JP3800051B2 - Liquid crystalline compound, liquid crystal composition and liquid crystal display element having difluoropropyleneoxy group as bonding group - Google Patents

Liquid crystalline compound, liquid crystal composition and liquid crystal display element having difluoropropyleneoxy group as bonding group Download PDF

Info

Publication number
JP3800051B2
JP3800051B2 JP2001243568A JP2001243568A JP3800051B2 JP 3800051 B2 JP3800051 B2 JP 3800051B2 JP 2001243568 A JP2001243568 A JP 2001243568A JP 2001243568 A JP2001243568 A JP 2001243568A JP 3800051 B2 JP3800051 B2 JP 3800051B2
Authority
JP
Japan
Prior art keywords
group
liquid crystal
compound
ring
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001243568A
Other languages
Japanese (ja)
Other versions
JP2003002858A (en
Inventor
秋一 松井
康幸 笹田
和利 宮沢
弘行 竹内
勝行 河野
恭宏 久保
悦男 中川
真由美 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Petrochemical Corp
Original Assignee
Chisso Petrochemical Corp
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Petrochemical Corp, Chisso Corp filed Critical Chisso Petrochemical Corp
Priority to JP2001243568A priority Critical patent/JP3800051B2/en
Publication of JP2003002858A publication Critical patent/JP2003002858A/en
Application granted granted Critical
Publication of JP3800051B2 publication Critical patent/JP3800051B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Pyridine Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液晶性化合物および液晶組成物に関し、さらに詳しくは液晶組成物、特に、TNモード用、STNモード用、TFTモード用、OCBモード用液晶組成物の成分として好適な液晶物性を示すジフルオロプロピレンオキシ基を結合基とする液晶性化合物、これを含む液晶組成物およびこの液晶組成物を用いて構成した液晶表示素子に関する。なお、本発明において液晶性化合物という用語は、液晶相を有する化合物および液晶相を示さないが液晶組成物の構成成分として有用な化合物の総称として用いる。
【0002】
【背景技術】
液晶表示素子は液晶物質がもつ光学異方性および誘電率異方性を利用したものであるが、その表示方式によってねじれネマチック(TN)モード、動的散乱(DS)モード、ゲストホスト(GH)モード、配向相変(DAP)モード、超ねじれネマチック(STN)モード、電圧制御複屈折(VCB、ECBまたはTB)モード、垂直配向(VA)モード、マルチドメイン垂直配向(MVA)モード、OCBモードなどの各種方式に分けられ、それぞれの方式に適する液晶物質の性質は異なる。
どの方式で用いられるかを問わず、いずれの液晶物質にも共通の性質として以下の特性が必要である。
【0003】
1)水分、空気、熱、光等の外的環境因子に対して安定であること。
2)室温を中心とした広い温度範囲で液晶相を示すこと。
3)低粘度であること。
4)表示素子を駆動させた場合にその駆動電圧を低くなし得ること。
5)最適な誘電率異方性(△ε)を有すること。
6)最適な屈折率異方性(△n)を有すること。
【0004】
しかし、現在のところ単一化合物では上記の特性を全て満たす物質はなく、数種〜二十数種の液晶性化合物を混合した液晶組成物として、この混合物である液晶組成物を液晶表示素子に使用しているのが現状である。
その為、組成物成分として用いられる液晶性化合物は相互に良好な相溶性を示すことが必要である。最近は様々な環境下でも使用できることが要求されていることから特に極低温においても良好な相溶性を示すことが望まれている。
【0005】
近年は例えばコントラスト、表示容量、応答時間等、表示性能のより高い液晶表示素子が要求されており、その要求に応えるため、TFT(薄膜トランジスタ)方式に代表されるアクティブマトリックス方式の表示素子に対する需要が主にテレビジョンやビューファインダー等の分野で高まっている。
STN方式の表示素子についても、大きい表示容量を持ちながら製造工程が簡単で低コストであることから携帯電話、パーソナルコンピューター等のディスプレイ分野に多用されている。
これらの分野における近年の開発傾向は、小型かつ軽量化により携帯可能としたテレビやノート型パーソナルコンピューターに見られるごとく液晶表示素子の小型化や携帯化を中心に進められている。これに伴って使用される液晶材料には駆動電圧の低いもの、すなわちしきい値電圧の低下を可能とする液晶性化合物およびこれを含むしきい値電圧の低い液晶組成物が要求されている。
【0006】
しきい値電圧(Vth)は、良く知られているように、下式により示される(H.J.Deuling, et al., Mol. Cryst. Liq. Cryst., 27(1975)81)。
Vth=π(K/ε0△ε)1/2
上式においてKは液晶材料の弾性定数、ε0は真空中の誘電率である。
該式から判るように、Vthを低下させるには、△εを大きくするかまたはKを小さくするかの二通りの方法が考えられる。しかし、現在の技術では未だ実際に液晶材料の弾性定数Kをコントロールすることは困難であり、通常は△εの大きな液晶材料を用いて要求に対処している。この様な事情から△εの大きな液晶性化合物の開発が盛んに行われてきた。
【0007】
液晶性化合物において、△εを増大させる方法として、シアノ基やトリフルオロメチル基といった大きなダイポールモーメントを有する置換基を分子末端基として保有させる方法がよく知られている。また、ダイポールモーメントの向きが末端置換基のダイポールモーメントの向きと同じく分子長軸方向となるように、化合物を構成する1,4−フェニレン基にフッ素を置換する方法も効果的である。しかし一般に1,4−フェニレン基に置換したフッ素の数と粘度とは比例的な関係があること、および置換したフッ素の数が増えれば化合物の透明点が低下することから、粘度の上昇と透明点の低下を共に抑制しながら△εのみを向上させることは困難と考えられてきた。
【0008】
近年情報端末、携帯ゲーム機等としての用途に液晶表示素子が普及している。これら表示素子は電池で駆動されるため、しきい値電圧が低いこと、かつ長時間の使用の追求から消費電力が低いことが要求される。特に素子自身の消費電力を低くするために、最近ではバックライトを必要としない反射型の表示素子の開発が盛んであり、今後携帯電話等への利用が増加するものと予想される。これら反射型の表示素子に使用される液晶組成物にはしきい値電圧が低いことの他に、その屈折率異方性値(△n)が小さなものが要求される。この為組成物を構成する液晶材料としても誘電率異方性値が大きくかつ屈折率異方性値が小さな液晶性化合物の開発がこの分野の鍵と成っている。TFT方式の液晶表示素子に使用する低電圧駆動用の液晶材料の代表として下記の化合物(13)および(14)(特開平2−233626号公報)を示すことができる。
【0009】
【化7】

Figure 0003800051
(式中Rはアルキル基を表す。)
【0010】
化合物(13)および(14)は何れも分子の末端に3,4,5−トリフルオロフェニル基を有し、低電圧駆動用の液晶材料として期待されているものである。しかし、上述の反射型表示素子用途としては化合物(13)は誘電率異方性値(△ε=〜10)が小さく、また化合物(14)は誘電率異方性値(△ε=〜12)では満足できるものの、屈折率異方性値が約0.12と大きく、これら化合物の使用では上述の要求を十分満足できる液晶組成物の調製は困難と考えられる。
【0011】
また近年液晶表示素子の最大の問題点である視野角の狭さを克服する方式としてインプレーン・スイッチング(IPS)モード、垂直配向(VA)モード、マルチドメイン垂直配向(MVA)モード、OCBモード等の新規な方式が発表されている。これらのモードのうち、特にVAモードおよびMVAモードは視野角の広さに加え、応答性にも優れており、さらには高コントラストであることから各ディスプレイメーカーでの開発が盛んである。これらの方式の液晶表示素子に使用される液晶組成物の特徴は比較的小さな屈折率異方性であり、かつ誘電率異方性が負の液晶組成物である点にある。大きな負の誘電率異方性を示す化合物として、例えば下記の化合物(15)が報告されている(V. Reiffenrath et al., Liq. Cryst., 5(1), 159(1989))。
【0012】
【化8】
Figure 0003800051
【0013】
該文献から上記化合物(15)は誘電率異方性値が△ε=−4.1と負に大きな値を示すことが判るものの、その屈折率異方性値は△n=0.18と大きく前記のVAモードあるいはMVAモードの要求を満たすことは困難と予想される。
【0014】
以上の説明のように正および負に大きな誘電率異方性であり、かつ比較的小さな屈折率異方性を示す液晶性化合物が待望されている。
【0015】
【発明が解決しようとする課題】
本発明の目的は、上記の従来技術の欠点を解消し、誘電率異方性の絶対値(|Δε|)が大きく、かつ比較的小さな屈折率異方性値を示す液晶性化合物を提供すること、この化合物を含有することにより種々の表示方式において低電圧駆動を可能とする液晶組成物を提供すること、およびこの液晶組成物を用いた液晶表示素子を提供することである。
【0016】
【課題を解決するための手段】
本発明者等は上記目的を達成するために鋭意検討した結果、ジフルオロプロピレンオキシ基を結合基とする式(1)で表される化合物が、誘電率異方性の絶対値(|Δε|)が大きく、かつ比較的小さな屈折率異方性値を示すことを見いだした。またこれらの化合物を用いた液晶組成物が、様々な液晶表示素子を低電圧で駆動するのに最適な材料であることを見いだし、本発明を完成するに至った。
すなわち本発明の構成は以下の通りである。
【0017】
本発明の第1は、
[1]式(1)
【化9】
Figure 0003800051
(式中、R1およびR2は各々独立して水素、ハロゲン、シアノ基または炭素数1〜20のアルキル基であり、該アルキル基中の1つ以上の−CH2−は−CH=CH−、−C≡C−、−O−または−S−で置換されていても良いが−O−が連続することはなく、また該基中の1つ以上の水素はハロゲンで置換されていても良く;
環A1〜環A5は各々独立して、隣り合わない1つ以上の−CH2−が−O−または−S−で置換されていても良い1,4−シクロヘキシレン基、1,4−シクロヘキセニレン基、あるいは1つ以上の=CH−が=N−で置換されていても良く、また環上の水素がハロゲンで置換されていても良い1,4−フェニレン基であり;
1〜Z4は各々独立して単結合、−CH2CH2−、−CH2O−、−OCH2−、−COO−、−OCO−、−CH=CH−、−C≡C−、−CF2O−、または−OCF2−であり;
1、Y2、Y3およびY4は各々独立して水素またはフッ素であり;
k、l、mおよびnは各々独立して0または1である)で表される液晶性化合物である。
【0018】
本発明の第1の態様は以下の[2]ないし[10]項に記される。
[2] 式(1−1)〜(1−6)
【化10】
Figure 0003800051
(式中R1、R2、環A1〜A5、Z1〜Z4、およびY1〜Y4は前記と同一の意味を表す)で表される液晶性化合物。
【0019】
[3] 式(1)において環A3が1,4−シクロヘキシレン基である液晶性化合物。
【0020】
[4] 式(1)においてY1とY3が共にフッ素、Y2とY4が共に水素である液晶性化合物。
【0021】
[5] 式(1)においてY1とY2が共に水素である液晶性化合物。
【0022】
[6] 式(1−1)において環A3が1,4−シクロヘキシレン基、Y1とY3が共にフッ素、Y2とY4が共に水素である液晶性化合物。
【0023】
[7] 式(1−1)において環A3が1,4−シクロヘキシレン基、Y1とY2が共に水素である液晶性化合物。
【0024】
[8] 式(1−2)において環A2および環A3が共に1,4−シクロヘキシレン基、Y1とY3が共にフッ素、Y2とY4が共に水素である液晶性化合物。
【0025】
[9] 式(1−2)において環A2および環A3が共に1,4−シクロヘキシレン基、Y1とY2が共に水素である液晶性化合物。
【0026】
[10] 式(1−3)において環A3が2,3−ジフルオロ−1,4−フェニレン基である液晶性化合物。
【0027】
本発明の第2は、
[11] 第[1]〜[10]項のいずれか1項に記載の液晶性化合物を少なくとも1種類含有する液晶組成物であり、その態様は以下の第[12]〜[18]項に記載される。
【0028】
[12] 第[11]項において、第二成分として、式(2)、(3)および(4)
【化11】
Figure 0003800051
(式中、R3は炭素数1〜10のアルキル基であり、この基中の相隣接しない任意の−CH2−は−O−または−CH=CH−で置換されてもよく、また、この基中の任意の水素はフッ素で置換されてもよく;X1はフッ素、塩素、−OCF3、−OCF2H、−CF3、−CF2H、−CFH2、−OCF2CF2Hまたは−OCF2CFHCF3であり;L1およびL2は各々独立して水素またはフッ素であり;Z5およびZ6は各々独立して−(CH2)2−、−(CH2)4−、−COO−、−CF2O−、−OCF2−、−CH=CH−または単結合であり;環Aおよび環Bはそれぞれ独立して1,4−シクロヘキシレン、1,3−ジオキサン−2,5−ジイル、または水素がフッ素で置換されていても良い1,4−フェニレンであり、環Cは1,4−シクロヘキシレンまたは水素がフッ素で置換されてもよい1,4−フェニレンである)からなる化合物群から選択される化合物を少なくとも1種含有する液晶組成物。
【0029】
[13] 第[11]項において、第二成分として、式(5)および(6)からなる化合物群から選択される化合物を少なくとも1種含有する液晶組成物。
【0030】
【化12】
Figure 0003800051
(式中、R4およびR5は各々独立して炭素数1〜10のアルキル基であり、この基中の相隣接しない任意の−CH2−は−O−または−CH=CH−で置換されてもよく、また、この基中の任意の水素はフッ素で置換されてもよく;X2は−CNまたは−C≡C−CNであり;環Dは1,4−シクロヘキシレン、1,4−フェニレン、1,3−ジオキサン−2,5−ジイルまたはピリミジン−2,5−ジイルであり;環Eは1,4−シクロヘキシレン、水素がフッ素で置換されてもよい1,4−フェニレン、またはピリミジン−2,5−ジイルであり;環Fは1,4−シクロヘキシレンまたは1,4−フェニレンであり;Z7は−(CH2)2−、−COO−、−CF2O−、−OCF2−または単結合であり;L3、L4およびL5は各々独立して水素またはフッ素であり;b、cおよびdは各々独立して0または1である。)
【0031】
[14] 第[11]項において、第二成分として、式(7)、(8)および(9)からなる化合物群から選択される化合物を少なくとも1種含有する液晶組成物。
【0032】
【化13】
Figure 0003800051
(式中、R6およびR7は各々独立して炭素数1〜10のアルキル基であり、この基中の相隣接しない任意の−CH2−は−O−または−CH=CH−で置換されてもよく、また、この基中の任意の水素はフッ素で置換されてもよく;環Gおよび環Iは各々独立して、1,4−シクロヘキシレンまたは1,4−フェニレンであり;L6およびL7は各々独立して水素またはフッ素であるがL6およびL7が同時に水素であることはなく;Z8およびZ9は各々独立して−(CH2)2−、−COO−または単結合である。)
【0033】
[15] 第[11]項において、第二成分として、前記式(2)、(3)および(4)からなる化合物群から選択される化合物を少なくとも1種含有し、第三成分として、式(10)、(11)および(12)からなる化合物群から選択される化合物を少なくとも1種含有する液晶組成物。
【0034】
【化14】
Figure 0003800051
(式中、R8およびR9は各々独立して炭素数1〜10のアルキル基であり、この基中の相隣接しない任意の−CH2−は−O−または−CH=CH−で置換されてもよく、また、この基中の任意の水素はフッ素で置換されてもよく;環J、環Kおよび環Mは各々独立して、1,4−シクロヘキシレン、ピリミジン−2,5−ジイル、または水素がフッ素で置換されてもよい1,4−フェニレンであり;Z10およびZ11は各々独立して、−C≡C−、−COO−、−(CH2)2−、−CH=CH−または単結合である。)
【0035】
[16] 第[11]項において、第二成分として、前記式(5)および(6)からなる化合物群から選択される化合物を少なくとも1種含有し、第三成分として、前記式(10)、(11)および(12)からなる化合物群から選択される化合物を少なくとも1種含有する液晶組成物。
【0036】
[17] 第[11]項において、第二成分として、前記式(7)、(8)および(9)からなる化合物群から選択される化合物を少なくとも1種含有し、第三成分として、前記式(10)、(11)および(12)からなる化合物群から選択される化合物少なくとも1種含有する液晶組成物。
【0037】
[18] 第[11]項において、第二成分として、前記式(2)、(3)および(4)からなる化合物群から選択される化合物を少なくとも1種含有し、第三成分として、前記式(5)および(6)からなる化合物群から選択される化合物を少なくとも1種含有し、第四成分として、前記式(10)、(11)および(12)からなる化合物群から選択される化合物を少なくとも1種含有する液晶組成物。
【0038】
本発明の第3は、
[19] 第[11]〜[18]項のいずれか1項に記載の液晶組成物に、さらに1種以上の光学活性化合物を含有する液晶組成物である。
【0039】
本発明の第4は、
[20]前記の第[11]〜[19]項のいずれか1項に記載の液晶組成物を用いた液晶表示素子である。
【0040】
【発明の実施の形態】
式(1)で表される本発明の化合物は、ジフルオロプロピレンオキシ基中の−O−が、フッ素が置換していても良い1,4−フェニレン基に直結した部分構造を有することを特徴とする。式(1)の化合物において環A3が1,4−シクロヘキシレン基である化合物は高い透明点を有し、また、環A3が1,4−フェニレン基である化合物は誘電率異方性の絶対値が大きい。また、式(1)の化合物においてY1およびY2が共に水素である化合物はニュートラルまたは正の誘電率異方性を示す。中でもY3およびY4の何れか少なくとも一つがフッ素である化合物は正に大きな誘電率異方性を示す。例えば後述の実施例で示す本願化合物(化合物No.40)ではその誘電率異方性が△ε=13.7であり、ジフルオロプロピレンオキシ基に対応する結合基が単結合である化合物((13−1):△ε=9.7)と比較し、遥かに大きな値を示す。
【0041】
【化15】
Figure 0003800051
【0042】
一方、式(1)の化合物においてY1およびY3が共にフッ素であり、Y2およびY4が共に水素である化合物は負に大きな誘電率異方性を示す。さらに式(1)の化合物は例えば本発明の特徴であるジフルオロプロピレンオキシ基が単結合である化合物と比較し、高い透明点を有しながら、ほぼ同等の屈折率異方性を示す。これらのことから式(1)の化合物は、背景技術の項で説明した反射型の液晶表示素子をはじめとし、VA、MVA方式用の液晶組成物を構成する液晶性化合物として好適な特徴を有することが分る。
【0043】
ジフルオロプロピレンオキシ基を結合基とする一部の化合物についてはWO97/37959号に本発明と類似する化合物の一般式での記述はあるものの、具体的化合物の構造式ならびに物性値の開示はなく、上記の本発明化合物の優れた特性については本発明者等が初めて見出したものである。
【0044】
式(1)で表される液晶性化合物は、式中のk、l、mおよびnを適宜選択することにより次の式(1−1)〜(1−6)で表される化合物の群に展開される。
【0045】
【化16】
Figure 0003800051
(式中、R1、R2、環A1〜A5、Z1〜Z4およびY1〜Y4は前記と同一の意味を表す。)
【0046】
これら下位概念の式の化合物中、式(1−1)である二環系の化合物は、△εの絶対値が比較的大きく、比較的小さな△nであり、また、低粘度であると共に低温における相溶性も良好である。この化合物を液晶組成物の成分として使用する場合、組成物の△εの絶対値を維持しながらその粘度を低下させることができるので、高速応答用の液晶組成物を与えることもできる。
【0047】
また式(1−2)もしくは式(1−3)で表される三環系の化合物は△εの絶対値が大きく、比較的小さな△nであり、また液晶相を示す温度範囲が比較的広い。この化合物を液晶組成物の成分として使用する場合、組成物の透明点を低下させずに△εの絶対値を大きくすることができるので、低電圧駆動用の液晶組成物を与えることができる。
【0048】
式(1−4)〜(1−6)で表される四環系の化合物は△εの絶対値が大きく、比較的小さな△nを示す。また液晶相を示す温度範囲は高温側で広い。そのため、これらの化合物を液晶組成物の成分として使用する場合、組成物の△εの絶対値を大きくし、かつ液晶組成物が示す液晶相温度範囲を高温側に拡大することができる。
さらにこれらの式においてY1、Y2、Y3およびY4のいずれか少なくとも1つがフッ素である化合物は低温相溶性に優れた特徴を有する。
【0049】
本発明の式(1)で表される化合物において、R1およびR2は各々独立して水素、ハロゲン、シアノ基、または基中の−CH2−が−CH=CH−、−C≡C−、−O−または−S−で置換されていても良いが、−O−が連続することはなく、また該基中の1つ以上の水素がハロゲンで置換されていても良い炭素数1〜20のアルキル基であり;環A1〜環A5は各々独立して、隣り合わない1つ以上の−CH2−が−O−または−S−で置換されていても良い1,4−シクロヘキシレン基、1,4−シクロヘキセニレン基、あるいは1つ以上の=CH−が=N−で置換されていても良く、また環上の水素がハロゲンで置換されていても良い1,4−フェニレン基であり;Z1〜Z4は各々独立して単結合、−CH2CH2−、−CH2O−、−OCH2−、−COO−、−OCO−、−CH=CH−、−C≡C−、−CF2O−、または−OCF2−であり;Y1、Y2、Y3およびY4は各々独立して水素またはフッ素であり;k、l、mおよびnは各々独立して0または1である。
【0050】
上記においてR1およびR2は具体的には水素、ハロゲン、シアノ基、アルキル基、アルコキシ基、アルコキシアルキル基、アルキルチオ基、アルキルチオアルキル基、アルケニル基、アルケニルオキシ基、アルケニルチオ基、アルキニル基、フッ素置換アルキル基、フッ素置換アルコキシ基、フッ素置換アルケニル基、フッ素置換アルケニルオキシ基、フッ素置換アルケニルチオ基、フッ素置換アルキニル基等を示す。
【0051】
より具体的にはフッ素、塩素、臭素、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基、ヘプチルオキシ基、オクチルオキシ基、メトキシメチル基、エトキシメチル基、プロポキシメチル基、プロポキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、メチルチオメチル基、エチルチオメチル基、プロピルチオメチル基、ブチルチオメチル基、メチルチオエチル基、エチルチオエチル基、プロピルチオエチル基、メチルチオプロピル基、エチルチオプロピル基、プロピルチオプロピル基、ビニル基、1−プロペニル基、1−ブテニル基、1−ペンテニル基、3−ブテニル基、3−ペンテニル基、エチニル基、2−プロピニル基、2−ブチニル基、3−ブチニル基、3−ペンチニル基、アリルオキシ基、トリフルオロメチル基、フルオロメチル基、2−フルオロエチル基、ジフルオロメチル基、2,2,2−トリフルオロエチル基、1,1,2,2−テトラフルオロエチル基、2−フルオロエチル基、3−フルオロプロピル基、4−フルオロブチル基、5−フルオロペンチル基、フルオロメトキシ基、トリフルオロメトキシ基、ジフルオロメトキシ基、ペンタフルオロエトキシ基、1,1,2,2−テトラフルオロエトキシ基、ヘプタフルオロプロポキシ基、1,1,2,3,3,3−ヘキサフルオロプロポキシ基、トリフルオロメトキシメチル基、2−フルオロエテニル基、2,2−ジフルオロエテニル基、1,2,2−トリフルオロエテニル基、3−フルオロ−1−ブテニル基、4−フルオロ−1−ブテニル基、トリフルオロメチルチオ基、ジフルオロメチルチオ基、1,1,2,2−テトラフルオロエチルチオ基、2,2,2−トリフルオロエチルチオ基等を示す。
【0052】
上記において環A1〜環A5については具体的には(r−1)〜(r−24)で示される環構造のものが好適である。
【0053】
【表1】
Figure 0003800051
【0054】
本発明により提供される液晶組成物は、式(1)の液晶性化合物を少なくとも1種類含む第一成分のみでもよいが、これに加え、第二成分として既述参照の式(2)、(3)および(4)からなる群から選ばれる少なくとも1種類の化合物(以下第二A成分と称する)および/または式(5)および(6)からなる群から選ばれる少なくとも1種類の化合物(以下第二B成分と称する)を含有したものが好ましく、さらに、しきい値電圧、液晶相温度範囲、屈折率異方性値、誘電率異方性値および粘度等を調整する目的で、式(7)、(8)および(9)からなる群から選ばれる少なくとも1種類の化合物を第三成分として含有することもできる。また、本発明に使用される液晶組成物の各成分は物性に大きな差異が無いことから、各元素の同位体からなる類縁体でも差し支えない。
【0055】
上記第二A成分のうち、式(2)に含まれる化合物の好適例として次の(2−1)〜(2−9)、式(3)に含まれる化合物の好適例として(3−1)〜(3−97)、式(4)に含まれる化合物の好適例として(4−1)〜(4−33)をそれぞれ挙げることができる。
【0056】
【化17】
Figure 0003800051
【0057】
【化18】
Figure 0003800051
【0058】
【化19】
Figure 0003800051
【0059】
【化20】
Figure 0003800051
【0060】
【化21】
Figure 0003800051
【0061】
【化22】
Figure 0003800051
【0062】
【化23】
Figure 0003800051
【0063】
【化24】
Figure 0003800051
【0064】
【化25】
Figure 0003800051
【0065】
【化26】
Figure 0003800051
【0066】
【化27】
Figure 0003800051
【0067】
【化28】
Figure 0003800051
【0068】
【化29】
Figure 0003800051
(式中、R3、X1は前記と同じ意味を表す。)
【0069】
これらの式(2)〜(4)で示される化合物は、誘電率異方性値が正であり、熱安定性や化学的安定性が非常に優れているので、主としてTFT用の液晶組成物に用いられる。TFT用の液晶組成物を調製する場合、該化合物の使用量は、液晶組成物の全重量に対して1〜99重量%の範囲であることが好ましい。より好ましくは10〜97重量%、さらに好ましくは40〜95重量%の範囲である。また式(10)〜(12)で表される化合物を粘度調整の目的でさらに含有していても良い。
【0070】
次に、前記第二B成分のうち、式(5)および(6)に含まれる化合物の好適例として、それぞれ(5−1)〜(5−58)および(6−1)〜(6−3)を挙げることができる。
【0071】
【化30】
Figure 0003800051
【0072】
【化31】
Figure 0003800051
【0073】
【化32】
Figure 0003800051
【0074】
【化33】
Figure 0003800051
【0075】
【化34】
Figure 0003800051
【0076】
【化35】
Figure 0003800051
(式中、R4、R5およびX2は前記と同じ意味を表す。)
【0077】
これらの式(5)および(6)で示される化合物は、誘電率異方性値が正でその値が非常に大きいので主としてSTN、TN用の液晶組成物に用いられる。これらの化合物は組成物成分として特にしきい値電圧を小さくする目的で使用される。また、粘度の調整、屈折率異方性値の調整および液晶相温度範囲を広げる等の目的や、さらに急峻性を改良する目的にも使用される。STNまたはTN用の液晶組成物を調製する場合には式(5)および(6)で表される化合物の使用量は0.1〜99.9重量%の範囲であることが好ましい。より好ましくは10〜97重量%、さらに好ましくは40〜95重量%の範囲である。また、しきい値電圧、液晶相温度範囲、屈折率異方性値、誘電率異方性値及び粘度等を調整する目的で後述の第三成分を含有することもできる。
【0078】
垂直配向モード(VAモード)等に用いられる、誘電率異方性が負の液晶組成物を調製する場合には、本発明の液晶組成物としては、式(7)〜(9)からなる群から選ばれる少なくとも一種類の化合物(以下第二C成分)を含有した物が好ましい。第二C成分の式(7)〜(9)に含まれる化合物の好適例として、それぞれ(7−1)〜(7−3)、(8−1)〜(8−5)および(9−1)〜(9−3)を挙げることができる。
【0079】
【化36】
Figure 0003800051
(式中、R6、R7は前記と同じ意味を表す。)
【0080】
式(7)〜(9)で表される化合物は、誘電率異方性値が負の化合物である。式(7)で表される化合物は2環化合物であるので、主としてしきい値電圧の調整、粘度調整または屈折率異方性値の調整の目的で使用される。式(8)で表される化合物はネマチックレンジを広げる目的の他、しきい値電圧を低くする目的および屈折率異方性値を大きくする目的で使用される。
【0081】
式(7)〜(9)で表される化合物は主として誘電率異方性の値が負であるVAモード用の液晶組成物に使用される。その使用量を増加させると組成物のしきい値電圧は低くなるが、粘度は高くなる。従って、しきい値電圧の要求値を満足している限り、使用量を少なくすることが好ましい。しかしながら、誘電率異方性値の絶対値が5以下であるので、式(7)〜(9)で表される化合物が40重量%より少なくなると液晶組成物は駆動ができなくなる場合がある。そのためVAモード用の組成物を調製する場合には、式(7)〜(9)で表される化合物の使用量は、40重量%以上であることが好ましい。より好ましくは50〜95重量%の範囲である。
【0082】
また弾性定数をコントロールし、組成物の電圧透過率曲線を制御する目的で、式(7)〜(9)で表される化合物を誘電率異方性値が正である組成物に含有させる場合もある。この場合の式(7)〜(9)で表される化合物の使用量は30重量%以下であることが好ましい。
【0083】
本発明の液晶組成物の第三成分のうち、式(10)〜(12)に含まれる化合物の好適例として、それぞれ(10−1)〜(10−11)、(11−1)〜(11−12)および(12−1)〜(12−6)を挙げることができる。
【0084】
【化37】
Figure 0003800051
【0085】
【化38】
Figure 0003800051
【0086】
【化39】
Figure 0003800051
(式中、R8およびR9は前記と同じ意味を表す。)
【0087】
式(10)〜(12)で表される化合物は、誘電率異方性値の絶対値が小さく、中性に近い化合物である。式(10)で表される化合物は主として粘度調整または屈折率異方性値の調整の目的で使用される。また式(11)および(12)で表される化合物は透明点を高くする等のネマチックレンジを広げる目的または屈折率異方性値の調整の目的で使用される。
【0088】
式(10)〜(12)で表される化合物の使用量を増加させると液晶組成物のしきい値電圧が高くなり、粘度が低くなる。従って、低電圧駆動を可能にするためには、液晶組成物のしきい値電圧要求値を満足している限り、式(10)〜(12)で表される化合物を多量に使用することが望ましい。TFT用の液晶組成物を調整する場合に、式(10)〜(12)で表される化合物の使用量は、好ましくは40重量%以下、より好ましくは35重量%以下である。また、STNまたはTN用の液晶組成物を調製する場合には、式(10)〜(12)で表される化合物の使用量は、好ましくは70重量%以下、より好ましくは60重量%以下である。
【0089】
本発明に従い提供される液晶組成物は、式(1)で示される液晶性化合物の少なくとも1種類を0.1〜99重量%の割合で含有することが、低電圧駆動可能性を発現せしめるために好ましい。
【0090】
該液晶組成物は公知の方法、例えば種々の成分を高温度下で相互に溶解させる方法により一般に調製される。また必要により、キラルドープ剤を加えることによって、用途に応じた改良をし最適化することができる。キラルドープ剤は、液晶のらせん構造を誘起して必要なねじれ角を調整し、逆ねじれを防ぐ効果を有するキラルドープ剤であればよい。例えば、キラルドープ剤として以下の光学活性化合物を挙げることができる。
【0091】
【化40】
Figure 0003800051
【0092】
本発明の液晶組成物は、通常、これらの光学活性化合物を添加して、ねじれのピッチを調整する。ねじれのピッチはTFT用およびTN用の液晶組成物であれば40〜200μmの範囲に調整するのが好ましい。STN用の液晶組成物であれば6〜20μmの範囲に調整するのが好ましい。また、双安定TN(Bistable TN)モード用の場合は、1.5〜4μmの範囲に調整するのが好ましい。また、ピッチの温度依存性を調整する目的で2種以上の光学活性化合物を添加しても良い。
【0093】
また、メロシアニン系、スチリル系、アゾ系、アゾメチン系、アゾキシ系、キノフタロン系、アントラキノン系およびテトラジン系等の二色性色素を添加すれば、GH型用の液晶組成物として使用することもできる。本発明に係る組成物は、ネマチック液晶をマイクロカプセル化して作製したNCAPや、液晶中に三次元網目状高分子を形成して作製したポリマー分散型液晶表示素子(PDLCD)、例えばポリマーネットワーク液晶表示素子(PNLCD)用、複屈折制御(ECB)型やDS型用の液晶組成物としても使用できる。
【0094】
本発明の式(1)で表される化合物は、例えば第4版実験化学講座(丸善)、Organic Synthesis(John Wiley & Sons, Inc)またはOrganic Reactions(John Wiley & Sons, Inc)等有機合成の成書または公知文献等に記載されている方法を適宜選択、組み合わせることにより製造することができる。
【0095】
例えば、式(1)で表される化合物は次の方法で製造することができる。まず、特開昭59−76027号、特開昭60−197637号あるいは特開昭60−204743号記載の方法で得られるプロピオン酸エステル誘導体(16)を特開平10−204016号に開示されている方法に準じ、ローソン試薬(Fieser13, 38)にてチオエステル誘導体(17)に変換する。さらに(17)を特開平5−255165号開示の方法に準じ、N−ブロモスクシンイミド(以下NBSと省略する)等酸化剤の存在下、HF−ピリジンを作用してフッ素化して式(1)の化合物を得る。
【0096】
【化41】
Figure 0003800051
(式中、R1、R2、環A1〜A5、Z1〜Z4、Y1〜Y4、k、l、mおよびnは前記と同一の意味を表す。)
【0097】
また、式(1)で表される化合物は以下の方法にても好適に製造できる。すなわち特開平10−17544号記載の方法に準じ、ハロベンゼン誘導体(18)からGrignard試薬を調製後、二硫化炭素を作用してジチオカルボン酸誘導体(19)を製造する。次いで(19)をフェノール誘導体(20)との共在下に水素化ナトリウムを作用、さらにヨウ素にて酸化することによりチオエステル誘導体(17)が製造できる。この様にして得られる(17)にNBS等酸化剤の存在下、HF−ピリジンを作用してフッ素化することにより目的とする化合物(1)が製造できる。
【0098】
【化42】
Figure 0003800051
(式中、R1、R2、環A1〜A5、Z1〜Z4、Y1〜Y4、k、l、mおよびnは前記と同一の意味を表し、ベンゼン環の水素はフッ素で置換されていても良い。またXは塩素または臭素を表す。)
【0099】
また、前記で使用するフェノール誘導体(20)については例えばR. L. Kidwell等の方法(Org. Synth., V, 918(1973))に従い、ベンゼン誘導体(21)から調製したGrignard試薬にホウ酸トリアルキルを作用させてボロン酸エステル誘導体を調製し、これを過酸化水素、過酢酸等の過酸化物で酸化することにより製造することができる。
【0100】
【化43】
Figure 0003800051
(式中、R2、環A4、A5、Z3、Z4、Y1〜Y4、mおよびnは前記と同一の意味を表し、R10はアルキル基、X′は塩素原子または臭素原子を表す。)
【0101】
また、式(1)で表される化合物は以下の方法にても好適に製造できる。すなわち、まずカルボン酸誘導体(22)にトルエンに代表される好適な溶媒中プロパンジチオールとトリフルオロ酢酸等の強酸を作用させることにより、ジチアニウム塩(23)を製造する。この際の反応は室温から溶媒の沸点程度の温度を目安として行われるが、100℃以上で水を除去しながら行うのが塩が安定に単離される点で好ましい。なお(23)はジチアニウムトリフルオロメタンスルホン酸塩以外にもテトラフルオロホウ酸塩、過塩素酸塩などでも良い。次いで(23)を塩化メチレン等の好適な溶媒中フェノール誘導体(20)との共存下にトリエチルアミン等の塩基を作用することでジチオオルトエステル誘導体(24)へと導き、この系中にトリエチルアミン−3HF等のフッ素化剤を作用、さらにNBS、臭素などの酸化剤を作用させることによって酸化的フッ素化を行うことで目的とする化合物(1)が製造できる。この際の反応はできるだけ低温で行い、実用的には−50℃〜−100℃程度が望ましい。
【0102】
【化44】
Figure 0003800051
(式中、R1、R2、環A1〜A5、Z1〜Z4、Y1〜Y4、k、l、mおよびnは前記と同一の意味を表し、ベンゼン環の水素はフッ素で置換されていても良い。)
【0103】
【実施例】
以下、実施例により本発明をさらに詳しく説明する。
なお、各実施例中において、Crは結晶、Nはネマチック相、Isoは等方性液体相を示す。
【0104】
実施例1
1−(3−(トランス−4−(トランス−4−ペンチルシクロヘキシル)シクロヘキシル)−1,1−ジフルオロプロピレンオキシ)−3,4,5−トリフルオロベンゼン(式(1)においてl=1、k=m=n=0、R1がn−ペンチル基、環A2および環A3が共にトランス−1,4−シクロヘキシレン基、Z2が単結合、Y1およびY2が共に水素原子、Y3、Y4およびR2が共にフッ素原子である化合物(化合物No.40))の製造
【0105】
第1工程
撹拌機、温度計、滴下ロートを備えた1L三口フラスコ中、窒素雰囲気下、ジエチルホスフィノ酢酸エチル27.6g(122.9mmol)をテトラヒドロフラン(以下THFと省略する)350mlに溶解し、攪拌しながら−5℃まで冷却して、ここにカリウム−t−ブトキシド15.2g(135.2mmol)を添加し、室温にて2時間攪拌した。再度0℃まで冷却し、トランス−4−(トランス−4−ペンチルシクロヘキシル)シクロヘキサンカルバルデヒド25.0g(94.5mmol)をTHF100mlに溶かした溶液を滴下した。さらに室温にて14時間攪拌後、反応混合物に水200ml、トルエン400mlを加えて攪拌した。分離したトルエン層を水200mlで2回洗浄し、無水硫酸マグネシウムで乾燥後、トルエンを減圧留去した。残査をトルエンを展開溶媒としてシリカゲルカラムクロマトグラフィーにて精製し、3−(トランス−4−(トランス−4−ペンチルシクロヘキシル)シクロヘキシル)プロペン酸エチル(黄色油状物)12.8gを得た。
【0106】
第2工程
100mlフラスコ中、上記で得た3−(トランス−4−(トランス−4−ペンチルシクロヘキシル)シクロヘキシル)プロペン酸エチル12.8g(38.3mmol)をトルエン/エタノール(50ml/30ml)の混合液に溶解し、5%パラジウム−炭素触媒2.0gを添加し、水素圧0.1MPaにて、室温で8時間攪拌した。触媒を濾取分別後、濾液を濃縮し、黄色油状物13.5gを得た。次いでこの油状物をエタノール150mlに溶解し、2M水酸化ナトリウム水溶液50ml(100mmol)を加え、3時間加熱還流した。水300mlを加え、析出した不溶物を濾取し、トルエンから再結晶して3−(トランス−4−(トランス−4−ペンチルシクロヘキシル)シクロヘキシル)プロピオン酸を微黄色の結晶として4.9g得た。
【0107】
第3工程
撹拌機、温度計および冷却管を備えた100ml三口フラスコ中、窒素雰囲気下、上記で得た3−(トランス−4−(トランス−4−ペンチルシクロヘキシル)シクロヘキシル)プロピオン酸4.9g(16.0mmol)、3,4,5−トリフルオロフェノール2.9g(19.2mmol)、2−クロロ−1−メチルピリジニウムヨージド(Kazuhiko Saigo, Teruaki Mukaiyama et al., Bull. Chem. Soc. Jpn., 50(7), 1863(1977))4.9g(19.2mmol)およびトリエチルアミン3.9g(38.4mmol)をトルエン50mlに溶解し、攪拌しながら3時間加熱還流した。反応混合物に6M塩酸50ml、トルエン100mlを加え攪拌した。トルエン層を水洗(150ml×3)し、無水硫酸マグネシウムにて乾燥後、トルエンを減圧留去した。残査をヘプタン/トルエン(75/25)の混合液を展開溶媒としてシリカゲルカラムクロマトグラフィーにて精製し、3,4,5−トリフルオロフェニル=3−(トランス−4−(トランス−4−ペンチルシクロヘキシル)シクロヘキシル)プロピオネートを無色結晶物として6.4g得た。
【0108】
第4工程
撹拌機、温度計および冷却管を備えた300ml三口フラスコ中、窒素雰囲気下、上記で得た3,4,5−トリフルオロフェニル=3−(トランス−4−(トランス−4−ペンチルシクロヘキシル)シクロヘキシル)プロピオネート6.4g(14.5mmol)、Lawesson's試薬11.7g(29.0mmol)およびメシチレン85mlを攪拌しながら8時間加熱還流した。室温まで冷却後、不溶物を除き、濾液をトルエンで抽出した。トルエン層を順次、水200ml、飽和炭酸ナトリウム水溶液150mlおよび水200mlで2回洗浄し、無水硫酸マグネシウムにて乾燥後、トルエンを減圧下留去した。残査をヘプタンを展開溶媒としてシリカゲルカラムクロマトグラフィーにて精製し、3,4,5−トリフルオロフェニル=3−(トランス−4−(トランス−4−ペンチルシクロヘキシル)シクロヘキシル)チオン−O−プロピオネートを微黄色結晶物として0.9g得た。
【0109】
第5工程
撹拌機、温度計および滴下ロートを備えたテフロン(R)製200mlの三口フラスコ中、NBS1.1g(5.8mmol)をジクロロメタン15mlに溶解し、攪拌しながら−60℃以下で70%HF−ピリジン1mlを加え、さらに30分間攪拌した。次いで前工程で得た3,4,5−トリフルオロフェニル=3−(トランス−4−(トランス−4−ペンチルシクロヘキシル)シクロヘキシル)チオン−O−プロピオネート0.9g(2.0mmol)をジクロロメタン20mlに溶解した溶液を滴下し、滴下後−10〜0℃にて2時間攪拌した。反応混合物を飽和炭酸ナトリウム水溶液中100ml中に投じた後、ジクロロメタン層を分離し、水150mlにて3回洗浄し、無水硫酸マグネシウムにて乾燥した。溶媒を減圧留去し、残査をヘプタンを展開溶媒としてシリカゲルカラムクロマトグラフィーにて精製し、ヘプタン/エタノールの等量混合液から再結晶し、目的とする1−(3−(トランス−4−(トランス−4−ペンチルシクロヘキシル)シクロヘキシル)−1,1−ジフルオロプロピレンオキシ)−3,4,5−トリフルオロベンゼン((無色結晶物)を0.7g得た。このものは液晶相であり、その転移点を以下に示す。
Cr 65.5(Sm 50.76);N 116.9 Iso
【0110】
尚、各種スペクトルデータの測定結果はその構造を強く支持した。
1H-NMR(δppm、CDCl3):0.8-2.2(m, 35H), 6.85-6.88(m, 2H)
19F-NMR(δppm):-79.26(t, 2F, -CF 2 O-), -133.53--133.65(m, 2F), -165.00--165.06(m, 1F)
GC-MS(EI):460(M+, 12.5%), 148(92.4), 97(93.6), 83(100), 81(55.0), 69(54.9), 55(76.4), 41(30.7)
【0111】
実施例2
1−(3−(2,6−ジフルオロ−4−(4−ペンチルフェニル)フェニル)−1,1−ジフルオロプロピレンオキシ)−3−フルオロ−4−トリフルオロメトキシベンゼン(式(1)においてl=1、k=m=n=0、R1がn−ペンチル基、環A2が1,4−フェニレン基、環A3が3,5−ジフルオロ−1,4−フェニレン基、Z2が単結合、Y1、Y2およびY4が共に水素原子、Y3がフッ素原子、R2がトリフルオロメトキシ基である化合物(化合物No.66))の製造
【0112】
第1工程
撹拌機、温度計、滴下ロートを備えた500ml三口フラスコ中、窒素雰囲気下、2,6−ジフルオロ−4−(4−ペンチルフェニル)ベンゼン15.0g(57.6mmol)をTHF 100mlに溶解し、攪拌しながら−65℃以下で n-BuLi(1.6Mシクロヘキサン溶液)43ml(69.1mmol)を滴下し、さらに1時間攪拌した。次いでホルミルピペリジン7.2g(63.4mmol)を−65℃以下にて滴下し、さらに2時間攪拌した。反応混合物に水200mlを加え、トルエン400mlにて抽出を行い、トルエン層を水200mlで2回洗浄した後、無水硫酸マグネシウムで乾燥した。トルエンを減圧留去し、残査をトルエンを展開溶媒としてシリカゲルカラムクロマトグラフィーにて精製することにより2,6−ジフルオロ−4−(4−ペンチルフェニル)ベンズアルデヒド13.1gを得た。
【0113】
第2工程
撹拌機、温度計、滴下ロートを備えた500ml三口フラスコ中、窒素雰囲気下、メトキシメチルトリフェニルホスホニウムクロリド21.1g(54.6mmol)をTHF80mlに懸濁させ、攪拌しながら−30℃以下でカリウム−t−ブトキシド6.4g(57.3mmol)を加え、その後0℃にて2時間攪拌した。これを再度−30℃以下まで冷却し、前工程で得た2,6−ジフルオロ−4−(4−ペンチルフェニル)ベンズアルデヒド13.1g(45.5mmol)のTHF溶液100mlを滴下した後、室温にて6時間攪拌した。反応混合物に水150mlおよびヘプタン200mlを加え、不溶物を除いた後、分離したヘプタン層を水150mlにて2回洗浄し、無水硫酸マグネシウムで乾燥した。ヘプタンを減圧留去して得た濃縮残査をTHF 150mlと6M塩酸30mlの混合液に溶解し、窒素雰囲気下、室温にて8時間攪拌した。THFを減圧留去して得た濃縮物にトルエン200mlおよび水150mlを加え、分離したトルエン層を水150mlにて2回洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残査をトルエンを展開溶媒としてシリカゲルカラムクロマトグラフィーにて精製することにより2−(2,6−ジフルオロ−4−(4−ペンチルフェニル)フェニル)アセトアルデヒド9.5gを得た。
【0114】
第3工程
撹拌機、温度計および冷却管を備えた100ml三口フラスコ中、窒素雰囲気下、前工程で得た2−(2,6−ジフルオロ−4−(4−ペンチルフェニル)フェニル)アセトアルデヒド9.5g(31.4mmol)をメタノール150mlに溶解し、5℃で攪拌しながら水素化ホウ素ナトリウム1.8g(47.1mmol)を加え、さらに2時間攪拌した。反応混合物に6M塩酸50mlとトルエン150mlを加え、分離したトルエン層を水150mlで3回洗浄し、無水硫酸マグネシウムにて乾燥した。トルエンを減圧留去して2−(2,6−ジフルオロ−4−(4−ペンチルフェニル)フェニル)エタノール9.5gを得た。
【0115】
第4工程
撹拌機、冷却管およびディーンスタークの脱水管を備えた300ml三口フラスコ中、前工程の2−(2,6−ジフルオロ−4−(4−ペンチルフェニル)フェニル)エタノール9.5g(31.2mmol)をトルエン100mlに溶解し、47%−臭化水素酸13.4g(78.0mmol)を加えて4時間加熱還流した。室温まで冷却後、水100mlおよびトルエン100mlを加え、分離したトルエン層を飽和炭酸ナトリウム水溶液100ml、水150mlにて順次洗浄した後、無水硫酸マグネシウムにて乾燥した。トルエンを減圧留去し、残査をヘプタンを展開溶媒としてシリカゲルカラムクロマトグラフィーにて精製し、2−(2,6−ジフルオロ−4−(4−ペンチルフェニル)フェニル)ブロモエタン6.5gを得た。
【0116】
第5工程
撹拌機、温度計および滴下ロートを備えた200ml三口フラスコ中、窒素雰囲気下、削り状マグネシウム0.5g(19.6mmol)をTHF 10mlに懸濁させ、攪拌しながら前工程の2−(2,6−ジフルオロ−4−(4−ペンチルフェニル)フェニル)ブロモエタン6.5g(17.8mmol)を60℃以下にて滴下し、Grignard試薬を調製した。次いでこのGrignard試薬を5℃まで冷却し、二硫化炭素3.4g(44.5mmol)を滴下した後室温にて2時間攪拌した。反応混合物に6M塩酸50mlとジエチルエーテル150mlを加え、分離したエーテル層を水100mlで2回洗浄した後無水硫酸マグネシウムにて乾燥した。溶媒を減圧留去し、残査をヘプタンから再結晶することにより3−(2,6−ジフルオロ−4−(4−ペンチルフェニル)フェニル)ジチオプロピオン酸4.8gを得た。
【0117】
第6工程
撹拌機、温度計および滴下ロートを備えた300ml三口フラスコ中、窒素雰囲気下、水素化ナトリウム(60%油性)0.7g(27.7mmol)をTHF 10mlに懸濁させ、これを攪拌しながら3−フルオロ−4−トリフルオロメトキシフェノール2.6g(13.2mmol)のTHF溶液10mlを滴下し、室温にて30分間攪拌した。そこへ前工程の3−(4−(4−ペンチルフェニル)−2,6−ジフルオロフェニル)ジチオプロピオン酸4.8g(13.2mmol)のTHF溶液20mlを滴下し、60℃にて1時間攪拌後、ヨウ素4.0g(15.8mmol)のTHF溶液25mlを60℃にて滴下し、さらに2時間攪拌した。反応混合物に水100mlとトルエン150mlを加え、分離したトルエン層を順次10%亜硫酸水素ナトリウム水溶液50mlおよび水100mlで2回洗浄した後無水硫酸マグネシウムにて乾燥した。トルエンを減圧留去し、残査をヘプタン/トルエン(95/5)混合溶媒を展開溶媒としてシリカゲルカラムクロマトグラフィーにて精製し、3−フルオロ−4−トリフルオロメトキシフェニル=3−(2,6−ジフルオロ−4−(4−ペンチルフェニル)フェニル)チオン−O−プロピオネート4.4gを得た。
【0118】
第7工程
撹拌機、温度計および滴下ロートを備えたテフロン(R)製の200ml三口フラスコ中、NBS4.6g(25.3mmol)をジクロロメタン50mlに溶解し、攪拌しながら−60℃以下にて70%HF−ピリジン5mlを加えてさらに30分間攪拌した。次いで前工程の3−フルオロ−4−トリフルオロメトキシフェニル=3−(2,6−ジフルオロ−4−(4−ペンチルフェニル)フェニル)チオン−O−プロピオネート4.4g(8.4mmol)のジクロロメタン溶液40mlを滴下し、その後−10〜0℃にて2時間攪拌した。反応混合物を飽和炭酸ナトリウム水溶液200ml中に投じた後、分離したジクロロメタン層を水150mlにて3回洗浄し、無水硫酸マグネシウムにて乾燥した。溶媒を減圧留去し、残査をヘプタン/トルエン(95/5)混合溶媒を展開溶媒としてシリカゲルカラムクロマトグラフィ−にて精製し、ヘプタン/エタノールの等量混合液から再結晶することにより、目的とする1−(3−(2,6−ジフルオロ−4−(4−ペンチルフェニル)フェニル)−1,1−ジフルオロプロピレンオキシ)−3−フルオロ−4−トリフルオロメトキシベンゼン2.1gを得た。
【0119】
実施例3
1−(3−(トランス−4−プロピルシクロヘキシル)シクロヘキシル)−1,1−ジフルオロプロピレンオキシ)−3,4,5−トリフルオロベンゼン(式(1)においてl=1、k=m=n=0、R1がn−プロピル基、環A2および環A3がともにトランス−1,4−シクロヘキシレン基、Z2が単結合、Y1およびY2がともに水素原子、Y3、Y4およびR2がともにフッ素原子である化合物(化合物No.39))の製造
【0120】
第1工程
攪拌機、温度計、滴下ロートを備えたフラスコ中、窒素雰囲気下、水素化ナトリウム(3.36g)をテトラヒドロフラン(以下THFと省略する、50ml)に溶解し、撹拌しながら−5℃まで冷却して、ここにジエチルホスフィノ酢酸エチル(18.8g)のTHF(30ml)溶液を滴下した。反応液をさらに2時間撹拌し、水素ガスの発生を確認して、トランス−4−(トランス−4−プロピルシクロヘキシル)シクロヘキサンカルボアルデヒド(16.5g)のTHF(50ml)溶液を滴下した。反応液を室温まで昇温して3時間撹拌した。撹拌終了後、反応液に水を加え、トルエン(50ml×3)で抽出した。有機層を水洗した後、無水硫酸マグネシウムで乾燥し、減圧下に濃縮して3−(トランス−4−(トランス−4−プロピルシクロヘキシル)シクロヘキシル)プロペン酸エチル(10.0g)を得た。
【0121】
第2工程
上記で得た3−(トランス−4−(トランス−4−プロピルシクロヘキシル)シクロヘキシル)プロペン酸エチル(10.0g)をトルエン:エタノール混合溶媒(1:1、80ml)中に溶解し、5%パラジウム−炭素(1.8g)を添加して水素雰囲気下に8時間撹拌した。撹拌終了後触媒を濾過により除去し、濾液を減圧下に濃縮し、得られた黄色油状物をエタノール(80ml)に溶解し2N水酸化ナトリウム溶液(30ml)を加えて室温下に8時間撹拌した、撹拌終了後反応液に水を加え、2N塩酸を用いてPH4とし、析出した結晶を濾過した。得られた結晶をTHF−エーテル(1:8、50ml)から再結晶して3−(トランス−4−(トランス−4−プロピルシクロヘキシル)シクロヘキシル)プロピオン酸(4.0g)を白色結晶として得た。
【0122】
第3工程
上記で得た3−(トランス−4−(トランス−4−プロピルシクロヘキシル)シクロヘキシル)プロピオン酸(5.0g)をトルエンに懸濁させ、1,3−プロパンジチオール(2.5g)を加えて50℃に加熱撹拌した。懸濁液にトリフルオロメタンスルホン酸(3.5g)を30分かけて滴下し、滴下終了後、ディーン・スタークの装置をつけて4時間加熱還流し、留出した水を除去した。反応液を減圧下に濃縮した後、ジエチルエーテルを加えて析出した結晶を濾取し、2−(2−(トランス−4−(トランス−4−プロピルシクロヘキシル)シクロヘキシル)エチル)−1,3−ジチアニリウムトリフラート(4.0g)を得た。
【0123】
第4工程
3,4,5−トリフルオロフェノール(1.27g)およびトリエチルアミン(870mg)を塩化メチレン(10ml)に溶解し、−78℃にて撹拌し、上記で得た2−(2−(トランス−4−(トランス−4−プロピルシクロヘキシル)シクロヘキシル)エチル)―1,3−ジチアニリウムトリフラート(3.8g)の塩化メチレン(5ml)溶液を滴下した。滴下終了後、溶液をさらに1時間撹拌し、Et3N・3HF(6.24ml)を加え、さらに臭素(6.24g)の塩化メチレン溶液を滴下した。反応液を−70℃で1時間撹拌した後、徐々に昇温し、0℃で冷3N水酸化ナトリウム溶液(100ml)に投じて塩化メチレン(30ml×3)で抽出した。有機層を水洗した後、無水硫酸マグネシウムで乾燥し、減圧下に濃縮した。得られた黄色油状物をヘプタンを展開溶媒としたシリカゲルカラムクロマトグラフィーを用いて単離精製し、1−(3−(トランス−4−プロピルシクロヘキシル)シクロヘキシル)−1,1−ジフルオロプロピレンオキシ)−3,4,5−トリフルオロベンゼン(1.0g)を無色結晶として得た。このものの転移点を以下に示す。
Cr 68.6 N 113.16 I(℃)
【0124】
尚、各種スペクトルデータの測定結果はその構造を強く支持した。
1H−NMR(δppm、CDCl3):0.8-2.2(31H,m)、6.85-6.88(2H,m)
19F−NMR(δppm、CDCl3):-79.26(2F, t)、-133.53--133.65(2F, m)、-165.00--165.06(1F, m,)
GC-MS(EI):432(M+,18.5%), 69(100), 148(80.1), 83(75.5), 81(47.5), 95(42.7), 82(42.8), 55(39.0),
【0125】
実施例4
1−(3−(トランス−4−(トランス−4−プロピルシクロヘキシル)シクロヘキシル)−1,1−ジフルオロプロピレンオキシ)−2,3−ジフルオロ−4−エトキシベンゼン(式(1)においてl=1、k=m=n=0、R1がn−プロピル基、環A2および環A3が共にトランス−1,4−シクロヘキシレン基、Z2が単結合、Y2およびY4が共に水素原子、Y1およびY3が共にフッ素原子、R2がエトキシ基である化合物(化合物No.46))の製造
【0126】
第1工程
攪拌機、温度計、滴下ロートを備えた3L三口フラスコ中、窒素雰囲気下、3−(トランス−4−(トランス−4−プロピルシクロヘキシル)シクロヘキシル)プロピオン酸32.0g(114.9mmol)および2,3−ジフルオロ−4−エトキシフェノール20.0g(114.9mmol)を室温下ジクロロメタン1000mlに溶解し、攪拌しながら4−ジメチルアミノピリジン15.4g(126.4mmol)を添加した。添加後30分間攪拌し、次いでジクロロメタン400mlに溶解したジシクロヘキシルカルボジイミド26.1g(126.4mmol)の溶液を室温下にて滴下し、滴下後室温にて14時間攪拌した。反応液に水500mlを添加し、不溶物を濾取後、濾液を3M塩酸300ml、水300ml、飽和炭酸水素ナトリウム水溶液300mlおよび水600mlで洗浄後、無水硫酸マグネシウムにて乾燥した。反応液は減圧下にて溶媒を留去し、濃縮物56.4gを得た。次いで濃縮物はヘプタン/酢酸エチル(7/3)の混合液を展開溶媒としてシリカゲルカラムクロマトグラフィーにて精製し、無色結晶物として2,3−ジフルオロ−4−エトキシフェニル=3−(トランス−4−(トランス−4−プロピルシクロヘキシル)シクロヘキシル)プロピオネート51.4gを得た。
【0127】
第2工程
攪拌機、温度計、滴下ロートを備えた2L三口フラスコ中、窒素雰囲気下上記で得た2,3−ジフルオロ−4−エトキシフェニル=3−(トランス−4−(トランス−4−プロピルシクロヘキシル)シクロヘキシル)プロピオネート51.4g(118.0mmol)、Laweeson's試薬95.5g(236.0mmol)およびメシチレン470mlを混合し、攪拌しながら4時間加熱還流した。室温まで冷却後、不溶物を濾取後、濾液に水500mlを添加し、トルエン400mlにて抽出した。抽出層は水500ml、飽和炭酸水素ナトリウム水溶液300mlおよび水1000mlで順次洗浄後、無水硫酸マグネシウムにて乾燥した。反応液は減圧下にて溶媒を留去し、濃縮物を得た。次いで濃縮物はトルエン/ヘプタン(1/1)の混合液を展開溶媒としてシリカゲルカラムクロマトグラフィーにて精製し、黄色結晶物として2,3−ジフルオロ−4−エトキシフェニル=3−(トランス−4−(トランス−4−プロピルシクロヘキシル)シクロヘキシル)チオン−O−プロピオネート14.2gを得た。
【0128】
第3工程
攪拌機、温度計、滴下ロートを備えたテフロン(R)製500mlの三口フラスコ中、窒素雰囲気下NBS5.5g(31.0mmol)をジクロロメタン130mlに溶解し、攪拌しながら−60℃以下で70%HF−ピリジン14mlを添加し、さらに30分間攪拌した。次いで前工程で得た2,3−ジフルオロ−4−エトキシフェニル=3−(トランス−4−(トランス−4−プロピルシクロヘキシル)シクロヘキシル)チオン−O−プロピオネート7.00g(15.5mmol)をジクロロメタン65mlに溶解した溶液を滴下し、滴下後−10℃にて3時間攪拌した。反応混合物を飽和炭酸ナトリウム水溶液500ml中に投じた後、ジクロロメタン層を分離し、水200mlにて3回洗浄し、無水硫酸マグネシウムにて乾燥した。溶媒を減圧留去し、残査をトルエン/ヘプタン(3/7)の混合液を展開溶媒としたシリカゲルカラムクロマトグラフィーにて精製し、さらにヘプタン/エタノールの等量混合液から再結晶し、目的とする1−(3−(トランス−4−(トランス−4−プロピルシクロヘキシル)シクロヘキシル)−1,1−ジフルオロプロピレンオキシ)−2,3−ジフルオロ−4−エトキシベンゼン2.7gを得た。このものは液晶相を有し、その転移点を以下に示す。
Cr 47.4 Cr 51.9 SA 99.5 N 164.0 Iso
【0129】
尚、各種スペクトルデータの測定結果はその構造を強く支持した。
1H-NMR(δppm、CDCl3):0.82-1.12(m, 13H),1.12-1.34(m,5H), 1.45(t,3H),1.50-1.55(m,3H),1.68-1.80(m,8H),2.12-2.20(m,2H),4.10(q,2H),6.63-6.67(m,1H),6.94-6.97(m,1H)
19F-NMR(δppm):-72.0--72.1(t,2F),-150.8--150.9(m,1F),-156.5--156.6(m,1F)
【0130】
実施例1〜4および発明の詳細な説明における記述を基に、下記化合物No.1〜No.204を製造することができる。なお下記には実施例1〜4で得られる化合物についても再掲した。
【0131】
【化45】
Figure 0003800051
【0132】
【化46】
Figure 0003800051
【0133】
【化47】
Figure 0003800051
【0134】
【化48】
Figure 0003800051
【0135】
【化49】
Figure 0003800051
【0136】
【化50】
Figure 0003800051
【0137】
【化51】
Figure 0003800051
【0138】
【化52】
Figure 0003800051
【0139】
【化53】
Figure 0003800051
【0140】
【化54】
Figure 0003800051
【0141】
【化55】
Figure 0003800051
【0142】
【化56】
Figure 0003800051
【0143】
【化57】
Figure 0003800051
【0144】
【化58】
Figure 0003800051
【0145】
【化59】
Figure 0003800051
【0146】
【化60】
Figure 0003800051
【0147】
【化61】
Figure 0003800051
【0148】
【化62】
Figure 0003800051
【0149】
【化63】
Figure 0003800051
【0150】
【化64】
Figure 0003800051
【0151】
【化65】
Figure 0003800051
【0152】
【化66】
Figure 0003800051
【0153】
【化67】
Figure 0003800051
【0154】
【化68】
Figure 0003800051
【0155】
【化69】
Figure 0003800051
【0156】
【化70】
Figure 0003800051
【0157】
実施例5
シアノフェニルシクロヘキサン系液晶化合物を含有するネマチック液晶組成物(以下、液晶組成物Aと称する):
Figure 0003800051
は以下の特性を有する。
【0158】
透明点(TNI):71.7℃、セル厚8.8μmでのしきい値電圧(Vth):1.78V、Δε:11.0、Δn:0.137、20℃における粘度(η):26.3mPa・s。
この液晶組成物A85重量%と実施例1で得られた1−(3−(トランス−4−(トランス−4−ペンチルシクロヘキシル)シクロヘキシル)−1,1−ジフルオロプロピレンオキシ)−3,4,5−トリフルオロベンゼン(化合物No.40)15重量%とからなる液晶組成物を調製した。その特性は以下の通りであった。
透明点(TNI):75.8℃、セル厚8.9μmでのしきい値電圧(Vth):1.70V、Δε:11.4、Δn:0.128、20℃における粘度(η):28.4mPa・s。
【0159】
なお、上記各液晶組成物の物性値と化合物の混合比から、外挿法により算出した上記化合物No.40の物性値は以下の通りであった。
透明点(TNI):99.0℃、Δε:13.7、Δn:0.077、20℃における粘度(η):31.8mPa・s。
【0160】
実施例6
実施例4に示した液晶組成物Aの85重量%と1−(3−(4′−プロピル−3,5−ジフルオロビフェニル−4−イル)−1,1−ジフルオロプロピレンオキシ)−3,4,5−トリフルオロベンゼン(化合物No.63)15重量%とからなる液晶組成物を調製した。その特性は以下の通りであった。
透明点(TNI):61.4℃、セル厚8.9μmでのしきい値電圧(Vth):1.50V、Δε:13.5、Δn:0.133、20℃における粘度(η):30.0mPa・s。
尚、上記各液晶組成物の物性値と化合物の混合比から外挿法により算出した上記化合物の物性値は以下の通りであった。
透明点(TNI):4.4℃、Δε:24.3、Δn:0.110、20℃における粘度(η):45.3mPa・s。
【0161】
実施例7
ネマチック液晶組成物(以下、液晶組成物Bと称する):
Figure 0003800051
は以下の特性を有する。
【0162】
透明点(TNI):74.0℃、Δε:−1.3、Δn:0.087、20℃における粘度(η20):18.9mPa・s。
この液晶組成物B85重量%と実施例3で得られた1−(3−(トランス−4−(トランス−4−プロピルシクロヘキシル)シクロヘキシル)−1,1−ジフルオロプロピレンオキシ)−2,3−ジフルオロ−4−エトキシベンゼン(化合物No.46)15重量%とからなる液晶組成物を調製した。その特性は以下の通りであった。
透明点(TNI):84.9℃、Δε:−1.72、Δn:0.089、20℃における粘度(η20):24.3mPa・s。
なお、上記各液晶組成物の物性値と化合物の混合比から、外挿法により算出した化合物No.46の物性値は以下の通りであった。
透明点(TNI):143.3℃、Δε:−3.70、Δn:0.100、20℃における粘度(η20):48.1mPa・s。
【0163】
実施例8
実施例7に準じ、液晶組成物B85重量%と本願化合物1−(3−(2,3−ジフルオロ−4−エトキシフェニル)−1,1−ジフルオロプロピレンオキシ)−4−(トランス−4−プロピルシクロヘキシル)ベンゼン(化合物No.201)15重量%とからなる液晶組成物を調製した。その特性は以下の通りであった。
透明点(TNI):77.9℃、Δε:−1.88、Δn:0.092、20℃における粘度(η20):24.2mPa・s。
なお、上記各液晶組成物の物性値と化合物の混合比から、外挿法により算出した化合物No.201の物性値は以下の通りであった。
透明点(TNI):96.6℃、Δε:−4.88、Δn:0.120、20℃における粘度(η20):48.0mPa・s。
【0164】
上記の方法に基づいて合成した式(1)の化合物を第一成分とする本発明のネマチック液晶組成物の組成および物性を以下の実施例9〜54として示す。
なお、組成物中の各化合物は下記表2に示す取り決めに従い、左末端基、結合基、環構造および右末端基の各欄に示された基をそれぞれの記号に対応させることにより表示した。
【0165】
【表2】
Figure 0003800051
【0166】
組成物中の化合物に付したNo.は前述の実施例中に示されるそれと同一であり、化合物の含有量は特に規定のない限り重量%を意味する。
また組成物例の特性データは、NI(ネマチック−等方性液体転移温度または透明点)、η(粘度:測定温度20.0℃)、Δn(屈折率異方性値:測定温度25.0℃)、Δε(誘電率異方性値:測定温度25.0℃)およびVth(しきい値電圧:測定温度25.0℃)により示した。
【0167】
実施例9
5−HH2ZB(F,F)−F (No.40) 8.0%
5−H2ZB (F,F)−C (No.11) 7.0%
1V2−BEB(F,F)−C 5.0%
3−HB−C 10.0%
1−BTB−3 5.0%
2−BTB−1 10.0%
3−HH−4 11.0%
3−HHB−1 11.0%
3−HHB−3 9.0%
3−H2BTB−2 4.0%
3−H2BTB−3 4.0%
3−H2BTB−4 4.0%
3−HB(F)TB−2 6.0%
3−HB(F)TB−3 6.0%
NI =92.4(℃)
η=16.6(mPa・s)
Δn=0.154
Δε=8.5
Vth=1.99(V)
上記組成物100部にCM33を0.8部添加したときのピッチは10.7μmであった。
【0168】
実施例10
3−HH2ZB(F)−OCF3 (No.36) 5.0%
5−HH2ZB(F)−OCF3 (No.37) 5.0%
3−H2ZB(F,F)B(F)−F (No.99) 7.0%
5−H2ZB(F,F)B(F)−F(No.100) 6.0%
2O1−BEB(F)−C 5.0%
3O1−BEB(F)−C 15.0%
4O1−BEB(F)−C 8.0%
5O1−BEB(F)−C 8.0%
2−HHB(F)−C 9.0%
3−HHB(F)−C 8.0%
3−HB(F)TB−2 4.0%
3−HB(F)TB−3 4.0%
3−HB(F)TB−4 4.0%
3−HHB−1 8.0%
3−HHB−O1 4.0%
NI=87.6(℃)
η=79.0(mPa・s)
Δn=0.141
Δε=29.9
Vth=0.89(V)
【0169】
実施例11
5−H2ZB(F,F)−F (No.5) 2.0%
5−H2ZB(F)−OCF3 (No.7) 2.0%
5−H2ZB(F)B(F,F)−F(No.102) 3.0%
5−H2ZB(F,F)−C(No.11) 2.0%
5−PyB−F 2.0%
3−PyB(F)−F 2.0%
2−BB−C 3.0%
4−BB−C 3.0%
5−BB−C 3.0%
2−PyB−2 2.0%
3−PyB−2 2.0%
4−PyB−2 2.0%
6−PyB−O5 3.0%
6−PyB−O6 3.0%
6−PyB−O7 3.0%
6−PyB−O8 3.0%
3−PyBB−F 6.0%
4−PyBB−F 6.0%
5−PyBB−F 6.0%
3−HHB−1 6.0%
3−HHB−3 8.0%
2−H2BTB−2 4.0%
2−H2BTB−3 4.0%
2−H2BTB−4 5.0%
3−H2BTB−2 5.0%
3−H2BTB−3 5.0%
3−H2BTB−4 5.0%
NI=93.5(℃)
η=35.6(mPa・s)
Δn=0.193
Δε=6.6
Vth=2.26(V)
【0170】
実施例12
3−HH2ZB(F,F)−F (No.39) 4.0%
3−H2ZB(F,F)−F (No.4) 3.0%
3−H2ZB(F)−OCF3 (No.6) 4.0%
3−GB−C 6.0%
4−GB−C 6.0%
2−BEB−C 12.0%
3−BEB−C 4.0%
3−PyB(F)−F 3.0%
3−HEB−O4 8.0%
4−HEB−O2 6.0%
5−HEB−O1 6.0%
3−HEB−O2 5.0%
5−HEB−O2 4.0%
5−HEB−5 5.0%
4−HEB−5 5.0%
1O−BEB−2 4.0%
3−HHB−1 6.0%
3−HHEBB−C 3.0%
3−HBEBB−C 3.0%
5−HBEBB−C 3.0%
NI=68.7(℃)
η=36.7(mPa・s)
Δn=0.112
Δε=10.8
Vth=1.34(V)
【0171】
実施例13
3−H2ZB(F,F)−F (No.4) 4.0%
5−H2ZB(F,F)−F (No.5) 4.0%
3−HH2ZB(F)−OCF3 (No.6) 9.0%
3−H2ZB(F,F)B(F)−F (No.99) 3.0%
3−HB−C 8.0%
7−HB−C 3.0%
1O1−HB−C 5.0%
3−HB(F)−C 5.0%
2−PyB−2 2.0%
3−PyB−2 2.0%
4−PyB−2 2.0%
1O1−HH−3 7.0%
2−BTB−O1 7.0%
3−HHB−1 7.0%
3−HHB−F 4.0%
3−HHB−O1 4.0%
3−HHB−3 8.0%
3−H2BTB−2 3.0%
3−H2BTB−3 3.0%
2−PyBH−3 4.0%
3−PyBH−3 3.0%
3−PyBB−2 3.0%
NI=79.5(℃)
η=16.4(mPa・s)
Δn=0.126
Δε=7.7
Vth=1.80(V)
【0172】
実施例14
3−HH2ZB(F,F)−F (No.39) 3.0%
5−HH2ZB(F)−OCF3 (No.37) 6.0%
3−H2ZB(F,F)−C (No.10) 9.0%
2−BEB(F)−C 5.0%
3−BEB(F)−C 4.0%
4−BEB(F)−C 4.0%
1V2−BEB(F,F)−C 6.0%
3−HH−EMe 10.0%
3−HB−O2 18.0%
7−HEB−F 2.0%
3−HHEB−F 2.0%
5−HHEB−F 2.0%
3−HBEB−F 4.0%
2O1−HBEB(F)−C 2.0%
3−HB(F)EB(F)−C 2.0%
3−HBEB(F,F)−C 2.0%
3−HHB−F 4.0%
3−HHB−O1 4.0%
3−HHB−3 7.0%
3−HEBEB−F 2.0%
3−HEBEB−1 2.0%
NI=78.2(℃)
η=33.6(mPa・s)
Δn=0.109
Δε=23.7
Vth=0.90(V)
【0173】
実施例15
3−H2ZB(F,F)−C (No.10) 9.0%
5−H2ZB(F,F)−C (No.11) 8.0%
2−BEB(F)−C 5.0%
3−BEB(F)−C 4.0%
4−BEB(F)−C 4.0%
1V2−BEB(F,F)−C 7.0%
3−HB−O2 10.0%
3−HH−4 3.0%
3−HHB−F 3.0%
3−HHB−1 8.0%
3−HHB−O1 4.0%
3−HBEB−F 4.0%
3−HHEB−F 7.0%
5−HHEB−F 7.0%
3−H2BTB−2 4.0%
3−H2BTB−3 4.0%
3−H2BTB−4 4.0%
3−HB(F)TB−2 5.0%
NI=87.5(℃)
η=35.8(mPa・s)
Δn=0.131
Δε=24.9
Vth=1.15(V)
【0174】
実施例16
5−HH2ZB(F,F)−F (No.40) 4.0%
5−H2ZB(F,F)−F (No.5) 3.0%
3−HH2ZB(F)−OCF3 (No.36) 3.0%
5−HH2ZB(F)−OCF3 (No.37) 4.0%
3−H2ZB(F,F)B(F)−F (No.99) 3.0%
3−H2ZB(F)B(F,F)−F (No.101) 7.0%
5−H2ZB(F)B(F,F)−F (No.102) 7.0%
3−H2ZB(F,F)−C (No.10) 4.0%
2−BEB−C 4.0%
3−BEB−C 3.0%
4−BEB−C 3.0%
3−HB−C 5.0%
3−HEB−O4 12.0%
4−HEB−O2 8.0%
5−HEB−O1 8.0%
3−HEB−O2 6.0%
5−HEB−O2 5.0%
3−HHB−1 7.0%
3−HHB−O1 4.0%
NI=63.4(℃)
η=29.9(mPa・s)
Δn=0.092
Δε=10.2
Vth=1.34(V)
【0175】
実施例17
3−H2ZB(F,F)B(F)−F (No.99) 5.0%
5−H2ZBB(F,F)B−2 (No.182) 6.0%
5−H2ZBB(F,F)B−F (No.184) 6.0%
2−BEB−C 10.0%
5−BB−C 7.0%
7−BB−C 7.0%
1−BTB−3 7.0%
2−BTB−1 10.0%
1O−BEB−2 7.0%
1O−BEB−5 9.0%
2−HHB−1 4.0%
3−HHB−F 4.0%
3−HHB−1 7.0%
3−HHB−O1 4.0%
3−HHB−3 7.0%
【0176】
実施例18
3−HH2ZB(F)−OCF3 (No.36) 3.0%
5−HH2ZB(F)−OCF3 (No.37) 3.0%
2−HB−C 5.0%
3−HB−C 12.0%
3−HB−O2 15.0%
2−BTB−1 3.0%
3−HHB−1 8.0%
3−HHB−F 4.0%
3−HHB−O1 5.0%
3−HHB−3 14.0%
3−HHEB−F 4.0%
5−HHEB−F 4.0%
2−HHB(F)−F 5.0%
3−HHB(F)−F 5.0%
5−HHB(F)−F 5.0%
3−HHB(F,F)−F 5.0%
NI=101.3(℃)
η=18.3(mPa・s)
Δn=0.100
Δε=5.1
Vth=2.49(V)
【0177】
実施例19
5−H2ZB(F,F)B(F)−F (No.100) 3.0%
3−H2ZB(F)B(F,F)−F (No.101) 3.0%
3−H2ZB(F,F)−C (No.10) 2.0%
3−BEB(F)−C 4.0%
3−HB−C 4.0%
V−HB−C 8.0%
1V−HB−C 8.0%
3−HB−O2 3.0%
3−HH−2V 14.0%
3−HH−2V1 7.0%
V2−HHB−1 15.0%
3−HHB−1 5.0%
3−HHEB−F 7.0%
3−H2BTB−2 6.0%
3−H2BTB−3 6.0%
3−H2BTB−4 5.0%
NI=98.8(℃)
η=17.3(mPa・s)
Δn=0.129
Δε=8.0
Vth=2.24(V)
【0178】
実施例20
3−HH2ZB(F,F)−F (No.39) 7.0%
5−HH2ZB(F,F)−F (No.40) 7.0%
3−H2ZB(F)B(F,F)−F (No.101) 3.0%
5−H2ZB(F)B(F,F)−F(No.102) 3.0%
3−H2ZB(F,F)−C(No.10) 6.0%
5−H2ZB(F,F)−C(No.11) 5.0%
V2−HB−C 6.0%
1V2−HB−C 6.0%
3−HB−C 5.0%
3−HB(F)−C 5.0%
2−BTB−1 2.0%
3−HH−4 8.0%
3−HH−VFF 6.0%
2−HHB−C 3.0%
3−HHB−C 6.0%
3−HB(F)TB−2 8.0%
3−H2BTB−2 5.0%
3−H2BTB−3 5.0%
3−H2BTB−4 4.0%
NI=87.8(℃)
η=21.4(mPa・s)
Δn=0.137
Δε=11.6
Vth=1.73(V)
【0179】
実施例21
5−HH2ZB(F)−OCF3 (No.37) 3.0%
3−H2ZB(F,F)−C (No.10) 3.0%
5−BEB(F)−C 5.0%
V−HB−C 5.0%
5−PyB−C 6.0%
4−BB−3 11.0%
3−HH−2V 10.0%
5−HH−V 11.0%
V−HHB−1 7.0%
V2−HHB−1 15.0%
3−HHB−1 9.0%
1V2−HBB−2 10.0%
3−HHEBH−3 5.0%
NI=92.9(℃)
η=16.1(mPa・s)
Δn=0.112
Δε=5.5
Vth=2.28(V)
【0180】
実施例22
5−H2ZB(F,F)−F (No.5) 2.0%
3−H2ZB(F)−OCF3 (No.6) 3.0%
3−HH2ZB(F)−OCF3 (No.36) 7.0%
5−H2ZB(F)B(F,F)−F (No.102) 3.0%
1V2−BEB(F,F)−C 3.0%
3−HB−C 7.0%
V2V−HB−C 7.0%
V2V−HH−3 19.0%
3−HB−O2 4.0%
3−HHB−1 10.0%
3−HHB−3 15.0%
3−HB(F)TB−2 4.0%
3−HB(F)TB−3 4.0%
3−H2BTB−2 4.0%
3−H2BTB−3 4.0%
3−H2BTB−4 4.0%
NI=101.3(℃)
η=15.2(mPa・s)
Δn=0.117
Δε=5.6
Vth=2.30(V)
【0181】
実施例23
3−HH2ZB(F,F)−F (No.39) 3.0%
3−H2ZB(F,F)B(F)−F (No.99) 4.0%
5−H2ZB(F,F)B(F)−F (No.100) 4.0%
V2−HB−TC 10.0%
3−HB−TC 10.0%
3−HB−C 3.0%
5−HB−C 3.0%
5−BB−C 3.0%
2−BTB−1 10.0%
2−BTB−O1 5.0%
3−HH−4 5.0%
3−HHB−1 10.0%
3−HHB−3 11.0%
3−H2BTB−2 3.0%
3−H2BTB−3 3.0%
3−HB(F)TB−2 3.0%
5−BTB(F)TB−3 10.0%
NI=101.2(℃)
η=16.7(mPa・s)
Δn=0.202
Δε=7.5
Vth=2.15(V)
【0182】
実施例24
3−H2ZB(F,F)−C (No.10) 8.0%
5−H2ZB(F,F)−C (No.11) 8.0%
1V2−BEB(F,F)−C 3.0%
3−HB−C 5.0%
2−BTB−1 10.0%
5−HH−VFF 30.0%
1−BHH−VFF 8.0%
1−BHH−2VFF 11.0%
3−H2BTB−2 5.0%
3−H2BTB−3 4.0%
3−H2BTB−4 4.0%
3−HHB−1 4.0%
NI=74.8(℃)
η=13.5(mPa・s)
Δn=0.120
Δε=8.1
Vth=1.75(V)
【0183】
実施例25
3−H2ZB(F,F)−C (No.10) 8.0%
5−H2ZB(F,F)−C (No.11) 7.0%
5−HBZB(F,F)−C 3.0%
3−HB(F,F)ZB(F,F)−C 3.0%
3−HB−C 3.0%
2−BTB−1 10.0%
5−HH−VFF 30.0%
1−BHH−VFF 8.0%
1−BHH−2VFF 11.0%
3−H2BTB−2 5.0%
3−H2BTB−3 4.0%
3−H2BTB−4 4.0%
3−HHB−1 4.0%
NI=76.6(℃)
η=14.5(mPa・s)
Δn=0.120
Δε=7.5
Vth=1.81(V)
【0184】
実施例26
3−HH2ZB(F,F)−F (No.39) 4.0%
3−HH2ZB(F)−OCF3 (No.36) 3.0%
5−H2ZB(F,F)B(F)−F (No.100) 3.0%
5−H2ZB(F)B(F,F)−F (No.102) 5.0%
2−HHB(F)−F 5.0%
3−HHB(F)−F 14.0%
5−HHB(F)−F 16.0%
2−H2HB(F)−F 10.0%
3−H2HB(F)−F 5.0%
5−H2HB(F)−F 10.0%
2−HBB(F)−F 6.0%
3−HBB(F)−F 6.0%
5−HBB(F)−F 13.0%
NI=97.9(℃)
η=27.3(mPa・s)
Δn=0.096
Δε=6.4
Vth=2.01(V)
上記組成物100部にCNを0.3部添加したときのピッチは77.5μmであった。
【0185】
実施例27
5−HH2ZB(F,F)−F (No.40) 7.0%
5−HH2ZB(F)−OCF3 (No.37) 6.0%
5−H2ZBB(F,F)B−2 (No.182) 5.0%
5−H2ZBB(F,F)B−F (No.184) 4.0%
7−HB(F,F)−F 3.0%
3−HB−O2 7.0%
2−HHB(F)−F 8.0%
3−HHB(F)−F 8.0%
5−HHB(F)−F 8.0%
2−HBB(F)−F 6.0%
3−HBB(F)−F 6.0%
5−HBB(F)−F 6.0%
2−HBB−F 4.0%
3−HBB−F 4.0%
5−HBB−F 3.0%
3−HBB(F,F)−F 5.0%
5−HBB(F,F)−F 10.0%
【0186】
実施例28
3−HH2ZB(F,F)−F (No.39) 3.0%
3−H2ZB(F,F)−F (No.4) 3.0%
3−H2ZB(F)−OCF3 (No.6) 3.0%
3−HH2ZB(F)−OCF3 (No.36) 4.0%
5−HH2ZB(F)−OCF3 (No.37) 4.0%
3−H2ZB(F,F)B(F)−F (No.99) 3.0%
5−HB−CL 4.0%
3−HH−4 12.0%
3−HH−5 4.0%
3−HHB−F 4.0%
3−HHB−CL 3.0%
4−HHB−CL 4.0%
3−HHB(F)−F 7.0%
4−HHB(F)−F 7.0%
5−HHB(F)−F 7.0%
7−HHB(F)−F 7.0%
5−HBB(F)−F 4.0%
5−HBBH−1O1 3.0%
3−HHBB(F,F)−F 2.0%
4−HHBB(F,F)−F 3.0%
5−HHBB(F,F)−F 3.0%
3−HH2BB(F,F)−F 3.0%
4−HH2BB(F,F)−F 3.0%
NI=115.8(℃)
η=23.0(mPa・s)
Δn=0.087
Δε=5.5
Vth=2.42(V)
【0187】
実施例29
3−HH2ZB(F,F)−F (No.39) 3.0%
5−HH2ZB(F,F)−F (No.40) 4.0%
5−H2ZB(F,F)−F (No.5) 3.0%
5−H2ZB(F)−OCF3 (No.7) 3.0%
3−HH2ZB(F)−OCF3 (No.36) 6.0%
5−HH2ZB(F)−OCF3 (No.37) 6.0%
3−H2ZB(F,F)B(F)−F (No.99) 3.0%
5−H2ZB(F,F)B(F)−F (No.100) 4.0%
3−H2ZB(F)B(F,F)−F (No.101) 3.0%
5−H2ZB(F)B(F,F)−F (No.102) 4.0%
3−HHB(F,F)−F 9.0%
3−H2HB(F,F)−F 4.0%
4−H2HB(F,F)−F 4.0%
5−H2HB(F,F)−F 4.0%
3−HBB(F,F)−F 10.0%
5−HBB(F,F)−F 10.0%
3−H2BB(F,F)−F 4.0%
5−HHBB(F,F)−F 3.0%
5−HHEBB−F 2.0%
3−HH2BB(F,F)−F 3.0%
4−HBBH−1O1 4.0%
5−HBBH−1O1 4.0%
NI=97.6(℃)
η =34.2(mPa・s)
Δn=0.106
Δε=10.9
Vth=1.56(V)
【0188】
実施例30
3−HH2ZB(F)−OCF3 (No.36) 3.0%
5−H2ZB(F)B(F,F)−F (No.102) 3.0%
5−HB−F 12.0%
6−HB−F 9.0%
7−HB−F 7.0%
2−HHB−OCF3 7.0%
3−HHB−OCF3 7.0%
4−HHB−OCF3 7.0%
5−HHB−OCF3 5.0%
3−HH2B−OCF3 4.0%
5−HH2B−OCF3 4.0%
3−HHB(F,F)−OCF3 5.0%
3−HBB(F)−F 7.0%
5−HBB(F)−F 7.0%
3−HH2B(F)−F 3.0%
3−HB(F)BH−3 3.0%
5−HBBH−3 3.0%
3−HHB(F,F)−OCF2H 4.0%
NI=84.6(℃)
η=15.5(mPa・s)
Δn=0.089
Δε=5.0
Vth=2.30(V)
【0189】
実施例31
3−HH2ZB(F)−OCF3 (No.36) 6.0%
5−HH2ZB(F)−OCF3 (No.37) 6.0%
3−H2ZB(F,F)B(F)−F (No.99) 4.0%
5−H2ZB(F,F)B(F)−F (No.100) 4.0%
3−H2ZB(F)B(F,F)−F (No.101) 8.0%
5−H2ZB(F)B(F,F)−F (No.102) 8.0%
2−HHB(F)−F 3.0%
2−HBB(F)−F 3.0%
3−HBB(F)−F 7.0%
4−HBB(F)−F 2.0%
5−HBB(F)−F 7.0%
2−H2BB(F)−F 6.0%
3−H2BB(F)−F 6.0%
3−HBB(F,F)−F 6.0%
5−HBB(F,F)−F 6.0%
2−HHB(F,F)−F 5.0%
3−HHB(F,F)−F 5.0%
4−HHB(F,F)−F 5.0%
3−HHB−F 3.0%
NI=96.0(℃)
η=37.8(mPa・s)
Δn=0.127
Δε=10.2
Vth=1.58(V)
【0190】
実施例32
3−H2ZB(F,F)−F (No.4) 3.0%
3−H2ZB(F,F)B(F)−F (No.99) 5.0%
3−H2ZB(F)B(F,F)−F (No.101) 5.0%
5−H2ZB(F)B(F,F)−F (No.102) 5.0%
5−HB−CL 3.0%
3−HH−4 8.0%
3−HBB(F,F)−F 15.0%
5−HBB(F,F)−F 10.0%
3−HHB(F,F)−F 8.0%
3−HHEB(F,F)−F 10.0%
4−HHEB(F,F)−F 3.0%
5−HHEB(F,F)−F 3.0%
2−HBEB(F,F)−F 3.0%
3−HBEB(F,F)−F 5.0%
5−HBEB(F,F)−F 3.0%
3−HHBB(F,F)−F 6.0%
3−HHB−1 5.0%
NI=78.5(℃)
η=26.6(mPa・s)
Δn=0.102
Δε=10.2
Vth=1.42(V)
【0191】
実施例33
3−HH2ZB(F,F)−F (No.39) 5.0%
5−HH2ZB(F,F)−F (No.40) 5.0%
3−HH2ZB(F)−OCF3 (No.36) 5.0%
7−HB(F)−F 6.0%
5−H2B(F)−F 6.0%
3−HB−O2 4.0%
3−HH−4 12.0%
2−HHB(F)−F 6.0%
3−HHB(F)−F 6.0%
5−HHB(F)−F 6.0%
2−HBB(F)−F 2.0%
3−HBB(F)−F 2.0%
5−HBB(F)−F 4.0%
3−HBB(F,F)−F 3.0%
2−HHBB(F,F)−F 4.0%
3−HHBB(F,F)−F 5.0%
3−HHEB−F 4.0%
5−HHEB−F 4.0%
3−HHB−1 7.0%
3−HHB−3 4.0%
NI=100.5(℃)
η=20.4(mPa・s)
Δn=0.087
Δε=5.7
Vth=2.12(V)
【0192】
実施例34
3−HH2ZB(F,F)−F (No.39) 6.0%
5−HH2ZB(F,F)−F (No.40) 6.0%
5−HH2ZB(F)−OCF3 (No.37) 3.0%
3−H2ZB(F,F)B(F)−F (No.99) 6.0%
5−H2ZB(F,F)B(F)−F (No.100) 6.0%
3−H2ZB(F)B(F,F)−F (No.101) 13.0%
5−H2ZB(F)B(F,F)−F (No.102) 12.0%
3−HH−4 4.0%
3−H2HB(F,F)−F 6.0%
4−H2HB(F,F)−F 6.0%
5−H2HB(F,F)−F 4.0%
3−HBB(F,F)−F 13.0%
5−HBB(F,F)−F 12.0%
3−HHBB(F,F)−F 3.0%
NI=64.2(℃)
η=33.9(mPa・s)
Δn=0.103
Δε=12.2
Vth=1.34(V)
【0193】
実施例35
3−H2ZB(F)−OCF3 (No.6) 2.0%
5−HH2ZB(F)−OCF3 (No.37) 5.0%
3−H2ZB(F,F)B(F)−F (No.99) 5.0%
7−HB(F,F)−F 3.0%
3−H2HB(F,F)−F 12.0%
4−H2HB(F,F)−F 10.0%
3−HHB(F,F)−F 10.0%
4−HHB(F,F)−F 5.0%
3−HBB(F,F)−F 10.0%
3−HHEB(F,F)−F 10.0%
4−HHEB(F,F)−F 3.0%
5−HHEB(F,F)−F 3.0%
2−HBEB(F,F)−F 3.0%
3−HBEB(F,F)−F 5.0%
5−HBEB(F,F)−F 3.0%
3−HGB(F,F)−F 5.0%
3−HHBB(F,F)−F 6.0%
NI=77.5(℃)
η=34.8(mPa・s)
Δn=0.086
Δε=13.4
Vth=1.36(V)
【0194】
実施例36
3−HH2ZB(F,F)−F (No.39) 4.0%
5−HH2ZB(F,F)−F (No.40) 4.0%
5−H4HB(F,F)−F 7.0%
5−H4HB−OCF3 15.0%
3−H4HB(F,F)−CF3 8.0%
5−H4HB(F,F)−CF3 10.0%
3−HB−CL 6.0%
5−HB−CL 4.0%
2−H2BB(F)−F 5.0%
3−H2BB(F)−F 5.0%
5−H2HB(F,F)−F 4.0%
3−HHB−OCF3 5.0%
3−H2HB−OCF3 5.0%
V−HHB(F)−F 5.0%
3−HHB(F)−F 4.0%
5−HHB(F)−F 4.0%
3−HBEB(F,F)−F 5.0%
NI=70.5(℃)
η=25.4(mPa・s)
Δn=0.094
Δε=8.9
Vth=1.64(V)
【0195】
実施例37
3−HH2ZB(F)−OCF3 (No.36) 5.0%
5−HH2ZB(F)−OCF3 (No.37) 4.0%
3−H2ZB(F,F)−C (No.10) 6.0%
5−H2ZB(F,F)−C (No.11) 6.0%
5−HB−CL 5.0%
7−HB(F,F)−F 3.0%
3−HH−4 10.0%
3−HH−5 5.0%
3−HB−O2 15.0%
3−H2HB(F,F)−F 5.0%
4−H2HB(F,F)−F 5.0%
3−HHB(F,F)−F 6.0%
2−HHB(F)−F 4.0%
3−HHB(F)−F 4.0%
5−HHB(F)−F 4.0%
3−HHB−1 8.0%
3−HHB−O1 5.0%
NI=71.6(℃)
η=19.3(mPa・s)
Δn=0.074
Δε=6.7
Vth=1.75(V)
【0196】
実施例38
5−HH2ZB(F,F)−F (No.40) 4.0%
5−H2ZB(F,F)−F (No.5) 3.0%
5−H2ZB(F)−OCF3 (No.7) 4.0%
3−HH2ZB(F)−OCF3 (No.36) 3.0%
5−HH2ZB(F)−OCF3 (No.37) 3.0%
5−HB−CL 4.0%
4−HHB(F)−F 10.0%
5−HHB(F)−F 9.0%
7−HHB(F)−F 9.0%
3−HHB(F,F)−F 8.0%
4−HHB(F,F)−F 3.0%
3−H2HB(F,F)−F 12.0%
3−HBB(F,F)−F 13.0%
2−HHBB(F,F)−F 6.0%
3−GHB(F,F)−F 3.0%
4−GHB(F,F)−F 3.0%
5−GHB(F,F)−F 3.0%
NI=79.9(℃)
η=26.6(mPa・s)
Δn=0.082
Δε=8.0
Vth=1.65(V)
【0197】
実施例39
3−HH2ZB(F,F)−F (No.39) 5.0%
5−H2ZB(F,F)B(F)−F (No.100) 3.0%
3−H2ZB(F)B(F,F)−F (No.101) 3.0%
3−H2ZB(F,F)−C (No.10) 5.0%
2−HHB(F)−F 7.0%
3−HHB(F)−F 8.0%
5−HHB(F)−F 7.0%
3−HHB(F,F)−F 8.0%
3−HBB(F,F)−F 11.0%
3−H2HB(F,F)−F 10.0%
3−HHEB(F,F)−F 10.0%
4−HHEB(F,F)−F 3.0%
2−HBEB(F,F)−F 2.0%
3−HBEB(F,F)−F 3.0%
3−GHB(F,F)−F 3.0%
4−GHB(F,F)−F 4.0%
5−GHB(F,F)−F 4.0%
3−HHBB(F,F)−F 4.0%
NI=79.4(℃)
η=35.5(mPa・s)
Δn=0.089
Δε=11.8
Vth=1.40(V)
【0198】
実施例40
3−H2ZB(F)−OCF3 (No.6) 4.0%
3−H2ZB(F,F)B(F)−F (No.99) 4.0%
7−HB(F)−F 3.0%
5−HB−CL 3.0%
3−HH−4 9.0%
3−HH−EMe 23.0%
3−HHEB(F,F)−F 10.0%
4−HHEB(F,F)−F 5.0%
3−HHEB−F 8.0%
5−HHEB−F 8.0%
4−HGB(F,F)−F 5.0%
5−HGB(F,F)−F 6.0%
2−H2GB(F,F)−F 4.0%
3−H2GB(F,F)−F 5.0%
5−GHB(F,F)−F 3.0%
NI=79.1(℃)
η=19.5(mPa・s)
Δn=0.065
Δε=5.8
Vth=1.79(V)
【0199】
実施例41
3−H2ZB(F,F)B(F)−F (No.99) 4.0%
5−H2ZB(F,F)B(F)−F (No.100) 5.0%
3−H2ZB(F)B(F,F)−F (No.101) 7.0%
5−H2ZB(F)B(F,F)−F (No.102) 8.0%
3−H2HB(F,F)−F 5.0%
5−H2HB(F,F)−F 5.0%
3−HBB(F,F)−F 20.0%
5−HBB(F,F)−F 16.0%
5−HBB(F)B−2 10.0%
5−HBB(F)B−3 10.0%
3−BB(F)B(F,F)−F 5.0%
5−B2B(F,F)B(F)−F 5.0%
NI=100.8(℃)
η=53.6(mPa・s)
Δn=0.149
Δε=11.8
Vth=1.50(V)
【0200】
実施例42
3−HH2ZB(F,F)−F (No.39) 4.0%
3−H2ZB(F,F)−F (No.4) 4.0%
3−H2ZB(F)−OCF3 (No.6) 4.0%
5−H2ZB(F)−OCF3 (No.7) 3.0%
3−HH2ZB(F)−OCF3 (No.36) 3.0%
5−H2ZB(F)B(F,F)−F (No.102) 3.0%
3−HB(F,F)ZB(F,F)−F 5.0%
5−HB(F,F)ZB(F,F)−F 5.0%
5−HB−CL 3.0%
3−HH−4 14.0%
2−HH−5 4.0%
3−HHB−1 4.0%
3−HHEB−F 6.0%
5−HHEB−F 6.0%
3−HHB(F,F)−F 6.0%
4−HHB(F,F)−F 3.0%
3−HHEB(F,F)−F 3.0%
4−HHEB(F,F)−F 3.0%
5−HHEB(F,F)−F 2.0%
2−HBEB(F,F)−F 3.0%
3−HBEB(F,F)−F 3.0%
5−HBEB(F,F)−F 3.0%
2−HHBB(F,F)−F 3.0%
3−HHBB(F,F)−F 3.0%
NI=79.0(℃)
η=18.6(mPa・s)
Δn=0.072
Δε=7.6
Vth=1.69(V)
【0201】
実施例43
3−HH2ZB(F,F)−F (No.39) 3.0%
5−HH2ZB(F,F)−F (No.40) 3.0%
3−H2ZB(F,F)−F (No.4) 4.0%
5−H2ZB(F,F)−F (No.5) 3.0%
3−H2ZB(F)−OCF3 (No.6) 4.0%
5−H2ZB(F)−OCF3 (No.7) 3.0%
3−HH2ZB(F)−OCF3 (No.36) 3.0%
5−HH2ZB(F)−OCF3 (No.37) 3.0%
3−H2ZB(F,F)B(F)−F (No.99) 3.0%
5−H2ZB(F,F)B(F)−F (No.100) 2.0%
3−H2ZB(F)B(F,F)−F (No.101) 4.0%
5−H2ZB(F)B(F,F)−F (No.102) 3.0%
3−BB(F,F)ZB(F,F)−F 10.0%
3−HH−4 8.0%
3−HHB(F,F)−F 6.0%
3−H2HB(F,F)−F 9.0%
3−HBB(F,F)−F 6.0%
2−HHBB(F,F)−F 3.0%
3−HHBB(F,F)−F 3.0%
3−HH2BB(F,F)−F 4.0%
3−HHB−1 6.0%
5−HBBH−1O1 7.0%
NI=83.2(℃)
η=24.1(mPa・s)
Δn=0.095
Δε=9.3
Vth=1.59(V)
【0202】
実施例44
5−H2ZB(2F,3F)−O2 (No.14) 11.0%
3−H2ZB(2F,3F)B(2F,3F)−O2(No.106) 11.0%
5−H2ZBB(F,F)B−2 (No.182) 6.0%
5−H2ZBB(F,F)B−F (No.184) 6.0%
3−HEB−O4 17.0%
4−HEB−O2 15.0%
5−HEB−O1 14.0%
3−HEB−O2 12.0%
5−HEB−O2 8.0%
【0203】
実施例45
3−H2ZB(2F,3F)−O2 (No.13) 7.0%
3−HH2ZB(2F,3F)−O2 (No.46) 6.0%
5−HH2ZB(2F,3F)−O2 (No.47) 7.0%
3−H2ZB(2F,3F)B(2F,3F)−O2(No.106) 10.0%
3−HH−2 5.0%
3−HH−4 6.0%
3−HH−O1 4.0%
3−HH−O3 5.0%
5−HH−O1 4.0%
3−HB(2F,3F)−O2 8.0%
5−HB(2F,3F)−O2 8.0%
3−HHB(2F,3F)−O2 8.0%
5−HHB(2F,3F)−O2 8.0%
3−HHB(2F,3F)−2 14.0%
NI=89.2(℃)
Δn=0.085
Δε=−3.7
【0204】
実施例46
5−H2ZB(2F,3F)−O2 (No.14) 5.0%
3−HH2ZB(2F,3F)−O2 (No.46) 6.0%
3−HH−5 5.0%
3−HH−4 5.0%
3−HH−O1 6.0%
3−HH−O3 6.0%
3−HB−O1 5.0%
3−HB−O2 5.0%
3−HB(2F,3F)−O2 8.0%
5−HB(2F,3F)−O2 7.0%
3−HHB(2F,3F)−O2 9.0%
5−HHB(2F,3F)−O2 10.0%
3−HHB(2F,3F)−2 4.0%
2−HHB(2F,3F)−1 4.0%
3−HHEH−3 5.0%
3−HHEH−5 5.0%
4−HHEH−3 5.0%
NI=87.4(℃)
Δn=0.078
Δε=−3.1
【0205】
実施例47
5−H2ZB(2F,3F)−O2 (No.14) 3.0%
5−HH2ZB(2F,3F)−O2 (No.47) 6.0%
3−BB(2F,3F)−O2 9.0%
3−BB(2F,3F)−O4 10.0%
5−BB(2F,3F)−O4 10.0%
2−BB(2F,3F)B−3 19.0%
3−BB(2F,3F)B−5 13.0%
5−BB(2F,3F)B−5 14.0%
5−BB(2F,3F)B−7 16.0%
NI=78.9(℃)
Δn=0.195
Δε=−3.5
【0206】
実施例48
3−H2ZB(2F,3F)−O2 (No.13) 3.0%
3−H2ZB(2F,3F)B(2F,3F)−O2(No.106) 4.0%
3−HB−O1 15.0%
3−HB−O2 6.0%
3−HEB(2F,3F)−O2 8.0%
4−HEB(2F,3F)−O2 8.0%
5−HEB(2F,3F)−O2 8.0%
2−BB2B−O2 6.0%
3−BB2B−O2 6.0%
5−BB2B−O1 6.0%
5−BB2B−O2 6.0%
1−B2BB(2F)−5 7.0%
3−B2BB(2F)−5 7.0%
5−B(F)BB−O2 7.0%
3−BB(2F,3F)B−3 3.0%
NI=79.3(℃)
η=23.4(mPa・s)
Δn=0.161
【0207】
実施例49
3−H2ZB(2F,3F)−O2 (No.13) 11.0%
5−HH2ZB(2F,3F)−O2 (No.47) 6.0%
3−H2ZB(2F,3F)B(2F,3F)−O2(No.106) 3.0%
3−HH−O1 8.0%
5−HH−O1 4.0%
3−HH−4 5.0%
3−HB(2F,3F)−O2 10.0%
5−HB(2F,3F)−O2 16.0%
2−HHB(2F,3F)−1 4.0%
3−HHB(2F,3F)−1 5.0%
3−HHB(2F,3F)−02 14.0%
5−HHB(2F,3F)−O2 14.0%
NI=65.0(℃)
η=24.9(mPa・s)
Δn=0.079
Δε=−3.9
【0208】
実施例50
3−HH2ZB(2F,3F)−O2 (No.46) 9.0%
5−HH2ZB(2F,3F)−O2 (No.47) 9.0%
3−H2ZB(2F,3F)B(2F,3F)−O2(No.106) 14.0%
3−HB−O1 15.0%
3−HH−4 5.0%
3−HB(2F,3F)−O2 12.0%
5−HB(2F,3F)−O2 12.0%
2−HHB(2F,3F)−1 5.0%
3−HHB(2F,3F)−1 5.0%
3−HHB(2F,3F)−O2 4.0%
5−HHB(2F,3F)−O2 4.0%
3−HHB−1 6.0%
NI=87.5(℃)
η=41.7(mPa・s)
Δn=0.095
Δε=−3.2
【0209】
実施例51
3−H2ZB(2F,3F)−O2 (No.13) 6.0%
5−H2ZB(2F,3F)−O2 (No.14) 6.0%
3−HH2ZB(2F,3F)−O2 (No.46) 7.0%
5−HH2ZB(2F,3F)−O2 (No.47) 7.0%
3−H2ZB(2F,3F)B(2F,3F)−O2(No.106) 10.0%
3−HB−O1 15.0%
3−HH−4 5.0%
3−HB(2F,3F)−O2 6.0%
5−HB(2F,3F)−O2 6.0%
2−HHB(2F,3F)−1 7.0%
3−HHB(2F,3F)−1 7.0%
3−HHB(2F,3F)−O2 6.0%
5−HHB(2F,3F)−O2 6.0%
6−HEB(2F,3F)−O2 6.0%
NI=85.9(℃)
η=39.3(mPa・s)
Δn=0.09
Δε=−3.3
【0210】
実施例52
3−H2ZB(2F,3F)−O2 (No.13) 5.0%
3−HH2ZB(2F,3F)−O2 (No.46) 3.0%
5−HH2ZB(2F,3F)−O2 (No.47) 3.0%
3−HB−O2 20.0%
1O1−HH−3 6.0%
1O1−HH−5 5.0%
3−HH−EMe 7.0%
4−HEB−O1 9.0%
4−HEB−O2 7.0%
5−HEB−O1 8.0%
3−HHB−1 3.0%
3−HHB−3 3.0%
4−HEB(2CN,3CN)−O4 3.0%
6−HEB(2CN,3CN)−O4 3.0%
3−HEB(2CN,3CN)−O5 4.0%
4−HEB(2CN,3CN)−O5 3.0%
5−HEB(2CN,3CN)−O5 2.0%
2−HBEB(2CN,3CN)−O2 2.0%
4−HBEB(2CN,3CN)−O4 4.0%
NI=62.3(℃)
η=41.1(mPa・s)
Δn=0.076
Δε=−6.0
【0211】
実施例53
3−HH2ZB(2F,3F)−O2(No.46) 4.0%
2O−B(2F,3F)2ZBH−3(No.201) 4.0%
3−HEB−O4 28.0%
4−HEB−O2 20.0%
5−HEB−O1 20.0%
3−HEB−O2 18.0%
5−HEB−O2 10.0%
NI=76.2(℃)
η=22.0(mPa・s)
Δn=0.089
【0212】
実施例54
2O−B(2F,3F)2ZBH−3(No.201) 14.0%
3−HH−2 5.0%
3−HH−4 6.0%
3−HH−O1 4.0%
3−HH−O3 5.0%
5−HH−O1 4.0%
3−HB(2F,3F)−O2 12.0%
5−HB(2F,3F)−O2 11.0%
5−HHB(2F,3F)−O2 15.0%
3−HHB(2F,3F)−2 24.0%
NI=78.6(℃)
Δn=0.080
Δε=−3.9
【0213】
【発明の効果】
本発明は他の液晶性化合物との相溶性に優れ、低粘度でかつ低いしきい値電圧を有する液晶性化合物を提供する。
また、本発明は、この液晶性化合物を成分として、その化合物を構成する環、置換基、結合基などを適当に選択することにより、所望の物性を有する上記実施例の特徴を備えた新たな液晶組成物を提供し、さらにこの液晶組成物を用いた液晶表示素子を提供する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal compound and a liquid crystal composition. More specifically, the present invention relates to a liquid crystal composition, and in particular, a difluoro having a liquid crystal property suitable as a component of a liquid crystal composition for TN mode, STN mode, TFT mode, and OCB mode. The present invention relates to a liquid crystal compound having a propyleneoxy group as a linking group, a liquid crystal composition containing the compound, and a liquid crystal display element formed using the liquid crystal composition. In the present invention, the term liquid crystal compound is used as a general term for a compound having a liquid crystal phase and a compound that does not exhibit a liquid crystal phase but is useful as a constituent of a liquid crystal composition.
[0002]
[Background]
The liquid crystal display element utilizes the optical anisotropy and dielectric anisotropy of the liquid crystal substance. Depending on the display method, the twisted nematic (TN) mode, dynamic scattering (DS) mode, guest host (GH) Mode, orientation phase change (DAP) mode, super twisted nematic (STN) mode, voltage controlled birefringence (VCB, ECB or TB) mode, vertical alignment (VA) mode, multi-domain vertical alignment (MVA) mode, OCB mode, etc. The types of liquid crystal substances suitable for each method are different.
Regardless of which method is used, the following properties are necessary as common properties for all liquid crystal materials.
[0003]
1) Stable against external environmental factors such as moisture, air, heat and light.
2) A liquid crystal phase is exhibited in a wide temperature range centering on room temperature.
3) Low viscosity.
4) When the display element is driven, the drive voltage can be lowered.
5) It has an optimal dielectric anisotropy (Δε).
6) It has an optimal refractive index anisotropy (Δn).
[0004]
However, at present, there is no single compound that satisfies all of the above characteristics, and as a liquid crystal composition in which several to twenty or more kinds of liquid crystal compounds are mixed, this liquid crystal composition is used as a liquid crystal display element. It is currently used.
Therefore, it is necessary that the liquid crystalline compounds used as the composition components exhibit good compatibility with each other. Recently, since it is required to be usable in various environments, it is desired to show good compatibility even at extremely low temperatures.
[0005]
In recent years, liquid crystal display elements having higher display performance such as contrast, display capacity, response time, and the like have been demanded. In order to meet such demands, there is a demand for active matrix type display elements represented by TFT (Thin Film Transistor) systems. Increased mainly in fields such as television and viewfinder.
STN display elements are also widely used in the display field of mobile phones, personal computers and the like because they have a large display capacity and are simple in manufacturing process and low in cost.
Recent development trends in these fields have been centered on the miniaturization and portability of liquid crystal display elements, as seen in televisions and notebook personal computers that have become smaller and lighter. Along with this, liquid crystal materials to be used are required to have a low driving voltage, that is, a liquid crystal compound capable of lowering the threshold voltage and a liquid crystal composition having a low threshold voltage containing the compound.
[0006]
As is well known, the threshold voltage (Vth) is expressed by the following equation (H. J. Deuling, et al., Mol. Cryst. Liq. Cryst., 27 (1975) 81).
Vth = π (K / ε0Δε)1/2
In the above equation, K is the elastic constant of the liquid crystal material, and ε 0 is the dielectric constant in vacuum.
As can be seen from the equation, there are two methods for decreasing Vth, either increasing Δε or decreasing K. However, with the current technology, it is still difficult to actually control the elastic constant K of the liquid crystal material, and usually the liquid crystal material having a large Δε is used to meet the demand. Under these circumstances, liquid crystal compounds having a large Δε have been actively developed.
[0007]
As a method for increasing Δε in a liquid crystal compound, a method in which a substituent having a large dipole moment such as a cyano group or a trifluoromethyl group is held as a molecular end group is well known. In addition, a method of substituting fluorine for the 1,4-phenylene group constituting the compound is also effective so that the direction of the dipole moment is the same as the direction of the molecular long axis as the direction of the dipole moment of the terminal substituent. In general, however, the number of fluorines substituted for 1,4-phenylene groups and the viscosity are proportional to each other, and the clearing point of the compound decreases as the number of substituted fluorines increases. It has been considered difficult to improve only Δε while suppressing the decrease in points.
[0008]
In recent years, liquid crystal display elements have been widely used for applications such as information terminals and portable game machines. Since these display elements are driven by a battery, they are required to have a low threshold voltage and low power consumption in pursuit of long-term use. In particular, in order to reduce the power consumption of the element itself, recently, a reflective display element that does not require a backlight has been actively developed, and it is expected that the use for a mobile phone or the like will increase in the future. The liquid crystal composition used for these reflective display elements is required to have a low refractive index anisotropy value (Δn) in addition to a low threshold voltage. Therefore, the development of a liquid crystal compound having a large dielectric anisotropy value and a small refractive index anisotropy value as a liquid crystal material constituting the composition is a key in this field. The following compounds (13) and (14) (Japanese Patent Application Laid-Open No. Hei 2-233626) can be shown as representative examples of the liquid crystal material for low voltage driving used in the TFT type liquid crystal display element.
[0009]
[Chemical 7]
Figure 0003800051
(In the formula, R represents an alkyl group.)
[0010]
Compounds (13) and (14) both have a 3,4,5-trifluorophenyl group at the end of the molecule, and are expected as liquid crystal materials for low voltage driving. However, the compound (13) has a small dielectric anisotropy value (Δε = −10) and the compound (14) has a dielectric anisotropy value (Δε = ˜12) for the above-mentioned reflective display device application. ) Is satisfactory, but the refractive index anisotropy is as large as about 0.12, and it is considered difficult to prepare a liquid crystal composition that can sufficiently satisfy the above-described requirements by using these compounds.
[0011]
In recent years, in-plane switching (IPS) mode, vertical alignment (VA) mode, multi-domain vertical alignment (MVA) mode, OCB mode, etc. are methods for overcoming the narrow viewing angle that is the biggest problem of liquid crystal display devices. A new method has been announced. Among these modes, in particular, the VA mode and the MVA mode are not only wide in viewing angle but also excellent in responsiveness, and also have high contrast, and thus are being developed by various display manufacturers. The liquid crystal composition used in these types of liquid crystal display elements is characterized by a relatively small refractive index anisotropy and a negative dielectric anisotropy. For example, the following compound (15) has been reported as a compound exhibiting a large negative dielectric anisotropy (V. Reiffenrath et al., Liq. Cryst., 5 (1), 159 (1989)).
[0012]
[Chemical 8]
Figure 0003800051
[0013]
Although it can be seen from this document that the compound (15) has a negative dielectric anisotropy value as large as Δε = −4.1, its refractive index anisotropy value is Δn = 0.18. It is expected that it will be difficult to satisfy the requirements of the VA mode or MVA mode.
[0014]
As described above, a liquid crystalline compound having a large positive and negative dielectric anisotropy and a relatively small refractive index anisotropy is desired.
[0015]
[Problems to be solved by the invention]
An object of the present invention is to provide a liquid crystalline compound that eliminates the above-mentioned drawbacks of the prior art, has a large absolute value of dielectric anisotropy (| Δε |), and exhibits a relatively small refractive index anisotropy value. In addition, it is to provide a liquid crystal composition that can be driven at a low voltage in various display modes by containing this compound, and to provide a liquid crystal display device using this liquid crystal composition.
[0016]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that the compound represented by the formula (1) having a difluoropropyleneoxy group as a linking group is an absolute value of dielectric anisotropy (| Δε |). Was found to be large and exhibit a relatively small refractive index anisotropy value. In addition, the inventors have found that liquid crystal compositions using these compounds are the most suitable materials for driving various liquid crystal display elements at a low voltage, and have completed the present invention.
That is, the configuration of the present invention is as follows.
[0017]
The first of the present invention is
[1] Formula (1)
[Chemical 9]
Figure 0003800051
(Wherein R1And R2Are each independently hydrogen, halogen, a cyano group or an alkyl group having 1 to 20 carbon atoms, and one or more —CH in the alkyl group2-May be substituted by -CH = CH-, -C≡C-, -O- or -S-, but -O- is not continuous, and one or more hydrogens in the group are Optionally substituted with halogen;
Ring A1~ Ring AFiveAre each independently one or more non-adjacent —CH2-May be substituted with -O- or -S-, 1,4-cyclohexylene group, 1,4-cyclohexenylene group, or one or more = CH- may be substituted with = N- Or a hydrogen on the ring is a 1,4-phenylene group optionally substituted with halogen;
Z1~ ZFourAre each independently a single bond, —CH2CH2-, -CH2O-, -OCH2-, -COO-, -OCO-, -CH = CH-, -C≡C-, -CF2O- or -OCF2-Is;
Y1, Y2, YThreeAnd YFourAre each independently hydrogen or fluorine;
k, l, m and n are each independently 0 or 1).
[0018]
The first aspect of the present invention is described in the following items [2] to [10].
[2] Formulas (1-1) to (1-6)
[Chemical Formula 10]
Figure 0003800051
(Where R1, R2, Ring A1~ AFive, Z1~ ZFourAnd Y1~ YFourRepresents the same meaning as described above).
[0019]
[3] Ring A in formula (1)ThreeA liquid crystalline compound in which is a 1,4-cyclohexylene group.
[0020]
[4] Y in formula (1)1And YThreeAre both fluorine and Y2And YFourLiquid crystalline compounds in which both are hydrogen.
[0021]
[5] Y in formula (1)1And Y2Liquid crystalline compounds in which both are hydrogen.
[0022]
[6] Ring A in formula (1-1)ThreeIs 1,4-cyclohexylene group, Y1And YThreeAre both fluorine and Y2And YFourLiquid crystalline compounds in which both are hydrogen.
[0023]
[7] Ring A in formula (1-1)ThreeIs 1,4-cyclohexylene group, Y1And Y2Liquid crystalline compounds in which both are hydrogen.
[0024]
[8] Ring A in formula (1-2)2And ring AThreeAre both 1,4-cyclohexylene group, Y1And YThreeAre both fluorine and Y2And YFourLiquid crystalline compounds in which both are hydrogen.
[0025]
[9] Ring A in formula (1-2)2And ring AThreeAre both 1,4-cyclohexylene group, Y1And Y2Liquid crystalline compounds in which both are hydrogen.
[0026]
[10] In formula (1-3), ring AThreeIs a liquid crystalline compound in which is a 2,3-difluoro-1,4-phenylene group.
[0027]
The second of the present invention is
[11] A liquid crystal composition containing at least one liquid crystalline compound according to any one of items [1] to [10], the mode of which is described in items [12] to [18] below. be written.
[0028]
[12] In item [11], as the second component, formulas (2), (3) and (4)
Embedded image
Figure 0003800051
(Wherein RThreeIs an alkyl group having 1 to 10 carbon atoms, and any —CH in the group that is not adjacent to each other2-May be substituted with -O- or -CH = CH-, and any hydrogen in the group may be substituted with fluorine; X1Is fluorine, chlorine, -OCFThree, -OCF2H, -CFThree, -CF2H, -CFH2, -OCF2CF2H or -OCF2CFHCFThreeAnd L1And L2Each independently is hydrogen or fluorine; ZFiveAnd Z6Are each independently-(CH2)2-,-(CH2)Four-, -COO-, -CF2O-, -OCF2-, -CH = CH-, or a single bond; ring A and ring B are each independently 1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, or hydrogen substituted with fluorine. At least one compound selected from the group consisting of 1,4-phenylene, wherein ring C is 1,4-cyclohexylene or 1,4-phenylene in which hydrogen may be substituted with fluorine. A liquid crystal composition containing seeds.
[0029]
[13] A liquid crystal composition according to the item [11], which contains at least one compound selected from the compound group consisting of the formulas (5) and (6) as the second component.
[0030]
Embedded image
Figure 0003800051
(Wherein RFourAnd RFiveAre each independently an alkyl group having 1 to 10 carbon atoms, and any —CH in the groups that are not adjacent to each other.2-May be substituted with -O- or -CH = CH-, and any hydrogen in the group may be substituted with fluorine; X2Is —CN or —C≡C—CN; Ring D is 1,4-cyclohexylene, 1,4-phenylene, 1,3-dioxane-2,5-diyl or pyrimidine-2,5-diyl Ring E is 1,4-cyclohexylene, 1,4-phenylene in which hydrogen may be substituted with fluorine, or pyrimidine-2,5-diyl; Ring F is 1,4-cyclohexylene or 1,4; -Phenylene; Z7Is-(CH2)2-, -COO-, -CF2O-, -OCF2-Or a single bond; LThree, LFourAnd LFiveAre each independently hydrogen or fluorine; b, c and d are each independently 0 or 1; )
[0031]
[14] A liquid crystal composition containing at least one compound selected from the group consisting of formulas (7), (8) and (9) as the second component in the item [11].
[0032]
Embedded image
Figure 0003800051
(Wherein R6And R7Are each independently an alkyl group having 1 to 10 carbon atoms, and any —CH in the groups that are not adjacent to each other.2-May be substituted with -O- or -CH = CH-, and any hydrogen in the group may be substituted with fluorine; ring G and ring I are each independently 1,4 -Cyclohexylene or 1,4-phenylene; L6And L7Are each independently hydrogen or fluorine, but L6And L7Are not simultaneously hydrogen; Z8And Z9Are each independently-(CH2)2-, -COO- or a single bond. )
[0033]
[15] In the item [11], the second component contains at least one compound selected from the compound group consisting of the formulas (2), (3) and (4), and the third component is a formula (10) A liquid crystal composition containing at least one compound selected from the group consisting of (11) and (12).
[0034]
Embedded image
Figure 0003800051
(Wherein R8And R9Are each independently an alkyl group having 1 to 10 carbon atoms, and any —CH in the groups that are not adjacent to each other.2-May be substituted with -O- or -CH = CH-, and any hydrogen in the group may be substituted with fluorine; ring J, ring K and ring M are each independently 1,4-cyclohexylene, pyrimidine-2,5-diyl, or 1,4-phenylene in which hydrogen is optionally substituted by fluorine; ZTenAnd Z11Each independently represents —C≡C—, —COO—, — (CH2)2-, -CH = CH- or a single bond. )
[0035]
[16] In the item [11], the second component contains at least one compound selected from the compound group consisting of the formulas (5) and (6), and the third component is the formula (10). A liquid crystal composition containing at least one compound selected from the group consisting of (11) and (12).
[0036]
[17] In the item [11], the second component contains at least one compound selected from the compound group consisting of the formulas (7), (8) and (9), and the third component A liquid crystal composition containing at least one compound selected from the group consisting of formulas (10), (11) and (12).
[0037]
[18] In the item [11], the second component contains at least one compound selected from the compound group consisting of the formulas (2), (3) and (4), and the third component It contains at least one compound selected from the compound group consisting of formulas (5) and (6), and the fourth component is selected from the compound group consisting of formulas (10), (11) and (12). A liquid crystal composition containing at least one compound.
[0038]
The third aspect of the present invention is
[19] A liquid crystal composition further comprising at least one optically active compound in addition to the liquid crystal composition according to any one of items [11] to [18].
[0039]
The fourth aspect of the present invention is
[20] A liquid crystal display device using the liquid crystal composition according to any one of items [11] to [19].
[0040]
DETAILED DESCRIPTION OF THE INVENTION
The compound of the present invention represented by the formula (1) is characterized in that —O— in the difluoropropyleneoxy group has a partial structure directly connected to a 1,4-phenylene group which may be substituted with fluorine. To do. Ring A in the compound of formula (1)ThreeIs a 1,4-cyclohexylene group, has a high clearing point, and ring AThreeIs a 1,4-phenylene group, has a large absolute value of dielectric anisotropy. In the compound of formula (1), Y1And Y2Compounds in which are both hydrogen show neutral or positive dielectric anisotropy. Above all, YThreeAnd YFourA compound in which at least one of them is fluorine exhibits a large positive dielectric anisotropy. For example, in the compound of the present invention (Compound No. 40) shown in the below-mentioned Examples, the dielectric anisotropy is Δε = 13.7, and the compound having a single bond as the bonding group corresponding to the difluoropropyleneoxy group ((13 -1): Compared with Δε = 9.7), the value is much larger.
[0041]
Embedded image
Figure 0003800051
[0042]
On the other hand, in the compound of formula (1), Y1And YThreeAre both fluorine and Y2And YFourA compound in which both are hydrogen exhibits negatively large dielectric anisotropy. Furthermore, the compound of the formula (1) exhibits almost the same refractive index anisotropy while having a high clearing point as compared with, for example, a compound in which the difluoropropyleneoxy group which is a feature of the present invention is a single bond. From these facts, the compound of the formula (1) has characteristics suitable as a liquid crystalline compound constituting a liquid crystal composition for VA and MVA systems, including the reflective liquid crystal display element described in the background art section. I understand that.
[0043]
Although some compounds having a difluoropropyleneoxy group as a linking group are described in general formulas of compounds similar to the present invention in WO 97/37959, there is no disclosure of structural formulas and physical property values of specific compounds. The present inventors have found for the first time the excellent properties of the compounds of the present invention.
[0044]
The liquid crystal compound represented by the formula (1) is a group of compounds represented by the following formulas (1-1) to (1-6) by appropriately selecting k, l, m and n in the formula. Expanded to
[0045]
Embedded image
Figure 0003800051
(Wherein R1, R2, Ring A1~ AFive, Z1~ ZFourAnd Y1~ YFourRepresents the same meaning as described above. )
[0046]
Among these compounds of the subordinate concept, the bicyclic compound represented by the formula (1-1) has a relatively large absolute value of Δε, a relatively small Δn, low viscosity, and low temperature. The compatibility in is also good. When this compound is used as a component of a liquid crystal composition, the viscosity can be lowered while maintaining the absolute value of Δε of the composition, so that a liquid crystal composition for high-speed response can be provided.
[0047]
In addition, the tricyclic compound represented by the formula (1-2) or the formula (1-3) has a large absolute value of Δε, a relatively small Δn, and a temperature range showing a liquid crystal phase is relatively small. wide. When this compound is used as a component of the liquid crystal composition, the absolute value of Δε can be increased without lowering the clearing point of the composition, so that a liquid crystal composition for low voltage driving can be provided.
[0048]
The tetracyclic compounds represented by the formulas (1-4) to (1-6) have a large absolute value of Δε and a relatively small Δn. The temperature range showing the liquid crystal phase is wide on the high temperature side. Therefore, when these compounds are used as components of a liquid crystal composition, the absolute value of Δε of the composition can be increased, and the liquid crystal phase temperature range exhibited by the liquid crystal composition can be expanded to the high temperature side.
Furthermore, in these equations, Y1, Y2, YThreeAnd YFourA compound in which at least one of these is fluorine has a characteristic of excellent low-temperature compatibility.
[0049]
In the compound represented by the formula (1) of the present invention, R1And R2Are each independently hydrogen, halogen, cyano group, or —CH in the group2-May be substituted by -CH = CH-, -C≡C-, -O- or -S-, but -O- is not consecutive, and one or more hydrogens in the group Is an alkyl group having 1 to 20 carbon atoms which may be substituted with halogen;1~ Ring AFiveAre each independently one or more non-adjacent —CH2-May be substituted with -O- or -S-, 1,4-cyclohexylene group, 1,4-cyclohexenylene group, or one or more = CH- may be substituted with = N- Or a hydrogen on the ring is a 1,4-phenylene group optionally substituted by halogen; Z1~ ZFourAre each independently a single bond, —CH2CH2-, -CH2O-, -OCH2-, -COO-, -OCO-, -CH = CH-, -C≡C-, -CF2O- or -OCF2-Is; Y1, Y2, YThreeAnd YFourAre each independently hydrogen or fluorine; k, l, m and n are each independently 0 or 1.
[0050]
R in the above1And R2Specifically, hydrogen, halogen, cyano group, alkyl group, alkoxy group, alkoxyalkyl group, alkylthio group, alkylthioalkyl group, alkenyl group, alkenyloxy group, alkenylthio group, alkynyl group, fluorine-substituted alkyl group, fluorine-substituted An alkoxy group, a fluorine-substituted alkenyl group, a fluorine-substituted alkenyloxy group, a fluorine-substituted alkenylthio group, a fluorine-substituted alkynyl group and the like are shown.
[0051]
More specifically, fluorine, chlorine, bromine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, methoxy group, ethoxy group, Propoxy group, butoxy group, pentoxy group, heptyloxy group, octyloxy group, methoxymethyl group, ethoxymethyl group, propoxymethyl group, propoxyethyl group, methoxypropyl group, ethoxypropyl group, propoxypropyl group, methylthio group, ethylthio group Propylthio group, butylthio group, pentylthio group, hexylthio group, heptylthio group, octylthio group, methylthiomethyl group, ethylthiomethyl group, propylthiomethyl group, butylthiomethyl group, methylthioethyl group, ethylthioethyl group, propylthioethyl Group Ruthiopropyl group, ethylthiopropyl group, propylthiopropyl group, vinyl group, 1-propenyl group, 1-butenyl group, 1-pentenyl group, 3-butenyl group, 3-pentenyl group, ethynyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group, 3-pentynyl group, allyloxy group, trifluoromethyl group, fluoromethyl group, 2-fluoroethyl group, difluoromethyl group, 2,2,2-trifluoroethyl group, 1, 1,2,2-tetrafluoroethyl group, 2-fluoroethyl group, 3-fluoropropyl group, 4-fluorobutyl group, 5-fluoropentyl group, fluoromethoxy group, trifluoromethoxy group, difluoromethoxy group, pentafluoro Ethoxy group, 1,1,2,2-tetrafluoroethoxy group, heptafluoropropoxy group, 1,1,2,3 , 3,3-hexafluoropropoxy group, trifluoromethoxymethyl group, 2-fluoroethenyl group, 2,2-difluoroethenyl group, 1,2,2-trifluoroethenyl group, 3-fluoro-1-butenyl Group, 4-fluoro-1-butenyl group, trifluoromethylthio group, difluoromethylthio group, 1,1,2,2-tetrafluoroethylthio group, 2,2,2-trifluoroethylthio group and the like.
[0052]
In the above, ring A1~ Ring AFiveSpecifically, those having a ring structure represented by (r-1) to (r-24) are preferred.
[0053]
[Table 1]
Figure 0003800051
[0054]
The liquid crystal composition provided by the present invention may be only the first component containing at least one liquid crystalline compound of the formula (1), but in addition to this, the formulas (2) and (2) mentioned above as the second component 3) and at least one compound selected from the group consisting of (4) (hereinafter referred to as second component A) and / or at least one compound selected from the group consisting of formulas (5) and (6) (Referred to as the second component B), and for the purpose of adjusting the threshold voltage, liquid crystal phase temperature range, refractive index anisotropy value, dielectric anisotropy value, viscosity, etc. 7) At least one compound selected from the group consisting of (8) and (9) can also be contained as the third component. In addition, since each component of the liquid crystal composition used in the present invention has no significant difference in physical properties, it may be an analog composed of an isotope of each element.
[0055]
Among the second A components, as preferred examples of the compound contained in the formula (2), the following (2-1) to (2-9) and preferred examples of the compound contained in the formula (3) (3-1) ) To (3-97) and (4-1) to (4-33) can be mentioned as preferred examples of the compound included in the formula (4).
[0056]
Embedded image
Figure 0003800051
[0057]
Embedded image
Figure 0003800051
[0058]
Embedded image
Figure 0003800051
[0059]
Embedded image
Figure 0003800051
[0060]
Embedded image
Figure 0003800051
[0061]
Embedded image
Figure 0003800051
[0062]
Embedded image
Figure 0003800051
[0063]
Embedded image
Figure 0003800051
[0064]
Embedded image
Figure 0003800051
[0065]
Embedded image
Figure 0003800051
[0066]
Embedded image
Figure 0003800051
[0067]
Embedded image
Figure 0003800051
[0068]
Embedded image
Figure 0003800051
(Wherein RThree, X1Represents the same meaning as described above. )
[0069]
Since the compounds represented by the formulas (2) to (4) have a positive dielectric anisotropy value and are very excellent in thermal stability and chemical stability, they are mainly used in TFT liquid crystal compositions. Used for. When preparing a liquid crystal composition for TFT, the amount of the compound used is preferably in the range of 1 to 99% by weight based on the total weight of the liquid crystal composition. More preferably, it is 10 to 97 weight%, More preferably, it is the range of 40 to 95 weight%. Moreover, you may further contain the compound represented by Formula (10)-(12) for the purpose of viscosity adjustment.
[0070]
Next, as preferred examples of the compounds contained in the formulas (5) and (6) among the second B component, (5-1) to (5-58) and (6-1) to (6- 3).
[0071]
Embedded image
Figure 0003800051
[0072]
Embedded image
Figure 0003800051
[0073]
Embedded image
Figure 0003800051
[0074]
Embedded image
Figure 0003800051
[0075]
Embedded image
Figure 0003800051
[0076]
Embedded image
Figure 0003800051
(Wherein RFour, RFiveAnd X2Represents the same meaning as described above. )
[0077]
These compounds represented by the formulas (5) and (6) have a positive dielectric anisotropy value and a very large value, and are therefore mainly used for liquid crystal compositions for STN and TN. These compounds are used as a component of the composition particularly for the purpose of reducing the threshold voltage. It is also used for the purpose of adjusting the viscosity, adjusting the refractive index anisotropy value, and expanding the liquid crystal phase temperature range, and further improving the steepness. When preparing a liquid crystal composition for STN or TN, the amount of the compound represented by formula (5) or (6) is preferably in the range of 0.1 to 99.9% by weight. More preferably, it is 10 to 97 weight%, More preferably, it is the range of 40 to 95 weight%. Further, a third component described later can be contained for the purpose of adjusting the threshold voltage, the liquid crystal phase temperature range, the refractive index anisotropy value, the dielectric anisotropy value, the viscosity, and the like.
[0078]
When preparing a liquid crystal composition having a negative dielectric anisotropy used for vertical alignment mode (VA mode) or the like, the liquid crystal composition of the present invention includes the group consisting of formulas (7) to (9). A material containing at least one compound selected from the following (hereinafter referred to as second component C) is preferred. As preferred examples of the compounds contained in the formulas (7) to (9) of the second C component, (7-1) to (7-3), (8-1) to (8-5) and (9- 1) to (9-3).
[0079]
Embedded image
Figure 0003800051
(Wherein R6, R7Represents the same meaning as described above. )
[0080]
The compounds represented by the formulas (7) to (9) are compounds having a negative dielectric anisotropy value. Since the compound represented by the formula (7) is a bicyclic compound, it is mainly used for the purpose of adjusting the threshold voltage, adjusting the viscosity, or adjusting the refractive index anisotropy value. The compound represented by the formula (8) is used for the purpose of extending the nematic range, lowering the threshold voltage, and increasing the refractive index anisotropy value.
[0081]
The compounds represented by the formulas (7) to (9) are mainly used in a VA mode liquid crystal composition having a negative dielectric anisotropy value. Increasing the amount used decreases the threshold voltage of the composition but increases the viscosity. Therefore, it is preferable to reduce the amount of use as long as the required value of the threshold voltage is satisfied. However, since the absolute value of the dielectric anisotropy value is 5 or less, the liquid crystal composition may not be able to be driven when the amount of the compounds represented by formulas (7) to (9) is less than 40% by weight. Therefore, when preparing the composition for VA mode, it is preferable that the usage-amount of the compound represented by Formula (7)-(9) is 40 weight% or more. More preferably, it is the range of 50 to 95 weight%.
[0082]
When the compound represented by the formulas (7) to (9) is contained in a composition having a positive dielectric anisotropy for the purpose of controlling the elastic constant and controlling the voltage transmittance curve of the composition. There is also. In this case, the amount of the compound represented by the formulas (7) to (9) is preferably 30% by weight or less.
[0083]
Among the third components of the liquid crystal composition of the present invention, as preferred examples of the compounds contained in the formulas (10) to (12), (10-1) to (10-11), (11-1) to (11) 11-12) and (12-1) to (12-6).
[0084]
Embedded image
Figure 0003800051
[0085]
Embedded image
Figure 0003800051
[0086]
Embedded image
Figure 0003800051
(Wherein R8And R9Represents the same meaning as described above. )
[0087]
The compounds represented by the formulas (10) to (12) are compounds having a small absolute value of dielectric anisotropy and close to neutrality. The compound represented by the formula (10) is mainly used for the purpose of adjusting the viscosity or adjusting the refractive index anisotropy value. The compounds represented by the formulas (11) and (12) are used for the purpose of expanding the nematic range such as increasing the clearing point or adjusting the refractive index anisotropy value.
[0088]
Increasing the amount of the compounds represented by formulas (10) to (12) increases the threshold voltage of the liquid crystal composition and decreases the viscosity. Therefore, in order to enable low voltage driving, it is necessary to use a large amount of the compounds represented by formulas (10) to (12) as long as the threshold voltage requirement value of the liquid crystal composition is satisfied. desirable. When adjusting the liquid crystal composition for TFT, the usage-amount of the compound represented by Formula (10)-(12) becomes like this. Preferably it is 40 weight% or less, More preferably, it is 35 weight% or less. When preparing a liquid crystal composition for STN or TN, the amount of the compound represented by formulas (10) to (12) is preferably 70% by weight or less, more preferably 60% by weight or less. is there.
[0089]
The liquid crystal composition provided according to the present invention contains at least one kind of liquid crystal compound represented by the formula (1) in a proportion of 0.1 to 99% by weight in order to develop a low voltage drivability. Is preferable.
[0090]
The liquid crystal composition is generally prepared by a known method, for example, a method in which various components are mutually dissolved at a high temperature. Further, if necessary, by adding a chiral dopant, it can be improved and optimized according to the application. The chiral dopant may be any chiral dopant that has the effect of inducing the helical structure of the liquid crystal to adjust the necessary twist angle and preventing reverse twist. For example, the following optically active compounds can be mentioned as chiral dopants.
[0091]
Embedded image
Figure 0003800051
[0092]
In the liquid crystal composition of the present invention, these optically active compounds are usually added to adjust the twist pitch. The twist pitch is preferably adjusted in the range of 40 to 200 μm in the case of a liquid crystal composition for TFT and TN. If it is the liquid crystal composition for STN, it is preferable to adjust to the range of 6-20 micrometers. In the case of the bistable TN (Bistable TN) mode, it is preferable to adjust to a range of 1.5 to 4 μm. Two or more optically active compounds may be added for the purpose of adjusting the temperature dependence of the pitch.
[0093]
Further, if a dichroic dye such as merocyanine, styryl, azo, azomethine, azoxy, quinophthalone, anthraquinone and tetrazine is added, it can be used as a liquid crystal composition for GH type. The composition according to the present invention includes NCAP produced by microencapsulating nematic liquid crystal, and a polymer dispersed liquid crystal display device (PDLCD) produced by forming a three-dimensional network polymer in the liquid crystal, such as a polymer network liquid crystal display. It can also be used as a liquid crystal composition for an element (PNLCD), birefringence control (ECB) type or DS type.
[0094]
The compound represented by the formula (1) of the present invention is prepared by organic synthesis such as, for example, 4th edition Experimental Chemistry Course (Maruzen), Organic Synthesis (John Wiley & Sons, Inc) or Organic Reactions (John Wiley & Sons, Inc). It can be produced by appropriately selecting and combining the methods described in the literature or known literature.
[0095]
For example, the compound represented by the formula (1) can be produced by the following method. First, a propionate derivative (16) obtained by the method described in JP-A-59-76027, JP-A-60-197637 or JP-A-60-204743 is disclosed in JP-A-10-204016. According to the method, the thioester derivative (17) is converted with Lawesson's reagent (Fieser 13, 38). Further, according to the method disclosed in JP-A-5-255165, (17) is fluorinated by the action of HF-pyridine in the presence of an oxidizing agent such as N-bromosuccinimide (hereinafter abbreviated as NBS). A compound is obtained.
[0096]
Embedded image
Figure 0003800051
(Wherein R1, R2, Ring A1~ AFive, Z1~ ZFour, Y1~ YFour, K, l, m and n have the same meaning as described above. )
[0097]
Moreover, the compound represented by Formula (1) can be suitably manufactured also by the following method. That is, according to the method described in JP-A-10-17544, after preparing a Grignard reagent from a halobenzene derivative (18), carbon disulfide is reacted to produce a dithiocarboxylic acid derivative (19). Subsequently, the thioester derivative (17) can be produced by reacting (19) with sodium hydride in the presence of the phenol derivative (20) and further oxidizing with iodine. The desired compound (1) can be produced by reacting (17) thus obtained with HF-pyridine in the presence of an oxidizing agent such as NBS.
[0098]
Embedded image
Figure 0003800051
(Wherein R1, R2, Ring A1~ AFive, Z1~ ZFour, Y1~ YFour, K, l, m, and n have the same meaning as described above, and hydrogen on the benzene ring may be substituted with fluorine. X represents chlorine or bromine. )
[0099]
For the phenol derivative (20) used above, trialkyl borate is added to the Grignard reagent prepared from the benzene derivative (21) according to the method of RL Kidwell et al. (Org. Synth., V, 918 (1973)). It can be produced by preparing a boronic acid ester derivative by acting and oxidizing it with a peroxide such as hydrogen peroxide or peracetic acid.
[0100]
Embedded image
Figure 0003800051
(Wherein R2, Ring AFour, AFive, ZThree, ZFour, Y1~ YFour, M and n have the same meaning as described above, and RTenRepresents an alkyl group, and X ′ represents a chlorine atom or a bromine atom. )
[0101]
Moreover, the compound represented by Formula (1) can be suitably manufactured also by the following method. That is, first, the dithianium salt (23) is produced by reacting the carboxylic acid derivative (22) with a strong acid such as propanedithiol and trifluoroacetic acid in a suitable solvent typified by toluene. The reaction at this time is carried out with a temperature from room temperature to the boiling point of the solvent as a guideline, but it is preferable to carry out the reaction while removing water at 100 ° C. or higher because the salt is stably isolated. Note that (23) may be tetrafluoroborate, perchlorate or the like in addition to dithianium trifluoromethanesulfonate. Subsequently, (23) is led to a dithioorthoester derivative (24) by acting a base such as triethylamine in the presence of a phenol derivative (20) in a suitable solvent such as methylene chloride, and triethylamine-3HF is incorporated into this system. The target compound (1) can be produced by oxidative fluorination by the action of a fluorinating agent such as NBS or bromine. The reaction at this time is performed at as low a temperature as possible, and is practically about -50 ° C to -100 ° C.
[0102]
Embedded image
Figure 0003800051
(Wherein R1, R2, Ring A1~ AFive, Z1~ ZFour, Y1~ YFour, K, l, m, and n have the same meaning as described above, and hydrogen on the benzene ring may be substituted with fluorine. )
[0103]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
In each example, Cr represents a crystal, N represents a nematic phase, and Iso represents an isotropic liquid phase.
[0104]
Example 1
1- (3- (trans-4- (trans-4-pentylcyclohexyl) cyclohexyl) -1,1-difluoropropyleneoxy) -3,4,5-trifluorobenzene (in formula (1), l = 1, k = M = n = 0, R1N-pentyl group, ring A2And ring AThreeAre both trans-1,4-cyclohexylene groups, Z2Is a single bond, Y1And Y2Are both hydrogen atoms, YThree, YFourAnd R2Of a compound wherein both are fluorine atoms (Compound No. 40)
[0105]
First step
In a 1 L three-necked flask equipped with a stirrer, a thermometer, and a dropping funnel, 27.6 g (122.9 mmol) of ethyl diethylphosphinoacetate was dissolved in 350 ml of tetrahydrofuran (hereinafter abbreviated as THF) under a nitrogen atmosphere, and stirred at −5 After cooling to ° C., 15.2 g (135.2 mmol) of potassium tert-butoxide was added thereto and stirred at room temperature for 2 hours. The solution was cooled again to 0 ° C., and a solution of trans-4- (trans-4-pentylcyclohexyl) cyclohexanecarbaldehyde 25.0 g (94.5 mmol) in 100 ml of THF was added dropwise. Further, after stirring at room temperature for 14 hours, 200 ml of water and 400 ml of toluene were added to the reaction mixture and stirred. The separated toluene layer was washed twice with 200 ml of water and dried over anhydrous magnesium sulfate, and then toluene was distilled off under reduced pressure. The residue was purified by silica gel column chromatography using toluene as a developing solvent to obtain 12.8 g of ethyl 3- (trans-4- (trans-4-pentylcyclohexyl) cyclohexyl) propenoate (yellow oily substance).
[0106]
Second step
In a 100 ml flask, 12.8 g (38.3 mmol) of ethyl 3- (trans-4- (trans-4-pentylcyclohexyl) cyclohexyl) propenoate obtained above was dissolved in a toluene / ethanol (50 ml / 30 ml) mixture, 2.0 g of 5% palladium-carbon catalyst was added, and the mixture was stirred at room temperature for 8 hours at a hydrogen pressure of 0.1 MPa. The catalyst was collected by filtration, and the filtrate was concentrated to obtain 13.5 g of a yellow oil. Next, this oily substance was dissolved in 150 ml of ethanol, 50 ml (100 mmol) of 2M aqueous sodium hydroxide solution was added, and the mixture was heated to reflux for 3 hours. 300 ml of water was added, and the precipitated insoluble matter was collected by filtration and recrystallized from toluene to obtain 4.9 g of 3- (trans-4- (trans-4-pentylcyclohexyl) cyclohexyl) propionic acid as slightly yellow crystals.
[0107]
Third step
4.9 g (16.0 mmol) of 3- (trans-4- (trans-4-pentylcyclohexyl) cyclohexyl) propionic acid obtained above in a 100 ml three-necked flask equipped with a stirrer, a thermometer and a condenser under a nitrogen atmosphere, 2.9 g (19.2 mmol) of 3,4,5-trifluorophenol, 2-chloro-1-methylpyridinium iodide (Kazuhiko Saigo, Teruaki Mukaiyama et al., Bull. Chem. Soc. Jpn., 50 (7), 1863 (1977)) 4.9 g (19.2 mmol) and triethylamine 3.9 g (38.4 mmol) were dissolved in 50 ml of toluene and heated to reflux for 3 hours with stirring. To the reaction mixture, 50 ml of 6M hydrochloric acid and 100 ml of toluene were added and stirred. The toluene layer was washed with water (150 ml × 3) and dried over anhydrous magnesium sulfate, and then toluene was distilled off under reduced pressure. The residue was purified by silica gel column chromatography using a mixed solution of heptane / toluene (75/25) as a developing solvent, and 3,4,5-trifluorophenyl = 3- (trans-4- (trans-4-pentyl). 6.4 g of cyclohexyl) cyclohexyl) propionate was obtained as colorless crystals.
[0108]
4th process
In a 300 ml three-necked flask equipped with a stirrer, a thermometer and a condenser, under a nitrogen atmosphere, 3,4,5-trifluorophenyl = 3- (trans-4- (trans-4-pentylcyclohexyl) cyclohexyl obtained above ) Propionate (6.4 g, 14.5 mmol), Lawesson's reagent (11.7 g, 29.0 mmol) and mesitylene (85 ml) were heated to reflux with stirring for 8 hours. After cooling to room temperature, insolubles were removed and the filtrate was extracted with toluene. The toluene layer was sequentially washed twice with 200 ml of water, 150 ml of a saturated aqueous sodium carbonate solution and 200 ml of water, dried over anhydrous magnesium sulfate, and then toluene was distilled off under reduced pressure. The residue was purified by silica gel column chromatography using heptane as a developing solvent, and 3,4,5-trifluorophenyl = 3- (trans-4- (trans-4-pentylcyclohexyl) cyclohexyl) thione-O-propionate was obtained. 0.9 g was obtained as a slightly yellow crystal.
[0109]
5th process
Teflon equipped with stirrer, thermometer and dropping funnel(R)In a 200 ml three-neck flask, 1.1 g (5.8 mmol) of NBS was dissolved in 15 ml of dichloromethane, 1 ml of 70% HF-pyridine was added at −60 ° C. or lower with stirring, and the mixture was further stirred for 30 minutes. Next, 0.9 g (2.0 mmol) of 3,4,5-trifluorophenyl = 3- (trans-4- (trans-4-pentylcyclohexyl) cyclohexyl) thione-O-propionate obtained in the previous step was dissolved in 20 ml of dichloromethane. The solution was added dropwise, and the mixture was stirred at −10 to 0 ° C. for 2 hours after the addition. The reaction mixture was poured into 100 ml of saturated aqueous sodium carbonate solution, and then the dichloromethane layer was separated, washed 3 times with 150 ml of water, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography using heptane as a developing solvent, recrystallized from an equal volume mixture of heptane / ethanol, and the desired 1- (3- (trans-4- 0.7 g of (trans-4-pentylcyclohexyl) cyclohexyl) -1,1-difluoropropyleneoxy) -3,4,5-trifluorobenzene ((colorless crystalline material) was obtained, which is a liquid crystal phase, The transition point is shown below.
Cr 65.5 (Sm 50.76); N 116.9 Iso
[0110]
The measurement results of various spectral data strongly supported the structure.
1H-NMR (δppm, CDClThree) : 0.8-2.2 (m, 35H), 6.85-6.88 (m, 2H)
19F-NMR (δppm): -79.26 (t, 2F, -CF 2 O-), -133.53--133.65 (m, 2F), -165.00--165.06 (m, 1F)
GC-MS (EI): 460 (M+, 12.5%), 148 (92.4), 97 (93.6), 83 (100), 81 (55.0), 69 (54.9), 55 (76.4), 41 (30.7)
[0111]
Example 2
1- (3- (2,6-difluoro-4- (4-pentylphenyl) phenyl) -1,1-difluoropropyleneoxy) -3-fluoro-4-trifluoromethoxybenzene (in formula (1), l = 1, k = m = n = 0, R1N-pentyl group, ring A2Is a 1,4-phenylene group, ring AThreeIs a 3,5-difluoro-1,4-phenylene group, Z2Is a single bond, Y1, Y2And YFourAre both hydrogen atoms, YThreeIs a fluorine atom, R2Of a compound wherein Compound is a trifluoromethoxy group (Compound No. 66))
[0112]
First step
In a 500 ml three-necked flask equipped with a stirrer, thermometer and dropping funnel, 15.0 g (57.6 mmol) of 2,6-difluoro-4- (4-pentylphenyl) benzene was dissolved in 100 ml of THF under a nitrogen atmosphere and stirred. Then, 43 ml (69.1 mmol) of n-BuLi (1.6 M cyclohexane solution) was added dropwise at −65 ° C. or lower, and the mixture was further stirred for 1 hour. Subsequently, 7.2 g (63.4 mmol) of formylpiperidine was added dropwise at −65 ° C. or lower, and the mixture was further stirred for 2 hours. 200 ml of water was added to the reaction mixture, extraction was performed with 400 ml of toluene, and the toluene layer was washed twice with 200 ml of water and then dried over anhydrous magnesium sulfate. Toluene was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography using toluene as a developing solvent to obtain 13.1 g of 2,6-difluoro-4- (4-pentylphenyl) benzaldehyde.
[0113]
Second step
In a 500 ml three-necked flask equipped with a stirrer, a thermometer and a dropping funnel, 21.1 g (54.6 mmol) of methoxymethyltriphenylphosphonium chloride was suspended in 80 ml of THF under a nitrogen atmosphere, and potassium-t at −30 ° C. or lower with stirring. -6.4 g (57.3 mmol) of butoxide was added, and then stirred at 0 ° C for 2 hours. This was again cooled to −30 ° C. or lower, and 100 ml of a THF solution of 13.1 g (45.5 mmol) of 2,6-difluoro-4- (4-pentylphenyl) benzaldehyde obtained in the previous step was added dropwise, and then at room temperature. Stir for hours. After adding 150 ml of water and 200 ml of heptane to the reaction mixture to remove insoluble matters, the separated heptane layer was washed twice with 150 ml of water and dried over anhydrous magnesium sulfate. The concentrated residue obtained by distilling off heptane under reduced pressure was dissolved in a mixture of 150 ml of THF and 30 ml of 6M hydrochloric acid, and stirred at room temperature for 8 hours under a nitrogen atmosphere. To the concentrate obtained by evaporating THF under reduced pressure, 200 ml of toluene and 150 ml of water were added, and the separated toluene layer was washed twice with 150 ml of water and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography using toluene as a developing solvent to obtain 9.5 g of 2- (2,6-difluoro-4- (4-pentylphenyl) phenyl) acetaldehyde. .
[0114]
Third step
9.5 g (31.4 mmol) of 2- (2,6-difluoro-4- (4-pentylphenyl) phenyl) acetaldehyde obtained in the previous step in a 100 ml three-necked flask equipped with a stirrer, a thermometer and a condenser under a nitrogen atmosphere ) Was dissolved in 150 ml of methanol, 1.8 g (47.1 mmol) of sodium borohydride was added with stirring at 5 ° C., and the mixture was further stirred for 2 hours. To the reaction mixture, 50 ml of 6M hydrochloric acid and 150 ml of toluene were added, and the separated toluene layer was washed with 150 ml of water three times and dried over anhydrous magnesium sulfate. Toluene was distilled off under reduced pressure to obtain 9.5 g of 2- (2,6-difluoro-4- (4-pentylphenyl) phenyl) ethanol.
[0115]
4th process
In a 300 ml three-necked flask equipped with a stirrer, a condenser tube and a Dean-Stark dehydration tube, 9.5 g (31.2 mmol) of 2- (2,6-difluoro-4- (4-pentylphenyl) phenyl) ethanol from the previous step was added to toluene. It melt | dissolved in 100 ml, 13.4 g (78.0 mmol) of 47% -hydrobromic acid was added, and it heated and refluxed for 4 hours. After cooling to room temperature, 100 ml of water and 100 ml of toluene were added, and the separated toluene layer was washed successively with 100 ml of saturated aqueous sodium carbonate solution and 150 ml of water, and then dried over anhydrous magnesium sulfate. Toluene was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography using heptane as a developing solvent to obtain 6.5 g of 2- (2,6-difluoro-4- (4-pentylphenyl) phenyl) bromoethane.
[0116]
5th process
In a 200 ml three-necked flask equipped with a stirrer, a thermometer and a dropping funnel, 0.5 g (19.6 mmol) of ground magnesium was suspended in 10 ml of THF under a nitrogen atmosphere, and 2- (2,6- 6.5 g (17.8 mmol) of difluoro-4- (4-pentylphenyl) phenyl) bromoethane was added dropwise at 60 ° C. or lower to prepare a Grignard reagent. Next, this Grignard reagent was cooled to 5 ° C., and 3.4 g (44.5 mmol) of carbon disulfide was added dropwise thereto, followed by stirring at room temperature for 2 hours. To the reaction mixture, 50 ml of 6M hydrochloric acid and 150 ml of diethyl ether were added, and the separated ether layer was washed twice with 100 ml of water and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was recrystallized from heptane to obtain 4.8 g of 3- (2,6-difluoro-4- (4-pentylphenyl) phenyl) dithiopropionic acid.
[0117]
6th process
In a 300 ml three-necked flask equipped with a stirrer, thermometer and dropping funnel, 0.7 g (27.7 mmol) of sodium hydride (60% oily) was suspended in 10 ml of THF under a nitrogen atmosphere, and this was stirred with 3-fluoro. 10 ml of a THF solution of 2.6 g (13.2 mmol) of -4-trifluoromethoxyphenol was added dropwise and stirred at room temperature for 30 minutes. 20 ml of THF solution of 4.8 g (13.2 mmol) of 3- (4- (4-pentylphenyl) -2,6-difluorophenyl) dithiopropionic acid in the previous step was dropped therein and stirred at 60 ° C. for 1 hour, 25 ml of a THF solution of 4.0 g (15.8 mmol) of iodine was added dropwise at 60 ° C., and the mixture was further stirred for 2 hours. 100 ml of water and 150 ml of toluene were added to the reaction mixture, and the separated toluene layer was washed twice with 50 ml of 10% aqueous sodium hydrogen sulfite solution and 100 ml of water successively and then dried over anhydrous magnesium sulfate. Toluene was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography using a heptane / toluene (95/5) mixed solvent as a developing solvent, and 3-fluoro-4-trifluoromethoxyphenyl = 3- (2,6 4.4 g of -difluoro-4- (4-pentylphenyl) phenyl) thione-O-propionate was obtained.
[0118]
7th process
Teflon equipped with stirrer, thermometer and dropping funnel(R)In a 200 ml three-necked flask, NBS 4.6 g (25.3 mmol) was dissolved in 50 ml of dichloromethane, and with stirring, 5 ml of 70% HF-pyridine was added at −60 ° C. or lower and further stirred for 30 minutes. Next, 40 ml of a dichloromethane solution of 4.4 g (8.4 mmol) of 3-fluoro-4-trifluoromethoxyphenyl = 3- (2,6-difluoro-4- (4-pentylphenyl) phenyl) thione-O-propionate in the previous step was added. After dropwise addition, the mixture was stirred at -10 to 0 ° C for 2 hours. The reaction mixture was poured into 200 ml of saturated aqueous sodium carbonate solution, and then the separated dichloromethane layer was washed with 150 ml of water three times and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography using a heptane / toluene (95/5) mixed solvent as a developing solvent, and recrystallized from an equal volume mixture of heptane / ethanol. 2.1 g of 1- (3- (2,6-difluoro-4- (4-pentylphenyl) phenyl) -1,1-difluoropropyleneoxy) -3-fluoro-4-trifluoromethoxybenzene was obtained.
[0119]
Example 3
1- (3- (trans-4-propylcyclohexyl) cyclohexyl) -1,1-difluoropropyleneoxy) -3,4,5-trifluorobenzene (wherein l = 1, k = m = n = 0, R1Is an n-propyl group, ring A2And ring AThreeAre both trans-1,4-cyclohexylene groups, Z2Is a single bond, Y1And Y2Are both hydrogen atoms, YThree, YFourAnd R2Of a compound wherein both are fluorine atoms (Compound No. 39)
[0120]
First step
In a flask equipped with a stirrer, thermometer and dropping funnel, sodium hydride (3.36 g) was dissolved in tetrahydrofuran (hereinafter abbreviated as THF, 50 ml) under a nitrogen atmosphere, and cooled to −5 ° C. with stirring. A solution of ethyl diethylphosphinoacetate (18.8 g) in THF (30 ml) was added dropwise thereto. The reaction solution was further stirred for 2 hours, and generation of hydrogen gas was confirmed, and a solution of trans-4- (trans-4-propylcyclohexyl) cyclohexanecarbaldehyde (16.5 g) in THF (50 ml) was added dropwise. The reaction was warmed to room temperature and stirred for 3 hours. After completion of the stirring, water was added to the reaction solution and extracted with toluene (50 ml × 3). The organic layer was washed with water, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to obtain ethyl 3- (trans-4- (trans-4-propylcyclohexyl) cyclohexyl) propenoate (10.0 g).
[0121]
Second step
Ethyl 3- (trans-4- (trans-4-propylcyclohexyl) cyclohexyl) propenoate (10.0 g) obtained above was dissolved in a toluene: ethanol mixed solvent (1: 1, 80 ml), and 5% palladium- Carbon (1.8 g) was added and stirred for 8 hours under a hydrogen atmosphere. After completion of the stirring, the catalyst was removed by filtration, the filtrate was concentrated under reduced pressure, the obtained yellow oil was dissolved in ethanol (80 ml), 2N sodium hydroxide solution (30 ml) was added, and the mixture was stirred at room temperature for 8 hours. After completion of the stirring, water was added to the reaction solution to obtain PH4 using 2N hydrochloric acid, and the precipitated crystals were filtered. The obtained crystals were recrystallized from THF-ether (1: 8, 50 ml) to give 3- (trans-4- (trans-4-propylcyclohexyl) cyclohexyl) propionic acid (4.0 g) as white crystals.
[0122]
Third step
The 3- (trans-4- (trans-4-propylcyclohexyl) cyclohexyl) propionic acid (5.0 g) obtained above was suspended in toluene, 1,3-propanedithiol (2.5 g) was added, and the mixture was heated to 50 ° C. Stir with heating. Trifluoromethanesulfonic acid (3.5 g) was added dropwise to the suspension over 30 minutes, and after completion of the addition, a Dean-Stark apparatus was attached and heated to reflux for 4 hours to remove the distilled water. The reaction mixture was concentrated under reduced pressure, diethyl ether was added, and the precipitated crystals were collected by filtration, and 2- (2- (trans-4- (trans-4-propylcyclohexyl) cyclohexyl) ethyl) -1,3- Dithianium triflate (4.0 g) was obtained.
[0123]
4th process
3,4,5-trifluorophenol (1.27 g) and triethylamine (870 mg) were dissolved in methylene chloride (10 ml) and stirred at −78 ° C. to obtain 2- (2- (trans-4--4-) obtained above. A solution of (trans-4-propylcyclohexyl) cyclohexyl) ethyl) -1,3-dithianium triflate (3.8 g) in methylene chloride (5 ml) was added dropwise. After the addition was complete, the solution was stirred for an additional hour,ThreeN · 3HF (6.24 ml) was added, and a methylene chloride solution of bromine (6.24 g) was further added dropwise. The reaction solution was stirred at −70 ° C. for 1 hour, then warmed up gradually, poured into cold 3N sodium hydroxide solution (100 ml) at 0 ° C., and extracted with methylene chloride (30 ml × 3). The organic layer was washed with water, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The obtained yellow oil was isolated and purified using silica gel column chromatography using heptane as a developing solvent, and 1- (3- (trans-4-propylcyclohexyl) cyclohexyl) -1,1-difluoropropyleneoxy)- 3,4,5-trifluorobenzene (1.0 g) was obtained as colorless crystals. The transition point of this product is shown below.
Cr 68.6 N 113.16 I (° C)
[0124]
The measurement results of various spectral data strongly supported the structure.
1H-NMR (δppm, CDClThree): 0.8-2.2 (31H, m), 6.85-6.88 (2H, m)
19F-NMR (δppm, CDClThree): -79.26 (2F, t), -133.53--133.65 (2F, m), -165.00--165.06 (1F, m,)
GC-MS (EI): 432 (M +, 18.5%), 69 (100), 148 (80.1), 83 (75.5), 81 (47.5), 95 (42.7), 82 (42.8), 55 (39.0),
[0125]
Example 4
1- (3- (trans-4- (trans-4-propylcyclohexyl) cyclohexyl) -1,1-difluoropropyleneoxy) -2,3-difluoro-4-ethoxybenzene (l = 1 in formula (1), k = m = n = 0, R1Is an n-propyl group, ring A2And ring AThreeAre both trans-1,4-cyclohexylene groups, Z2Is a single bond, Y2And YFourAre both hydrogen atoms, Y1And YThreeAre both fluorine atoms, R2Of a compound wherein Compound is an ethoxy group (Compound No. 46)
[0126]
First step
In a 3 L three-necked flask equipped with a stirrer, a thermometer and a dropping funnel, 32.0 g (114.9 mmol) and 2,3-difluoro 3- (trans-4- (trans-4-propylcyclohexyl) cyclohexyl) propionic acid in a nitrogen atmosphere 20.0 g (114.9 mmol) of -4-ethoxyphenol was dissolved in 1000 ml of dichloromethane at room temperature, and 15.4 g (126.4 mmol) of 4-dimethylaminopyridine was added with stirring. After the addition, the mixture was stirred for 30 minutes, and then a solution of 26.1 g (126.4 mmol) of dicyclohexylcarbodiimide dissolved in 400 ml of dichloromethane was added dropwise at room temperature, followed by stirring at room temperature for 14 hours. Water (500 ml) was added to the reaction solution, and insoluble matter was collected by filtration. The filtrate was washed with 3M hydrochloric acid (300 ml), water (300 ml), saturated aqueous sodium hydrogen carbonate solution (300 ml) and water (600 ml), and dried over anhydrous magnesium sulfate. The solvent was distilled off from the reaction solution under reduced pressure to obtain 56.4 g of a concentrate. Subsequently, the concentrate was purified by silica gel column chromatography using a mixed solution of heptane / ethyl acetate (7/3) as a developing solvent, and 2,3-difluoro-4-ethoxyphenyl = 3- (trans-4) was obtained as a colorless crystal. 51.4 g of-(trans-4-propylcyclohexyl) cyclohexyl) propionate was obtained.
[0127]
Second step
2,3-difluoro-4-ethoxyphenyl = 3- (trans-4- (trans-4-propylcyclohexyl) cyclohexyl) obtained above in a 2 L three-necked flask equipped with a stirrer, a thermometer and a dropping funnel under a nitrogen atmosphere 51.4 g (118.0 mmol) of propionate, 95.5 g (236.0 mmol) of Laweeson's reagent and 470 ml of mesitylene were mixed and heated to reflux with stirring for 4 hours. After cooling to room temperature, insolubles were collected by filtration, 500 ml of water was added to the filtrate, and the mixture was extracted with 400 ml of toluene. The extract layer was washed successively with 500 ml of water, 300 ml of a saturated aqueous sodium hydrogen carbonate solution and 1000 ml of water, and then dried over anhydrous magnesium sulfate. The solvent was distilled off from the reaction solution under reduced pressure to obtain a concentrate. Subsequently, the concentrate was purified by silica gel column chromatography using a toluene / heptane (1/1) mixture as a developing solvent, and 2,3-difluoro-4-ethoxyphenyl = 3- (trans-4- 14.2 g of (trans-4-propylcyclohexyl) cyclohexyl) thione-O-propionate was obtained.
[0128]
Third step
Teflon equipped with stirrer, thermometer and dropping funnel(R)In a 500 ml three-necked flask, 5.5 g (31.0 mmol) of NBS was dissolved in 130 ml of dichloromethane under a nitrogen atmosphere, 14 ml of 70% HF-pyridine was added at −60 ° C. or lower with stirring, and the mixture was further stirred for 30 minutes. Next, 7.00 g (15.5 mmol) of 2,3-difluoro-4-ethoxyphenyl = 3- (trans-4- (trans-4-propylcyclohexyl) cyclohexyl) thione-O-propionate obtained in the previous step was dissolved in 65 ml of dichloromethane. The solution was added dropwise, and stirred at −10 ° C. for 3 hours. After the reaction mixture was poured into 500 ml of saturated aqueous sodium carbonate solution, the dichloromethane layer was separated, washed 3 times with 200 ml of water, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography using a mixed solution of toluene / heptane (3/7) as a developing solvent, and recrystallized from an equal volume of heptane / ethanol. As a result, 2.7 g of 1- (3- (trans-4- (trans-4-propylcyclohexyl) cyclohexyl) -1,1-difluoropropyleneoxy) -2,3-difluoro-4-ethoxybenzene was obtained. This has a liquid crystal phase and its transition point is shown below.
Cr 47.4 Cr 51.9 SA  99.5 N 164.0 Iso
[0129]
The measurement results of various spectral data strongly supported the structure.
1H-NMR (δppm, CDClThree): 0.82-1.12 (m, 13H), 1.12-1.34 (m, 5H), 1.45 (t, 3H), 1.50-1.55 (m, 3H), 1.68-1.80 (m, 8H), 2.12-2.20 (m , 2H), 4.10 (q, 2H), 6.63-6.67 (m, 1H), 6.94-6.97 (m, 1H)
19F-NMR (δppm): -72.0--72.1 (t, 2F), -150.8--150.9 (m, 1F), -156.5--156.6 (m, 1F)
[0130]
Based on the description in Examples 1 to 4 and the detailed description of the invention, the following compounds No. 1 to No. 204 can be produced. In the following, the compounds obtained in Examples 1 to 4 are also shown again.
[0131]
Embedded image
Figure 0003800051
[0132]
Embedded image
Figure 0003800051
[0133]
Embedded image
Figure 0003800051
[0134]
Embedded image
Figure 0003800051
[0135]
Embedded image
Figure 0003800051
[0136]
Embedded image
Figure 0003800051
[0137]
Embedded image
Figure 0003800051
[0138]
Embedded image
Figure 0003800051
[0139]
Embedded image
Figure 0003800051
[0140]
Embedded image
Figure 0003800051
[0141]
Embedded image
Figure 0003800051
[0142]
Embedded image
Figure 0003800051
[0143]
Embedded image
Figure 0003800051
[0144]
Embedded image
Figure 0003800051
[0145]
Embedded image
Figure 0003800051
[0146]
Embedded image
Figure 0003800051
[0147]
Embedded image
Figure 0003800051
[0148]
Embedded image
Figure 0003800051
[0149]
Embedded image
Figure 0003800051
[0150]
Embedded image
Figure 0003800051
[0151]
Embedded image
Figure 0003800051
[0152]
Embedded image
Figure 0003800051
[0153]
Embedded image
Figure 0003800051
[0154]
Embedded image
Figure 0003800051
[0155]
Embedded image
Figure 0003800051
[0156]
Embedded image
Figure 0003800051
[0157]
Example 5
Nematic liquid crystal composition containing a cyanophenylcyclohexane-based liquid crystal compound (hereinafter referred to as liquid crystal composition A):
Figure 0003800051
Has the following characteristics.
[0158]
Clearing point (TNI): 71.7 ° C., threshold voltage (Vth) at cell thickness of 8.8 μm: 1.78 V, Δε: 11.0, Δn: 0.137, viscosity at 20 ° C. (η): 26.3 mPa · s.
85% by weight of this liquid crystal composition A and 1- (3- (trans-4- (trans-4-pentylcyclohexyl) cyclohexyl) -1,1-difluoropropyleneoxy) -3,4,5 obtained in Example 1 A liquid crystal composition comprising 15% by weight of trifluorobenzene (Compound No. 40) was prepared. The characteristics were as follows.
Clearing point (TNI): 75.8 ° C., threshold voltage (Vth) at cell thickness of 8.9 μm: 1.70 V, Δε: 11.4, Δn: 0.128, viscosity at 20 ° C. (η): 28.4 mPa · s.
[0159]
The physical property values of Compound No. 40 calculated by extrapolation from the physical property values of the respective liquid crystal compositions and the mixing ratio of the compounds were as follows.
Clearing point (TNI): 99.0 ° C., Δε: 13.7, Δn: 0.077, viscosity at 20 ° C. (η): 31.8 mPa · s.
[0160]
Example 6
85% by weight of the liquid crystal composition A shown in Example 4 and 1- (3- (4′-propyl-3,5-difluorobiphenyl-4-yl) -1,1-difluoropropyleneoxy) -3,4 , 5-trifluorobenzene (Compound No. 63) 15% by weight was prepared. The characteristics were as follows.
Clearing point (TNI): 61.4 ° C., threshold voltage (Vth) at cell thickness of 8.9 μm: 1.50 V, Δε: 13.5, Δn: 0.133, viscosity at 20 ° C. (η): 30.0 mPa · s.
The physical property values of the compounds calculated by extrapolation from the physical property values of the liquid crystal compositions and the mixing ratio of the compounds were as follows.
Clearing point (TNI): 4.4 ° C., Δε: 24.3, Δn: 0.110, viscosity at 20 ° C. (η): 45.3 mPa · s.
[0161]
Example 7
Nematic liquid crystal composition (hereinafter referred to as liquid crystal composition B):
Figure 0003800051
Has the following characteristics.
[0162]
Clear point (TNI): 74.0 ° C, Δε: -1.3, Δn: 0.087, viscosity at 20 ° C (η20): 18.9 mPa · s.
85% by weight of this liquid crystal composition B and 1- (3- (trans-4- (trans-4-propylcyclohexyl) cyclohexyl) -1,1-difluoropropyleneoxy) -2,3-difluoro obtained in Example 3 A liquid crystal composition comprising 15% by weight of -4-ethoxybenzene (Compound No. 46) was prepared. The characteristics were as follows.
Clear point (TNI): 84.9 ° C, Δε: -1.72, Δn: 0.089, viscosity at 20 ° C (η20): 24.3 mPa · s.
The physical property values of Compound No. 46 calculated by extrapolation from the physical property values of the respective liquid crystal compositions and the mixing ratio of the compounds were as follows.
Clear point (TNI): 143.3 ° C., Δε: −3.70, Δn: 0.100, viscosity at 20 ° C. (η20): 48.1 mPa · s.
[0163]
Example 8
According to Example 7, 85% by weight of liquid crystal composition B and the present compound 1- (3- (2,3-difluoro-4-ethoxyphenyl) -1,1-difluoropropyleneoxy) -4- (trans-4-propyl A liquid crystal composition comprising 15% by weight of (cyclohexyl) benzene (Compound No. 201) was prepared. The characteristics were as follows.
Clear point (TNI): 77.9 ° C, Δε: -1.88, Δn: 0.092, viscosity at 20 ° C (η20): 24.2 mPa · s.
In addition, the physical property value of compound No. 201 calculated by the extrapolation method from the physical property value of each liquid crystal composition and the mixing ratio of the compound was as follows.
Clear point (TNI): 96.6 ° C., Δε: −4.88, Δn: 0.120, viscosity at 20 ° C. (η20): 48.0 mPa · s.
[0164]
The composition and physical properties of the nematic liquid crystal composition of the present invention having the compound of formula (1) synthesized based on the above method as the first component are shown as Examples 9 to 54 below.
In addition, each compound in the composition was displayed according to the convention shown in the following Table 2 by associating the group shown in each column of the left terminal group, bonding group, ring structure and right terminal group with each symbol.
[0165]
[Table 2]
Figure 0003800051
[0166]
The No. attached to the compound in the composition is the same as that shown in the above Examples, and the content of the compound means wt% unless otherwise specified.
The characteristic data of the composition examples are NI (nematic-isotropic liquid transition temperature or clearing point), η (viscosity: measurement temperature 20.0 ° C.), Δn (refractive index anisotropy value: measurement temperature 25.0). ° C.), Δε (dielectric anisotropy value: measurement temperature 25.0 ° C.) and Vth (threshold voltage: measurement temperature 25.0 ° C.).
[0167]
Example 9
5-HH2ZB (F, F) -F (No. 40) 8.0%
5-H2ZB (F, F) -C (No.11) 7.0%
1V2-BEB (F, F) -C 5.0%
3-HB-C 10.0%
1-BTB-3 5.0%
2-BTB-1 10.0%
3-HH-4 11.0%
3-HHB-1 11.0%
3-HHB-3 9.0%
3-H2BTB-2 4.0%
3-H2BTB-3 4.0%
3-H2BTB-4 4.0%
3-HB (F) TB-2 6.0%
3-HB (F) TB-3 6.0%
NI = 92.4 (° C)
η = 16.6 (mPa · s)
Δn = 0.154
Δε = 8.5
Vth = 1.99 (V)
The pitch when 1 part of CM33 was added to 100 parts of the composition was 10.7 μm.
[0168]
Example 10
3-HH2ZB (F) -OCF3 (No. 36) 5.0%
5-HH2ZB (F) -OCF3 (No. 37) 5.0%
3-H2ZB (F, F) B (F) -F (No. 99) 7.0%
5-H2ZB (F, F) B (F) -F (No.100) 6.0%
2O1-BEB (F) -C 5.0%
3O1-BEB (F) -C 15.0%
4O1-BEB (F) -C 8.0%
5O1-BEB (F) -C 8.0%
2-HHB (F) -C 9.0%
3-HHB (F) -C 8.0%
3-HB (F) TB-2 4.0%
3-HB (F) TB-3 4.0%
3-HB (F) TB-4 4.0%
3-HHB-1 8.0%
3-HHB-O1 4.0%
NI = 87.6 (° C.)
η = 79.0 (mPa · s)
Δn = 0.141
Δε = 29.9
Vth = 0.89 (V)
[0169]
Example 11
5-H2ZB (F, F) -F (No.5) 2.0%
5-H2ZB (F) -OCF3 (No. 7) 2.0%
5-H2ZB (F) B (F, F) -F (No.102) 3.0%
5-H2ZB (F, F) -C (No.11) 2.0%
5-PyB-F 2.0%
3-PyB (F) -F 2.0%
2-BB-C 3.0%
4-BB-C 3.0%
5-BB-C 3.0%
2-PyB-2 2.0%
3-PyB-2 2.0%
4-PyB-2 2.0%
6-PyB-O5 3.0%
6-PyB-O6 3.0%
6-PyB-O7 3.0%
6-PyB-O8 3.0%
3-PyBB-F 6.0%
4-PyBB-F 6.0%
5-PyBB-F 6.0%
3-HHB-1 6.0%
3-HHB-3 8.0%
2-H2BTB-2 4.0%
2-H2BTB-3 4.0%
2-H2BTB-4 5.0%
3-H2BTB-2 5.0%
3-H2BTB-3 5.0%
3-H2BTB-4 5.0%
NI = 93.5 (° C.)
η = 35.6 (mPa · s)
Δn = 0.193
Δε = 6.6
Vth = 2.26 (V)
[0170]
Example 12
3-HH2ZB (F, F) -F (No. 39) 4.0%
3-H2ZB (F, F) -F (No.4) 3.0%
3-H2ZB (F) -OCF3 (No.6) 4.0%
3-GB-C 6.0%
4-GB-C 6.0%
2-BEB-C 12.0%
3-BEB-C 4.0%
3-PyB (F) -F 3.0%
3-HEB-O4 8.0%
4-HEB-O2 6.0%
5-HEB-O1 6.0%
3-HEB-O2 5.0%
5-HEB-O2 4.0%
5-HEB-5 5.0%
4-HEB-5 5.0%
1O-BEB-2 4.0%
3-HHB-1 6.0%
3-HHEBB-C 3.0%
3-HBEBB-C 3.0%
5-HBEBB-C 3.0%
NI = 68.7 (° C)
η = 36.7 (mPa · s)
Δn = 0.112
Δε = 10.8
Vth = 1.34 (V)
[0171]
Example 13
3-H2ZB (F, F) -F (No.4) 4.0%
5-H2ZB (F, F) -F (No.5) 4.0%
3-HH2ZB (F) -OCF3 (No. 6) 9.0%
3-H2ZB (F, F) B (F) -F (No. 99) 3.0%
3-HB-C 8.0%
7-HB-C 3.0%
1O1-HB-C 5.0%
3-HB (F) -C 5.0%
2-PyB-2 2.0%
3-PyB-2 2.0%
4-PyB-2 2.0%
1O1-HH-3 7.0%
2-BTB-O1 7.0%
3-HHB-1 7.0%
3-HHB-F 4.0%
3-HHB-O1 4.0%
3-HHB-3 8.0%
3-H2BTB-2 3.0%
3-H2BTB-3 3.0%
2-PyBH-3 4.0%
3-PyBH-3 3.0%
3-PyBB-2 3.0%
NI = 79.5 (° C.)
η = 16.4 (mPa · s)
Δn = 0.126
Δε = 7.7
Vth = 1.80 (V)
[0172]
Example 14
3-HH2ZB (F, F) -F (No. 39) 3.0%
5-HH2ZB (F) -OCF3 (No. 37) 6.0%
3-H2ZB (F, F) -C (No. 10) 9.0%
2-BEB (F) -C 5.0%
3-BEB (F) -C 4.0%
4-BEB (F) -C 4.0%
1V2-BEB (F, F) -C 6.0%
3-HH-EMe 10.0%
3-HB-O2 18.0%
7-HEB-F 2.0%
3-HHEB-F 2.0%
5-HHEB-F 2.0%
3-HBEB-F 4.0%
2O1-HBEB (F) -C 2.0%
3-HB (F) EB (F) -C 2.0%
3-HBEB (F, F) -C 2.0%
3-HHB-F 4.0%
3-HHB-O1 4.0%
3-HHB-3 7.0%
3-HEBEB-F 2.0%
3-HEBEB-1 2.0%
NI = 78.2 (° C.)
η = 33.6 (mPa · s)
Δn = 0.109
Δε = 23.7
Vth = 0.90 (V)
[0173]
Example 15
3-H2ZB (F, F) -C (No. 10) 9.0%
5-H2ZB (F, F) -C (No.11) 8.0%
2-BEB (F) -C 5.0%
3-BEB (F) -C 4.0%
4-BEB (F) -C 4.0%
1V2-BEB (F, F) -C 7.0%
3-HB-O2 10.0%
3-HH-4 3.0%
3-HHB-F 3.0%
3-HHB-1 8.0%
3-HHB-O1 4.0%
3-HBEB-F 4.0%
3-HHEB-F 7.0%
5-HHEB-F 7.0%
3-H2BTB-2 4.0%
3-H2BTB-3 4.0%
3-H2BTB-4 4.0%
3-HB (F) TB-2 5.0%
NI = 87.5 (° C.)
η = 35.8 (mPa · s)
Δn = 0.131
Δε = 24.9
Vth = 1.15 (V)
[0174]
Example 16
5-HH2ZB (F, F) -F (No. 40) 4.0%
5-H2ZB (F, F) -F (No.5) 3.0%
3-HH2ZB (F) -OCF3 (No. 36) 3.0%
5-HH2ZB (F) -OCF3 (No. 37) 4.0%
3-H2ZB (F, F) B (F) -F (No. 99) 3.0%
3-H2ZB (F) B (F, F) -F (No. 101) 7.0%
5-H2ZB (F) B (F, F) -F (No.102) 7.0%
3-H2ZB (F, F) -C (No. 10) 4.0%
2-BEB-C 4.0%
3-BEB-C 3.0%
4-BEB-C 3.0%
3-HB-C 5.0%
3-HEB-O4 12.0%
4-HEB-O2 8.0%
5-HEB-O1 8.0%
3-HEB-O2 6.0%
5-HEB-O2 5.0%
3-HHB-1 7.0%
3-HHB-O1 4.0%
NI = 63.4 (° C.)
η = 29.9 (mPa · s)
Δn = 0.092
Δε = 10.2
Vth = 1.34 (V)
[0175]
Example 17
3-H2ZB (F, F) B (F) -F (No. 99) 5.0%
5-H2ZBB (F, F) B-2 (No. 182) 6.0%
5-H2ZBB (F, F) BF (No. 184) 6.0%
2-BEB-C 10.0%
5-BB-C 7.0%
7-BB-C 7.0%
1-BTB-3 7.0%
2-BTB-1 10.0%
1O-BEB-2 7.0%
1O-BEB-5 9.0%
2-HHB-1 4.0%
3-HHB-F 4.0%
3-HHB-1 7.0%
3-HHB-O1 4.0%
3-HHB-3 7.0%
[0176]
Example 18
3-HH2ZB (F) -OCF3 (No. 36) 3.0%
5-HH2ZB (F) -OCF3 (No. 37) 3.0%
2-HB-C 5.0%
3-HB-C 12.0%
3-HB-O2 15.0%
2-BTB-1 3.0%
3-HHB-1 8.0%
3-HHB-F 4.0%
3-HHB-O1 5.0%
3-HHB-3 14.0%
3-HHEB-F 4.0%
5-HHEB-F 4.0%
2-HHB (F) -F 5.0%
3-HHB (F) -F 5.0%
5-HHB (F) -F 5.0%
3-HHB (F, F) -F 5.0%
NI = 101.3 (° C)
η = 18.3 (mPa · s)
Δn = 0.100
Δε = 5.1
Vth = 2.49 (V)
[0177]
Example 19
5-H2ZB (F, F) B (F) -F (No.100) 3.0%
3-H2ZB (F) B (F, F) -F (No. 101) 3.0%
3-H2ZB (F, F) -C (No. 10) 2.0%
3-BEB (F) -C 4.0%
3-HB-C 4.0%
V-HB-C 8.0%
1V-HB-C 8.0%
3-HB-O2 3.0%
3-HH-2V 14.0%
3-HH-2V1 7.0%
V2-HHB-1 15.0%
3-HHB-1 5.0%
3-HHEB-F 7.0%
3-H2BTB-2 6.0%
3-H2BTB-3 6.0%
3-H2BTB-4 5.0%
NI = 98.8 (° C.)
η = 17.3 (mPa · s)
Δn = 0.129
Δε = 8.0
Vth = 2.24 (V)
[0178]
Example 20
3-HH2ZB (F, F) -F (No. 39) 7.0%
5-HH2ZB (F, F) -F (No. 40) 7.0%
3-H2ZB (F) B (F, F) -F (No. 101) 3.0%
5-H2ZB (F) B (F, F) -F (No.102) 3.0%
3-H2ZB (F, F) -C (No.10) 6.0%
5-H2ZB (F, F) -C (No.11) 5.0%
V2-HB-C 6.0%
1V2-HB-C 6.0%
3-HB-C 5.0%
3-HB (F) -C 5.0%
2-BTB-1 2.0%
3-HH-4 8.0%
3-HH-VFF 6.0%
2-HHB-C 3.0%
3-HHB-C 6.0%
3-HB (F) TB-2 8.0%
3-H2BTB-2 5.0%
3-H2BTB-3 5.0%
3-H2BTB-4 4.0%
NI = 87.8 (° C.)
η = 21.4 (mPa · s)
Δn = 0.137
Δε = 11.6
Vth = 1.73 (V)
[0179]
Example 21
5-HH2ZB (F) -OCF3 (No. 37) 3.0%
3-H2ZB (F, F) -C (No.10) 3.0%
5-BEB (F) -C 5.0%
V-HB-C 5.0%
5-PyB-C 6.0%
4-BB-3 11.0%
3-HH-2V 10.0%
5-HH-V 11.0%
V-HHB-1 7.0%
V2-HHB-1 15.0%
3-HHB-1 9.0%
1V2-HBB-2 10.0%
3-HHEBH-3 5.0%
NI = 92.9 (° C.)
η = 16.1 (mPa · s)
Δn = 0.112
Δε = 5.5
Vth = 2.28 (V)
[0180]
Example 22
5-H2ZB (F, F) -F (No.5) 2.0%
3-H2ZB (F) -OCF3 (No. 6) 3.0%
3-HH2ZB (F) -OCF3 (No. 36) 7.0%
5-H2ZB (F) B (F, F) -F (No.102) 3.0%
1V2-BEB (F, F) -C 3.0%
3-HB-C 7.0%
V2V-HB-C 7.0%
V2V-HH-3 19.0%
3-HB-O2 4.0%
3-HHB-1 10.0%
3-HHB-3 15.0%
3-HB (F) TB-2 4.0%
3-HB (F) TB-3 4.0%
3-H2BTB-2 4.0%
3-H2BTB-3 4.0%
3-H2BTB-4 4.0%
NI = 101.3 (° C)
η = 15.2 (mPa · s)
Δn = 0.117
Δε = 5.6
Vth = 2.30 (V)
[0181]
Example 23
3-HH2ZB (F, F) -F (No. 39) 3.0%
3-H2ZB (F, F) B (F) -F (No. 99) 4.0%
5-H2ZB (F, F) B (F) -F (No.100) 4.0%
V2-HB-TC 10.0%
3-HB-TC 10.0%
3-HB-C 3.0%
5-HB-C 3.0%
5-BB-C 3.0%
2-BTB-1 10.0%
2-BTB-O1 5.0%
3-HH-4 5.0%
3-HHB-1 10.0%
3-HHB-3 11.0%
3-H2BTB-2 3.0%
3-H2BTB-3 3.0%
3-HB (F) TB-2 3.0%
5-BTB (F) TB-3 10.0%
NI = 101.2 (° C)
η = 16.7 (mPa · s)
Δn = 0.202
Δε = 7.5
Vth = 2.15 (V)
[0182]
Example 24
3-H2ZB (F, F) -C (No. 10) 8.0%
5-H2ZB (F, F) -C (No.11) 8.0%
1V2-BEB (F, F) -C 3.0%
3-HB-C 5.0%
2-BTB-1 10.0%
5-HH-VFF 30.0%
1-BHH-VFF 8.0%
1-BHH-2VFF 11.0%
3-H2BTB-2 5.0%
3-H2BTB-3 4.0%
3-H2BTB-4 4.0%
3-HHB-1 4.0%
NI = 74.8 (° C.)
η = 13.5 (mPa · s)
Δn = 0.120
Δε = 8.1
Vth = 1.75 (V)
[0183]
Example 25
3-H2ZB (F, F) -C (No. 10) 8.0%
5-H2ZB (F, F) -C (No.11) 7.0%
5-HBZB (F, F) -C 3.0%
3-HB (F, F) ZB (F, F) -C 3.0%
3-HB-C 3.0%
2-BTB-1 10.0%
5-HH-VFF 30.0%
1-BHH-VFF 8.0%
1-BHH-2VFF 11.0%
3-H2BTB-2 5.0%
3-H2BTB-3 4.0%
3-H2BTB-4 4.0%
3-HHB-1 4.0%
NI = 76.6 (° C.)
η = 14.5 (mPa · s)
Δn = 0.120
Δε = 7.5
Vth = 1.81 (V)
[0184]
Example 26
3-HH2ZB (F, F) -F (No. 39) 4.0%
3-HH2ZB (F) -OCF3 (No. 36) 3.0%
5-H2ZB (F, F) B (F) -F (No.100) 3.0%
5-H2ZB (F) B (F, F) -F (No.102) 5.0%
2-HHB (F) -F 5.0%
3-HHB (F) -F 14.0%
5-HHB (F) -F 16.0%
2-H2HB (F) -F 10.0%
3-H2HB (F) -F 5.0%
5-H2HB (F) -F 10.0%
2-HBB (F) -F 6.0%
3-HBB (F) -F 6.0%
5-HBB (F) -F 13.0%
NI = 97.9 (° C.)
η = 27.3 (mPa · s)
Δn = 0.096
Δε = 6.4
Vth = 2.01 (V)
The pitch when 0.3 part of CN was added to 100 parts of the composition was 77.5 μm.
[0185]
Example 27
5-HH2ZB (F, F) -F (No. 40) 7.0%
5-HH2ZB (F) -OCF3 (No. 37) 6.0%
5-H2ZBB (F, F) B-2 (No. 182) 5.0%
5-H2ZBB (F, F) BF (No. 184) 4.0%
7-HB (F, F) -F 3.0%
3-HB-O2 7.0%
2-HHB (F) -F 8.0%
3-HHB (F) -F 8.0%
5-HHB (F) -F 8.0%
2-HBB (F) -F 6.0%
3-HBB (F) -F 6.0%
5-HBB (F) -F 6.0%
2-HBB-F 4.0%
3-HBB-F 4.0%
5-HBB-F 3.0%
3-HBB (F, F) -F 5.0%
5-HBB (F, F) -F 10.0%
[0186]
Example 28
3-HH2ZB (F, F) -F (No. 39) 3.0%
3-H2ZB (F, F) -F (No.4) 3.0%
3-H2ZB (F) -OCF3 (No. 6) 3.0%
3-HH2ZB (F) -OCF3 (No. 36) 4.0%
5-HH2ZB (F) -OCF3 (No. 37) 4.0%
3-H2ZB (F, F) B (F) -F (No. 99) 3.0%
5-HB-CL 4.0%
3-HH-4 12.0%
3-HH-5 4.0%
3-HHB-F 4.0%
3-HHB-CL 3.0%
4-HHB-CL 4.0%
3-HHB (F) -F 7.0%
4-HHB (F) -F 7.0%
5-HHB (F) -F 7.0%
7-HHB (F) -F 7.0%
5-HBB (F) -F 4.0%
5-HBBH-1O1 3.0%
3-HHBB (F, F) -F 2.0%
4-HHBB (F, F) -F 3.0%
5-HHBB (F, F) -F 3.0%
3-HH2BB (F, F) -F 3.0%
4-HH2BB (F, F) -F 3.0%
NI = 115.8 (° C)
η = 23.0 (mPa · s)
Δn = 0.087
Δε = 5.5
Vth = 2.42 (V)
[0187]
Example 29
3-HH2ZB (F, F) -F (No. 39) 3.0%
5-HH2ZB (F, F) -F (No. 40) 4.0%
5-H2ZB (F, F) -F (No.5) 3.0%
5-H2ZB (F) -OCF3 (No. 7) 3.0%
3-HH2ZB (F) -OCF3 (No. 36) 6.0%
5-HH2ZB (F) -OCF3 (No. 37) 6.0%
3-H2ZB (F, F) B (F) -F (No. 99) 3.0%
5-H2ZB (F, F) B (F) -F (No.100) 4.0%
3-H2ZB (F) B (F, F) -F (No. 101) 3.0%
5-H2ZB (F) B (F, F) -F (No.102) 4.0%
3-HHB (F, F) -F 9.0%
3-H2HB (F, F) -F 4.0%
4-H2HB (F, F) -F 4.0%
5-H2HB (F, F) -F 4.0%
3-HBB (F, F) -F 10.0%
5-HBB (F, F) -F 10.0%
3-H2BB (F, F) -F 4.0%
5-HHBB (F, F) -F 3.0%
5-HHEBB-F 2.0%
3-HH2BB (F, F) -F 3.0%
4-HBBH-1O1 4.0%
5-HBBH-1O1 4.0%
NI = 97.6 (° C.)
η = 34.2 (mPa · s)
Δn = 0.106
Δε = 10.9
Vth = 1.56 (V)
[0188]
Example 30
3-HH2ZB (F) -OCF3 (No. 36) 3.0%
5-H2ZB (F) B (F, F) -F (No.102) 3.0%
5-HB-F 12.0%
6-HB-F 9.0%
7-HB-F 7.0%
2-HHB-OCF3 7.0%
3-HHB-OCF3 7.0%
4-HHB-OCF3 7.0%
5-HHB-OCF3 5.0%
3-HH2B-OCF3 4.0%
5-HH2B-OCF3 4.0%
3-HHB (F, F) -OCF3 5.0%
3-HBB (F) -F 7.0%
5-HBB (F) -F 7.0%
3-HH2B (F) -F 3.0%
3-HB (F) BH-3 3.0%
5-HBBH-3 3.0%
3-HHB (F, F) -OCF2H 4.0%
NI = 84.6 (° C.)
η = 15.5 (mPa · s)
Δn = 0.089
Δε = 5.0
Vth = 2.30 (V)
[0189]
Example 31
3-HH2ZB (F) -OCF3 (No. 36) 6.0%
5-HH2ZB (F) -OCF3 (No. 37) 6.0%
3-H2ZB (F, F) B (F) -F (No. 99) 4.0%
5-H2ZB (F, F) B (F) -F (No.100) 4.0%
3-H2ZB (F) B (F, F) -F (No. 101) 8.0%
5-H2ZB (F) B (F, F) -F (No.102) 8.0%
2-HHB (F) -F 3.0%
2-HBB (F) -F 3.0%
3-HBB (F) -F 7.0%
4-HBB (F) -F 2.0%
5-HBB (F) -F 7.0%
2-H2BB (F) -F 6.0%
3-H2BB (F) -F 6.0%
3-HBB (F, F) -F 6.0%
5-HBB (F, F) -F 6.0%
2-HHB (F, F) -F 5.0%
3-HHB (F, F) -F 5.0%
4-HHB (F, F) -F 5.0%
3-HHB-F 3.0%
NI = 96.0 (° C.)
η = 37.8 (mPa · s)
Δn = 0.127
Δε = 10.2
Vth = 1.58 (V)
[0190]
Example 32
3-H2ZB (F, F) -F (No.4) 3.0%
3-H2ZB (F, F) B (F) -F (No. 99) 5.0%
3-H2ZB (F) B (F, F) -F (No. 101) 5.0%
5-H2ZB (F) B (F, F) -F (No.102) 5.0%
5-HB-CL 3.0%
3-HH-4 8.0%
3-HBB (F, F) -F 15.0%
5-HBB (F, F) -F 10.0%
3-HHB (F, F) -F 8.0%
3-HHEB (F, F) -F 10.0%
4-HHEB (F, F) -F 3.0%
5-HHEB (F, F) -F 3.0%
2-HBEB (F, F) -F 3.0%
3-HBEB (F, F) -F 5.0%
5-HBEB (F, F) -F 3.0%
3-HHBB (F, F) -F 6.0%
3-HHB-1 5.0%
NI = 78.5 (° C.)
η = 26.6 (mPa · s)
Δn = 0.102
Δε = 10.2
Vth = 1.42 (V)
[0191]
Example 33
3-HH2ZB (F, F) -F (No. 39) 5.0%
5-HH2ZB (F, F) -F (No. 40) 5.0%
3-HH2ZB (F) -OCF3 (No. 36) 5.0%
7-HB (F) -F 6.0%
5-H2B (F) -F 6.0%
3-HB-O2 4.0%
3-HH-4 12.0%
2-HHB (F) -F 6.0%
3-HHB (F) -F 6.0%
5-HHB (F) -F 6.0%
2-HBB (F) -F 2.0%
3-HBB (F) -F 2.0%
5-HBB (F) -F 4.0%
3-HBB (F, F) -F 3.0%
2-HHBB (F, F) -F 4.0%
3-HHBB (F, F) -F 5.0%
3-HHEB-F 4.0%
5-HHEB-F 4.0%
3-HHB-1 7.0%
3-HHB-3 4.0%
NI = 100.5 (° C)
η = 20.4 (mPa · s)
Δn = 0.087
Δε = 5.7
Vth = 2.12 (V)
[0192]
Example 34
3-HH2ZB (F, F) -F (No. 39) 6.0%
5-HH2ZB (F, F) -F (No. 40) 6.0%
5-HH2ZB (F) -OCF3 (No. 37) 3.0%
3-H2ZB (F, F) B (F) -F (No. 99) 6.0%
5-H2ZB (F, F) B (F) -F (No.100) 6.0%
3-H2ZB (F) B (F, F) -F (No. 101) 13.0%
5-H2ZB (F) B (F, F) -F (No.102) 12.0%
3-HH-4 4.0%
3-H2HB (F, F) -F 6.0%
4-H2HB (F, F) -F 6.0%
5-H2HB (F, F) -F 4.0%
3-HBB (F, F) -F 13.0%
5-HBB (F, F) -F 12.0%
3-HHBB (F, F) -F 3.0%
NI = 64.2 (° C.)
η = 33.9 (mPa · s)
Δn = 0.103
Δε = 12.2
Vth = 1.34 (V)
[0193]
Example 35
3-H2ZB (F) -OCF3 (No. 6) 2.0%
5-HH2ZB (F) -OCF3 (No. 37) 5.0%
3-H2ZB (F, F) B (F) -F (No. 99) 5.0%
7-HB (F, F) -F 3.0%
3-H2HB (F, F) -F 12.0%
4-H2HB (F, F) -F 10.0%
3-HHB (F, F) -F 10.0%
4-HHB (F, F) -F 5.0%
3-HBB (F, F) -F 10.0%
3-HHEB (F, F) -F 10.0%
4-HHEB (F, F) -F 3.0%
5-HHEB (F, F) -F 3.0%
2-HBEB (F, F) -F 3.0%
3-HBEB (F, F) -F 5.0%
5-HBEB (F, F) -F 3.0%
3-HGB (F, F) -F 5.0%
3-HHBB (F, F) -F 6.0%
NI = 77.5 (° C.)
η = 34.8 (mPa · s)
Δn = 0.086
Δε = 13.4
Vth = 1.36 (V)
[0194]
Example 36
3-HH2ZB (F, F) -F (No. 39) 4.0%
5-HH2ZB (F, F) -F (No. 40) 4.0%
5-H4HB (F, F) -F 7.0%
5-H4HB-OCF3 15.0%
3-H4HB (F, F) -CF3 8.0%
5-H4HB (F, F) -CF3 10.0%
3-HB-CL 6.0%
5-HB-CL 4.0%
2-H2BB (F) -F 5.0%
3-H2BB (F) -F 5.0%
5-H2HB (F, F) -F 4.0%
3-HHB-OCF3 5.0%
3-H2HB-OCF3 5.0%
V-HHB (F) -F 5.0%
3-HHB (F) -F 4.0%
5-HHB (F) -F 4.0%
3-HBEB (F, F) -F 5.0%
NI = 70.5 (° C)
η = 25.4 (mPa · s)
Δn = 0.09
Δε = 8.9
Vth = 1.64 (V)
[0195]
Example 37
3-HH2ZB (F) -OCF3 (No. 36) 5.0%
5-HH2ZB (F) -OCF3 (No. 37) 4.0%
3-H2ZB (F, F) -C (No. 10) 6.0%
5-H2ZB (F, F) -C (No.11) 6.0%
5-HB-CL 5.0%
7-HB (F, F) -F 3.0%
3-HH-4 10.0%
3-HH-5 5.0%
3-HB-O2 15.0%
3-H2HB (F, F) -F 5.0%
4-H2HB (F, F) -F 5.0%
3-HHB (F, F) -F 6.0%
2-HHB (F) -F 4.0%
3-HHB (F) -F 4.0%
5-HHB (F) -F 4.0%
3-HHB-1 8.0%
3-HHB-O1 5.0%
NI = 71.6 (° C.)
η = 19.3 (mPa · s)
Δn = 0.074
Δε = 6.7
Vth = 1.75 (V)
[0196]
Example 38
5-HH2ZB (F, F) -F (No. 40) 4.0%
5-H2ZB (F, F) -F (No.5) 3.0%
5-H2ZB (F) -OCF3 (No. 7) 4.0%
3-HH2ZB (F) -OCF3 (No. 36) 3.0%
5-HH2ZB (F) -OCF3 (No. 37) 3.0%
5-HB-CL 4.0%
4-HHB (F) -F 10.0%
5-HHB (F) -F 9.0%
7-HHB (F) -F 9.0%
3-HHB (F, F) -F 8.0%
4-HHB (F, F) -F 3.0%
3-H2HB (F, F) -F 12.0%
3-HBB (F, F) -F 13.0%
2-HHBB (F, F) -F 6.0%
3-GHB (F, F) -F 3.0%
4-GHB (F, F) -F 3.0%
5-GHB (F, F) -F 3.0%
NI = 79.9 (° C.)
η = 26.6 (mPa · s)
Δn = 0.082
Δε = 8.0
Vth = 1.65 (V)
[0197]
Example 39
3-HH2ZB (F, F) -F (No. 39) 5.0%
5-H2ZB (F, F) B (F) -F (No.100) 3.0%
3-H2ZB (F) B (F, F) -F (No. 101) 3.0%
3-H2ZB (F, F) -C (No.10) 5.0%
2-HHB (F) -F 7.0%
3-HHB (F) -F 8.0%
5-HHB (F) -F 7.0%
3-HHB (F, F) -F 8.0%
3-HBB (F, F) -F 11.0%
3-H2HB (F, F) -F 10.0%
3-HHEB (F, F) -F 10.0%
4-HHEB (F, F) -F 3.0%
2-HBEB (F, F) -F 2.0%
3-HBEB (F, F) -F 3.0%
3-GHB (F, F) -F 3.0%
4-GHB (F, F) -F 4.0%
5-GHB (F, F) -F 4.0%
3-HHBB (F, F) -F 4.0%
NI = 79.4 (° C.)
η = 35.5 (mPa · s)
Δn = 0.089
Δε = 11.8
Vth = 1.40 (V)
[0198]
Example 40
3-H2ZB (F) -OCF3 (No.6) 4.0%
3-H2ZB (F, F) B (F) -F (No. 99) 4.0%
7-HB (F) -F 3.0%
5-HB-CL 3.0%
3-HH-4 9.0%
3-HH-EMe 23.0%
3-HHEB (F, F) -F 10.0%
4-HHEB (F, F) -F 5.0%
3-HHEB-F 8.0%
5-HHEB-F 8.0%
4-HGB (F, F) -F 5.0%
5-HGB (F, F) -F 6.0%
2-H2GB (F, F) -F 4.0%
3-H2GB (F, F) -F 5.0%
5-GHB (F, F) -F 3.0%
NI = 79.1 (° C.)
η = 19.5 (mPa · s)
Δn = 0.065
Δε = 5.8
Vth = 1.79 (V)
[0199]
Example 41
3-H2ZB (F, F) B (F) -F (No. 99) 4.0%
5-H2ZB (F, F) B (F) -F (No.100) 5.0%
3-H2ZB (F) B (F, F) -F (No. 101) 7.0%
5-H2ZB (F) B (F, F) -F (No.102) 8.0%
3-H2HB (F, F) -F 5.0%
5-H2HB (F, F) -F 5.0%
3-HBB (F, F) -F 20.0%
5-HBB (F, F) -F 16.0%
5-HBB (F) B-2 10.0%
5-HBB (F) B-3 10.0%
3-BB (F) B (F, F) -F 5.0%
5-B2B (F, F) B (F) -F 5.0%
NI = 100.8 (° C)
η = 53.6 (mPa · s)
Δn = 0.149
Δε = 11.8
Vth = 1.50 (V)
[0200]
Example 42
3-HH2ZB (F, F) -F (No. 39) 4.0%
3-H2ZB (F, F) -F (No.4) 4.0%
3-H2ZB (F) -OCF3 (No.6) 4.0%
5-H2ZB (F) -OCF3 (No. 7) 3.0%
3-HH2ZB (F) -OCF3 (No. 36) 3.0%
5-H2ZB (F) B (F, F) -F (No.102) 3.0%
3-HB (F, F) ZB (F, F) -F 5.0%
5-HB (F, F) ZB (F, F) -F 5.0%
5-HB-CL 3.0%
3-HH-4 14.0%
2-HH-5 4.0%
3-HHB-1 4.0%
3-HHEB-F 6.0%
5-HHEB-F 6.0%
3-HHB (F, F) -F 6.0%
4-HHB (F, F) -F 3.0%
3-HHEB (F, F) -F 3.0%
4-HHEB (F, F) -F 3.0%
5-HHEB (F, F) -F 2.0%
2-HBEB (F, F) -F 3.0%
3-HBEB (F, F) -F 3.0%
5-HBEB (F, F) -F 3.0%
2-HHBB (F, F) -F 3.0%
3-HHBB (F, F) -F 3.0%
NI = 79.0 (° C.)
η = 18.6 (mPa · s)
Δn = 0.072
Δε = 7.6
Vth = 1.69 (V)
[0201]
Example 43
3-HH2ZB (F, F) -F (No. 39) 3.0%
5-HH2ZB (F, F) -F (No. 40) 3.0%
3-H2ZB (F, F) -F (No.4) 4.0%
5-H2ZB (F, F) -F (No.5) 3.0%
3-H2ZB (F) -OCF3 (No.6) 4.0%
5-H2ZB (F) -OCF3 (No. 7) 3.0%
3-HH2ZB (F) -OCF3 (No. 36) 3.0%
5-HH2ZB (F) -OCF3 (No. 37) 3.0%
3-H2ZB (F, F) B (F) -F (No. 99) 3.0%
5-H2ZB (F, F) B (F) -F (No.100) 2.0%
3-H2ZB (F) B (F, F) -F (No. 101) 4.0%
5-H2ZB (F) B (F, F) -F (No.102) 3.0%
3-BB (F, F) ZB (F, F) -F 10.0%
3-HH-4 8.0%
3-HHB (F, F) -F 6.0%
3-H2HB (F, F) -F 9.0%
3-HBB (F, F) -F 6.0%
2-HHBB (F, F) -F 3.0%
3-HHBB (F, F) -F 3.0%
3-HH2BB (F, F) -F 4.0%
3-HHB-1 6.0%
5-HBBH-1O1 7.0%
NI = 83.2 (° C.)
η = 24.1 (mPa · s)
Δn = 0.095
Δε = 9.3
Vth = 1.59 (V)
[0202]
Example 44
5-H2ZB (2F, 3F) -O2 (No.14) 11.0%
3-H2ZB (2F, 3F) B (2F, 3F) -O2 (No. 106) 11.0%
5-H2ZBB (F, F) B-2 (No. 182) 6.0%
5-H2ZBB (F, F) BF (No. 184) 6.0%
3-HEB-O4 17.0%
4-HEB-O2 15.0%
5-HEB-O1 14.0%
3-HEB-O2 12.0%
5-HEB-O2 8.0%
[0203]
Example 45
3-H2ZB (2F, 3F) -O2 (No.13) 7.0%
3-HH2ZB (2F, 3F) -O2 (No. 46) 6.0%
5-HH2ZB (2F, 3F) -O2 (No. 47) 7.0%
3-H2ZB (2F, 3F) B (2F, 3F) -O2 (No. 106) 10.0%
3-HH-2 5.0%
3-HH-4 6.0%
3-HH-O1 4.0%
3-HH-O3 5.0%
5-HH-O1 4.0%
3-HB (2F, 3F) -O2 8.0%
5-HB (2F, 3F) -O2 8.0%
3-HHB (2F, 3F) -O2 8.0%
5-HHB (2F, 3F) -O2 8.0%
3-HHB (2F, 3F) -2 14.0%
NI = 89.2 (° C.)
Δn = 0.085
Δε = −3.7
[0204]
Example 46
5-H2ZB (2F, 3F) -O2 (No.14) 5.0%
3-HH2ZB (2F, 3F) -O2 (No. 46) 6.0%
3-HH-5 5.0%
3-HH-4 5.0%
3-HH-O1 6.0%
3-HH-O3 6.0%
3-HB-O1 5.0%
3-HB-O2 5.0%
3-HB (2F, 3F) -O2 8.0%
5-HB (2F, 3F) -O2 7.0%
3-HHB (2F, 3F) -O2 9.0%
5-HHB (2F, 3F) -O2 10.0%
3-HHB (2F, 3F) -2 4.0%
2-HHB (2F, 3F) -1 4.0%
3-HHEH-3 5.0%
3-HHEH-5 5.0%
4-HHEH-3 5.0%
NI = 87.4 (° C.)
Δn = 0.080
Δε = −3.1
[0205]
Example 47
5-H2ZB (2F, 3F) -O2 (No.14) 3.0%
5-HH2ZB (2F, 3F) -O2 (No. 47) 6.0%
3-BB (2F, 3F) -O2 9.0%
3-BB (2F, 3F) -O4 10.0%
5-BB (2F, 3F) -O4 10.0%
2-BB (2F, 3F) B-3 19.0%
3-BB (2F, 3F) B-5 13.0%
5-BB (2F, 3F) B-5 14.0%
5-BB (2F, 3F) B-7 16.0%
NI = 78.9 (° C.)
Δn = 0.195
Δε = −3.5
[0206]
Example 48
3-H2ZB (2F, 3F) -O2 (No.13) 3.0%
3-H2ZB (2F, 3F) B (2F, 3F) -O2 (No. 106) 4.0%
3-HB-O1 15.0%
3-HB-O2 6.0%
3-HEB (2F, 3F) -O2 8.0%
4-HEB (2F, 3F) -O2 8.0%
5-HEB (2F, 3F) -O2 8.0%
2-BB2B-O2 6.0%
3-BB2B-O2 6.0%
5-BB2B-O1 6.0%
5-BB2B-O2 6.0%
1-B2BB (2F) -5 7.0%
3-B2BB (2F) -5 7.0%
5-B (F) BB-O2 7.0%
3-BB (2F, 3F) B-3 3.0%
NI = 79.3 (° C.)
η = 23.4 (mPa · s)
Δn = 0.161
[0207]
Example 49
3-H2ZB (2F, 3F) -O2 (No.13) 11.0%
5-HH2ZB (2F, 3F) -O2 (No. 47) 6.0%
3-H2ZB (2F, 3F) B (2F, 3F) -O2 (No. 106) 3.0%
3-HH-O1 8.0%
5-HH-O1 4.0%
3-HH-4 5.0%
3-HB (2F, 3F) -O2 10.0%
5-HB (2F, 3F) -O2 16.0%
2-HHB (2F, 3F) -1 4.0%
3-HHB (2F, 3F) -1 5.0%
3-HHB (2F, 3F) -02 14.0%
5-HHB (2F, 3F) -O2 14.0%
NI = 65.0 (° C.)
η = 24.9 (mPa · s)
Δn = 0.080
Δε = −3.9
[0208]
Example 50
3-HH2ZB (2F, 3F) -O2 (No. 46) 9.0%
5-HH2ZB (2F, 3F) -O2 (No. 47) 9.0%
3-H2ZB (2F, 3F) B (2F, 3F) -O2 (No. 106) 14.0%
3-HB-O1 15.0%
3-HH-4 5.0%
3-HB (2F, 3F) -O2 12.0%
5-HB (2F, 3F) -O2 12.0%
2-HHB (2F, 3F) -1 5.0%
3-HHB (2F, 3F) -1 5.0%
3-HHB (2F, 3F) -O2 4.0%
5-HHB (2F, 3F) -O2 4.0%
3-HHB-1 6.0%
NI = 87.5 (° C.)
η = 41.7 (mPa · s)
Δn = 0.095
Δε = −3.2
[0209]
Example 51
3-H2ZB (2F, 3F) -O2 (No.13) 6.0%
5-H2ZB (2F, 3F) -O2 (No.14) 6.0%
3-HH2ZB (2F, 3F) -O2 (No. 46) 7.0%
5-HH2ZB (2F, 3F) -O2 (No. 47) 7.0%
3-H2ZB (2F, 3F) B (2F, 3F) -O2 (No. 106) 10.0%
3-HB-O1 15.0%
3-HH-4 5.0%
3-HB (2F, 3F) -O2 6.0%
5-HB (2F, 3F) -O2 6.0%
2-HHB (2F, 3F) -1 7.0%
3-HHB (2F, 3F) -1 7.0%
3-HHB (2F, 3F) -O2 6.0%
5-HHB (2F, 3F) -O2 6.0%
6-HEB (2F, 3F) -O2 6.0%
NI = 85.9 (° C.)
η = 39.3 (mPa · s)
Δn = 0.09
Δε = −3.3
[0210]
Example 52
3-H2ZB (2F, 3F) -O2 (No.13) 5.0%
3-HH2ZB (2F, 3F) -O2 (No. 46) 3.0%
5-HH2ZB (2F, 3F) -O2 (No. 47) 3.0%
3-HB-O2 20.0%
1O1-HH-3 6.0%
1O1-HH-5 5.0%
3-HH-EMe 7.0%
4-HEB-O1 9.0%
4-HEB-O2 7.0%
5-HEB-O1 8.0%
3-HHB-1 3.0%
3-HHB-3 3.0%
4-HEB (2CN, 3CN) -O4 3.0%
6-HEB (2CN, 3CN) -O4 3.0%
3-HEB (2CN, 3CN) -O5 4.0%
4-HEB (2CN, 3CN) -O5 3.0%
5-HEB (2CN, 3CN) -O5 2.0%
2-HBEB (2CN, 3CN) -O2 2.0%
4-HBEB (2CN, 3CN) -O4 4.0%
NI = 62.3 (° C.)
η = 41.1 (mPa · s)
Δn = 0.076
Δε = −6.0
[0211]
Example 53
3-HH2ZB (2F, 3F) -O2 (No. 46) 4.0%
2O-B (2F, 3F) 2ZBH-3 (No. 201) 4.0%
3-HEB-O4 28.0%
4-HEB-O2 20.0%
5-HEB-O1 20.0%
3-HEB-O2 18.0%
5-HEB-O2 10.0%
NI = 76.2 (° C.)
η = 22.0 (mPa · s)
Δn = 0.089
[0212]
Example 54
2O-B (2F, 3F) 2ZBH-3 (No. 201) 14.0%
3-HH-2 5.0%
3-HH-4 6.0%
3-HH-O1 4.0%
3-HH-O3 5.0%
5-HH-O1 4.0%
3-HB (2F, 3F) -O2 12.0%
5-HB (2F, 3F) -O2 11.0%
5-HHB (2F, 3F) -O2 15.0%
3-HHB (2F, 3F) -2 24.0%
NI = 78.6 (° C.)
Δn = 0.080
Δε = −3.9
[0213]
【The invention's effect】
The present invention provides a liquid crystalline compound that is excellent in compatibility with other liquid crystalline compounds, has low viscosity, and has a low threshold voltage.
In addition, the present invention provides a new feature having the characteristics of the above-described embodiment having desired physical properties by appropriately selecting a ring, a substituent, a linking group and the like constituting the compound from the liquid crystal compound as a component. A liquid crystal composition is provided, and further a liquid crystal display device using the liquid crystal composition is provided.

Claims (21)

式(1)
Figure 0003800051
(式中、R1およびR2は各々独立して水素、ハロゲン、シアノ基または炭素数1〜20のアルキル基であり、該アルキル基中の1つ以上の−CH2−は−CH=CH−、−C≡C−、−O−または−S−で置換されていても良いが−O−が連続することはなく、また該基中の1つ以上の水素はハロゲンで置換されていても良く;
環A1〜環A5は各々独立して、隣り合わない1つ以上の−CH2−が−O−または−S−で置換されていても良い1,4−シクロヘキシレン基、1,4−シクロヘキセニレン基、あるいは1つ以上の=CH−が=N−で置換されていても良く、また環上の水素がハロゲンで置換されていても良い1,4−フェニレン基であり;
1〜Z4は各々独立して単結合、−CH2CH2−、−CH2O−、−OCH2−、−COO−、−OCO−、−CH=CH−、−C≡C−、−CF2O−、または−OCF2−であり;
1、Y2、Y3およびY4は各々独立して水素またはフッ素であり;
k、l、mおよびnは各々独立して0または1である)で表される液晶性化合物。
Formula (1)
Figure 0003800051
Wherein R 1 and R 2 are each independently hydrogen, halogen, cyano group or an alkyl group having 1 to 20 carbon atoms, and one or more —CH 2 — in the alkyl group is —CH═CH -, -C≡C-, -O- or -S- may be substituted, but -O- is not continuous, and one or more hydrogens in the group are substituted by halogen. Well;
Ring A 1 to Ring A 5 are each independently a 1,4-cyclohexylene group in which one or more non-adjacent —CH 2 — may be substituted with —O— or —S—. A cyclohexenylene group, or one or more ═CH— in which one or more ═CH— may be substituted with ═N—, and hydrogen on the ring may be substituted with halogen;
Z 1 to Z 4 are each independently a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CH═CH—, —C≡C—. , -CF 2 O-, or -OCF 2- ;
Y 1 , Y 2 , Y 3 and Y 4 are each independently hydrogen or fluorine;
k, l, m and n are each independently 0 or 1).
式(1−1)〜(1−6)
Figure 0003800051
(式中R1、R2、環A1〜A5、Z1〜Z4およびY1〜Y4は前記と同一の意味を表す)で表される請求項1記載の液晶性化合物。
Formulas (1-1) to (1-6)
Figure 0003800051
The liquid crystalline compound according to claim 1, wherein R 1 , R 2 , rings A 1 to A 5 , Z 1 to Z 4 and Y 1 to Y 4 represent the same meaning as described above.
式(1)において環A3が1,4−シクロヘキシレン基である請求項1記載の液晶性化合物。The liquid crystal compound according to claim 1, wherein in formula (1), ring A 3 is a 1,4-cyclohexylene group. 式(1)においてY1とY3が共にフッ素、Y2とY4が共に水素原子である請求項1記載の液晶性化合物。The liquid crystal compound according to claim 1, wherein in formula (1), Y 1 and Y 3 are both fluorine and Y 2 and Y 4 are both hydrogen atoms. 式(1)においてY1とY2が共に水素である請求項1記載の液晶性化合物。The liquid crystal compound according to claim 1 , wherein Y 1 and Y 2 in formula (1) are both hydrogen. 式(1−1)において環A3が1,4−シクロヘキシレン基、Y1とY3が共にフッ素、Y2とY4が共に水素である請求項2記載の液晶性化合物。The liquid crystal compound according to claim 2, wherein in formula (1-1), ring A 3 is a 1,4-cyclohexylene group, Y 1 and Y 3 are both fluorine, and Y 2 and Y 4 are both hydrogen. 式(1−1)において環A3が1,4−シクロヘキシレン基、Y1とY2が共に水素である請求項2記載の液晶性化合物。The liquid crystal compound according to claim 2, wherein in formula (1-1), ring A 3 is a 1,4-cyclohexylene group, and Y 1 and Y 2 are both hydrogen. 式(1−2)において環A2および環A3が共に1,4−シクロヘキシレン基、Y1とY3が共にフッ素、Y2とY4が共に水素である請求項2記載の液晶性化合物。 3. The liquid crystal according to claim 2, wherein in formula (1-2), ring A 2 and ring A 3 are both 1,4-cyclohexylene groups, Y 1 and Y 3 are both fluorine, and Y 2 and Y 4 are both hydrogen. Compound. 式(1−2)において環A2および環A3が共に1,4−シクロヘキシレン基、Y1とY2が共に水素である請求項2記載の液晶性化合物。The liquid crystal compound according to claim 2 , wherein in formula (1-2), both ring A 2 and ring A 3 are 1,4-cyclohexylene groups, and both Y 1 and Y 2 are hydrogen. 式(1−3)において環A3が2,3−ジフルオロ−1,4−フェニレン基である請求項2記載の液晶性化合物。The liquid crystal compound according to claim 2, wherein in formula (1-3), ring A 3 is a 2,3-difluoro-1,4-phenylene group. 請求項1〜10のいずれか1項に記載の化合物を少なくとも1種類含有する液晶組成物。  A liquid crystal composition containing at least one kind of the compound according to claim 1. 第一成分として、請求項1〜10のいずれか1項に記載の化合物を少なくとも1種類含有し、第二成分として、式(2)、(3)および(4)
Figure 0003800051
(式中、R3は炭素数1〜10のアルキル基であり、この基中の相隣接しない任意の−CH2−は−O−または−CH=CH−で置換されてもよく、また、この基中の任意の水素はフッ素で置換されてもよく;X1はフッ素、塩素、−OCF3、−OCF2H、−CF3、−CF2H、−CFH2、−OCF2CF2Hまたは−OCF2CFHCF3であり;L1およびL2は各々独立して水素またはフッ素であり;Z5およびZ6は各々独立して−(CH2)2−、−(CH2)4−、−COO−、−CF2O−、−OCF2-、−CH=CH−または単結合であり;環Aおよび環Bはそれぞれ独立して1,4−シクロヘキシレン、1,3−ジオキサン−2,5−ジイル、または水素がフッ素で置換されていても良い1,4−フェニレンであり、環Cは1,4−シクロヘキシレンまたは水素がフッ素で置換されてもよい1,4−フェニレンである)からなる化合物群から選択される化合物を少なくとも1種含有する液晶組成物。
As a 1st component, at least 1 type of the compound of any one of Claims 1-10 is contained, and as a 2nd component, Formula (2), (3) and (4)
Figure 0003800051
(Wherein R 3 is an alkyl group having 1 to 10 carbon atoms, and any —CH 2 — that is not adjacent to each other in this group may be substituted with —O— or —CH═CH—, Any hydrogen in this group may be substituted with fluorine; X 1 is fluorine, chlorine, —OCF 3 , —OCF 2 H, —CF 3 , —CF 2 H, —CFH 2 , —OCF 2 CF 2. H or —OCF 2 CFHCF 3 ; L 1 and L 2 are each independently hydrogen or fluorine; Z 5 and Z 6 are each independently — (CH 2 ) 2 —, — (CH 2 ) 4. -, - COO -, - CF 2 O -, - OCF 2 -, - CH = CH- or a single bond; ring A and ring B are independently 1,4-cyclohexylene, 1,3-dioxane -2,5-diyl, or 1,4-phenylene in which hydrogen is optionally substituted by fluorine, and ring C is 1, A liquid crystal composition containing at least one compound selected from the group consisting of 4-cyclohexylene or 1,4-phenylene in which hydrogen is optionally substituted with fluorine.
第一成分として、請求項1〜10のいずれか1項に記載の化合物を少なくとも1種含有し、第二成分として、式(5)および(6)からなる化合物群から選択される化合物を少なくとも1種含有する液晶組成物。
Figure 0003800051
(式中、R4およびR5は各々独立して炭素数1〜10のアルキル基であり、この基中の相隣接しない任意の−CH2−は−O−または−CH=CH−で置換されてもよく、また、この基中の任意の水素はフッ素で置換されてもよく;X2は−CNまたは−C≡C−CNであり;環Dは1,4−シクロヘキシレン、1,4−フェニレン、1,3−ジオキサン−2,5−ジイルまたはピリミジン−2,5−ジイルであり;環Eは1,4−シクロヘキシレン、水素がフッ素で置換されてもよい1,4−フェニレン、またはピリミジン−2,5−ジイルであり;環Fは1,4−シクロヘキシレンまたは1,4−フェニレンであり;Z7は−(CH2)2−、−COO−、−CF2O−、−OCF2−または単結合であり;L3、L4およびL5は各々独立して水素またはフッ素であり;b、cおよびdは各々独立して0または1である)
As a 1st component, at least 1 type of the compound of any one of Claims 1-10 is contained, and the compound selected from the compound group which consists of Formula (5) and (6) as a 2nd component at least A liquid crystal composition containing one kind.
Figure 0003800051
(In the formula, R 4 and R 5 are each independently an alkyl group having 1 to 10 carbon atoms, and any non-adjacent —CH 2 — in this group is substituted with —O— or —CH═CH—. And any hydrogen in the group may be substituted with fluorine; X 2 is —CN or —C≡C—CN; Ring D is 1,4-cyclohexylene, 4-phenylene, 1,3-dioxane-2,5-diyl or pyrimidine-2,5-diyl; ring E is 1,4-cyclohexylene, hydrogen may be substituted with fluorine Or ring F is 1,4-cyclohexylene or 1,4-phenylene; Z 7 is — (CH 2 ) 2 —, —COO—, —CF 2 O—, or pyrimidine-2,5-diyl; , -OCF 2 - or a single bond; L 3, L 4 and L 5 hydrogen or each independently Be Tsu containing; b, c and d are 0 or 1 each independently)
第一成分として、請求項1〜10のいずれか1項に記載の化合物を少なくとも1種含有し、第二成分として、式(7)、(8)および(9)からなる化合物群から選択される化合物を少なくとも1種含有する液晶組成物。
Figure 0003800051
(式中、R6およびR7は各々独立して炭素数1〜10のアルキル基であり、この基中の相隣接しない任意の−CH2−は−O−または−CH=CH−で置換されてもよく、また、この基中の任意の水素はフッ素で置換されてもよく;環Gおよび環Iは各々独立して、1,4−シクロヘキシレンまたは1,4−フェニレンであり;L6およびL7は各々独立して水素またはフッ素であるがL6およびL7が同時に水素であることはなく;Z8およびZ9は各々独立して−(CH2)2−、−COO−または単結合である。)
The first component contains at least one compound according to any one of claims 1 to 10, and the second component is selected from the compound group consisting of formulas (7), (8) and (9). A liquid crystal composition containing at least one compound.
Figure 0003800051
Wherein R 6 and R 7 are each independently an alkyl group having 1 to 10 carbon atoms, and any —CH 2 — that is not adjacent to each other in this group is substituted with —O— or —CH═CH—. And any hydrogen in this group may be substituted with fluorine; Ring G and Ring I are each independently 1,4-cyclohexylene or 1,4-phenylene; L 6 and L 7 are each independently hydrogen or fluorine, but L 6 and L 7 are not simultaneously hydrogen; Z 8 and Z 9 are each independently — (CH 2 ) 2 —, —COO— Or a single bond.)
第一成分として、請求項1〜10のいずれか1項に記載の化合物を少なくとも1種含有し、第二成分として、前記式(2)、(3)および(4)からなる化合物群から選択される化合物を少なくとも1種含有し、第三成分として、式(10)、(11)および(12)からなる化合物群から選択される化合物を少なくとも1種含有する液晶組成物。
Figure 0003800051
(式中、R8およびR9は各々独立して炭素数1〜10のアルキル基であり、この基中の相隣接しない任意の−CH2−は−O−または−CH=CH−で置換されてもよく、また、この基中の任意の水素はフッ素で置換されてもよく;環J、環Kおよび環Mは各々独立して、1,4−シクロヘキシレン、ピリミジン−2,5−ジイル、または水素がフッ素で置換されてもよい1,4−フェニレンであり;Z10およびZ11は各々独立して、−C≡C−、−COO−、−(CH2)2−、−CH=CH−または単結合である。)
As a first component, at least one compound according to any one of claims 1 to 10 is contained, and as a second component, selected from the compound group consisting of the formulas (2), (3) and (4) A liquid crystal composition containing at least one compound selected from the group consisting of formulas (10), (11) and (12) as a third component.
Figure 0003800051
(In the formula, R 8 and R 9 are each independently an alkyl group having 1 to 10 carbon atoms, and any non-adjacent —CH 2 — in this group is substituted with —O— or —CH═CH—. And any hydrogen in this group may be substituted with fluorine; ring J, ring K and ring M are each independently 1,4-cyclohexylene, pyrimidine-2,5- Diyl, or 1,4-phenylene in which hydrogen may be substituted with fluorine; Z 10 and Z 11 are each independently —C≡C—, —COO—, — (CH 2 ) 2 —, — CH = CH- or a single bond.)
第一成分として、請求項1〜10のいずれか1項に記載の化合物を少なくとも1種含有し、第二成分として、前記式(5)および(6)からなる化合物群から選択される化合物を少なくとも1種含有し、第三成分として、前記式(10)、(11)および(12)からなる化合物群から選択される化合物を少なくとも1種含有する液晶組成物。  A compound selected from the group consisting of the above formulas (5) and (6) as a second component contains at least one compound according to any one of claims 1 to 10 as a first component. A liquid crystal composition containing at least one compound and containing at least one compound selected from the compound group consisting of the formulas (10), (11) and (12) as a third component. 第一成分として、請求項1〜10のいずれか1項に記載の化合物を少なくとも1種含有し、第二成分として、前記式(7)、(8)および(9)からなる化合物群から選択される化合物を少なくとも1種含有し、第三成分として、前記式(10)、(11)および(12)からなる化合物群から選択される化合物少なくとも1種含有する液晶組成物。  It contains at least one compound according to any one of claims 1 to 10 as the first component, and is selected from the compound group consisting of the formulas (7), (8) and (9) as the second component. A liquid crystal composition containing at least one compound selected from the group consisting of the compounds of formulas (10), (11) and (12) as a third component. 第一成分として、請求項1〜10のいずれか1項に記載の化合物を少なくとも1種含有し、第二成分として、前記式(2)、(3)および(4)からなる化合物群から選択される化合物を少なくとも1種含有し、第三成分として、前記式(5)および(6)からなる化合物群から選択される化合物を少なくとも1種含有し、第四成分として、前記式(10)、(11)および(12)からなる化合物群から選択される化合物を少なくとも1種含有する液晶組成物。  As a first component, at least one compound according to any one of claims 1 to 10 is contained, and as a second component, selected from the compound group consisting of the formulas (2), (3) and (4) At least one compound selected from the group consisting of the compounds of formulas (5) and (6) as the third component, and the fourth component as formula (10). A liquid crystal composition containing at least one compound selected from the group consisting of (11) and (12). 請求項11〜18のいずれか1項に記載の液晶組成物に、さらに1種以上の光学活性化合物を含有する液晶組成物。  A liquid crystal composition further comprising at least one optically active compound in the liquid crystal composition according to claim 11. 請求項11〜19のいずれか1項に記載の液晶組成物を用いた液晶表示素子。  The liquid crystal display element using the liquid-crystal composition of any one of Claims 11-19. 請求項1に記載の化合物の合成中間体である下記式で表される化合物。A compound represented by the following formula, which is a synthetic intermediate of the compound according to claim 1.
Figure 0003800051
Figure 0003800051
JP2001243568A 2000-08-10 2001-08-10 Liquid crystalline compound, liquid crystal composition and liquid crystal display element having difluoropropyleneoxy group as bonding group Expired - Fee Related JP3800051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001243568A JP3800051B2 (en) 2000-08-10 2001-08-10 Liquid crystalline compound, liquid crystal composition and liquid crystal display element having difluoropropyleneoxy group as bonding group

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000241998 2000-08-10
JP2000-241998 2000-08-10
JP2001119215 2001-04-18
JP2001-119215 2001-04-18
JP2001243568A JP3800051B2 (en) 2000-08-10 2001-08-10 Liquid crystalline compound, liquid crystal composition and liquid crystal display element having difluoropropyleneoxy group as bonding group

Publications (2)

Publication Number Publication Date
JP2003002858A JP2003002858A (en) 2003-01-08
JP3800051B2 true JP3800051B2 (en) 2006-07-19

Family

ID=27344313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001243568A Expired - Fee Related JP3800051B2 (en) 2000-08-10 2001-08-10 Liquid crystalline compound, liquid crystal composition and liquid crystal display element having difluoropropyleneoxy group as bonding group

Country Status (1)

Country Link
JP (1) JP3800051B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595293B2 (en) * 2002-06-07 2010-12-08 チッソ株式会社 Propionate derivative, liquid crystal composition containing the derivative, and liquid crystal display device containing the liquid crystal composition
JP4835021B2 (en) * 2004-04-09 2011-12-14 Jnc株式会社 Liquid crystal composition and liquid crystal display element
JP2005298733A (en) 2004-04-14 2005-10-27 Chisso Corp Liquid crystal composition and liquid crystal display element
JP4857552B2 (en) * 2004-12-06 2012-01-18 Jnc株式会社 Liquid crystal composition and liquid crystal display element
JP5391528B2 (en) * 2006-06-29 2014-01-15 Jnc株式会社 Liquid crystal composition and liquid crystal display element
JP5608560B2 (en) * 2008-10-30 2014-10-15 Agcセイミケミカル株式会社 Liquid crystal compound and method for producing the same, liquid crystal composition, and liquid crystal electro-optical element
DE102008064171A1 (en) * 2008-12-22 2010-07-01 Merck Patent Gmbh Liquid crystalline medium
JP5126128B2 (en) * 2009-03-17 2013-01-23 Jnc株式会社 Method for producing liquid crystal compound having difluoromethyleneoxy group
EP2617701B1 (en) * 2010-08-11 2016-07-27 JNC Corporation Compound having propyl ether as bonding group, liquid crystal composition, and liquid crystal display element
JP6006217B2 (en) * 2011-08-29 2016-10-12 Agcセイミケミカル株式会社 Liquid crystal compound and method for producing the same, liquid crystal composition, and liquid crystal electro-optical element
JPWO2014157551A1 (en) * 2013-03-29 2017-02-16 Agcセイミケミカル株式会社 Compound, method for producing the same, liquid crystal composition, and liquid crystal electro-optical element
JP6555144B2 (en) * 2016-02-01 2019-08-07 Jnc株式会社 Liquid crystal compound, liquid crystal composition, and liquid crystal display device

Also Published As

Publication number Publication date
JP2003002858A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
JP3287288B2 (en) Polyhaloalkyl ether derivatives, liquid crystal compositions containing them and liquid crystal display devices
JP4333032B2 (en) 2,3-difluorophenyl derivative having negative dielectric anisotropy, liquid crystal composition, and liquid crystal display device
JP3646671B2 (en) Liquid crystal compound, liquid crystal composition containing the liquid crystal compound, and liquid crystal display device using the liquid crystal composition
JP4742207B2 (en) 2,3-difluorophenyl derivative having negative dielectric anisotropy, liquid crystal composition, and liquid crystal display device
JP4244556B2 (en) Liquid crystalline compound having bis (trifluoromethyl) phenyl ring, liquid crystal composition and liquid crystal display device
JP5880832B2 (en) Liquid crystal compound, liquid crystal composition, and liquid crystal display device
JPH10251186A (en) Halogen-substituted benzene derivative, liquid crystal composition and liquid crystal element
JP4972826B2 (en) Difluoroalkoxy-terminated compound, liquid crystal composition, and liquid crystal display device
JP4186493B2 (en) Liquid crystalline compound having naphthalene ring, liquid crystal composition and liquid crystal display element
JP4654474B2 (en) Liquid crystalline compound having branched methyl group, liquid crystal composition and liquid crystal display device
JP3800051B2 (en) Liquid crystalline compound, liquid crystal composition and liquid crystal display element having difluoropropyleneoxy group as bonding group
JP2001302568A (en) Cyclohexane derivative, liquid crystal composition containing the same and liquid crystal display element
JP2002020344A (en) Difluorovinyl compound, liquid crystal composition and liquid crystal display element
EP1179522B1 (en) Liquid crystalline compound having a difluoropropyleneoxy group as bonding group, liquid crystal composition and liquid crystal display element
JP4492206B2 (en) Compound having perfluoropropenyl, liquid crystal composition, and liquid crystal display device
JP4513351B2 (en) Liquid crystal compound having fluorinated alkyl group as bonding group, liquid crystal composition, and liquid crystal display device
JP4311055B2 (en) Liquid crystalline compound in which one of terminal groups is hydrogen, composition thereof, and liquid crystal display device containing the same
KR100982763B1 (en) Liquid crystal compound having hydrogen as a terminal group, composition comprising the compound, and liquid crystal display element comprising the composition
JP4144237B2 (en) Liquid crystal compound, liquid crystal composition, and liquid crystal display device
JP4660916B2 (en) Liquid crystal compound having a piperidine ring, liquid crystal composition, and liquid crystal display device
JP4742210B2 (en) Acid fluoride derivative and liquid crystal composition containing the same
JP4892853B2 (en) Liquid crystal compound having carbonate bond group, liquid crystal composition containing this compound, and liquid crystal display device containing this liquid crystal composition
JPH09323944A (en) Liquid crystal compound containing unsaturated bond in bond group, liquid crystal composition and liquid crystal display element
JP4042423B2 (en) Fluoroazomethine compound, liquid crystal composition, and liquid crystal display device
JP4774950B2 (en) Dihydrocoumarin derivative, liquid crystal composition containing the same, and liquid crystal display device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3800051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees