JP4184724B2 - Heat treatment equipment - Google Patents

Heat treatment equipment Download PDF

Info

Publication number
JP4184724B2
JP4184724B2 JP2002199914A JP2002199914A JP4184724B2 JP 4184724 B2 JP4184724 B2 JP 4184724B2 JP 2002199914 A JP2002199914 A JP 2002199914A JP 2002199914 A JP2002199914 A JP 2002199914A JP 4184724 B2 JP4184724 B2 JP 4184724B2
Authority
JP
Japan
Prior art keywords
heat
heat treatment
heat insulating
thin
insulating plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002199914A
Other languages
Japanese (ja)
Other versions
JP2004047540A (en
Inventor
泰忠 中川
規弘 下井
英明 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Toshiba Corp
Original Assignee
Toshiba Corp
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Covalent Materials Corp filed Critical Toshiba Corp
Priority to JP2002199914A priority Critical patent/JP4184724B2/en
Publication of JP2004047540A publication Critical patent/JP2004047540A/en
Application granted granted Critical
Publication of JP4184724B2 publication Critical patent/JP4184724B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体デバイス等の製造の際に用いられる被処理体に熱処理を加える縦型の熱処理装置に関する。
【0002】
【従来の技術】
半導体デバイスの製造においては、半導体ウエハ(被処理体)に酸化、拡散、CVD、アニール等の処理を施すために、各種の熱処理装置が使用されている。このような熱処理装置の一つとして縦型の熱処理装置が知られている。縦型の熱処理装置は、複数枚のウエハを上下方向に所定間隔で支持したボートを縦型熱処理炉の上部に保温体である断熱構造体を介して載置することで、ウエハを炉内の均熱領域で熱処理するようにしたものである。この縦型の熱処理装置においては、炉内における均一な熱処理を達成するために、炉口及びその周囲からの熱の逃げを如何に防止するかが重要な課題となっている。
【0003】
そこで、炉口の断熱効果を向上させるために、断熱構造体の材質として熱通過を防止する不透明石英製の断熱板により構成した縦型の熱処理装置が提案されている(特開平6−208954号公報参照)。具体的には、断熱構造体は、複数本の支柱と、これら支柱に上下方向に所定の間隔で設けられた複数枚の不透明石英製断熱板とから構成されている。
【0004】
【発明が解決しようとする課題】
上述した熱処理装置にあっては次のような問題があった。すなわち、熱処理装置の保温体においては、等しい厚さの断熱板を等間隔で配置することで伝熱量(熱通過量)を制御している。しかしながら、伝熱量を所定値よりは低減できず、ウエハを熱処理する均熱領域の拡大、すなわちウエハ処理枚数増加には限界があった。
【0005】
そこで、本発明は、均熱領域を拡大し被処理体の処理数を増加するために、伝熱量を低減できる保温体を有する熱処理装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記課題を解決し目的を達成するために、本発明の熱処理装置は次のように構成されている。
【0007】
(1)複数の被処理体に熱処理を施す熱処理装置において、その一端側に開口部を有する熱処理容器と、この熱処理容器内の他端側に配置され、上記被処理体を保持する被処理体保持部と、上記被処理体保持部の少なくとも一端部を保持すると共に熱処理時に上記熱処理容器内を保温する保温体とを備え、上記保温体は、所定の境界位置に対し上記被処理体保持部側に配置され、熱伝導を行うことで熱輻射を抑制する1枚の厚肉断熱板と、上記境界位置に対し上記開口部側に配置され、所定の間隔をもって積層配置された複数枚の薄肉断熱板と、これら厚肉断熱板及び薄肉断熱板を水平に支持する支持体とを備え、上記所定の境界位置は、上記厚肉断熱板及び上記薄肉断熱板の熱伝導率をλ、境界部の温度をT、微小距離の温度差をΔT、設置可能な上記薄肉断熱板の最小間隔をΔZ、ステファンボルツマン係数をσ、形態係数をFA、黒度関係をFEとしたときに、
λΔT/ΔZ=σF (T −(T−ΔT)
が成立する位置であることを特徴とする。
【0009】
)上記(1)に記載された熱処理装置であって、上記薄肉断熱板を薄肉化し、かつ、上記所定の間隔を狭くすることで、薄肉断熱板相互間輻射回数を増加させ、断熱効果を増加させるものであることを特徴とする。
【0010】
【発明の実施の形態】
図1は本発明の第1の実施の形態に係る縦型の熱処理装置10を示す縦断面図である。熱処理装置10は、中空部11aを有するとともに断熱材で形成された炉本体11を備えている。炉本体11の下部には炉口12が設けられている。
【0011】
炉本体11の中空部11aの壁面にはヒータ13が設けられ、さらに炉芯管14が設けられている。また、炉本体11の中空部11aの底部から保温体20が設けられ、さらに保温体20の上部にはウエハWを載置するボート30が設けられている。
【0012】
保温体20は、円筒状に形成された支持材21が設けられている。支持材21の境界位置Pの下方には、炉口側薄肉断熱板22が複数枚配置され、境界位置Pの上方にはボート側厚肉断熱板23が配置されている。なお、保温体20は熱を吸収するための気泡を内部に分散させた不透明石英で形成されている。
【0013】
ここで、熱伝導による伝熱量と輻射による伝熱量との違いについて説明する。すなわち、図2に示すように、熱伝導による伝熱量は、温度差が等しい場合は温度によらず一定となる。一方、輻射による伝熱量は、温度差が等しくとも高温となるほど大きくなる。したがって、熱伝導の方が熱が伝わりにくくなる高温側の領域では、一枚の厚肉断熱板を用い熱伝導による伝熱を行わせることで伝熱量を低減できる。また、輻射の方が熱が伝わりにくくなる低温側の領域では、加工可能な限り多くの薄肉断熱板を配置し、輻射の回数を多くすることで、伝熱量を低減できる。なお、薄肉断熱板の枚数は、薄肉断熱板自体の加工性と、薄肉断熱板相互間の間隙をどの程度まで近付けて配置できるかという支持材21の加工性によって定まる。
【0014】
次に、熱伝導による熱通過量と輻射による熱通過量とが均衡する位置である炉口側薄肉断熱板22及びボート側厚肉断熱板23との境界位置Pの設定方法について説明する。
【0015】
炉口側薄肉断熱板22及びボート側厚肉断熱板23を構成する材料の熱伝導率をλ、温度をT、温度差をΔT、加工可能な最小間隔をΔZ、ステファンボルツマン係数をσ、形態係数をF、黒度関係をFとし、熱伝導による伝熱量を左辺に、輻射による伝熱量を右辺におくと、式(1)に示すようになる。すなわち、
λΔT/ΔZ=σF(T−(T−ΔT)) …(1)
となる。この式(1)に基づいて保温体20における境界位置Pを設定することにより、式(1)が成立するよりも高温領域(ボート30側)では1枚のボート側厚肉断熱板23を、低温領域(炉口12側)では加工可能な限り薄肉とし狭い間隔で配置した炉口側薄肉断熱板22から構成する。
【0016】
ここで実施例として次のような条件を設定する。すなわち、保温体20を全高500mm、径300mmとする。また、保温体20の温度が上部が1200℃、下部が500℃、加工可能な炉口側薄肉断熱板22の最小厚と加工可能な炉口側薄肉断熱板22の最小間隔ΔZを10mmとする。また、炉口側薄肉断熱板22の形状と間隔から計算される形態係数をF、炉口側薄肉断熱板22及びボート側厚肉断熱板23の熱伝導率λを1.6×10−3W/mm℃、黒度関係Fを0.5、ステファンボルツマン係数σを5.6687×10−14W/mmとする。
【0017】
式(1)に基づいて境界位置Pを算出すると、ボート側厚肉断熱板23の厚さを280mmとし、厚さ10mmの炉口側薄肉断熱板22を10mmの間隔で11枚配置した場合が、保温体20を通過する伝熱量が最も少なくなる。なお、図3は、本実施例において式(1)に基づいてボート側厚肉断熱板23の厚さと保温体20を通過する熱流束との関係を示す図である。
【0018】
上述したように、保温体20において伝熱量を最小限に抑えることにより、ウエハWを熱処理する均熱領域の拡大を図ることができ、ウエハ処理枚数を増加させることができる。
【0019】
なお、本発明は前記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変形実施可能であるのは勿論である。
【0020】
【発明の効果】
本発明によれば、均熱領域を拡大し被処理体の処理数を増加するために、伝熱量を低減することが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る縦型の熱処理装置の構成を示す図。
【図2】同熱処理装置におけるボート側厚肉断熱板の厚さと保温体を通過する熱流速との関係を示す図。
【図3】境界位置の温度と輻射による伝熱量と熱伝導による伝熱量との関係を示す図。
【符号の説明】
10…熱処理装置
11…炉本体
12…炉口
20…保温体
21…支持材
22…炉口側薄肉断熱板
23…ボート側厚肉断熱板
30…ボート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vertical heat treatment apparatus for performing heat treatment on an object to be processed used in manufacturing a semiconductor device or the like.
[0002]
[Prior art]
In the manufacture of semiconductor devices, various heat treatment apparatuses are used in order to perform processes such as oxidation, diffusion, CVD, and annealing on a semiconductor wafer (object to be processed). A vertical heat treatment apparatus is known as one of such heat treatment apparatuses. A vertical heat treatment apparatus places a boat that supports a plurality of wafers at predetermined intervals in the vertical direction on a vertical heat treatment furnace via a heat insulation structure that is a heat retaining body, thereby placing the wafers in the furnace. Heat treatment is performed in a soaking region. In this vertical heat treatment apparatus, in order to achieve uniform heat treatment in the furnace, how to prevent the escape of heat from the furnace opening and its surroundings is an important issue.
[0003]
Therefore, in order to improve the heat insulating effect of the furnace port, a vertical heat treatment apparatus composed of an opaque quartz heat insulating plate that prevents heat from passing is proposed as a material of the heat insulating structure (Japanese Patent Laid-Open No. 6-208954). See the official gazette). Specifically, the heat insulating structure includes a plurality of support columns and a plurality of opaque quartz heat insulating plates provided on the support columns at predetermined intervals in the vertical direction.
[0004]
[Problems to be solved by the invention]
The heat treatment apparatus described above has the following problems. That is, in the heat retaining body of the heat treatment apparatus, the heat transfer amount (heat passage amount) is controlled by arranging heat insulating plates of equal thickness at equal intervals. However, the amount of heat transfer cannot be reduced below a predetermined value, and there is a limit to the expansion of the soaking area where the wafer is heat-treated, that is, the number of wafers processed.
[0005]
Therefore, an object of the present invention is to provide a heat treatment apparatus having a heat retaining body capable of reducing the amount of heat transfer in order to expand the soaking area and increase the number of treatments of the object to be treated.
[0006]
[Means for Solving the Problems]
In order to solve the above problems and achieve the object, the heat treatment apparatus of the present invention is configured as follows.
[0007]
(1) In a heat treatment apparatus for performing heat treatment on a plurality of objects to be treated, a heat treatment container having an opening on one end side thereof, and an object to be processed which is disposed on the other end side in the heat treatment container and holds the object to be treated A holding unit and a heat retaining body that retains at least one end of the object holding unit and heat-treats the inside of the heat treatment container during heat treatment, and the heat retaining body is configured to hold the object to be processed with respect to a predetermined boundary position. One thick heat insulating plate that is disposed on the side and suppresses heat radiation by conducting heat conduction, and a plurality of thin walls that are disposed on the opening side with respect to the boundary position, and are laminated at a predetermined interval A heat insulating plate and a support that horizontally supports the thick heat insulating plate and the thin heat insulating plate, and the predetermined boundary position is λ, the thermal conductivity of the thick heat insulating plate and the thin heat insulating plate, and a boundary portion. The temperature of T is T, the temperature difference of minute distance is ΔT, installation When the possible minimum interval of the thin heat insulating plate is ΔZ, the Stefan Boltzmann coefficient is σ, the form factor is FA, and the blackness relationship is FE,
λΔT / ΔZ = σF A F E (T 4 − (T−ΔT) 4 )
Is a position where is established .
[0009]
( 2 ) The heat treatment apparatus described in (1) above, wherein the thin heat insulating plate is thinned and the predetermined interval is narrowed, thereby increasing the number of times of radiation between the thin heat insulating plates, and the heat insulating effect. It is characterized by increasing the value.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a longitudinal sectional view showing a vertical heat treatment apparatus 10 according to a first embodiment of the present invention. The heat treatment apparatus 10 includes a furnace body 11 having a hollow portion 11a and formed of a heat insulating material. A furnace port 12 is provided at the bottom of the furnace body 11.
[0011]
A heater 13 is provided on the wall surface of the hollow portion 11 a of the furnace body 11, and a furnace core tube 14 is further provided. Further, a heat retaining body 20 is provided from the bottom of the hollow portion 11 a of the furnace body 11, and a boat 30 on which the wafer W is placed is provided on the heat retaining body 20.
[0012]
The heat retaining body 20 is provided with a support material 21 formed in a cylindrical shape. Below the boundary position P of the support material 21, a plurality of furnace port side thin heat insulating plates 22 are arranged, and above the boundary position P, a boat side thick heat insulating plate 23 is arranged. The heat retaining body 20 is made of opaque quartz in which bubbles for absorbing heat are dispersed.
[0013]
Here, the difference between the heat transfer amount due to heat conduction and the heat transfer amount due to radiation will be described. That is, as shown in FIG. 2, the amount of heat transfer by heat conduction is constant regardless of the temperature when the temperature difference is equal. On the other hand, the amount of heat transfer due to radiation increases as the temperature rises even if the temperature difference is equal. Therefore, in the region on the high temperature side where heat conduction is more difficult to transfer, the amount of heat transfer can be reduced by performing heat transfer by heat conduction using a single thick heat insulating plate. Further, in the region on the low temperature side where heat is less likely to be transmitted by heat, the amount of heat transfer can be reduced by arranging as many thin heat insulating plates as possible and increasing the number of times of radiation. Note that the number of thin heat insulating plates is determined by the workability of the thin heat insulating plates themselves and the workability of the support material 21 such as how close the gap between the thin heat insulating plates can be arranged.
[0014]
Next, a method of setting the boundary position P between the furnace port side thin heat insulating plate 22 and the boat side thick heat insulating plate 23, which is a position where the heat passing amount due to heat conduction and the heat passing amount due to radiation are balanced, will be described.
[0015]
The thermal conductivity of the material constituting the furnace port side thin heat insulating plate 22 and the boat side thick heat insulating plate 23 is λ, the temperature is T, the temperature difference is ΔT, the minimum processable interval is ΔZ, the Stefan Boltzmann coefficient is σ, the form the coefficient F a, the blackness relationship between F E, the left side of the heat transfer by thermal conduction, by placing the heat transfer by radiation to the right side, as shown in equation (1). That is,
λΔT / ΔZ = σF A F E (T 4 − (T−ΔT) 4 ) (1)
It becomes. By setting the boundary position P in the heat retaining body 20 based on this formula (1), one boat-side thick heat insulating plate 23 in the high temperature region (boat 30 side) than the formula (1) is established, In the low-temperature region (furnace port 12 side), it is configured from the furnace port-side thin heat insulating plate 22 that is as thin as possible and arranged at a narrow interval.
[0016]
Here, the following conditions are set as an embodiment. That is, the heat retaining body 20 has an overall height of 500 mm and a diameter of 300 mm. Further, the temperature of the heat retaining body 20 is 1200 ° C. at the upper part and 500 ° C. at the lower part, and the minimum thickness ΔZ of the processable furnace port side thin heat insulation plate 22 and the minimum processable furnace port side thin heat insulation board 22 are 10 mm. . Further, the form factor calculated from the shape and interval of the furnace port side thin heat insulating plate 22 is F A , and the heat conductivity λ of the furnace port side thin heat insulating plate 22 and the boat side thick heat insulating plate 23 is 1.6 × 10 −. 3 W / mm ℃, 0.5 blackness relation F E, the Stefan Boltzmann coefficient σ and 5.6687 × 10 -14 W / mm 2 K 4.
[0017]
When the boundary position P is calculated based on the formula (1), the thickness of the boat-side thick heat insulating plate 23 is 280 mm, and the furnace port-side thin heat insulating plates 22 having a thickness of 10 mm are arranged at intervals of 10 mm. The amount of heat transferred through the heat retaining body 20 is the smallest. In addition, FIG. 3 is a figure which shows the relationship between the thickness of the boat side thick heat insulation board 23, and the heat flux which passes the heat insulating body 20 based on Formula (1) in a present Example.
[0018]
As described above, by minimizing the amount of heat transfer in the heat retaining body 20, it is possible to expand the soaking area in which the wafer W is heat-treated, and to increase the number of wafers processed.
[0019]
Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
[0020]
【The invention's effect】
According to the present invention, it is possible to reduce the amount of heat transfer in order to enlarge the soaking area and increase the number of treatments of the object to be treated.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a vertical heat treatment apparatus according to an embodiment of the present invention.
FIG. 2 is a view showing a relationship between a thickness of a boat-side thick heat insulating plate and a heat flow rate passing through a heat insulator in the heat treatment apparatus.
FIG. 3 is a diagram showing the relationship between the temperature at the boundary position, the amount of heat transferred by radiation, and the amount of heat transferred by heat conduction.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Heat processing apparatus 11 ... Furnace main body 12 ... Furnace port 20 ... Insulation body 21 ... Support material 22 ... Furnace port side thin heat insulation board 23 ... Boat side thick heat insulation board 30 ... Boat

Claims (2)

複数の被処理体に熱処理を施す熱処理装置において、
その一端側に開口部を有する熱処理容器と、
この熱処理容器内の他端側に配置され、上記被処理体を保持する被処理体保持部と、
上記被処理体保持部の少なくとも一端部を保持すると共に熱処理時に上記熱処理容器内を保温する保温体とを備え、
上記保温体は、所定の境界位置に対し上記被処理体保持部側に配置され、熱伝導を行うことで熱輻射を抑制する1枚の厚肉断熱板と、上記境界位置に対し上記開口部側に配置され、所定の間隔をもって積層配置された複数枚の薄肉断熱板と、これら厚肉断熱板及び薄肉断熱板を水平に支持する支持体とを備え、
上記所定の境界位置は、上記厚肉断熱板及び上記薄肉断熱板の熱伝導率をλ、境界部の温度をT、微小距離の温度差をΔT、設置可能な上記薄肉断熱板の最小間隔をΔZ、ステファンボルツマン係数をσ、形態係数をFA、黒度関係をFEとしたときに、
λΔT/ΔZ=σF (T −(T−ΔT)
が成立する位置であることを特徴とする熱処理装置。
In a heat treatment apparatus for performing heat treatment on a plurality of objects to be processed,
A heat treatment container having an opening on one end thereof;
An object to be processed holding part that is disposed on the other end side in the heat treatment container and holds the object to be processed;
A heat retaining body that retains at least one end of the object-to-be-treated holding section and retains the heat treatment container during heat treatment;
The heat retaining body is disposed on the object holding portion side with respect to a predetermined boundary position, and has one thick heat insulating plate that suppresses heat radiation by conducting heat, and the opening portion with respect to the boundary position. arranged on the side, e Bei a plurality of thin heat insulation plates which are stacked at predetermined intervals, and a support member which supports the thick insulation board and the thin insulating plate horizontally,
The predetermined boundary position is defined as the thermal conductivity of the thick heat insulating plate and the thin heat insulating plate is λ, the temperature of the boundary portion is T, the temperature difference of a minute distance is ΔT, and the minimum distance between the thin heat insulating plates that can be installed is When ΔZ, Stefan-Boltzmann coefficient is σ, form factor is FA, and blackness relationship is FE,
λΔT / ΔZ = σF A F E (T 4 − (T−ΔT) 4 )
Heat treatment apparatus, characterized in that but a position established.
上記薄肉断熱板を薄肉化し、かつ、上記所定の間隔を狭くすることで、薄肉断熱板相互間輻射回数を増加させ、断熱効果を増加させるものであることを特徴とする請求項1に記載の熱処理装置。  The thin heat insulating plate is thinned, and the predetermined interval is narrowed, thereby increasing the number of times of radiation between the thin heat insulating plates and increasing the heat insulating effect. Heat treatment equipment.
JP2002199914A 2002-07-09 2002-07-09 Heat treatment equipment Expired - Lifetime JP4184724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002199914A JP4184724B2 (en) 2002-07-09 2002-07-09 Heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002199914A JP4184724B2 (en) 2002-07-09 2002-07-09 Heat treatment equipment

Publications (2)

Publication Number Publication Date
JP2004047540A JP2004047540A (en) 2004-02-12
JP4184724B2 true JP4184724B2 (en) 2008-11-19

Family

ID=31706923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199914A Expired - Lifetime JP4184724B2 (en) 2002-07-09 2002-07-09 Heat treatment equipment

Country Status (1)

Country Link
JP (1) JP4184724B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700300B2 (en) * 2004-07-12 2011-06-15 株式会社日立国際電気 Heat treatment equipment
JP4519016B2 (en) * 2005-06-29 2010-08-04 信越石英株式会社 Heat insulation jig for semiconductor wafer heat treatment furnace
US20170178758A1 (en) * 2015-12-18 2017-06-22 Applied Materials, Inc. Uniform wafer temperature achievement in unsymmetric chamber environment

Also Published As

Publication number Publication date
JP2004047540A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
JP3348936B2 (en) Vertical heat treatment equipment
JP4786177B2 (en) Process and system for heating a semiconductor substrate in a processing chamber including a susceptor
JP3125199B2 (en) Vertical heat treatment equipment
JP2714577B2 (en) Heat treatment apparatus and heat treatment method
JP4642349B2 (en) Vertical heat treatment apparatus and low temperature region temperature convergence method
JP3474258B2 (en) Heat treatment apparatus and heat treatment method
JP4184724B2 (en) Heat treatment equipment
KR100876927B1 (en) Thermal treatment equipment and method for heat-treating
JP2953744B2 (en) Heat treatment equipment
JP4669465B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, heating apparatus, and heat insulating material
JP2007073865A (en) Heat treatment device
JP4104070B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, heating apparatus, and heat insulating material
JPH1022290A (en) Method and device for producing semiconductor device
JPH08181082A (en) Vertical-type high-speed heat treatment device
JP3118760B2 (en) Heat treatment equipment
JPH08330317A (en) Production of semiconductor device
JPH06333914A (en) Semiconductor manufacturing device
JPH0669144A (en) Heat treatment furnace
JP2693465B2 (en) Semiconductor wafer processing equipment
JP2001118852A (en) Electric furnace
JP2003197545A (en) Wafer boat and furnace and method for heat-treating wafer
JP2004311775A (en) Semiconductor processing equipment
JPS5922114Y2 (en) heat treatment equipment
JP2002261034A (en) Heat insulator for heat treatment reactor
JPH0475329A (en) Heat treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4184724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term