replaced by -O- or -CH = CH- and any hydrogen may be replaced by halogen; A1, A2And AThreeIs independently 1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 1,4-phenylene in which any hydrogen is replaced by halogen, pyridine-2,5 -Diyl, pyridine-2,5-diyl, where any hydrogen is replaced by halogen, or pyrimidine-2,5-diyl; Z1And Z2Are independently a single bond, — (CH2)2-, -COO-, -OCO-, -CF2O-, -OCF2-, -CH = CH-, -C≡C-, or-(CH2)Four-Is; Y1And Y2Is independently hydrogen or fluorine; p and q are independently 0 or 1; and 1,4-phenylene (see below) in which F in parentheses are connected by a vertical line, Any hydrogen is 1,4-phenylene which may be replaced by fluorine.
Figure 0004186493
[0028]
8). Item 8. A liquid crystal composition containing at least one of the compounds according to any one of items 1 to 7.
[0029]
9. Item 9. The composition according to Item 8, further comprising at least one compound selected from the group of compounds represented by the following formulas (2), (3) and (4):
Figure 0004186493
[0030]
In these equations, R1Is alkyl having 1 to 10 carbon atoms, and in this alkyl, any —CH2-May be replaced by -O- or -CH = CH-, and any hydrogen may be replaced by fluorine; X1Is fluorine, chlorine, -OCF3, -OCHF2, -CF3, -CHF2, -CH2F, -OCF2CHF2Or -OCF2CHFCF3B and D are independently 1,4-cyclohexylene, 1,3-dioxane-2,5-diyl or 1,4-phenylene in which any hydrogen may be replaced by fluorine, and E is 1,4-cyclohexylene or 1,4-phenylene in which any hydrogen may be replaced by fluorine; Z4And Z5Are independently-(CH2)2-,-(CH2)4-, -COO-, -CF2O-, -OCF2-, -CH = CH-, or a single bond; and L1And L2Are independently hydrogen or fluorine.
[0031]
10. Item 9. The composition according to item 8, further comprising at least one compound selected from the group of compounds represented by the following formulas (5) and (6):
Figure 0004186493
[0032]
In these equations, R2And R3Are independently alkyl having 1 to 10 carbon atoms, and in this alkyl, any —CH2-May be replaced by -O- or -CH = CH-, and any hydrogen may be replaced by fluorine; X2Is —CN or —C≡C—CN; G is 1,4-cyclohexylene, 1,4-phenylene, 1,3-dioxane-2,5-diyl, or pyrimidine-2,5-diyl J is 1,4-cyclohexylene, pyrimidine-2,5-diyl or 1,4-phenylene in which any hydrogen may be replaced by fluorine; K is 1,4-cyclohexylene or 1,4- Phenylene; Z6Is-(CH2)2-, -COO-, -CF2O-, -OCF2-Or a single bond; L3, L4And L5Are independently hydrogen or fluorine; and b, c and d are independently 0 or 1.
[0033]
11. Item 9. The composition according to item 8, further comprising at least one compound selected from the group of compounds represented by the following formulas (7), (8) and (9):
Figure 0004186493
Where R4And RFiveAre independently alkyl having 1 to 10 carbon atoms, and in this alkyl, any —CH2-May be replaced by -O- or -CH = CH- and any hydrogen may be replaced by fluorine; M and P are independently 1,4-cyclohexylene or 1,4-phenylene. Z7And Z8Are independently-(CH2)2-, -COO- or a single bond; and L6And L7Is independently hydrogen or fluorine, L6And L7At least one of is fluorine.
12 Item 10. The composition according to Item 9, further comprising at least one compound selected from the group of compounds represented by the following formulas (10), (11) and (12):
Figure 0004186493
[0034]
In these equations, R6And R7Are independently alkyl having 1 to 10 carbon atoms, and in this alkyl, any —CH2-May be replaced by -O- or -CH = CH- and any hydrogen may be replaced by fluorine; Q, T and U are independently 1,4-cyclohexylene, pyrimidine-2 , 5-diyl, or 1,4-phenylene in which any hydrogen may be replaced by fluorine; and Z9And Z10Are independently —C≡C—, —COO—, — (CH2)2-, -CH = CH-, or a single bond.
[0035]
13. Item 11. The composition according to item 10, further comprising at least one compound selected from the group of compounds represented by formulas (10), (11) and (12) according to item 12.
14 Item 13. The composition according to item 11, further comprising at least one compound selected from the group of compounds represented by formulas (10), (11) and (12) according to item 12.
15. Item 13. The composition according to item 12, further comprising at least one compound selected from the group of compounds represented by formulas (5) and (6) according to item 10.
[0036]
16. Item 16. The composition according to any one of Items 8 to 15, further comprising at least one optically active compound.
17. Item 17. A liquid crystal display device containing the composition according to any one of items 8 to 16.
[0037]
In the compounds (2) to (12), preferred groups are as follows. Straight chain alkyls are preferred over branched alkyls. The configuration of 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is preferably trans rather than cis. "Any -CH in alkyl2The meaning of the phrase “-may be replaced by —O— or —CH═CH—” is described in Section 1 of the embodiment of the present invention. R1, B, etc. were used in several compounds, but these R1(Or B etc.) may be the same or different. Since there is no big difference in the physical properties of the compounds, these compounds2H (deuterium),13An isotope such as C may be included in an amount greater than the natural abundance.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
First, the compound (1) of the present invention will be further described. Compound (1) has a structure in which difluoromethyleneoxy and a naphthalene ring are bonded. This compound is physically and chemically stable under conditions in which the device is normally used. This compound has a low clearing point, a low viscosity, a large optical anisotropy, a positive dielectric anisotropy, and a low threshold voltage. This compound is excellent in compatibility with other liquid crystal compounds. A composition containing this compound is stable under conditions in which the device is normally used. Even when this composition is stored at a low temperature of −20 ° C. or lower, the compound does not precipitate as a solid.
[0039]
The characteristics of the compound (1) having 2 to 4 rings and the effects when this compound is added to the composition are as follows. The compound (1) having two rings has a low clearing point, a small viscosity, a relatively large dielectric anisotropy, and excellent compatibility at −20 ° C. or lower. Thus, this compound can lower the clearing point of the composition or lower the threshold voltage.
[0040]
The compound (1) having three rings has small viscosity, large optical anisotropy, and excellent compatibility at −20 ° C. or lower. The clearing point of this compound is relatively low compared to compounds having other three rings. Therefore, this compound can increase the optical anisotropy without significantly increasing the clearing point of the composition.
[0041]
The compound (1) having four rings has large optical anisotropy and excellent compatibility with other compounds. The clearing point of this compound is relatively low compared to compounds having other four rings. Therefore, this compound can increase the optical anisotropy without significantly increasing the clearing point of the composition. Since compound (1) is excellent in compatibility with other compounds, it may be added for the purpose of adjusting other physical properties of the composition.
[0042]
It is possible to arbitrarily adjust the physical properties by appropriately selecting the terminal group, ring and bonding group of compound (1). Terminal group Ra, Rb, Ring A1~ A3And linking group Z1, Z2The effect of these types on the physical properties of the compound (1) will be described below. When compound (1) is added to the composition, the physical properties of compound (1) affect that of the composition.
[0043]
R of compound (1)aOr RbIs linear, the temperature range of the liquid crystal phase is wide and the viscosity is small. RaOr RbWhen is a branched chain, the compatibility with other liquid crystal compounds is good. RaOr RbA compound in which is an optically active group is useful as a chiral dopant. By adding this compound to the composition, a reverse twisted domain generated in the device can be prevented. RaOr RbA compound in which is not an optically active group is useful as a component of the composition.
[0044]
A of compound (1)1, A2Or A3However, when 1,4-phenylene, pyridine-2,5-diyl or 1,3-dioxane-2,5-diyl in which arbitrary hydrogen is replaced by halogen, the dielectric anisotropy is large. When this ring is 1,4-phenylene, pyridine-2,5-diyl, pyrimidine-2,5-diyl, or pyridazine-3,6-diyl in which any hydrogen may be replaced by halogen, an optically different ring is obtained. Isotropic. When this ring is 1,4-cyclohexylene, 1,4-cyclohexenylene or 1,3-dioxane-2,5-diyl, the optical anisotropy is small.
[0045]
When at least two rings are 1,4-cyclohexylene, the clearing point is high, the optical anisotropy is small, and the viscosity is small. When at least one ring is 1,4-phenylene, the optical anisotropy is relatively large and the orientational order parameter is large. When at least two rings are 1,4-phenylene, the optical anisotropy is large, the temperature range of the liquid crystal phase is wide, and the clearing point is high.
[0046]
Linking group Z1Or Z2Is a single bond,-(CH2)2-, -CH2O-, -OCH2-, -CF2O-, -OCF2-, -CH = CH-, -CF = CF-, or-(CH2)4When it is-, the viscosity is small. The bonding group is a single bond, — (CH2)2-, -OCF2-, -CF2O-, -CH = CH-, or-(CH2)FourWhen-, the viscosity is smaller. When the bonding group is —CF═CF— or —CH═CH—, the temperature range of the liquid crystal phase is wide and the elastic constant ratio is large. When the bonding group is —C≡C—, the optical anisotropy is large.
[0047]
When compound (1) has 2 or 3 rings, the viscosity is small, and when it has 3 or 4 rings, the clearing point is high. As described above, a compound having desired physical properties can be obtained by appropriately selecting the types of terminal groups, rings and bonding groups, and the number of rings. Therefore, the compound (1) is suitable as a component of the composition used for the TN, STN and TN-TFT mode elements.
[0048]
Preferred examples of compound (1) are compounds (1-1) to (1-94). R in these compoundsaAnd RbThe meaning of the symbol of is the same as the meaning of the symbol described in item 1 of the embodiment of the present invention. 1,4-phenylene in which F in parentheses are connected by a vertical line is 1,4-phenylene in which arbitrary hydrogen may be replaced by fluorine. The naphthalene ring in which F in the parentheses are connected by a straight line is a naphthalene ring in which hydrogen may be replaced by fluorine.
[0049]
Figure 0004186493
[0050]
Figure 0004186493
[0051]
Figure 0004186493
[0052]
Figure 0004186493
[0053]
Figure 0004186493
[0054]
Figure 0004186493
[0055]
Figure 0004186493
[0056]
Figure 0004186493
[0057]
Compound (1) can be synthesized by appropriately combining techniques in organic synthetic chemistry. Methods for introducing the desired end groups, rings, and linking groups into the starting material include Organic Syntheses (John Wiley & Sons, Inc), Organic Reactions (John Wiley & Sons, Inc), Comprehensive It is described in books such as organic synthesis (Comprehensive Organic Synthesis, Pergamon Press) and new experimental chemistry course (Maruzen).
[0058]
Two examples of the method for synthesizing the compound (1) are shown in the following schemes 1 and 2. In these schemes, Ra, Rb, A1, A2, AThree, Z1, Z2The meanings of symbols of, p, and q are the same as the meaning of the symbol of item 1 in the embodiment of the present invention. After describing these schemes, an example of a method for generating a linking group is described.
Figure 0004186493
Scheme 1. Synthesis of Compound (1) -1
[0059]
According to the method described in US Pat. No. 6,231,785B1, n-butyllithium and then dibromodifluoromethane are reacted with compound (13) to obtain bromodifluoromethane derivative (14). On the other hand, a naphthalene derivative (17) is obtained by a coupling reaction between the compound (15) and a magnesium bromide or boronic acid derivative (16) in the presence of a palladium catalyst. This compound (17) is deprotected with boron tribromide or the like to obtain a naphthol derivative (18). This naphthol derivative (18) and bromodifluoromethane derivative (14) are reacted in the presence of a base such as palladium carbonate to obtain compound (1).
[0060]
Figure 0004186493
Scheme 2. Synthesis of Compound (1) -2
[0061]
Compound (1) can also be synthesized by the method described in P. Kirsch et al., Angew. Chem. Int. Ed., 2001, 40, 1480. The compound (19) is reacted with alkanedithiol and trifluoromethanesulfonic acid to obtain a dithianylium salt (20; dithianylium salt). The naphthol derivative (18) obtained by the method of Scheme 1 is reacted with dithianilium salt (20) and then Et3N · 3HF, and treated with bromine to obtain compound (1).
[0062]
Linking group Z1Or Z2With respect to an example of a method for generating, a scheme is first shown, and then the scheme is described in terms (I) to (XI). In this scheme, MSG1Or MSG2Is a monovalent organic group having at least one ring. Multiple MSGs used in the scheme1(Or MSG2) May be the same or different. Compounds (1A) to (1K) correspond to compound (1).
[0063]
Figure 0004186493
[0064]
Figure 0004186493
[0065]
Figure 0004186493
[0066]
Figure 0004186493
[0067]
Figure 0004186493
[0068]
(I) Generation of a single bond
Compound (1A) is synthesized by reacting arylboric acid (21) with compound (22) synthesized by a known method in the presence of a carbonate aqueous solution and a catalyst such as tetrakis (triphenylphosphine) palladium. This compound (1A) is obtained by reacting compound (23) synthesized by a known method with n-butyllithium and then with zinc chloride, and in the presence of a catalyst such as dichlorobis (triphenylphosphine) palladium. ) Is also reacted.
[0069]
(II) Formation of -COO- and -OCO-
Compound (23) is reacted with n-butyllithium and subsequently with carbon dioxide to obtain carboxylic acid (24). Compound having —COO— by dehydrating compound (24) and phenol (25) synthesized by a known method in the presence of DDC (1,3-dicyclohexylcarbodiimide) and DMAP (4-dimethylaminopyridine) Synthesize (1B). A compound having —OCO— can also be synthesized by this method.
[0070]
(III) -CF2O- and -OCF2− Generation
Compound (1B) is treated with a sulfurizing agent such as Lawson's reagent to give compound (26). Compound (26) is fluorinated with hydrogen fluoride pyridine complex and NBS (N-bromosuccinimide), and -CF2A compound (1C) having O- is synthesized. See M. Kuroboshi et al., Chem. Lett., 1992, 827. Compound (1C) can also be synthesized by fluorinating compound (26) with (diethylamino) sulfur trifluoride. See William H. Bunnelle et al., J. Org. Chem. 1990, 55, 768. -OCF by this method2A compound having-can also be synthesized.
[0071]
(IV) Formation of —CH═CH—
Compound (23) is treated with n-butyllithium and then reacted with formamide such as N, N-dimethylformamide to give aldehyde (28). A phosphoryl ylide generated by treating a phosphonium salt (27) synthesized by a known method with a base such as potassium t-butoxide is reacted with an aldehyde (28) to synthesize a compound (1D). Since a cis isomer is generated depending on the reaction conditions, the cis isomer is isomerized to a trans isomer by a known method as necessary.
[0072]
(V)-(CH2)2− Generation
Compound (1E) is synthesized by hydrogenating compound (1D) in the presence of a catalyst such as palladium on carbon.
[0073]
(VI)-(CH2)4− Generation
Substituting phosphonium salt (29) for phosphonium salt (27) and following the procedure in paragraph (IV) for-(CH2)2A compound having —CH═CH— is obtained. This is catalytically hydrogenated to synthesize compound (1F).
[0074]
(VII) Formation of —C≡C—
In the presence of a catalyst of dichloropalladium and copper halide, compound (23) is reacted with 2-methyl-3-butyn-2-ol and then deprotected under basic conditions to obtain compound (30). . Compound (1G) is synthesized by reacting compound (30) with compound (22) in the presence of a catalyst of dichloropalladium and copper halide.
[0075]
(VIII) Formation of -CF = CF-
The compound (23) is treated with n-butyllithium and then reacted with tetrafluoroethylene to obtain the compound (31). Compound (22) is treated with n-butyllithium and then reacted with compound (31) to synthesize compound (1H).
[0076]
(IX) -CH2O- or -OCH2− Generation
Compound (32) is obtained by reducing compound (28) with a reducing agent such as sodium borohydride. This is halogenated with hydrobromic acid or the like to obtain compound (33). Compound (1J) is synthesized by reacting compound (33) with compound (25) in the presence of potassium carbonate or the like.
[0077]
(X)-(CH2)ThreeO- or -O (CH2)Three− Generation
Compound (1K) is synthesized according to the method of Item (IX) using Compound (34) instead of Compound (32).
[0078]
(XI)-(CF2)2− Generation
According to the method described in J. Am. Chem. Soc., 2001, 123, 5414., a diketone (—COCO—) is fluorinated with sulfur tetrafluoride in the presence of a hydrogen fluoride catalyst to produce — (CF2)2A compound having-is obtained.
[0079]
Secondly, the composition of the present invention will be further described. The amount (percentage) of the compounds described below is weight percent based on the total weight of the composition. This composition may contain only a plurality of compounds selected from the compound (1) as components. A preferred composition contains 1 to 99% of at least one compound selected from the compound (1). The composition comprises at least one compound selected from the group of compounds (2), (3) and (4), at least one compound selected from the group of compounds (5) and (6), or compound (7 ), (8) and (9) may further contain at least one compound selected from the group. This composition is selected from the group of compounds (10), (11) and (12) for the purpose of adjusting the temperature range, viscosity, optical anisotropy, dielectric anisotropy, threshold voltage, etc. of the liquid crystal phase. It may further contain at least one selected compound. The composition may further contain other compounds for the purpose of adjusting physical properties.
[0080]
Compounds (2), (3) and (4) have a large positive dielectric anisotropy and are excellent in thermal stability and chemical stability, and are therefore mainly used in compositions for TN-TFT mode. In this composition, the amount of these compounds is 1-99%. A preferred amount is 10-97%. A more preferred amount is 40 to 95%. Compound (10), (11) or (12) is further added to the composition for the purpose of adjusting the temperature range, viscosity, optical anisotropy, dielectric anisotropy and threshold voltage of the liquid crystal phase. May be.
[0081]
Since the compounds (5) and (6) have a positive dielectric anisotropy and are very large, they are mainly used for compositions for STN and TN modes. These compounds are used for the purpose of expanding the temperature range of the liquid crystal phase of the composition, adjusting the viscosity and optical anisotropy, lowering the threshold voltage, improving the sharpness of the threshold voltage, etc. The In the composition for STN or TN mode, the amount of compound (5) or (6) is in the range of 1 to 99%. A preferred amount is 10-97%. A more preferred amount is 10 to 70%. Compound (10), (11) or (12) may be further added to the composition for the purpose of adjusting the temperature range, viscosity, optical anisotropy, dielectric anisotropy, or threshold voltage of the liquid crystal phase. Good.
[0082]
Since the compounds (7), (8) and (9) have a negative dielectric anisotropy, they are mainly used in compositions for VA mode. Compound (7) is used for the purpose of adjusting viscosity, optical anisotropy, and threshold voltage. Compound (8) is used for the purpose of increasing the clearing point, increasing the optical anisotropy, lowering the threshold voltage, and the like. Increasing the amount of these compounds decreases the threshold voltage but increases the viscosity. Therefore, a smaller amount is preferable as long as the threshold voltage requirement is satisfied. Since these compounds have a negative dielectric anisotropy and an absolute value of 5 or less, a preferable amount is 40% or more. A more preferred amount is 40 to 80%. For the purpose of adjusting the elastic constant and voltage transmittance curve, these compounds may be added to a composition having a positive dielectric anisotropy. A preferable amount in this case is 30% or less.
[0083]
In the compounds (10), (11) and (12), the absolute value of dielectric anisotropy is small. The compound (10) is mainly used for the purpose of adjusting viscosity or optical anisotropy. Compounds (11) and (12) are used for the purpose of increasing the clearing point to widen the temperature range of the liquid crystal phase or adjusting the optical anisotropy. Increasing the amounts of compounds (10), (11) and (12) increases the threshold voltage of the composition and decreases the viscosity. Accordingly, a large amount may be used as long as the threshold voltage requirement of the composition is satisfied. In the composition for the TN-TFT mode, the preferred amount of these compounds is 40% or less. A more preferable amount is 35% or less. In the composition for STN or TN mode, the preferred amount of these compounds is 70% or less. A more preferable amount is 60% or less.
[0084]
Preferred compounds (2) to (12) are the compounds (2-1) to (2-9), the compounds (3-1) to (100), the compounds (4-1) to (4-36), and the compounds, respectively. (5-1) to (5-60), compounds (6-1) to (6-3), compounds (7-1) to (7-3), compounds (8-1) to (8-5) , Compounds (9-1) to (9-3), compounds (10-1) to (10-11), compounds (11-1) to (11-16), and compounds (12-1) to (12) -6). In these compounds, R1, R2, R3, RFour, R5, R6, R7, X1, And X2The meaning of the symbol of is the same as the meaning of the symbol described in the section of the embodiment of the present invention.
[0085]
Figure 0004186493
[0086]
Figure 0004186493
[0087]
Figure 0004186493
[0088]
Figure 0004186493
[0089]
Figure 0004186493
[0090]
Figure 0004186493
[0091]
Figure 0004186493
[0092]
Figure 0004186493
[0093]
Figure 0004186493
[0094]
Figure 0004186493
[0095]
Figure 0004186493
[0096]
Figure 0004186493
[0097]
Figure 0004186493
[0098]
Figure 0004186493
[0099]
Figure 0004186493
The composition of the present invention is prepared by a known method. For example, the component compounds are mixed and dissolved in each other by heating. Appropriate additives may be added to the composition to adjust the physical properties of the composition. Such additives are well known to those skilled in the art. A chiral dopant is added for the purpose of inducing the helical structure of the liquid crystal to give the necessary twist angle. Examples of the chiral dopant are the above-mentioned optically active compounds (Op-1) to (Op-12).
[0100]
A chiral dopant is added to the composition to adjust the twist pitch. The preferred pitch for TN and TN-TFT modes is in the range of 40-200 μm. A preferred pitch for the STN mode is in the range of 6-20 μm. A preferred pitch for the BTN mode is in the range of 1.5-4 μm. A relatively large amount of chiral dopant is added to the composition for the PC mode. For the purpose of adjusting the temperature dependence of the pitch, at least two chiral dopants may be added.
[0101]
The composition of the present invention can be used for modes such as TN, TN-TFT, STN, GH, DS, and ECB. A composition for the GH mode is prepared by adding a dichroic dye which is a compound such as merocyanine, styryl, azo, azomethine, azoxy, quinophthalone, anthraquinone, and tetrazine. The composition of the present invention includes NCAP produced by microencapsulating nematic liquid crystal and a polymer dispersed liquid crystal display element (PD-LCD) in which a three-dimensional network polymer is formed in the liquid crystal, for example, a polymer network liquid crystal display element ( (PN-LCD).
[0102]
【Example】
Thirdly, the present invention will be described in more detail with reference to examples. The present invention is not limited by these examples. No. Compound numbers such as 22 correspond to the compounds shown in Example 8. At the phase transition temperature of the compound, Cr, S, N, and Iso are a crystal, a smectic phase, a nematic phase, and an isotropic phase, respectively. The unit of temperature is ° C. The obtained compound was identified based on data such as a nuclear magnetic resonance spectrum and a mass spectrum. In the nuclear magnetic resonance spectrum, s is a singlet, d is a doublet, t is a triplet, q is a quartet, and m is a multiplet. The reaction was performed under a dry nitrogen atmosphere. “Post-treatment” means that the obtained organic layer (extract) was washed once with an aqueous sodium hydrogen carbonate solution and three times with water and then dried over anhydrous magnesium sulfate.
[0103]
Example 1
Synthesis of 2- (4- (4'-propyl-3,5-difluorobiphenyl) difluoromethoxy) -6-ethylnaphthalene (Compound No. 22)
Figure 0004186493
1-1 stage
A solution of 4′-propyl-3,5-difluorobiphenyl (50.0 g; 0.2216 mol) in THF (500 mL) was cooled to −65 ° C., and n-butyllithium in hexane (165 mL; 0.248 mol) was slowly added. It was dripped. After further stirring at the same temperature for 1 hour, dibromodifluoromethane (52.1 g; 0.248 mol) was slowly added dropwise. After stirring for an additional hour at the same temperature, the reaction mixture was added to 1 L of water and extracted with n-heptane. The extract was washed 3 times with water and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the residue was purified by silica gel chromatography (eluent: heptane), and 4′-propyl-3,5-difluoro- (4-bromodifluoromethyl) biphenyl (60.9 g; 0.169). mol; yield 68%).
[0104]
1-2 steps
To a solution of 2-methoxy-6-bromonaphthalene (20.0 g; 0.0842 mol), [1,1'-bis (diphenylphosphino) ferrocene] dichloropalladium (Pd (dppf) Cl2; 0.200 g) in THF (100 mL) A solution of ethylmagnesium bromide in THF (126 mL; 0.126 mol) was added dropwise at 25 ° C., and the mixture was further stirred for 2 hours. After completion of the reaction, the reaction mixture was poured into 1N hydrochloric acid and extracted with toluene. After the extract was worked up and the solvent was distilled off under reduced pressure, the residue was purified by preparative liquid chromatography (eluent: methanol) to give 2-methoxy-6-ethylnaphthalene (5.95 g; 0.0160 mol; yield 38%).
[0105]
1-3 steps
The dichloromethane solution of 2-methoxy-6-ethylnaphthalene (5.95 g; 0.0320 mol) obtained in the previous stage was cooled to −65 ° C., and boron tribromide (9.60 g; 0.0384 mol) was slowly added dropwise. After further stirring at 25 ° C. for 7 hours, the reaction mixture was poured into water and extracted with toluene. After the extract was worked up and the solvent was distilled off under reduced pressure, the residue was purified by silica gel chromatography (eluent: toluene / ethyl acetate) to give 6-ethyl-2-naphthol (5.20 g; 0.0304 mol). Yield 95%).
[0106]
1-4 steps
4′-propyl-3,5-difluoro- (4-bromodifluoromethyl) biphenyl (5.00 g; 0.0139 mol) obtained in the 1-1 stage, 6-ethyl-2-naphthol obtained in the 1-3 stage A mixture of (2.85 g; 0.0166 mol), potassium carbonate (4.22 g; 0.0306 mol), and DMF (50 mL) was stirred at 110 ° C. for 2 hours. After completion of the reaction, the reaction mixture was added to water and extracted with toluene. After the extract was worked up and the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (eluent: n-heptane) to give the title compound (1.13 g; 0.00250 mol; yield 18). %).
[0107]
Cr-S: 91.9 ° C., S—N: 96.3 ° C., N-Iso: 101.9 ° C.
1H-NMR (δppm, CDClThree): 0.953−0.983 (t, 3H), 1.25−1.34 (t, 3H), 1.62-1−1.71 (m, 2H), 2.62−2.66 (t, 2H), 2.79−2.82 (m, 2H), 7.18 (s) , 1H), 7.20 (s, 1H), 7.27-7.29 (d, 2H), 7.37-7.41 (m, 2H), 7.47-7.49 (m, 2H), 7.62 (s, 1H), 7.71 (s, 1H ), 7.75-7.78 (t, 2H).
19F-NMR (δppm): −60.5−−60.7 (t, 2F), −111.0−−111.1 (m, 2H).
GC-MS (EI): 452 (M+, 10%), 281 (100%).
[0108]
Example 2
Synthesis of 2- (4- (4'-propyl-3,5-difluorobiphenyl) difluoromethoxy) -6-ethynylnaphthalene (Compound No. 23)
Figure 0004186493
2-1 stages
2-methoxy-6-bromonaphthalene (5.00 g; 0.0211 mol), bistriphenylphosphine palladium chloride (Pd (PPh3) 2Cl2; 0.100 g) trimethylsilylacetylene (3.10 g; 0.0317 mol), copper (II) iodide (0.0500 g ), And triethylamine (50 mL) were stirred at 80 ° C. for 6 hours. After completion of the reaction, the reaction mixture was added to water and extracted with toluene. The organic layer was washed once with 1N hydrochloric acid and three times with water, and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and a mixture of the residue (5.10 g), 1N potassium hydroxide solution (30 mL), and methanol (50 mL) was stirred at 70 ° C. for 5 hours. After completion of the reaction, the reaction mixture was added to water and extracted with toluene. The organic layer was washed once with 1N hydrochloric acid and further worked up. After distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (eluent: n-heptane / toluene) to give 2-methoxy-6-ethynylnaphthalene (1.83 g; 0.0101 mol; yield 48%). )
[0109]
2-2 stages
A solution of 2-methoxy-6-ethynylnaphthalene (1.83 g; 0.0101 mol) obtained in the previous step in dichloromethane (100 mL) was cooled to −65 ° C., and boron tribromide 3.03 g (0.0121 g) was maintained at −60 ° C. or lower. mol) was added dropwise. After stirring at 25 ° C. for 7 hours, the reaction mixture was added to water and extracted with toluene. After treating the extract and evaporating the solvent under reduced pressure, the residue was purified by silica gel chromatography (eluent: toluene / ethyl acetate) to give 6-methynyl-2-naphthol (1.66 g; 0.00988 mol; Yield 98%).
[0110]
2-3 steps
4′-propyl-3,5-difluoro- (4-bromodifluoromethyl) biphenyl (2.97 g; 0.00825 mol) obtained in the 1-1 stage of Example 1, 6-methynyl-2- 2 obtained in the previous stage A mixture of naphthol (1.66 g; 0.00988 mol), potassium carbonate (2.50 g; 0.0182 mol), and DMF (30 mL) was heated at 110 ° C. for 2 hours. After completion of the reaction, the reaction mixture was added to water and extracted with toluene. After the extract was worked up and the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (eluent: n-heptane) to give the title compound (1.47 g; 0.0033 mol; yield 40). %).
[0111]
Cr-N: 119.4 ° C, N-Iso: 156.2 ° C.
1H-NMR (δppm, CDClThree): 0.954−0.983 (t, 3H), 1.64−1.71 (m, 2H), 2.63−2.66 (t, 2H), 7.19 (s, 1H), 7.21 (s, 1H), 7.28−7.29 (d, 2H ), 7.44-7.45 (d, 1H), 7.47-7.49 (m, 4H), 7.54 (d, 1H), 7.56 (d, 1H), 7.73 (s, 1H), 7.77-7.81 (m, 4H), 8.02 (s, 1H).
19F-NMR (δppm): -60.78--60.86 (t, 2F), -110.98--111.1 (m, 2F).
GLC-MS (EI): 448 (M+).
[0112]
Example 3
Synthesis of 2- (4- (4'-pentyl-3,5-difluorobiphenyl) difluoromethoxy) -6-propylnaphthalene (Compound No. 24)
Figure 0004186493
3-1 stage
A solution of 4′-pentyl-3,5-difluorobiphenyl (15.0 g; 0.0577 mol) in THF (150 mL) was cooled to −65 ° C., and n-butyllithium in hexane (46.1 mL; 0.0692 mol) was slowly added. It was dripped. After further stirring at the same temperature for 1 hour, dibromodifluoromethane (14.5 g; 0.0692 mol) was slowly added dropwise. After stirring for an additional hour at the same temperature, the reaction mixture was poured into 1 L of water and extracted with n-heptane. After the extract was worked up and the solvent was distilled off under reduced pressure, the residue was purified by silica gel chromatography (eluent: heptane) and 4'-pentyl-3,5-difluoro- (4-bromodifluoro Methyl) biphenyl (15.0 g; 0.0386 mol; yield 67%) was obtained.
[0113]
3-2 stages
Mixture of 2-methoxy-6-bromonaphthalene (20.0 g; 0.0843 mol), [1,1′-bis (diphenylphosphino) ferrocene] dichloropalladium (Pd (dppf) Cl 2; 0.200 g) obtained in the previous stage and THF A solution of propylmagnesium chloride in diethyl ether (63.0 mL; 0.126 mol) was added dropwise at 25 ° C., and the mixture was further stirred for 2 hours. After completion of the reaction, the reaction mixture was added to 1N hydrochloric acid and extracted with toluene. After the extract was worked up and the solvent was distilled off under reduced pressure, the residue was purified by preparative liquid chromatography (eluent: methanol) to give 2-methoxy-6-propylnaphthalene (5.70 g; 0.0287). mol; yield 38%).
[0114]
3-3 stages
A solution of 2-methoxy-6-propylnaphthalene (5.70 g; 0.0287 mol) obtained in the previous stage in dichloromethane (50 mL) was cooled to −65 ° C. and boron tribromide (8.62 g; 0.0344 mol) was added dropwise. After stirring for 7 hours at 25 ° C., the reaction mixture was poured into water and extracted with toluene. The extract was washed 3 times with water and then dried over anhydrous magnesium sulfate. After evaporating the solvent under reduced pressure, the residue was purified by silica gel chromatography (eluent: toluene / ethyl acetate) to obtain 6-propyl-2-naphthol (5.07 g; 0.0273 mol; yield 95%).
[0115]
3-4 stages
4'-pentyl-3,5-difluoro- (4-bromodifluoromethyl) biphenyl (4.33 g; 0.0112 mol) obtained in the 1-1 stage of Example 1, 6-propyl-2-yl obtained in the previous stage A mixture of naphthol (2.50 g; 0.0134 mol), potassium carbonate (3.40 g; 0.0246 mol), and DMF (50 mL) was heated at 110 ° C. for 2 hours. After completion of the reaction, the reaction mixture was poured into water and extracted with toluene. After the extract was worked up and the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (eluent: n-heptane) to give the title compound (1.65 g; 0.00336 mol; yield 30). %).
[0116]
Cr-N: 49.2 ° C, N-Iso: 97.4 ° C.
1H-NMR (δppm, CDClThree): 0.891−0.919 (t, 3H), 0.959−0.989 (t, 3H), 1.34−1.36 (m, 4H), 1.65−1.72 (m, 2H), 1.72-1−173 (m, 2H), 2.64−2.67 (t, 2H), 2.72-2.76 (t, 2H) 7.18 (s, 1H), 7.20 (s, 1H), 7.27-7.29 (d, 2H), 7.37-7.41 (m, 2H), 7.47-7.49 ( m, 2H), 7.60 (s, 1H), 7.71 (s, 1H), 7.74-7.77 (t, 2H).
19F-NMR (δppm): -60.5--60.6 (t, 2F), -110.9--111.1 (m, 2H).
GC-MS (EI): 494 (M+, 10%), 309 (100%).
[0117]
Example 4
Synthesis of 2- (4- (4'-pentyl-3,5-difluorobiphenyl) difluoromethoxy) -5-fluoro-6-ethylnaphthalene (Compound No. 45)
Figure 0004186493
4-1 stage
1-Fluoro-6-methoxy 2-triflate (12.7 g; 0.0392 mol), [1,1′-bis (diphenylphosphino) ferrocene] dichloropalladium (Pd (dppf) Cl 2; 0.150 g) in THF (50 mL) To the solution was added dropwise a solution of ethylmagnesium bromide in THF (59.0 mL; 0.0590 mol) at 25 ° C., and the mixture was further stirred for 2 hours. After completion of the reaction, the reaction mixture was poured into 1N hydrochloric acid solution and extracted with toluene. After the extract was worked up and the solvent was distilled off under reduced pressure, the residue was purified by preparative liquid chromatography (eluent: methanol) to give 2-methoxy-5-fluoro-6-ethylnaphthalene. (2.16 g; 0.0106 mol; yield 27%) was obtained.
[0118]
4-2 stages
A solution of 2-methoxy-5-fluoro-6-ethylnaphthalene (2.16 g; 0.0106 mol) obtained in the previous stage in dichloromethane (25 mL) was cooled to −65 ° C., and boron tribromide was maintained at −60 ° C. or lower. (3.17 g; 0.0126 mol) was added dropwise. After stirring for 7 hours at 25 ° C., the reaction mixture was poured into water and extracted with toluene. After the extract was worked up and the solvent was distilled off under reduced pressure, the residue was purified by silica gel chromatography (eluent: toluene / ethyl acetate) to give 5-fluoro-6-ethyl-2-naphthol (1.89). g; 0.0100 mol; yield 94%).
[0119]
4-3 stages
4′-pentyl-3,5-difluoro- (4-bromodifluoromethyl) biphenyl (2.00 g; 0.0051 mol) obtained in the 3-1 stage of Example 3, 6-propyl-7- obtained in the previous stage A mixture of fluoro-2-naphthol (1.16 g; 0.0061 mol), potassium carbonate (1.47 g; 0.0107 mol), and DMF (20 mL) was heated at 110 ° C. for 2 hours. After completion of the reaction, the reaction mixture was poured into water and extracted with toluene. After the extract was worked up and the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (eluent: n-heptane) to give the title compound (2.08 g; 0.00418 mol; yield 82). %).
GC-MS (EI): 498 (M+, 10%), 309 (100%).
[0120]
Example 5
Synthesis of 2- (4- (4'-propylbiphenyl) difluoromethoxy) -6-propylnaphthalene (Compound No. 46)
Figure 0004186493
5-stage
To a mixture of 4- (4-propylphenyl) benzoic acid (10.0 g; 0.0417 mol), toluene (10 mL), isooctane (10 mL), propanedithiol (5.85 g; 0.0542 mol) at 60 ° C., trifluoromethanesulfone. Acid anhydride (8.12 g; 0.0542 mol) was added dropwise. It heated at 110 degreeC for 2 hours, removing the produced | generated water. The reaction mixture was cooled, diethyl ether was added, and the mixture was further cooled to -5 ° C. The produced crystal was filtered to obtain 2- (4′-propylbiphenyl) dithianiumium triflate (11.6 g; 0.0250 mol; yield 60%).
[0121]
5-2 stages
A mixture of 6-propyl-2-naphthol (5.12 g; 0.0275 mol), triethylamine (3.04 g; 0.030 mol), and methylene chloride (50 mL) obtained in the third and third stages of Example 3 was cooled to -70 ° C. While maintaining at −65 ° C. or lower, a methylene chloride solution of 2- (4′-propylbiphenyl) dithialinium triflate (11.5 g; 0.0250 mol) obtained in the previous stage was added dropwise, and the mixture was further stirred for 2 hours. Next, Et3N · 3HF (20.2 mL; 0.125 mol) was added dropwise while maintaining at −65 ° C. or lower, and the mixture was further stirred for 1 hour. Next, bromine (20.0 g; 0.125 mol) was added dropwise while maintaining at −65 ° C. or lower, and the mixture was further stirred for 1 hour, and then the temperature was gradually raised to 0 ° C. The reaction mixture was added to an aqueous solution of 2N sodium hydroxide. After the organic layer was worked up and the solvent was distilled off under reduced pressure, the residue was purified by silica gel chromatography (eluent: n-heptane) to give the title compound (2.58 g; 0.0063 mol; yield 25%). ) This had a liquid crystal phase.
GC-MS (EI): 414 (M+, 10%), 245 (100%).
[0122]
Example 6
Synthesis of 2- (4- (4-pentylcyclohexyl) difluoromethoxy) -6-ethylnaphthalene (Compound No. 1)
Figure 0004186493
6-1 stage
To a mixture of 4-pentylcyclohexanecarboxylic acid (3.50 g; 0.0177 mol) and propanedithiol (2.47 g; 0.0228 mol), trifluoromethanesulfonic anhydride (2.90 g; 0.0193 mol) was added dropwise at 60 ° C. It heated at 110 degreeC for 1 hour, removing the produced | generated water. After completion of the reaction, the reaction mixture was cooled to 0 ° C. and diethyl ether was added. The produced crystal was filtered to obtain 2- (4-pentylcyclohexyl) dithianiumium triflate (4.42 g; 0.0105 mol; yield 59%).
[0123]
6-2 stages
A mixture of 6-ethyl-2-naphthol (1.99 g; 0.0116 mol), triethylamine (1.27 g; 0.0126 mol), and methylene chloride (20 mL) obtained in the first to third stages of Example 1 was cooled to -70 ° C. While maintaining at −65 ° C. or lower, a methylene chloride solution of 2- (4 pentylcyclohexyl) dithialynium triflate (4.41 g; 0.0105 mol) obtained in the previous stage was added dropwise, and the mixture was further stirred for 2 hours. Next, Et3N · 3HF (8.47 mL; 0.0525 mol) was added dropwise while maintaining at −65 ° C. or lower, and the mixture was further stirred for 1 hour. Next, bromine (8.40 g; 0.0525 mol) was added dropwise while maintaining at −65 ° C. or lower. After further stirring for 1 hour, the temperature was gradually raised to 0 ° C. After completion of the reaction, the reaction mixture was added to an aqueous solution of 2N sodium hydroxide. After the organic layer was worked up and the solvent was distilled off under reduced pressure, the residue was purified by silica gel chromatography (eluent: n-heptane) to give the title compound (1.10 g; 0.00294 mol; yield 28%). ) This had a liquid crystal phase.
GC-MS (EI): 374 (M+, 10%), 203 (100%).
[0124]
Example 7
Synthesis of 2- (4- (4'-pentyl-3,5-difluorobiphenyl) difluoromethoxy) -6- (4-ethylphenyl) naphthalene (Compound No. 35)
Figure 0004186493
7-1 stage
2-methoxy-6-bromonaphthalene (2.50 g; 0.0105 mol), 4-ethylphenylboronic acid (1.90 g; 0.0127 mol), tetrakis (triphenylphosphine) palladium (Pd (PPh3) 4; 0.050 g), potassium carbonate A mixture of (3.20 g; 0.0232 mol), toluene (25 mL), and ethanol (25 mL) was heated at 80 ° C. for 6 hours. After completion of the reaction, the reaction mixture was poured into water and extracted with toluene. After the extract was worked up and the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (eluent: toluene / ethyl acetate) to give 2-methoxy-6- (4-ethylphenyl). Naphthalene (2.62 g; 0.0100 mol; yield 95%) was obtained.
[0125]
7-2 stage
A solution of 2-methoxy-6- (4-ethylphenyl) naphthalene (2.62 g; 0.0100 mol) obtained in the previous stage in dichloromethane (50 mL) was cooled to −65 ° C., and the temperature was maintained at −60 ° C. or lower. Boron bromide (3.01 g; 0.0120 mol) was added dropwise. After stirring for 7 hours at 25 ° C., the reaction mixture was poured into water and extracted with toluene. The organic layer was washed 3 times with water and then dried over anhydrous magnesium sulfate. After evaporating the solvent under reduced pressure, the residue was purified by silica gel chromatography (eluent: toluene / ethyl acetate) to give 6- (4-ethylphenyl) -2-naphthol (2.23 g; 0.0090 mol; yield). 90%).
[0126]
7-3 stages
4′-pentyl-3,5-difluoro- (4-bromodifluoromethyl) biphenyl (2.85 g; 0.0073 mol) obtained in the 3-1 stage of Example 3 and 6- (4-ethyl) obtained in the previous stage A mixture of phenyl) -2-naphthol (2.00 g; 0.0081 mol), potassium carbonate (2.22 g; 0.016 mol), and DMF (50 mL) was heated at 110 ° C. for 2 hours. After completion of the reaction, the reaction mixture was added to water and extracted with toluene. After working up the extract and evaporating the solvent under reduced pressure, the residue was purified by silica gel chromatography (eluent: n-heptane) to give the title compound (1.33 g; 0.0028 mol; 38% yield). ) This had a liquid crystal phase.
GC-MS (EI): 480 (M +, 10%), 309 (100%).
[0127]
Example 8
Based on the description about the synthesis method of compound (1) and the description of Examples 1 to 7, the following compound No. 1-No. 50 is synthesized. These include the compounds synthesized in Examples 1-7.
[0128]
Figure 0004186493
[0129]
Figure 0004186493
[0130]
Figure 0004186493
[0131]
Figure 0004186493
[0132]
Example 9
Examples of measuring method of phase transition temperature (NI), viscosity (η), optical anisotropy (Δn), dielectric anisotropy (Δε), and threshold voltage (Vth) of nematic-isotropic liquid It was described immediately before 1.
[0133]
The components of Composition A consisted of 4- (4-propylcyclohexyl) benzonitrile (24% by weight), 4- (4-pentylcyclohexyl) benzonitrile (36% by weight), 4- (4-heptylcyclohexyl) benzonitrile ( 25% by weight), and 4- (4- (4-pentylcyclohexyl) phenyl) benzonitrile (15% by weight). The physical properties of Composition A were measured. NI = 71.7 ° C., η = 26.3 mPa · s, Δn = 0.137, Δε = 11.0, Vth = 1.78 V (cell gap is 8.8 μm).
[0134]
This composition A (85 wt%) and the compound No. obtained in Example 1 were used. Composition B was prepared by mixing 22 (15 wt%). The physical properties of Composition B were measured. NI = 72.6 ° C., Δn = 0.145, Δε = 10.80. Compound No. The physical property values of 22 were calculated by extrapolation from the mixing ratio and the measured values. NI = 77.7 ° C., Δn = 0.190, Δε = 8.5, Vth = 1.79 V (cell gap is 8.8 μm). The composition B was stored in a freezer at −20 ° C. for 30 days, but no crystals were precipitated.
[0135]
Example 10
The composition A (85 wt%) described in Example 9 and the compound No. obtained in Example 2 were used. 23 (15 wt%) was mixed to prepare Composition C. The physical properties of Composition C were measured. NI = 84.5 ° C., Δn = 0.161, Δε = 10.80. Compound No. The physical property value of 23 was calculated by extrapolation from the mixing ratio and the measured value. NI = 157.0 ° C., Δn = 0.2970, Δε = 0.80, Vth = 2.02 V (cell gap is 8.8 μm). This composition was stored in a freezer at −20 ° C. for 30 days, but no crystals were precipitated.
[0136]
Figure 0004186493
[0137]
Representative compositions of the present invention are summarized in Use Examples 1-38. First, compounds that are components of the composition and their amounts (% by weight) are shown. The compounds were indicated by the symbols of the left terminal group, the linking group, the ring structure, and the right terminal group according to the convention in Table 1 above. The configuration of 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is trans. If there is no end group symbol, it means that the end group is hydrogen. The numbers in parentheses correspond to the compounds shown in Example 8. Next, physical properties of the composition are shown. The physical property values were measured in accordance with the method described in Standard of Electronic Industries Association of Japan, EIAJ ED-2521A, or a modified method thereof.
[0138]
Nematic-isotropic liquid phase transition temperature (NI; ° C.): A sample was placed on a hot plate of a melting point measurement apparatus equipped with a polarizing microscope and heated at a rate of 1 ° C./min. The temperature was measured when a part of the sample changed from a nematic phase to an isotropic liquid.
[0139]
Viscosity (η; measured at 20 ° C .; mPa · s): An E-type viscometer was used to measure the viscosity.
[0140]
Optical anisotropy (refractive index anisotropy; Δn; measured at 25 ° C.): Optical anisotropy was measured using an Abbe refractometer with light having a wavelength of 589 nm.
[0141]
Dielectric anisotropy (Δε; measured at 25 ° C)
1) Composition having a positive Δε value: A sample was placed in a liquid crystal cell in which the distance (gap) between two glass substrates was 9 μm and the twist angle was 80 degrees. A voltage of 20 volts was applied to the cell, and the dielectric constant (ε‖) in the major axis direction of the liquid crystal molecules was measured. 0.5 V was applied, and the dielectric constant (ε⊥) in the minor axis direction of the liquid crystal molecules was measured. The value of dielectric anisotropy was calculated from the equation: Δε = ε∥−ε⊥.
[0142]
2) Composition having a negative Δε value: A sample was placed in a liquid crystal cell subjected to homeotropic alignment treatment, and 0.5 volt was applied to measure the dielectric constant (ε‖). A sample was put into a liquid crystal cell subjected to a homogeneous alignment treatment, and 0.5 volt was applied to measure the dielectric constant (ε ボ ル ト). The value of dielectric anisotropy was calculated from the equation: Δε = ε∥−ε⊥.
[0143]
Threshold voltage (Vth; measured at 25 ° C .; volt): a normally white mode in which the distance (gap) between two glass substrates is (0.5 / Δn) μm and the twist angle is 80 degrees A sample was put in a liquid crystal display element of normally white mode. Δn is a value of optical anisotropy measured by the above method. A rectangular wave having a frequency of 32 Hz was applied to this element. The voltage of the rectangular wave was increased and the value of the voltage when the transmittance of light passing through the element reached 90% was measured.
[0144]
Example 1
5-BB (F, F) CF2ONp-3 (No.24) 6.0%
7-BCF2ONp (F, F) BV (No.9) 10.0%
5-BBCF2ONp-V (No.21) 4.0%
1V2-BEB (F, F) -C 5.0%
3-HB-C 15.0%
1-BTB-3 5.0%
2-BTB-1 10.0%
3-HH-4 11.0%
3-HHB-1 11.0%
3-HHB-3 9.0%
3-H2BTB-2 4.0%
3-H2BTB-3 4.0%
3-HB (F) TB-2 6.0%
NI = 90.4 (° C.); η = 23.8 (mPa · s); Δn = 0.167;
Δε = 7.2; Vth = 2.09 (V).
[0145]
Example 2
7-BCF2ONp (F, F) BV (No. 9) 7.0%
V-HHCF2ONp (F, F) -1 (No.16) 2.0%
5-BB (F, F) CF2ONpB-2 (No. 35) 4.0%
2O1-BEB (F) -C 5.0%
3O1-BEB (F) -C 15.0%
4O1-BEB (F) -C 13.0%
5O1-BEB (F) -C 13.0%
2-HHB (F) -C 8.0%
3-HHB (F) -C 15.0%
3-HB (F) TB-3 4.0%
3-HB (F) TB-4 4.0%
3-HHB-1 8.0%
3-HHB-O1 2.0%
NI = 87.9 (° C.); η = 83.8 (mPa · s); Δn = 0.156;
Δε = 30.9; Vth = 0.85 (V).
[0146]
Example 3
5-HCF2ONp-2 (No.1) 2.0%
3-B (F, F) CF2ONp-2 (No.5) 2.0%
3-BB (F, F) CF2ONp-2 (No.22) 3.0%
7-BCF2ONp (F, F) BV (No.9) 6.0%
5-BBCF2ONp-V (No.21) 5.0%
5-PyB-F 2.0%
3-PyB (F) -F 4.0%
2-BB-C 5.0%
4-BB-C 4.0%
5-BB-C 5.0%
3-PyB-2 2.0%
4-PyB-2 2.0%
6-PyB-O5 3.0%
6-PyB-O6 3.0%
6-PyB-O7 3.0%
3-PyBB-F 6.0%
4-PyBB-F 6.0%
3-HHB-1 6.0%
3-HHB-3 8.0%
2-H2BTB-2 4.0%
2-H2BTB-3 4.0%
3-H2BTB-2 5.0%
3-H2BTB-3 5.0%
3-H2BTB-4 5.0%
NI = 92.1 (° C.); η = 33.9 (mPa · s); Δn = 0.201;
Δε = 6.2; Vth = 2.26 (V).
[0147]
Example 4
3-B (F, F) CF2ONp-2 (No.5) 3.0%
3-BB (F, F) CF2ONp-2 (No.22) 5.0%
7-BCF2ONp (F, F) BV (No.9) 5.0%
3-HHCF2ONp (F) B (F) -1 (No.27) 3.0%
3-GB-C 10.0%
4-GB-C 5.0%
2-BEB-C 12.0%
3-BEB-C 4.0%
3-PyB (F) -F 3.0%
3-HEB-O4 8.0%
4-HEB-O2 6.0%
5-HEB-O1 6.0%
5-HEB-O2 4.0%
5-HEB-5 5.0%
4-HEB-5 5.0%
1O-BEB-2 4.0%
3-HHB-1 6.0%
3-HHEBB-C 3.0%
3-HBEBB-C 3.0%
NI = 71.0 (° C.); η = 37.9 (mPa · s); Δn = 0.131;
Δε = 11.0; Vth = 1.33 (V).
[0148]
Example 5
5-HCF2ONp-2 (No.1) 2.0%
3-BB (F, F) CF2ONp-T (No.23) 3.0%
7-BCF2ONp (F, F) BV (No. 9) 9.0%
5-BBCF2ONp-V (No.21) 3.0%
3-HB-C 9.0%
7-HB-C 3.0%
1O1-HB-C 10.0%
3-HB (F) -C 10.0%
3-PyB-2 2.0%
4-PyB-2 2.0%
1O1-HH-3 7.0%
2-BTB-O1 7.0%
3-HHB-1 7.0%
3-HHB-F 4.0%
3-HHB-O1 4.0%
3-HHB-3 8.0%
3-H2BTB-2 3.0%
2-PyBH-3 4.0%
3-PyBB-2 3.0%
NI = 82.4 (° C.); η = 20.0 (mPa · s); Δn = 0.150;
Δε = 8.0; Vth = 1.78 (V).
[0149]
Example 6
3-BB (F, F) CF2ONp-T (No.23) 2.0%
5-BBCF2ONp-V (No.21) 6.0%
2-BEB (F) -C 5.0%
3-BEB (F) -C 4.0%
4-BEB (F) -C 12.0%
1V2-BEB (F, F) -C 10.0%
3-HH-EMe 10.0%
3-HB-O2 18.0%
7-HEB-F 2.0%
3-HHEB-F 2.0%
3-HBEB-F 4.0%
2O1-HBEB (F) -C 2.0%
3-HB (F) EB (F) -C 2.0%
3-HBEB (F, F) -C 2.0%
3-HHB-F 4.0%
3-HHB-O1 4.0%
3-HHB-3 7.0%
3-HEBEB-F 2.0%
3-HEBEB-1 2.0%
NI = 78.9 (° C.); η = 36.6 (mPa · s); Δn = 0.131;
Δε = 25.0; Vth = 0.89 (V).
[0150]
Example 7
3-BB (F, F) CF2ONp-T (No. 23) 4.0%
5-BBCF2ONp-V (No.21) 7.0%
2-BEB (F) -C 5.0%
3-BEB (F) -C 4.0%
4-BEB (F) -C 12.0%
1V2-BEB (F, F) -C 16.0%
3-HB-O2 10.0%
3-HH-4 3.0%
3-HHB-F 3.0%
3-HHB-1 8.0%
3-HHB-O1 4.0%
3-HBEB-F 4.0%
3-HHEB-F 7.0%
3-H2BTB-2 4.0%
3-H2BTB-4 4.0%
3-HB (F) TB-2 5.0%
NI = 89.0 (° C.); η = 41.6 (mPa · s); Δn = 0.155;
Δε = 28.2; Vth = 1.05 (V).
[0151]
Example 8
5-HCF2ONp-2 (No.1) 14.0%
3-BB (F, F) CF2ONp-2 (No.22) 6.0%
V-HHCF2ONp (F, F) -1 (No.16) 4.0%
2-BEB-C 12.0%
3-BEB-C 4.0%
4-BEB-C 6.0%
3-HB-C 14.0%
3-HEB-O4 12.0%
4-HEB-O2 8.0%
5-HEB-O1 8.0%
5-HEB-O2 5.0%
3-HHB-1 7.0%
NI = 61.8 (° C.); η = 26.7 (mPa · s); Δn = 0.116;
Δε = 10.1; Vth = 1.34 (V).
[0152]
Example 9
5-HCF2ONp-2 (No.1) 7.0%
3-B (F, F) CF2ONp-2 (No.5) 7.0%
3-BB (F, F) CF2ONp-2 (No.22) 12.0%
5-BBCF2ONp-V (No.21) 6.0%
2-BEB-C 10.0%
5-BB-C 12.0%
2-BTB-1 10.0%
1O-BEB-2 10.0%
2-HHB-1 4.0%
3-HHB-F 4.0%
3-HHB-1 7.0%
3-HHB-O1 4.0%
3-HHB-3 7.0%
NI = 63.6 (° C.); η = 21.5 (mPa · s); Δn = 0.156;
Δε = 6.9; Vth = 1.74 (V).
[0153]
Example 10
5-HCF2ONp-2 (No.1) 6.0%
3-BB (F, F) CF2ONp-T (No. 23) 7.0%
5-BB (F, F) CF2ONp-3 (No.24) 4.0%
5-BBCF2ONp-V (No.21) 7.0%
2-HB-C 5.0%
3-HB-C 6.0%
3-HB-O2 15.0%
2-BTB-1 3.0%
3-HHB-1 8.0%
3-HHB-F 4.0%
3-HHB-O1 5.0%
3-HHB-3 7.0%
3-HHEB-F 4.0%
2-HHB (F) -F 7.0%
3-HHB (F) -F 7.0%
3-HHB (F, F) -F 5.0%
NI = 100.9 (° C.); η = 23.4 (mPa · s); Δn = 0.126;
Δε = 4.7; Vth = 2.54 (V).
[0154]
Usage example 11
3-BB (F, F) CF2ONp-T (No.23) 5.0%
7-BCF2ONp (F, F) BV (No.9) 4.0%
5-BBCF2ONp-V (No.21) 7.0%
3-BEB (F) -C 8.0%
3-HB-C 8.0%
V-HB-C 8.0%
1V-HB-C 4.0%
3-HB-O2 3.0%
3-HH-2V 14.0%
3-HH-2V1 7.0%
V2-HHB-1 8.0%
3-HHB-1 5.0%
3-HHEB-F 7.0%
3-H2BTB-2 6.0%
3-H2BTB-3 6.0%
NI = 99.2 (° C.); η = 19.4 (mPa · s); Δn = 0.146;
Δε = 8.4; Vth = 2.22 (V).
[0155]
Use example 12
5-HCF2ONp-2 (No.1) 6.0%
3-BB (F, F) CF2ONp-2 (No.22) 6.0%
5-BB (F, F) CF2ONp-3 (No.24) 4.0%
7-BCF2ONp (F, F) BV (No.9) 12.0%
5-BB (F, F) CF2ONpB-2 (No. 35) 3.0%
V2-HB-C 6.0%
1V2-HB-C 6.0%
3-HB-C 12.0%
3-HB (F) -C 5.0%
2-BTB-1 2.0%
3-HH-4 8.0%
3-HH-VFF 6.0%
2-HHB-C 3.0%
3-HHB-C 3.0%
3-HB (F) TB-2 8.0%
3-H2BTB-2 5.0%
3-H2BTB-3 5.0%
NI = 87.8 (° C.); η = 18.4 (mPa · s); Δn = 0.164;
Δε = 8.3; Vth = 2.01 (V).
[0156]
Example 13
5-HCF2ONp-2 (No.1) 5.0%
5-BBCF2ONp-V (No.21) 7.0%
3-HHCF2ONp (F) B (F) -1 (No.27) 2.0%
5-BEB (F) -C 5.0%
V-HB-C 6.0%
5-PyB-C 6.0%
4-BB-3 11.0%
3-HH-2V 10.0%
5-HH-V 11.0%
V-HHB-1 7.0%
V2-HHB-1 8.0%
3-HHB-1 9.0%
1V2-HBB-2 10.0%
3-HHEBH-3 3.0%
NI = 92.1 (° C.); η = 15.0 (mPa · s); Δn = 0.123;
Δε = 4.8; Vth = 2.37 (V).
[0157]
Example 14
5-HCF2ONp-2 (No.1) 5.0%
3-BB (F, F) CF2ONp-2 (No.22) 7.0%
3-BB (F, F) CF2ONp-T (No. 23) 4.0%
5-BB (F, F) CF2ONpB-2 (No. 35) 4.0%
1V2-BEB (F, F) -C 8.0%
3-HB-C 5.0%
V2V-HB-C 7.0%
V2V-HH-3 19.0%
3-HB-O2 4.0%
3-HHB-1 10.0%
3-HHB-3 15.0%
3-HB (F) TB-3 4.0%
3-H2BTB-2 4.0%
3-H2BTB-3 4.0%
NI = 102.2 (° C.); η = 22.6 (mPa · s); Δn = 0.135;
Δε = 7.8; Vth = 2.12 (V).
[0158]
Example 15
5-HCF2ONp-2 (No.1) 5.0%
7-BCF2ONp (F, F) BV (No.9) 3.0%
5-BBCF2ONp-V (No.21) 3.0%
5-BB (F, F) CF2ONpB-2 (No. 35) 5.0%
V2-HB-TC 10.0%
3-HB-TC 10.0%
3-HB-C 5.0%
5-HB-C 4.0%
5-BB-C 3.0%
2-BTB-1 10.0%
2-BTB-O1 5.0%
3-HH-4 5.0%
3-HHB-1 10.0%
3-HHB-3 11.0%
3-H2BTB-2 3.0%
3-HB (F) TB-2 3.0%
5-BTB (F) TB-3 5.0%
NI = 101.4 (° C.); η = 15.2 (mPa · s); Δn = 0.198;
Δε = 6.7; Vth = 2.13 (V).
[0159]
Use Example 16
5-HCF2ONp-2 (No.1) 9.0%
5-BB (F, F) CF2ONp-3 (No.24) 4.0%
V-HHCF2ONp (F, F) -1 (No.16) 4.0%
5-BBCF2ONp-V (No.21) 5.0%
1V2-BEB (F, F) -C 6.0%
3-HB-C 9.0%
2-BTB-1 10.0%
5-HH-VFF 30.0%
1-BHH-VFF 4.0%
1-BHH-2VFF 6.0%
3-H2BTB-2 5.0%
3-H2BTB-3 4.0%
3-HHB-1 4.0%
NI = 80.2 (° C.); η = 13.0 (mPa · s); Δn = 0.132;
Δε = 6.5; Vth = 2.05 (V).
[0160]
Use case 17
5-HCF2ONp-2 (No.1) 9.0%
5-BB (F, F) CF2ONp-3 (No.24) 5.0%
V-HHCF2ONp (F, F) -1 (No.16) 5.0%
5-BB (F, F) CF2ONpB-2 (No. 35) 4.0%
5-HBCF2OB (F, F) -C 3.0%
3-HB (F, F) CF2OB (F, F) -C 3.0%
3-HB-C 9.0%
2-BTB-1 10.0%
5-HH-VFF 30.0%
1-BHH-VFF 4.0%
1-BHH-2VFF 6.0%
3-H2BTB-3 4.0%
3-H2BTB-4 4.0%
3-HHB-1 4.0%
NI = 83.2 (° C.); η = 15.3 (mPa · s); Δn = 0.130;
Δε = 4.7; Vth = 2.50 (V).
[0161]
Example 18
3-BB (F, F) CF2ONp-2 (No.22) 17.0%
5-BB (F, F) CF2ONp-3 (No.24) 10.0%
7-BCF2ONp (F, F) BV (No.9) 13.0%
3-HHB (F) -F 17.0%
5-HHB (F) -F 16.0%
2-H2HB (F) -F 10.0%
3-H2HB (F) -F 5.0%
2-HBB (F) -F 6.0%
3-HBB (F) -F 6.0%
NI = 98.6 (° C.); η = 28.1 (mPa · s); Δn = 0.134;
Δε = 5.7; Vth = 2.12 (V).
[0162]
Use example 19
3-BB (F, F) CF2ONp-2 (No.22) 10.0%
5-BB (F, F) CF2ONp-3 (No.24) 16.0%
5-BBCF2ONp-V (No.21) 3.0%
7-HB (F, F) -F 3.0%
3-HB-O2 7.0%
3-HHB (F) -F 10.0%
5-HHB (F) -F 10.0%
2-HBB (F) -F 9.0%
3-HBB (F) -F 9.0%
2-HBB-F 4.0%
3-HBB-F 4.0%
3-HBB (F, F) -F 5.0%
5-HBB (F, F) -F 10.0%
NI = 86.5 (° C.); η = 27.9 (mPa · s); Δn = 0.139;
Δε = 5.7; Vth = 2.03 (V).
[0163]
Use example 20
5-HCF2ONp-2 (No.1) 8.0%
3-BB (F, F) CF2ONp-T (No.23) 3.0%
5-BB (F, F) CF2ONp-3 (No.24) 8.0%
5-BB (F, F) CF2ONpB-2 (No. 35) 3.0%
5-HB-CL 8.0%
3-HH-4 12.0%
3-HH-5 4.0%
3-HHB-F 4.0%
3-HHB-CL 3.0%
4-HHB-CL 4.0%
3-HHB (F) -F 10.0%
4-HHB (F) -F 9.0%
5-HHB (F) -F 9.0%
5-HBB (F) -F 4.0%
5-HBBH-1O1 3.0%
3-HHBB (F, F) -F 2.0%
4-HHBB (F, F) -F 3.0%
3-HH2BB (F, F) -F 3.0%
NI = 15.1 (° C.); η = 21.5 (mPa · s); Δn = 0.110;
Δε = 4.1; Vth = 2.54 (V).
[0164]
Usage example 21
5-HCF2ONp-2 (No.1) 5.0%
3-BB (F, F) CF2ONp-2 (No.22) 8.0%
7-BCF2ONp (F, F) BV (No.9) 10.0%
3-HHB (F, F) -F 9.0%
3-H2HB (F, F) -F 8.0%
4-H2HB (F, F) -F 8.0%
3-HBB (F, F) -F 21.0%
5-HBB (F, F) -F 10.0%
3-H2BB (F, F) -F 5.0%
5-HHBB (F, F) -F 3.0%
5-HHEBB-F 2.0%
3-HH2BB (F, F) -F 3.0%
4-HBBH-1O1 4.0%
5-HBBH-1O1 4.0%
NI = 99.3 (° C.); η = 32.7 (mPa · s); Δn = 0.134;
Δε = 8.9; Vth = 1.78 (V).
[0165]
Example 22
3-BB (F, F) CF2ONp-2 (No.22) 10.0%
5-BB (F, F) CF2ONp-3 (No.24) 7.0%
5-HB-F 12.0%
6-HB-F 9.0%
7-HB-F 7.0%
3-HHB-OCF3 7.0%
4-HHB-OCF3 7.0%
5-HHB-OCF3 5.0%
3-HH2B-OCF3 4.0%
5-HH2B-OCF3 4.0%
3-HHB (F, F) -OCF3 5.0%
3-HBB (F) -F 10.0%
3-HH2B (F) -F 3.0%
3-HB (F) BH-3 3.0%
5-HBBH-3 3.0%
3-HHB (F, F) -OCF2H 4.0%
NI = 83.8 (° C.); η = 17.7 (mPa · s); Δn = 0.105;
Δε = 4.5; Vth = 2.38 (V).
[0166]
Usage example 23
3-BB (F, F) CF2ONp-2 (No.22) 10.0%
3-BB (F, F) CF2ONp-T (No.23) 5.0%
5-BB (F, F) CF2ONp-3 (No.24) 7.0%
7-BCF2ONp (F, F) BV (No.9) 10.0%
2-HHB (F) -F 3.0%
2-HBB (F) -F 7.0%
3-HBB (F) -F 7.0%
4-HBB (F) -F 2.0%
5-HBB (F) -F 8.0%
2-H2BB (F) -F 10.0%
3-HBB (F, F) -F 12.0%
5-HBB (F, F) -F 6.0%
2-HHBB (F, F) -F 5.0%
3-HHBB (F, F) -F 5.0%
3-HHB-F 3.0%
NI = 97.6 (° C.); η = 35.4 (mPa · s); Δn = 0.163;
Δε = 7.1; Vth = 1.95 (V).
[0167]
Usage example 24
3-BB (F, F) CF2ONp-2 (No.22) 3.0%
7-BCF2ONp (F, F) BV (No.9) 10.0%
V-HHCF2ONp (F, F) -1 (No.16) 3.0%
5-HB-CL 11.0%
3-HH-4 8.0%
3-HBB (F, F) -F 20.0%
5-HBB (F, F) -F 5.0%
3-HHB (F, F) -F 8.0%
3-HHEB (F, F) -F 10.0%
4-HHEB (F, F) -F 3.0%
2-HBEB (F, F) -F 3.0%
3-HBEB (F, F) -F 5.0%
5-HBEB (F, F) -F 3.0%
3-HHBB (F, F) -F 3.0%
3-HHB-1 5.0%
NI = 82.2 (° C.); η = 19.5 (mPa · s); Δn = 0.115;
Δε = 8.5; Vth = 1.56 (V).
[0168]
Use Example 25
3-B (F, F) CF2ONp-2 (No.5) 3.0%
3-BB (F, F) CF2ONp-2 (No.22) 4.0%
5-BB (F, F) CF2ONp-3 (No.24) 4.0%
5-BBCF2ONp-V (No.21) 11.0%
7-HB (F) -F 6.0%
5-H2B (F) -F 3.0%
3-HB-O2 4.0%
3-HH-4 12.0%
2-HHB (F) -F 11.0%
3-HHB (F) -F 11.0%
2-HBB (F) -F 2.0%
3-HBB (F) -F 2.0%
3-HBB (F, F) -F 3.0%
2-HHBB (F, F) -F 4.0%
3-HHBB (F, F) -F 5.0%
3-HHEB-F 4.0%
3-HHB-1 7.0%
3-HHB-F 4.0%
NI = 100.8 (° C.); η = 20.6 (mPa · s); Δn = 0.111;
Δε = 4.4; Vth = 2.29 (V).
[0169]
Use Example 26
5-HCF2ONp-2 (No.1) 8.0%
7-BCF2ONp (F, F) BV (No.9) 16.0%
3-HH-4 4.0%
3-H2HB (F, F) -F 10.0%
4-H2HB (F, F) -F 10.0%
3-HBB (F, F) -F 33.0%
5-HBB (F, F) -F 16.0%
3-HHBB (F, F) -F 3.0%
NI = 65.0 (° C.); η = 25.4 (mPa · s); Δn = 0.122;
Δε = 8.7; Vth = 1.47 (V).
[0170]
Example 27
3-B (F, F) CF2ONp-2 (No.5) 2.0%
3-BB (F, F) CF2ONp-2 (No.22) 10.0%
5-BB (F, F) CF2ONp-3 (No.24) 5.0%
7-BCF2ONp (F, F) BV (No.9) 3.0%
5-BB (F, F) CF2ONpB-2 (No. 35) 3.0%
7-HB (F, F) -F 3.0%
3-H2HB (F, F) -F 12.0%
3-HHB (F, F) -F 10.0%
3-HBB (F, F) -F 10.0%
3-HHEB (F, F) -F 10.0%
4-HHEB (F, F) -F 3.0%
2-HBEB (F, F) -F 3.0%
3-HBEB (F, F) -F 5.0%
5-HBEB (F, F) -F 3.0%
3-HGB (F, F) -F 15.0%
3-HHBB (F, F) -F 3.0%
NI = 76.8 (° C.); η = 34.4 (mPa · s); Δn = 0.112;
Δε = 12.9; Vth = 1.41 (V).
[0171]
Example 28
3-B (F, F) CF2ONp-2 (No.5) 3.0%
3-BB (F, F) CF2ONp-2 (No.22) 5.0%
3-BB (F, F) CF2ONp-T (No.23) 5.0%
5-H4HB (F, F) -F 7.0%
5-H4HB-OCF3 15.0%
3-H4HB (F, F) -CF3 8.0%
5-H4HB (F, F) -CF3 10.0%
3-HB-CL 3.0%
5-HB-CL 4.0%
2-H2BB (F) -F 5.0%
3-H2BB (F) -F 10.0%
3-HHB-OCF3 5.0%
3-H2HB-OCF3 5.0%
V-HHB (F) -F 5.0%
3-HHB (F) -F 5.0%
3-HBEB (F, F) -F 5.0%
NI = 70.0 (° C.); η = 30.3 (mPa · s); Δn = 0.114;
Δε = 8.5; Vth = 1.74 (V).
[0172]
Use example 29
3-BB (F, F) CF2ONp-2 (No.22) 5.0%
5-BB (F, F) CF2ONp-3 (No.24) 7.0%
7-BCF2ONp (F, F) BV (No.9) 3.0%
5-HB-CL 17.0%
7-HB (F, F) -F 3.0%
3-HH-4 10.0%
3-HH-5 5.0%
3-HB-O2 15.0%
3-H2HB (F, F) -F 5.0%
3-HHB (F, F) -F 3.0%
2-HHB (F) -F 7.0%
3-HHB (F) -F 7.0%
3-HHB-1 8.0%
3-HHB-O1 5.0%
NI = 70.2 (° C.); η = 14.9 (mPa · s); Δn = 0.092;
Δε = 3.0; Vth = 1.98 (V).
[0173]
Use example 30
5-HCF2ONp-2 (No.1) 11.0%
3-BB (F, F) CF2ONp-2 (No.22) 6.0%
5-BB (F, F) CF2ONp-3 (No.24) 9.0%
7-BCF2ONp (F, F) BV (No.9) 3.0%
V-HHCF2ONp (F, F) -1 (No.16) 6.0%
5-HB-CL 4.0%
4-HHB (F) -F 4.0%
5-HHB (F) -F 9.0%
3-HHB (F, F) -F 8.0%
3-H2HB (F, F) -F 6.0%
3-HBB (F, F) -F 11.0%
2-HHBB (F, F) -F 6.0%
3-GHB (F, F) -F 3.0%
4-GHB (F, F) -F 8.0%
5-GHB (F, F) -F 6.0%
NI = 83.1 (° C.); η = 31.0 (mPa · s); Δn = 0.114;
Δε = 8.7; Vth = 1.27 (V).
[0174]
Usage example 31
5-HCF2ONp-2 (No.1) 5.0%
3-BB (F, F) CF2ONp-2 (No.22) 7.0%
5-BB (F, F) CF2ONp-3 (No.24) 3.0%
7-BCF2ONp (F, F) BV (No.9) 10.0%
3-HHB (F) -F 8.0%
5-HHB (F) -F 7.0%
3-HHB (F, F) -F 8.0%
3-HBB (F, F) -F 11.0%
3-H2HB (F, F) -F 5.0%
3-HHEB (F, F) -F 10.0%
2-HBEB (F, F) -F 2.0%
3-HBEB (F, F) -F 3.0%
3-GHB (F, F) -F 3.0%
4-GHB (F, F) -F 7.0%
5-GHB (F, F) -F 7.0%
3-HHBB (F, F) -F 4.0%
NI = 81.5 (° C.); η = 35.7 (mPa · s); Δn = 0.112;
Δε = 10.5; Vth = 1.12 (V).
[0175]
Use Example 32
5-HCF2ONp-2 (No.1) 3.0%
3-B (F, F) CF2ONp-2 (No.5) 3.0%
7-HB (F) -F 4.0%
5-HB-CL 3.0%
3-HH-4 9.0%
3-HH-EMe 20.0%
3-HHEB (F, F) -F 10.0%
4-HHEB (F, F) -F 5.0%
3-HHEB-F 8.0%
5-HHEB-F 8.0%
4-HGB (F, F) -F 5.0%
5-HGB (F, F) -F 6.0%
2-H2GB (F, F) -F 4.0%
3-H2GB (F, F) -F 5.0%
5-GHB (F, F) -F 7.0%
NI = 77.0 (° C.); η = 20.8 (mPa · s); Δn = 0.066;
Δε = 6.0; Vth = 1.46 (V).
[0176]
Use Example 33
5-HCF2ONp-2 (No.1) 10.0%
3-HHCF2ONp (F) B (F) -1 (No.27) 10.0%
3-H2HB (F, F) -F 5.0%
5-H2HB (F, F) -F 5.0%
3-HBB (F, F) -F 30.0%
5-HBB (F, F) -F 20.0%
5-HBB (F) B-2 10.0%
3-BB (F) B (F, F) -F 5.0%
5-B2B (F, F) B (F) -F 5.0%
NI = 103.4 (° C.); η = 48.9 (mPa · s); Δn = 0.144;
Δε = 10.4; Vth = 1.71 (V).
[0177]
Usage example 34
3-BB (F, F) CF2ONp-T (No. 23) 6.0%
5-BB (F, F) CF2ONp-3 (No.24) 2.0%
7-BCF2ONp (F, F) BV (No.9) 3.0%
3-HB (F, F) CF2OB (F, F) -F 11.0%
5-HB (F, F) CF2OB (F, F) -F 11.0%
5-HB-CL 7.0%
3-HH-4 14.0%
2-HH-5 4.0%
3-HHB-1 4.0%
3-HHEB-F 6.0%
3-HHB (F, F) -F 6.0%
3-HHEB (F, F) -F 8.0%
4-HHEB (F, F) -F 3.0%
2-HBEB (F, F) -F 3.0%
3-HBEB (F, F) -F 3.0%
5-HBEB (F, F) -F 3.0%
2-HHBB (F, F) -F 3.0%
3-HHBB (F, F) -F 3.0%
NI = 81.3 (° C.); η = 24.4 (mPa · s); Δn = 0.098;
Δε = 8.3; Vth = 1.26 (V).
[0178]
Usage example 35
3-BB (F, F) CF2ONp-2 (No.22) 5.0%
7-BCF2ONp (F, F) BV (No.9) 5.0%
V-HHCF2ONp (F, F) -1 (No.16) 3.0%
3-HHCF2ONp (F) B (F) -1 (no.27) 3.0%
3-BB (F, F) CF2OB (F, F) -F 35.0%
3-HH-4 8.0%
3-HHB (F, F) -F 5.0%
3-H2HB (F, F) -F 9.0%
3-HBB (F, F) -F 10.0%
2-HHBB (F, F) -F 3.0%
3-HH2BB (F, F) -F 4.0%
3-HHB-1 6.0%
5-HBBH-1O1 4.0%
NI = 82.3 (° C.); η = 27.8 (mPa · s); Δn = 0.126;
Δε = 12.2; Vth = 1.41 (V).
[0179]
Use Example 36
5-HCF2ONp-2 (No.1) 5.0%
3-HEB-O4 28.0%
4-HEB-O2 20.0%
5-HEB-O1 20.0%
3-HEB-O2 13.0%
5-HEB-O2 14.0%
NI = 73.1 (° C.); η = 18.0 (mPa · s); Δn = 0.088.
[0180]
Usage example 37
3-BB (F, F) CF2ONp-2 (No.22) 5.0%
5-BBCF2ONp-V (No.21) 9.0%
3-HH-2 5.0%
3-HH-4 6.0%
3-HH-O1 4.0%
3-HH-O3 5.0%
5-HH-O1 4.0%
3-HB (2F, 3F) -O2 12.0%
5-HB (2F, 3F) -O2 11.0%
3-HHB (2F, 3F) -O2 14.0%
5-HHB (2F, 3F) -O2 10.0%
3-HHB (2F, 3F) -2 15.0%
NI = 88.7 (° C.); Δn = 0.097; Δε = −3.7.
[0181]
Use Case 38
5-BB (F, F) CF2ONp-3 (No.24) 2.0%
5-BBCF2ONp-V (No.21) 5.0%
3-HH-5 5.0%
3-HH-4 5.0%
3-HH-O1 6.0%
3-HH-O3 6.0%
3-HB-O1 5.0%
3-HB-O2 5.0%
3-HB (2F, 3F) -O2 10.0%
5-HB (2F, 3F) -O2 10.0%
3-HHB (2F, 3F) -O2 12.0%
5-HHB (2F, 3F) -O2 13.0%
3-HHB (2F, 3F) -2 2.0%
2-HHB (2F, 3F) -1 4.0%
3-HHEH-5 5.0%
4-HHEH-3 5.0%
NI = 86.0 (° C.); Δn = 0.087; Δε = −3.2.
[0182]
In said usage example 1, when 0.8 weight% of optically active compounds (Op-4) were added based on the composition, the value of the pitch was 11.0 micrometers. In said usage example 18, when 0.3 weight% of optically active compounds (Op-8) were added based on the composition, the value of the pitch was 78.7 micrometers.
[0183]
【The invention's effect】
The compound of the present invention has a low clearing point, a small viscosity, a large optical anisotropy, a positive dielectric anisotropy, and an excellent compatibility with other liquid crystal compounds. A composition containing this compound has a low viscosity, a large optical anisotropy, a suitable dielectric anisotropy, and a low threshold voltage. A liquid crystal display device containing this composition has a short response time, a high contrast, and a low driving voltage.

Claims (17)

下記の式(1)で表される化合物。
Figure 0004186493
式(1)において、Rは炭素数1〜20のアルキルであり、このアルキルにおいて任意の−CH2−は−O−、−S−、−CO−、または−CH=CH−で置き換えられてもよく、そして任意の水素はハロゲンまたは−CNで置き換えられてもよく;Rは炭素数1〜20のアルキルであり、このアルキルにおいて任意の−CH2−は−S−、−CO−、または−CH=CH−で置き換えられてもよく、そして任意の水素はハロゲンまたは−CNで置き換えられてもよく;A1、A2、およびA3は独立して、1,4−シクロヘキシレン、1,4−シクロヘキセニレンまたは1,4−フェニレンであり、これらの環において任意の−CH−は−O−で置き換えられてもよく、任意の−CH=は−N=で置き換えられてもよく、そして任意の水素はハロゲンで置き換えられてもよく;Z1は、単結合、−(CH22−、−(CF22−、−COO−、−OCO−、−CH2O−、−OCH2−、−CFO−、−OCF−、−CH=CH−、−CF=CF−、または−(CH24−であり;Z2は、−(CH22−、−(CF22−、−COO−、−OCO−、−CH2O−、−OCH2−、−CFO−、−OCF−、−CH=CH−、−CF=CF−、または−(CH24−であり;YおよびYは独立して水素またはフッ素であり;そしてpおよびqは独立して0または1である。
A compound represented by the following formula (1).
Figure 0004186493
In the formula (1), R a is alkyl having 1 to 20 carbon atoms, and in this alkyl, arbitrary —CH 2 — is replaced by —O—, —S—, —CO—, or —CH═CH—. And any hydrogen may be replaced by halogen or —CN; R b is alkyl having 1 to 20 carbons, and in this alkyl, any —CH 2 — is —S—, —CO—. , Or —CH═CH—, and any hydrogen may be replaced with halogen or —CN; A 1 , A 2 , and A 3 are independently 1,4-cyclohexylene , 1,4-cyclohexenylene or 1,4-phenylene, in which any —CH 2 — may be replaced by —O—, and any —CH═ is replaced by —N═. And it ’s okay The hydrogen may be replaced by halogen; is Z 1, a single bond, - (CH 2) 2 - , - (CF 2) 2 -, - COO -, - OCO -, - CH 2 O -, - OCH 2 —, —CF 2 O—, —OCF 2 —, —CH═CH—, —CF═CF—, or — (CH 2 ) 4 —; Z 2 represents — (CH 2 ) 2 —, — (CF 2 ) 2 —, —COO—, —OCO—, —CH 2 O—, —OCH 2 —, —CF 2 O—, —OCF 2 —, —CH═CH—, —CF═CF—, or — (CH 2 ) 4 —; Y 1 and Y 2 are independently hydrogen or fluorine; and p and q are independently 0 or 1.
式(1)において、Rは炭素数1〜10のアルキルであり、このアルキルにおいて任意の−CH2−は−O−または−CH=CH−で置き換えられてもよく、そして任意の水素はハロゲンで置き換えられてもよく;Rは炭素数1〜10のアルキルであり、このアルキルにおいて任意の−CH2−は−CH=CH−で置き換えられてもよく、そして任意の水素はハロゲンで置き換えられてもよく;A1、A2およびA3は独立して、1,4−シクロヘキシレン、1,3−ジオキサン−2,5−ジイル、1,4−フェニレン、任意の水素がハロゲンで置き換えられた1,4−フェニレン、ピリジン−2,5−ジイル、任意の水素がハロゲンで置き換えられたピリジン−2,5−ジイル、またはピリミジン−2,5−ジイルであり;Z1 、単結合、−(CH22−、−COO−、−OCO−、−CFO−、−OCF−、−CH=CH−、または−(CH24−であり;Z 2 は、−(CH 2 2 −、−COO−、−OCO−、−CF O−、−OCF −、−CH=CH−、または−(CH 2 4 −であり;YおよびYは独立して水素またはフッ素であり;そしてpおよびqは独立して0または1である請求項1に記載の化合物。In the formula (1), R a is an alkyl having 1 to 10 carbon atoms, in which arbitrary —CH 2 — may be replaced by —O— or —CH═CH—, and any hydrogen is R b is alkyl having 1 to 10 carbon atoms, in which any —CH 2 — may be replaced by —CH═CH—, and any hydrogen is a halogen. A 1 , A 2 and A 3 may independently be 1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, any hydrogen is a halogen It replaced 1,4-phenylene, pyridine-2,5-diyl, is any hydrogen pyridine-2,5-diyl is substituted with halogen or pyrimidine-2,5-diyl,; Z 1 is a single Result , - (CH 2) 2 - , - COO -, - OCO -, - CF 2 O -, - OCF 2 -, - CH = CH-, or - (CH 2) 4 - a and; Z 2 is - (CH 2 ) 2 —, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH═CH—, or — (CH 2 ) 4 ; Y 1 and Y 2 are independently 2. A compound according to claim 1, wherein hydrogen or fluorine; and p and q are independently 0 or 1. 請求項1に記載の式(1)において、pおよびqが0である請求項1または請求項2に記載の化合物。 The compound according to claim 1 or 2, wherein p and q are 0 in the formula (1) according to claim 1. 請求項1に記載の式(1)において、pが0であり、そしてqが1である請求項1または請求項2に記載の化合物。 The compound according to claim 1 or claim 2, wherein p is 0 and q is 1 in formula (1) according to claim 1. 請求項1に記載の式(1)において、pが1であり、そしてqが0である請求項1または請求項2に記載の化合物。 The compound according to claim 1 or claim 2, wherein p is 1 and q is 0 in formula (1) according to claim 1. 請求項1に記載の式(1)において、pが1であり、そしてqが1である請求項1または請求項2に記載の化合物。 3. A compound according to claim 1 or claim 2 wherein p is 1 and q is 1 in formula (1) according to claim 1. 下記の式(1−a−2)、(1−b−2)、(1−c−2)および(1−d−2)のいずれかで表される化合物。
Figure 0004186493
これらの式において、Rは炭素数1〜10のアルキルであり、このアルキルにおいて任意の−CH2−は−O−または−CH=CH−で置き換えられてもよく、そして任意の水素はハロゲンで置き換えられてもよく;Rは炭素数1〜10のアルキルであり、このアルキルにおいて任意の−CH2−は−CH=CH−で置き換えられてもよく、そして任意の水素はハロゲンで置き換えられてもよく;A1およびA3は独立して、1,4−シクロヘキシレン、1,3−ジオキサン−2,5−ジイル、1,4−フェニレン、任意の水素がハロゲンで置き換えられた1,4−フェニレン、ピリジン−2,5−ジイル、任意の水素がハロゲンで置き換えられたピリジン−2,5−ジイル、またはピリミジン−2,5−ジイルであり;Z1は、単結合、−(CH22−、−COO−、−OCO−、−CFO−、−OCF−、−CH=CH−、または−(CH24−であり;Z2は、−(CH22−、−COO−、−OCO−、−CFO−、−OCF−、−CH=CH−、または−(CH24−であり;YおよびYは独立して水素またはフッ素であり;そして、かっこの中のFが垂直な線で連結した1,4−フェニレンは、任意の水素がフッ素で置き換えられてもよい1,4−フェニレンである。
A compound represented by any of the following formulas (1-a-2), (1-b-2), (1-c-2) and (1-d-2).
Figure 0004186493
In these formulas, R a is alkyl having 1 to 10 carbons, in which arbitrary —CH 2 — may be replaced by —O— or —CH═CH—, and any hydrogen is a halogen atom. R b is alkyl having 1 to 10 carbons, in which any —CH 2 — may be replaced by —CH═CH—, and any hydrogen is replaced by halogen. A 1 and A 3 are independently 1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 1 in which any hydrogen is replaced by halogen , 4-phenylene, pyridine-2,5-diyl, pyridine-2,5-diyl in which any hydrogen is replaced by halogen, or pyrimidine-2,5-diyl; Z 1 is a single bond, (CH 2 ) 2 —, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH═CH—, or — (CH 2 ) 4 —; Z 2 is — (CH 2 ) 2 —, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH═CH—, or — (CH 2 ) 4 —; Y 1 and Y 2 are independently 1,4-phenylene which is hydrogen or fluorine; and F in parentheses connected by a vertical line is 1,4-phenylene in which any hydrogen may be replaced by fluorine.
請求項1〜7のいずれか1項に記載した化合物の少なくとも1つを含有する液晶組成物。 A liquid crystal composition containing at least one of the compounds according to claim 1. 下記の式(2)、(3)および(4)で表される化合物群から選択された少なくとも1つの化合物をさらに含有する請求項8に記載の組成物。
Figure 0004186493
これらの式において、Rは炭素数1〜10のアルキルであり、このアルキルにおいて任意の−CH−は−O−または−CH=CH−で置き換えられてもよく、そして任意の水素はフッ素で置き換えられてもよく;Xはフッ素、塩素、−OCF、−OCHF、−CF、−CHF、−CHF、−OCFCHF、または−OCFCHFCFであり;BおよびDは独立して1,4−シクロヘキシレン、1,3−ジオキサン−2,5−ジイルまたは任意の水素がフッ素で置き換えられてもよい1,4−フェニレンであり、Eは1,4−シクロヘキシレンまたは任意の水素がフッ素で置き換えられてもよい1,4−フェニレンであり;ZおよびZは独立して−(CH)−、−(CH)−、−COO−、−CFO−、−OCF−、−CH=CH−、または単結合であり;そしてLおよびLは独立して水素またはフッ素である。
The composition of Claim 8 which further contains the at least 1 compound selected from the compound group represented by following formula (2), (3) and (4).
Figure 0004186493
In these formulas, R 1 is alkyl having 1 to 10 carbons, in which arbitrary —CH 2 — may be replaced by —O— or —CH═CH—, and optional hydrogen is fluorine X 1 is fluorine, chlorine, —OCF 3 , —OCHF 2 , —CF 3 , —CHF 2 , —CH 2 F, —OCF 2 CHF 2 , or —OCF 2 CHFCF 3 ; B and D are independently 1,4-cyclohexylene, 1,3-dioxane-2,5-diyl or 1,4-phenylene in which any hydrogen may be replaced by fluorine, and E is 1,4 - be cyclohexylene or any hydrogen may be replaced by fluorine 1,4-phenylene; Z 4 and Z 5 are independently - (CH 2) 2 -, - (CH 2) 4 -, - CO -, - CF 2 O -, - OCF 2 -, - CH = CH-, or a single bond; and L 1 and L 2 are each independently hydrogen or fluorine.
下記の式(5)および(6)で表される化合物群から選択された少なくとも1つの化合物をさらに含有する請求項8に記載の組成物。
Figure 0004186493
これらの式において、RおよびRは独立して炭素数1〜10のアルキルであり、このアルキルにおいて任意の−CH−は−O−または−CH=CH−で置き換えられてもよく、そして任意の水素はフッ素で置き換えられてもよく;Xは−CNまたは−C≡C−CNであり;Gは1,4−シクロヘキシレン、1,4−フェニレン、1,3−ジオキサン−2,5−ジイル、またはピリミジン−2,5−ジイルであり;Jは1,4−シクロヘキシレン、ピリミジン−2、5−ジイルまたは任意の水素がフッ素で置き換えられてもよい1,4−フェニレンであり;Kは1,4−シクロヘキシレンまたは1,4−フェニレンであり;Zは−(CH)−、−COO−、−CFO−、−OCF−、または単結合であり;L、LおよびLは独立して水素またはフッ素であり;そしてb、cおよびdは独立して0または1である。
The composition according to claim 8, further comprising at least one compound selected from the group of compounds represented by the following formulas (5) and (6).
Figure 0004186493
In these formulas, R 2 and R 3 are independently alkyl having 1 to 10 carbons, and in this alkyl, arbitrary —CH 2 — may be replaced by —O— or —CH═CH—, And any hydrogen may be replaced by fluorine; X 2 is —CN or —C≡C—CN; G is 1,4-cyclohexylene, 1,4-phenylene, 1,3-dioxane-2 , 5-diyl, or pyrimidine-2,5-diyl; J is 1,4-cyclohexylene, pyrimidine-2,5-diyl or 1,4-phenylene in which any hydrogen may be replaced by fluorine Yes; K is 1,4-cyclohexylene or 1,4-phenylene; Z 6 is — (CH 2 ) 2 —, —COO—, —CF 2 O—, —OCF 2 —, or a single bond ; L 3, 4 and L 5 have independently hydrogen or fluorine; and b, c and d are independently 0 or 1.
下記の式(7)、(8)および(9)で表される化合物群から選択された少なくとも1つの化合物をさらに含有する請求項8に記載の組成物。
Figure 0004186493
式中、RおよびR5は独立して炭素数1〜10のアルキルであり、このアルキルにおいて任意の−CH−は−O−または−CH=CH−で置き換えられてもよく、そして任意の水素はフッ素で置き換えられてもよく;MおよびPは独立して1,4−シクロヘキシレンまたは1,4−フェニレンであり;ZおよびZは独立して−(CH−、−COO−または単結合であり;そしてLおよびLは独立して水素またはフッ素であり、LとLの少なくとも1つはフッ素である。
The composition of Claim 8 which further contains the at least 1 compound selected from the compound group represented by following formula (7), (8) and (9).
Figure 0004186493
In the formula, R 4 and R 5 are independently alkyl having 1 to 10 carbon atoms, and in this alkyl, arbitrary —CH 2 — may be replaced by —O— or —CH═CH—, and M and P are independently 1,4-cyclohexylene or 1,4-phenylene; Z 7 and Z 8 are independently — (CH 2 ) 2 —, -COO- or a single bond; and L 6 and L 7 are independently hydrogen or fluorine, and at least one of L 6 and L 7 is fluorine.
下記の式(10)、(11)および(12)で表される化合物群から選択された少なくとも1つの化合物をさらに含有する請求項9に記載の組成物。
Figure 0004186493
これらの式において、RおよびRは独立して炭素数1〜10のアルキルであり、このアルキルにおいて任意の−CH−は−O−または−CH=CH−で置き換えられてもよく、そして任意の水素はフッ素で置き換えられてもよく;Q、TおよびUは独立して1,4−シクロヘキシレン、ピリミジン−2、5−ジイル、または任意の水素がフッ素で置き換えられてもよい1,4−フェニレンであり;そしてZおよびZ10は独立して、−C≡C−、−COO−、−(CH−、−CH=CH−、または単結合である。
The composition of Claim 9 which further contains the at least 1 compound selected from the compound group represented by following formula (10), (11) and (12).
Figure 0004186493
In these formulas, R 6 and R 7 are independently alkyl having 1 to 10 carbons, and in this alkyl, arbitrary —CH 2 — may be replaced by —O— or —CH═CH—, And any hydrogen may be replaced with fluorine; Q, T and U are independently 1,4-cyclohexylene, pyrimidine-2,5-diyl, or any hydrogen may be replaced with fluorine 1 , 4-phenylene; and Z 9 and Z 10 are independently —C≡C—, —COO—, — (CH 2 ) 2 —, —CH═CH—, or a single bond.
請求項12に記載の式(10)、(11)および(12)で表される化合物群から選択された少なくとも1つの化合物をさらに含有する請求項10に記載の組成物。 The composition according to claim 10, further comprising at least one compound selected from the group of compounds represented by formulas (10), (11) and (12) according to claim 12. 請求項12に記載の式(10)、(11)および(12)で表される化合物群から選択された少なくとも1つの化合物をさらに含有する請求項11に記載の組成物。 The composition according to claim 11, further comprising at least one compound selected from the group of compounds represented by formulas (10), (11) and (12) according to claim 12. 請求項10に記載の式(5)および(6)で表される化合物群から選択された少なくとも1つの化合物をさらに含有する請求項12に記載の組成物。 The composition according to claim 12, further comprising at least one compound selected from the group of compounds represented by formulas (5) and (6) according to claim 10. 少なくとも1つの光学活性化合物をさらに含有する請求項8〜15のいずれか1項に記載の組成物。 The composition according to any one of claims 8 to 15, further comprising at least one optically active compound. 請求項8〜16のいずれか1項に記載の組成物を含有する液晶表示素子。 The liquid crystal display element containing the composition of any one of Claims 8-16.
JP2002096781A 2002-03-29 2002-03-29 Liquid crystalline compound having naphthalene ring, liquid crystal composition and liquid crystal display element Expired - Lifetime JP4186493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002096781A JP4186493B2 (en) 2002-03-29 2002-03-29 Liquid crystalline compound having naphthalene ring, liquid crystal composition and liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002096781A JP4186493B2 (en) 2002-03-29 2002-03-29 Liquid crystalline compound having naphthalene ring, liquid crystal composition and liquid crystal display element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008100265A Division JP5013110B2 (en) 2008-04-08 2008-04-08 Liquid crystalline compound having naphthalene ring, liquid crystal composition and liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2003286217A JP2003286217A (en) 2003-10-10
JP4186493B2 true JP4186493B2 (en) 2008-11-26

Family

ID=29239662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002096781A Expired - Lifetime JP4186493B2 (en) 2002-03-29 2002-03-29 Liquid crystalline compound having naphthalene ring, liquid crystal composition and liquid crystal display element

Country Status (1)

Country Link
JP (1) JP4186493B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936104B2 (en) * 2005-02-21 2012-05-23 Dic株式会社 Trifluoronaphthalene derivative and liquid crystal composition containing the compound
JP4929601B2 (en) * 2005-03-07 2012-05-09 Dic株式会社 Nematic liquid crystal composition and liquid crystal display element
JP2009067780A (en) * 2007-08-22 2009-04-02 Chisso Corp Liquid crystal compound having chloronaphthalene moiety, liquid crystal composition, and optical device
JP5560521B2 (en) * 2007-09-28 2014-07-30 Dic株式会社 Nematic liquid crystal composition
JP5527333B2 (en) * 2012-01-06 2014-06-18 Dic株式会社 Nematic liquid crystal composition
TWI570221B (en) * 2012-03-19 2017-02-11 Dainippon Ink & Chemicals Nematic liquid crystal composition
US20150337200A1 (en) * 2012-10-23 2015-11-26 Dic Corporation Liquid crystal composition, liquid crystal display element, and liquid crystal display
WO2014157551A1 (en) * 2013-03-29 2014-10-02 Agcセイミケミカル株式会社 Compound, process for producing same, liquid-crystal composition, and liquid-crystal electro-optical element
JP2013177611A (en) * 2013-04-26 2013-09-09 Dic Corp Nematic liquid crystal composition
JP5776864B1 (en) 2013-08-30 2015-09-09 Dic株式会社 Nematic liquid crystal composition
JP6365002B2 (en) * 2014-06-26 2018-08-01 Dic株式会社 Novel liquid crystalline compound and liquid crystal composition using the same
CN106459767B (en) 2014-07-31 2019-04-19 Dic株式会社 Nematic liquid crystal composition
JP2015044998A (en) * 2014-09-16 2015-03-12 Dic株式会社 Liquid crystal composition, liquid crystal display element, and liquid crystal display
CN106590687B (en) * 2015-10-16 2019-02-15 江苏和成显示科技有限公司 Liquid-crystal composition and its application
CN106590686B (en) * 2015-10-16 2019-04-23 江苏和成显示科技有限公司 Liquid-crystal composition and its application
JP6107918B2 (en) * 2015-11-02 2017-04-05 Dic株式会社 Nematic liquid crystal composition
JP6489382B2 (en) * 2017-02-17 2019-03-27 Dic株式会社 Nematic liquid crystal composition
JP2017214589A (en) * 2017-07-03 2017-12-07 Dic株式会社 Liquid crystal composition, liquid crystal display element and liquid crystal display

Also Published As

Publication number Publication date
JP2003286217A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
JP4244556B2 (en) Liquid crystalline compound having bis (trifluoromethyl) phenyl ring, liquid crystal composition and liquid crystal display device
JP5488628B2 (en) Tetrahydropyran compound, liquid crystal composition, and liquid crystal display device containing the liquid crystal composition
JP4186493B2 (en) Liquid crystalline compound having naphthalene ring, liquid crystal composition and liquid crystal display element
JP2009292729A (en) Pentacyclic liquid crystal compound having cf2o-bonding group, liquid crystal composition and liquid crystal display element
JP2004115475A (en) Liquid crystalline compound having both of difluoromethyl group and trifluoromethyl group on benzene ring, liquid crystal composition and liquid crystal display element
JP3800051B2 (en) Liquid crystalline compound, liquid crystal composition and liquid crystal display element having difluoropropyleneoxy group as bonding group
JP4492206B2 (en) Compound having perfluoropropenyl, liquid crystal composition, and liquid crystal display device
KR101233223B1 (en) Liquid crystal compound having a chroman ring, liquid crystal composition, and liquid crystal display device comprising the liquid crystal composition
JP4513351B2 (en) Liquid crystal compound having fluorinated alkyl group as bonding group, liquid crystal composition, and liquid crystal display device
JP4311055B2 (en) Liquid crystalline compound in which one of terminal groups is hydrogen, composition thereof, and liquid crystal display device containing the same
KR100982763B1 (en) Liquid crystal compound having hydrogen as a terminal group, composition comprising the compound, and liquid crystal display element comprising the composition
JP4595293B2 (en) Propionate derivative, liquid crystal composition containing the derivative, and liquid crystal display device containing the liquid crystal composition
JP5544940B2 (en) Compound having indole ring, liquid crystal composition, and liquid crystal display device
JP4892853B2 (en) Liquid crystal compound having carbonate bond group, liquid crystal composition containing this compound, and liquid crystal display device containing this liquid crystal composition
JP4042423B2 (en) Fluoroazomethine compound, liquid crystal composition, and liquid crystal display device
JP4003487B2 (en) Bicyclo [3.1.0] hexane derivative
JP2006232727A (en) Coumarin derivative, liquid crystal composition containing the same, and liquid crystal display element containing the liquid crystal composition
JP4423877B2 (en) 2-trifluoromethyldihydropyran derivative, liquid crystal composition and liquid crystal display device
JP5013110B2 (en) Liquid crystalline compound having naphthalene ring, liquid crystal composition and liquid crystal display device
JP4432320B2 (en) Liquid crystalline 3,4-substituted pyrrole
JP4978017B2 (en) Benzodioxin derivative, liquid crystal composition containing the same, and liquid crystal display device
JP3935954B2 (en) Difluorophenyl derivative, liquid crystal composition, and liquid crystal display device
JP2003081967A (en) Liquid crystal compound, liquid crystal composition and liquid crystal display element
JP4419457B2 (en) Dihydropyran compound, liquid crystal composition containing the compound, and liquid crystal display device containing the liquid crystal composition
JP4774963B2 (en) Coumarin derivative, liquid crystal composition containing this compound, and liquid crystal display device containing this liquid crystal composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071105

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Ref document number: 4186493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term