JP4182210B2 - Process for producing titanium oxide composite coated with silicate - Google Patents

Process for producing titanium oxide composite coated with silicate Download PDF

Info

Publication number
JP4182210B2
JP4182210B2 JP2003310334A JP2003310334A JP4182210B2 JP 4182210 B2 JP4182210 B2 JP 4182210B2 JP 2003310334 A JP2003310334 A JP 2003310334A JP 2003310334 A JP2003310334 A JP 2003310334A JP 4182210 B2 JP4182210 B2 JP 4182210B2
Authority
JP
Japan
Prior art keywords
titanium oxide
composite
producing
silicate
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003310334A
Other languages
Japanese (ja)
Other versions
JP2005075698A (en
Inventor
文彦 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003310334A priority Critical patent/JP4182210B2/en
Publication of JP2005075698A publication Critical patent/JP2005075698A/en
Application granted granted Critical
Publication of JP4182210B2 publication Critical patent/JP4182210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、ケイ酸塩でコーティングされた酸化チタン複合体の製造方法に関するものであり、更に詳しくは、水熱反応を利用して、酸化チタンからなる表面を持つ基材の表面に、無機ケイ酸塩をコーティングした無機ケイ酸塩−酸化チタン複合体を合成する方法に関するものである。
本発明は、酸化チタンを基材として利用した光触媒の技術分野において、水熱反応を用いて酸化チタンの表面に無機ケイ酸塩膜がコーティングされた酸化チタン複合体を合成する新規合成方法を提供するものであり、該方法によって合成された酸化チタン複合体は、耐水性、耐熱性、耐腐食性、イオン交換能や吸着能に優れ、例えば、その高比表面積を利用した有害汚染物質吸着剤、脱臭剤、触媒担体、居室内や車内等の生活環境の湿度を自律的に制御する湿度調節材、悪臭の除去や空気中の有害物質又は汚れの分解除去、廃水処理や浄水処理、あるいは水の殺菌や殺藻等を行うための環境浄化材料として使用可能であり、また、有機繊維やプラスチック等に添加練り込み等に応用可能な、ケイ酸塩でコーティングされた酸化チタン複合体の新規製造方法、及び該方法で合成された新しいタイプの光触媒材料を合成し、提供するものとして有用である。
The present invention relates to a method for producing a titanium oxide composite coated with a silicate, and more particularly, to a surface of a substrate having a surface made of titanium oxide by utilizing a hydrothermal reaction. The present invention relates to a method for synthesizing a silicate-coated inorganic silicate-titanium oxide composite.
The present invention provides a novel synthesis method for synthesizing a titanium oxide composite in which an inorganic silicate film is coated on the surface of titanium oxide using a hydrothermal reaction in the technical field of photocatalyst using titanium oxide as a base material. The titanium oxide composite synthesized by this method is excellent in water resistance, heat resistance, corrosion resistance, ion exchange capacity and adsorption capacity, for example, a harmful pollutant adsorbent using its high specific surface area. , Deodorizers, catalyst carriers, humidity control materials that autonomously control the humidity of living environments such as indoors and cars, removal of malodors, decomposition and removal of harmful substances or dirt in the air, wastewater treatment or water purification treatment, or water It can be used as an environmental purification material for sterilization and algae killing, and it can be used for addition kneading into organic fibers and plastics. Tadashi manufacturing method, and a new type of photocatalyst materials synthesized in the process to synthesize, is useful for providing.

近年、居住空間や作業空間での悪臭や、自動車の排気ガス等の有害物質による汚染が深刻な問題となっている。また、今日、生活排水や産業廃水等による水質汚染、特に、現在行われている活性汚泥法等の水処理法では処理が難しい有機塩素系の溶剤やゴルフ場で使用される農薬等による水源の汚染等が、広範囲に進行しており、それらによる環境汚染が重大な社会問題となっている。   In recent years, bad odors in living spaces and work spaces, and contamination by harmful substances such as automobile exhaust gas have become serious problems. Also, today, water pollution caused by domestic wastewater and industrial wastewater, especially water sources such as organic chlorinated solvents that are difficult to treat by the current water treatment methods such as the activated sludge method and agricultural chemicals used in golf courses, etc. Pollution and the like are progressing in a wide range, and environmental pollution caused by them is a serious social problem.

従来、悪臭を防止する方法あるいは空気中の有害物質を除去する方法として、例えば、酸やアルカリ等の吸収液や吸着剤等にそれらを吸収あるいは吸着させる方法がよく行われているが、これらの方法は、廃液や使用済みの吸着剤の処理が問題であり、それにより二次公害を起こす恐れがある。また、芳香剤を使用して悪臭を隠ぺいする方法もあるが、この種の方法は、芳香剤の臭いが食品に移ったり、あるいは芳香剤自体の臭いによる被害が出る恐れがある等の欠点を持っている。   Conventionally, as a method for preventing malodor or removing harmful substances in the air, for example, a method of absorbing or adsorbing them in an absorbing liquid or adsorbent such as an acid or an alkali is often performed. The method has a problem with the treatment of the waste liquid and the used adsorbent, which may cause secondary pollution. In addition, there is a method of concealing bad odors using a fragrance, but this type of method has the disadvantage that the odor of the fragrance may be transferred to food or the odor of the fragrance itself may be damaged. have.

一方、近年、酸化チタン光触媒により有機物を分解、除去する方法が種々研究されている。酸化チタンに光を照射すると、強い還元作用を持つ電子と強い酸化作用を持つ正孔とが生成し、接触してくる分子種を酸化還元作用により分解する。酸化チタンのこのような作用、すなわち光触媒作用を利用することによって、例えば、水中に溶解している有機溶剤、農薬や界面活性剤等の環境汚染物質、空気中の有害物質や悪臭等を分解除去することができる。この方法は、酸化チタンと光を利用するだけで繰り返し利用することができ、反応生成物は、無害な炭酸ガス等であり、微生物を用いる生物処理等の方法に比べて、温度、pH、ガス雰囲気、毒性等の反応条件の制約が少なく、しかも生物処理法では処理しにくい有機ハロゲン化合物や有機リン化合物のようなものでも容易に分解・除去できるという長所を持っている。   On the other hand, in recent years, various methods for decomposing and removing organic substances using a titanium oxide photocatalyst have been studied. When titanium oxide is irradiated with light, electrons having a strong reducing action and holes having a strong oxidizing action are generated, and the contacting molecular species are decomposed by the redox action. By utilizing such action of titanium oxide, that is, photocatalytic action, for example, organic solvents dissolved in water, environmental pollutants such as agricultural chemicals and surfactants, harmful substances and bad odors in the air are decomposed and removed. can do. This method can be used repeatedly only by using titanium oxide and light, and the reaction product is harmless carbon dioxide and the like, and the temperature, pH, gas, and the like are compared with methods such as biological treatment using microorganisms. It has the advantage that it can be easily decomposed and removed even with organic halogen compounds and organophosphorus compounds which are less restricted by reaction conditions such as atmosphere and toxicity, and which are difficult to process by biological treatment methods.

しかし、これまで行われてきた酸化チタン光触媒による有機物の分解、除去の研究では、一般に、光触媒として酸化チタンの粉末がそのまま用いられており、使用後の光触媒の回収が困難であること、取扱いや使用が難しいこと、等の問題があり、なかなか汎用性のある実用化技術を開発することができなかった。   However, in the research on the decomposition and removal of organic substances by the titanium oxide photocatalyst carried out so far, in general, titanium oxide powder is used as it is as a photocatalyst, and it is difficult to recover the photocatalyst after use, There were problems such as difficulty in use, and it was difficult to develop a practical technology with versatility.

そこで、例えば、酸化チタン光触媒を、取扱いの容易な繊維やプラスチックス等の媒体に練り込んで使用すること等が試みられたが、その強力な光触媒作用によって有害有機物や環境汚染物質だけでなく、繊維やプラスチック自身も分解され、それらが極めて劣化しやすいため、酸化チタン光触媒は、繊維やプラスチックスに練り込んだ形での使用は不可能であった。また、酸化チタン光触媒を抗菌、抗かび材料として用いる場合、流水下等では、菌が光触媒に付着しにくいため、効果が発揮しにくく、効率が悪いという問題があった。   Therefore, for example, titanium oxide photocatalyst has been tried to be used by kneading it into a medium such as easy-to-handle fiber or plastics, but due to its powerful photocatalytic action, not only harmful organic substances and environmental pollutants, Since the fibers and plastics themselves are decomposed and they are very easily deteriorated, the titanium oxide photocatalyst cannot be used in the form of being kneaded into the fibers or plastics. Further, when the titanium oxide photocatalyst is used as an antibacterial or antifungal material, there is a problem that the bacteria are difficult to adhere to the photocatalyst under running water or the like, so that the effect is hardly exhibited and the efficiency is poor.

従来、光触媒とアルミノ珪酸塩等を組み合わせることが種々行われており、例えば、光触媒含有アルミノ珪酸塩粒子を製造する方法(特許文献1)、光触媒粒子を光不活性物質(珪酸、アルミニウム等)からなる多孔質壁で内包した光触媒粉体(特許文献2)、チタニア粒子の表面に光触媒として不活性なセラミックス(アルミナ、シリカ等)を島状に担持した光触媒粒子(特許文献3)、光触媒含有アルミノ珪酸塩粒子とその製造方法(特許文献4)、無機コーティング剤(特許文献5)、ケイ酸塩含有シート(特許文献6)、光触媒性親水性コート剤(特許文献7)、防汚機能を有する目地体(特許文献8)、等が提案されている。しかし、従来、水熱反応を利用してケイ酸塩でコーティングされた酸化チタン複合体を合成することは、行われておらず、また、例えば、水熱反応を用いてアロフェン又はイモゴライトを担持させた酸化チタン複合体を合成することも全く知られていない。   Conventionally, various combinations of photocatalysts and aluminosilicates have been performed. For example, a method for producing photocatalyst-containing aluminosilicate particles (Patent Document 1), photocatalyst particles from photoinert substances (silicic acid, aluminum, etc.) A photocatalyst powder (Patent Document 2) encapsulated in a porous wall, photocatalyst particles (Patent Document 3) in which ceramics that are inactive as a photocatalyst (alumina, silica, etc.) are supported in the form of islands on the surface of titania particles; Silicate particles and production method thereof (Patent Document 4), inorganic coating agent (Patent Document 5), silicate-containing sheet (Patent Document 6), photocatalytic hydrophilic coating agent (Patent Document 7), antifouling function A joint body (Patent Document 8) and the like have been proposed. However, conventionally, a titanium oxide composite coated with a silicate using a hydrothermal reaction has not been synthesized, and for example, allophane or imogolite is supported by using a hydrothermal reaction. There is also no known synthesis of titanium oxide composites.

特開2001−97713号公報JP 2001-97713 A 特開平10−5598号公報Japanese Patent Laid-Open No. 10-5598 特開平9−225319公報JP-A-9-225319 特開平11−076835号公報Japanese Patent Laid-Open No. 11-0776835 特開平11−092689号公報JP-A-11-092689 特開平11−010781公報Japanese Patent Laid-Open No. 11-010881 特開2001−089706号公報JP 2001-089706 A 特開2001−026992号公報JP 2001-026992 A

このような状況の中で、本発明者らは、上記従来技術に鑑みて、悪臭の除去や、空気中の有害物質又は汚れの分解除去、廃水処理や浄水処理、抗菌や抗かび等、環境の浄化を効果的、かつ経済的で安全に行うことができ、しかも、有機繊維やプラスチック等の媒体に練り込み等により添加して使用した場合でも、媒体の劣化を生ずることなく耐久性の面からも優れた特性を有する、新しい環境浄化材料及びその製造方法を開発することを目標として鋭意研究を重ねた結果、光触媒として不活性で雑菌等を吸着する性質を持ち、かつ多孔質であるケイ酸塩を酸化チタンの回りに被覆することにより、この酸化チタンが持つ光触媒機能を損なうことなく、媒体等に添加して使用する場合の耐久性を高め得ることを見出し、更に研究を重ねて、本発明を完成するに至った。
本発明は、酸化チタンからなる表面を持つ基材の表面に、多孔質無機ケイ酸塩をコーティングした新規酸化チタン複合体の製造方法を提供することを目的とするものである。
In such a situation, in view of the prior art, the present inventors have been able to remove bad odors, decompose and remove harmful substances or dirt in the air, wastewater treatment and water purification treatment, antibacterial and antifungal, etc. It can be effectively, economically and safely purified, and even if it is added to a medium such as organic fiber or plastic by kneading, etc., it does not deteriorate the medium. As a result of intensive research aimed at developing new environmental purification materials and production methods that have excellent characteristics, it is a porous silica that is inactive as a photocatalyst and has the property of adsorbing bacteria. By coating the acid salt around the titanium oxide, without losing the photocatalytic function of this titanium oxide, it was found that the durability when used by adding to the medium, etc., can be increased, further research, Main departure The has been completed.
An object of the present invention is to provide a method for producing a novel titanium oxide composite in which a porous inorganic silicate is coated on the surface of a substrate having a surface made of titanium oxide.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)酸化チタンからなる表面を持つ基材の表面に、無機ケイ酸塩がコーティングされた無機ケイ酸塩−酸化チタン複合体を製造する方法であって、
1)ケイ素化合物水溶液と、アルミニウム化合物あるいは遷移金属化合物水溶液を混合し、前駆体懸濁液を調製する、
2)上記工程で副生成した塩を除去する、
3)上記前駆体懸濁液に基材を入れ、水熱反応を行う、
4)上記1)〜3)により、表面に無機ケイ酸塩を被覆した酸化チタン複合体を合成する、
ことを特徴とする無機ケイ酸塩−酸化チタン複合体の製造方法。
(2)基材が、酸化チタン粒子であることを特徴とする、前記(1)に記載の複合体の製造方法。
(3)無機ケイ酸塩が、アロフェン、又はイモゴライトの非晶質体ないし準結晶質体からなるケイ酸塩であることを特徴とする、前記(1)に記載の複合体の製造方法。
(4)酸化チタンの結晶形がアナターゼであることを特徴とする、前記(1)に記載の複合体の製造方法。
(5)溶液濃度がそれぞれ1mmol/l〜10000mol/lのケイ素化合物溶液と、1mmol/l〜10000mol/lのアルミニウム化合物あるいは遷移金属化合物溶液を混合する、前記(1)に記載の複合体の製造方法。
(6)ケイ素アルミニウムあるいは遷移金属化合物に対するモル比率が0.1〜5.0である前記(1)に記載の複合体の製造方法。
(7)ケイ素化合物水溶液と、アルミニウム化合物あるいは遷移金属化合物水溶液を分速1ml〜10000lで同時混合あるいは両溶液を急速混合して混合溶液を調製する、前記(1)に記載の複合体の製造方法。
(8)混合溶液の液性をpH3からpH8に調整する、前記(6)に記載の複合体の製造方法。
(9)凝集阻止剤として、ポリエチレングリコール、ポリビニールアルコール又は界面活性剤の水溶性あるいは非水溶性の試剤を添加する、前記(6)に記載の複合体の製造方法。
(10)得られた前駆体懸濁液を0.1〜72時間程度振盪した後、反応副生成物である塩を除去する、前記(1)に記載の複合体の製造方法。
(11)前駆体懸濁液に酸性溶液を添加してpH3から6の弱酸性に調整し、生成されるケイ酸塩の形態を制御する、前記(1)に記載の複合体の製造方法。
(12)反応温度50〜130℃、反応時間12〜240時間の条件で、懸濁液の水分が蒸発しない方法で水熱反応を行う、前記(1)に記載の複合体の製造方法。
(13)反応終了後の懸濁液にアルカリ性水溶液を添加して溶液の液性をpH8〜12程度に調整し、生成物をゲル状物質として凝集させて回収する、前記(1)に記載の複合体の製造方法。
(14)窒素吸着による比表面積が10m/g以上である複合体を合成する、前記(1)に記載の複合体の製造方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) A method for producing an inorganic silicate-titanium oxide composite in which an inorganic silicate is coated on the surface of a substrate having a surface made of titanium oxide,
1) A silicon compound aqueous solution and an aluminum compound or transition metal compound aqueous solution are mixed to prepare a precursor suspension.
2) Remove by-product salt in the above step.
3) A base material is put into the precursor suspension and a hydrothermal reaction is performed.
4) According to the above 1) to 3), a titanium oxide composite having a surface coated with an inorganic silicate is synthesized.
A method for producing an inorganic silicate-titanium oxide composite characterized by the above.
(2) The method for producing a composite as described in (1) above, wherein the base material is titanium oxide particles.
(3) The method for producing a composite as described in (1) above, wherein the inorganic silicate is an allophane or imogolite amorphous or quasicrystalline silicate.
(4) The method for producing a complex as described in (1) above, wherein the crystal form of titanium oxide is anatase.
(5) Production of the composite according to (1) above, wherein a silicon compound solution having a solution concentration of 1 mmol / l to 10000 mol / l and an aluminum compound or transition metal compound solution of 1 mmol / l to 10000 mol / l are mixed. Method.
(6) The manufacturing method of the composite_body | complex as described in said (1) whose molar ratio with respect to the aluminum of aluminum or a transition metal compound is 0.1-5.0.
(7) The method for producing a composite according to (1) above, wherein a silicon compound aqueous solution and an aluminum compound or transition metal compound aqueous solution are simultaneously mixed at a rate of 1 ml to 10000 l per minute, or both solutions are rapidly mixed to prepare a mixed solution. .
(8) The method for producing a complex according to (6), wherein the liquid property of the mixed solution is adjusted from pH 3 to pH 8.
(9) The method for producing a composite as described in (6) above, wherein a water-soluble or water-insoluble reagent of polyethylene glycol, polyvinyl alcohol or a surfactant is added as an aggregation inhibitor.
(10) The method for producing a complex according to (1), wherein the obtained precursor suspension is shaken for about 0.1 to 72 hours, and then the salt that is a reaction byproduct is removed.
(11) The method for producing a complex according to (1) above, wherein an acidic solution is added to the precursor suspension to adjust to a weakly acidic pH of 3 to 6, and the form of the silicate produced is controlled.
(12) The method for producing a complex according to (1) above, wherein the hydrothermal reaction is performed in a method in which the water content of the suspension does not evaporate under the conditions of a reaction temperature of 50 to 130 ° C. and a reaction time of 12 to 240 hours.
(13) The alkaline aqueous solution is added to the suspension after completion of the reaction to adjust the liquidity of the solution to about pH 8 to 12, and the product is aggregated and recovered as a gel substance. A method for producing a composite.
(14) The method for producing a composite according to (1) above, wherein a composite having a specific surface area of 10 m 2 / g or more by nitrogen adsorption is synthesized.

次に、本発明について更に詳細に説明する。
本発明では、酸化チタンをコーティングするための出発原料として、ケイ素化合物と、アルミニウム化合物あるいは遷移金属化合物が用いられる。ケイ素源として使用される試剤は、モノケイ酸であればよく、具体的には、例えば、オルトケイ酸ナトリウム、オルトケイ酸アルキル、メタケイ酸ナトリウム、無定形コロイド状二酸化ケイ素(エアロジルなど)などが好適なものとして挙げられる。これらのケイ酸化合物は1種又は2種以上を併用して使用することができる。上記ケイ酸塩分子集合体と結合させるアルミニウム源としては、アルミニウムイオンであればよく、具体的には、例えば、塩化アルミニウム、硝酸アルミニウム、アルミン酸ナトリウム、水酸化アルミニウム、アルミニウムイソプロポキシドなどのアルミニウムアルキル化合物などのアルミニウム化合物が好適なものとして挙げられる。
Next, the present invention will be described in more detail.
In the present invention, a silicon compound and an aluminum compound or a transition metal compound are used as starting materials for coating titanium oxide. The reagent used as the silicon source may be monosilicic acid. Specifically, for example, sodium orthosilicate, alkyl orthosilicate, sodium metasilicate, amorphous colloidal silicon dioxide (aerosil, etc.) and the like are suitable. As mentioned. These silicic acid compounds can be used alone or in combination of two or more. The aluminum source to be bonded to the silicate molecular aggregate may be aluminum ions. Specifically, for example, aluminum such as aluminum chloride, aluminum nitrate, sodium aluminate, aluminum hydroxide, aluminum isopropoxide, etc. Aluminum compounds such as alkyl compounds are preferred.

また、遷移金属化合物源としては、それらのイオンであればよく、例えば、バナジウム、鉄、タングステン、チタン、コバルト、ニッケル、銅、ジルコニウムなどの遷移金属化合物、例えば、それらの塩化物、硫化物、水酸化物、硝酸塩ならびに有機金属塩などが好適なものとして挙げられる。これらのアルミニウム化合物あるいは遷移金属化合物は1種又は2種以上を併用して使用することができる。これらのケイ素源と、アルミニウム源あるいは遷移金属源は、上記の化合物に制限されるものではなく、それらと同効のものであれば同様に使用することができる。   Moreover, as a transition metal compound source, those ions may be used, for example, transition metal compounds such as vanadium, iron, tungsten, titanium, cobalt, nickel, copper, zirconium, for example, their chlorides, sulfides, Suitable examples include hydroxides, nitrates, and organic metal salts. These aluminum compounds or transition metal compounds can be used alone or in combination of two or more. These silicon sources and aluminum sources or transition metal sources are not limited to the above-mentioned compounds, and can be used in the same manner as long as they have the same effect.

本発明では、酸化チタンからなる表面を持つ基材(担持)が用いられる。この基材としては、好適には、例えば、酸化チタン粒子が例示されるが、これに制限されるものではなく、表面に酸化チタンを有する基材であれば同様に使用することができる。本発明に用いられる担体としての酸化チタン粒子は、光触媒として高性能である点で、その結晶形がアナターゼであることが好ましい。ルチルやブルッカイト、非晶質のものは光触媒としての活性が低いため、あまり好ましくないが、これらを使用することも可能である。また、酸化チタン粒子の粒径はどのような大きさでもよいが、有機繊維やプラスチック等に練り込むことを考える場合は、サブミクロンの小さなものが好ましい。   In the present invention, a substrate (supported) having a surface made of titanium oxide is used. Preferable examples of the base material include titanium oxide particles, but the base material is not limited thereto, and any base material having titanium oxide on the surface can be used similarly. The titanium oxide particles as the carrier used in the present invention preferably have an anatase crystal form in terms of high performance as a photocatalyst. Rutile, brookite, and amorphous ones are less preferred because of their low activity as photocatalysts, but these can also be used. The titanium oxide particles may have any particle size, but when considering kneading into organic fibers, plastics, etc., particles having a submicron size are preferable.

酸化チタン粒子をコーティングするための、これらの出発原料を水に溶解して、1mmol/l〜10000mol/l濃度のケイ素化合物水溶液と、1mmol/l〜10000mol/l濃度のアルミニウム化合物あるいはバナジウム、鉄、タングステン、チタン、コバルト、ニッケル、銅、ジルコニウムなどの遷移金属化合物など1種類以上の水溶液を調製する。これらの溶液を分速1ml〜10000lで同時混合あるいは両溶液を急速混合して混合溶液を得る。この時のケイ素/アルミニウムあるいは遷移金属化合物のモル比率は0.1〜5.0程度が望ましい。モル比が0.1を下回ると副生成物としてベーマイトやギブサイトを生成し、また、5.0を上回ると非晶質シリカが副生成物として多量に生成する。   These starting materials for coating titanium oxide particles are dissolved in water, an aqueous silicon compound solution having a concentration of 1 mmol / l to 10000 mol / l, an aluminum compound having a concentration of 1 mmol / l to 10000 mol / l, or vanadium, iron, One or more aqueous solutions such as transition metal compounds such as tungsten, titanium, cobalt, nickel, copper and zirconium are prepared. These solutions are mixed simultaneously at a speed of 1 ml to 10000 l or both solutions are rapidly mixed to obtain a mixed solution. At this time, the molar ratio of silicon / aluminum or transition metal compound is preferably about 0.1 to 5.0. When the molar ratio is less than 0.1, boehmite or gibbsite is generated as a by-product, and when it exceeds 5.0, a large amount of amorphous silica is generated as a by-product.

また、前駆体溶液の液性は、弱酸性から中性付近(pH3からpH8)程度が好ましく、好適にはpH6から8付近である。組成を制御する目的で、混合溶液のpHが大幅に上記領域よりずれる場合、液性を調製するために酸成分として、塩酸、硝酸ならびに硫酸をあらかじめ遷移金属化合物溶液に計算して添加しておくか、又はアルカリ成分として、水酸化ナトリウム、水酸化カリウム、水酸化カルシウムなどのアルカリ成分をあらかじめケイ素化合物溶液に計算して添加しておくことも有効である。   The liquidity of the precursor solution is preferably from weakly acidic to near neutral (pH 3 to pH 8), preferably pH 6 to 8. For the purpose of controlling the composition, when the pH of the mixed solution deviates significantly from the above range, hydrochloric acid, nitric acid and sulfuric acid are calculated and added to the transition metal compound solution in advance as acid components in order to adjust the liquidity. Alternatively, it is also effective to previously calculate and add an alkali component such as sodium hydroxide, potassium hydroxide or calcium hydroxide to the silicon compound solution as the alkali component.

この時、凝集阻止剤として、ポリエチレングリコールやポリビニールアルコール、界面活性剤などの水溶性あるいは非水溶性の試剤を添加してもよい。このように、アルミニウム/遷移金属溶液にケイ素化合物溶液を混合した後、もしpHが弱酸性領域であれば、アルカリ性溶液を0.1から5ml/分の速度で滴下して、pHが中性付近になるように調製して、前駆体を生成させる。この時、前駆体の生成過程に滴下するアルカリ性溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア水等が挙げられる。勿論、混合段階で溶液の液性が、中性付近のpH6.5から8の領域でも、前駆体は生成される。   At this time, a water-soluble or water-insoluble reagent such as polyethylene glycol, polyvinyl alcohol, or a surfactant may be added as an aggregation inhibitor. Thus, after mixing the silicon compound solution with the aluminum / transition metal solution, if the pH is weakly acidic, the alkaline solution is added dropwise at a rate of 0.1 to 5 ml / min, and the pH is near neutral. To produce a precursor. At this time, examples of the alkaline solution dropped in the precursor generation process include sodium hydroxide, potassium hydroxide, calcium hydroxide, and aqueous ammonia. Of course, even when the liquidity of the solution is in the region of pH 6.5 to 8 in the vicinity of neutrality in the mixing stage, the precursor is generated.

得られた前駆体懸濁液は、室温で0.1〜72時間程度振盪した後、反応副生成物である塩を除去する。その除去方法は特に制限されないが、好適には、例えば、限外濾過、遠心分離機による分離等で行うことができる。脱塩後、除去した量と同量の純水を添加し、良く分散させる。   The obtained precursor suspension is shaken at room temperature for about 0.1 to 72 hours, and then the salt which is a reaction byproduct is removed. Although the removal method is not particularly limited, it can be preferably performed by, for example, ultrafiltration, separation by a centrifugal separator, or the like. After desalting, add the same amount of pure water as the amount removed and disperse well.

生成されるケイ酸塩の形態を制御するために、この時、もし必要であれば、その前駆体懸濁液に酸性溶液を添加してpHが3から6の弱酸性溶液、好適にはpH3.5から4.5付近になるような弱酸性に調整する。この時、使用する酸性溶液としては、例えば、塩酸、硫酸、硝酸、酢酸、過塩素酸等が挙げられる。   In order to control the form of the silicate produced at this time, if necessary, an acidic solution is added to the precursor suspension to give a weakly acidic solution having a pH of 3 to 6, preferably pH 3 Adjust to slightly acidic so that it is around 5 to 4.5. At this time, examples of the acidic solution used include hydrochloric acid, sulfuric acid, nitric acid, acetic acid, and perchloric acid.

本発明の複合体の製造方法は、表面が酸化チタンで覆われている基材を、上記ケイ酸塩前駆体用いて、水熱反応を利用することにより、その表面に多孔質のケイ酸塩を生成させることを特徴とするものである。   In the method for producing a composite of the present invention, a porous silicate is formed on a surface of a substrate whose surface is covered with titanium oxide by using a hydrothermal reaction using the silicate precursor. Is generated.

所定濃度の出発溶液より調製した前駆体懸濁液に、二酸化チタン粒子を浸積させ、所定の温度で加熱して反応させる。反応温度範囲は50〜130℃であり、反応時間は12〜240時間程度である。この時、懸濁液の水分が蒸発しないような方法で加熱熟成を行えばよく、例えば、反応装置としてオートクレーブをはじめとする密閉容器や、冷却管付きマントルヒーターなどを用いることができる。好適には、100℃前後で48時間程度の条件が望ましい。   Titanium dioxide particles are immersed in a precursor suspension prepared from a starting solution of a predetermined concentration and reacted by heating at a predetermined temperature. The reaction temperature range is 50 to 130 ° C., and the reaction time is about 12 to 240 hours. At this time, heat aging may be performed in such a way that the water content of the suspension does not evaporate. For example, an airtight container such as an autoclave, a mantle heater with a cooling pipe, or the like can be used as a reaction apparatus. Preferably, a condition of about 48 hours at around 100 ° C. is desirable.

反応終了後、得られた生成物はそのままあるいは数回純水で洗浄、乾燥を行うことにより、ケイ酸塩でコーティングされた酸化チタン複合体が合成される。得られた生成物は、無機化合物であるため、耐熱性が高く、比較的過酷な条件下で乾燥させることができるが、乾燥条件としては、常圧下、温度40〜100℃が好適である。   After completion of the reaction, the obtained product is washed as it is or several times with pure water and dried to synthesize a titanium oxide complex coated with silicate. Since the obtained product is an inorganic compound, it has high heat resistance and can be dried under relatively severe conditions. As drying conditions, a temperature of 40 to 100 ° C. is suitable under normal pressure.

この場合は、反応終了後の懸濁液にアルカリ性水溶液を添加することで、溶液の液性をpH8〜12程度に調整し、生成物をゲル状物質として凝集させて回収してもよい。この時用いられるアルカリ性水溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア水等が挙げられる。更に、その後、アルカリ溶液で凝集したゲル状生成物を遠心分離器や半透膜を用いて回収することもできる。   In this case, by adding an alkaline aqueous solution to the suspension after completion of the reaction, the liquid property of the solution may be adjusted to about pH 8 to 12, and the product may be aggregated and recovered as a gel substance. Examples of the alkaline aqueous solution used at this time include sodium hydroxide, potassium hydroxide, calcium hydroxide, and aqueous ammonia. Furthermore, after that, the gel-like product aggregated with the alkaline solution can be recovered using a centrifuge or a semipermeable membrane.

もし、凝集阻止剤を添加しているのであれば、乾燥終了後、200℃以下の温度でメタノール、エタノール、アセトン、トルエン、キシレン、ベンゼン等の有機溶媒で1時間以上抽出除去するかあるいは、空気中300〜600℃、保持時間1〜8時間の加熱処理を行うことによりケイ酸塩でコーティングされた酸化チタン複合材料が得られる。本発明では、無機ケイ酸塩として、好適には、アロフェン、イモゴライト及びそれらの類似物の非晶質体ないし準結晶質体が挙げられる。それにより、球状又はチューブ状のアロフェン又はイモゴライトをコーティングした酸化チタン複合体を合成し、提供することができる。   If a coagulation inhibitor is added, after completion of drying, it is extracted and removed with an organic solvent such as methanol, ethanol, acetone, toluene, xylene, benzene or the like at a temperature of 200 ° C. or lower, or air A titanium oxide composite material coated with silicate can be obtained by heat treatment at 300 to 600 ° C. for 1 to 8 hours. In the present invention, the inorganic silicate preferably includes amorphous or quasicrystalline materials of allophane, imogolite and the like. Accordingly, a titanium oxide composite coated with spherical or tubular allophane or imogolite can be synthesized and provided.

上記方法により、比表面積が10m2 /g以上であり、反応条件や、コートするケイ素化合物と他の金属元素化合物の比率を制御することにより、コーティング膜の物性を変化させた、ケイ酸塩でコーティングされた酸化チタン複合体を合成することができる。
無機ケイ酸塩としてアロフェンを担持させる方法及び条件の一例を示すと、例えば、100mmol/lのオルトケイ酸ナトリウム溶液と100mmol/lの塩化アルミニウム水溶液を調製する。それぞれをSi/Al比が0.75となるように秤量し、塩化アルミニウム溶液にオルトケイ酸ナトリウム溶液を添加する。この時の混合溶液の液性がpH4〜7付近になることが望ましく、十分に撹拌して前駆体懸濁液を生成する。液性が酸性側に移行するときには前駆体懸濁液は透明な溶液へと変化するが、その後、水酸化ナトリウム溶液を1ml/分程度でゆっくり添加して液性をpH6〜7付近まで調整すると、前駆体は生成する。前駆体の生成と同時に塩化ナトリウムが副生成するので、それを遠心分離などを用いて除去し、前駆体を洗浄する。前駆体濃度10mmol/lの懸濁液100mlに、酸化チタン粉末を0.1g添加し、100℃で48時間オートクレーブを用いて水熱反応を行うことで、アロフェンをコーティングした酸化チタン粉末が得られる。
By the above method, the specific surface area is 10 m 2 / g or more, and the physical properties of the coating film are changed by controlling the reaction conditions and the ratio of the silicon compound to be coated and other metal element compounds. Coated titanium oxide composites can be synthesized.
An example of a method and conditions for loading allophane as an inorganic silicate is to prepare, for example, a 100 mmol / l sodium orthosilicate solution and a 100 mmol / l aluminum chloride aqueous solution. Each is weighed so that the Si / Al ratio is 0.75, and the sodium orthosilicate solution is added to the aluminum chloride solution. The liquid property of the mixed solution at this time is desirably about pH 4 to 7, and the precursor suspension is generated by sufficiently stirring. When the liquidity shifts to the acidic side, the precursor suspension changes to a transparent solution. Thereafter, when the sodium hydroxide solution is slowly added at about 1 ml / min to adjust the liquidity to around pH 6-7. A precursor is produced. Since sodium chloride is formed as a by-product simultaneously with the generation of the precursor, it is removed by centrifugation or the like, and the precursor is washed. 0.1 g of titanium oxide powder is added to 100 ml of a suspension with a precursor concentration of 10 mmol / l, and a hydrothermal reaction is performed at 100 ° C. for 48 hours using an autoclave, thereby obtaining titanium oxide powder coated with allophane. .

次に、無機ケイ酸塩としてイモゴライトを担持させる方法及び条件の一例を示すと、例えば、100mmol/lのオルトケイ酸ナトリウム溶液と100mmol/lの塩化アルミニウム水溶液を調製し、Si/Al比が0.70となるように秤量し、塩化アルミニウム溶液にオルトケイ酸ナトリウム溶液を添加する。この時の混合溶液の液性がpH4〜7付近になることが望ましく、十分に撹拌して前駆体懸濁液を生成する。液性が酸性側に移行するときには前駆体懸濁液は透明な溶液へと変化するが、その後、水酸化ナトリウム溶液を1ml/分程度でゆっくり添加して液性をpH6付近まで調製すると、前駆体は生成する。前駆体の生成と同時に塩化ナトリウムが副生成するので、それを遠心分離などを用いて除去し、前駆体を洗浄する。前駆体濃度20mmol/lの懸濁液100mlに、酸化チタン粉末を0.1g添加し、その後、塩酸を加えてpHが4になるように液性を調節する。100℃で48時間オートクレーブを用いて水熱反応を行うことで、イモゴライトをコーティングした酸化チタン粉末が得られる。アロフェン、イモゴライト両方に関してのコーティング膜の厚さは反応前駆体濃度によって制御される。   Next, an example of a method and conditions for supporting imogolite as an inorganic silicate is shown. For example, a 100 mmol / l sodium orthosilicate solution and a 100 mmol / l aluminum chloride aqueous solution are prepared, and the Si / Al ratio is 0. Weigh to 70 and add the sodium orthosilicate solution to the aluminum chloride solution. The liquid property of the mixed solution at this time is desirably about pH 4 to 7, and the precursor suspension is generated by sufficiently stirring. When the liquidity shifts to the acidic side, the precursor suspension changes to a transparent solution. Thereafter, when the liquidity is adjusted to around pH 6 by slowly adding a sodium hydroxide solution at about 1 ml / min, the precursor suspension The body generates. Since sodium chloride is formed as a by-product simultaneously with the generation of the precursor, it is removed by centrifugation or the like, and the precursor is washed. 0.1 g of titanium oxide powder is added to 100 ml of a suspension having a precursor concentration of 20 mmol / l, and hydrochloric acid is then added to adjust the liquidity so that the pH becomes 4. A titanium oxide powder coated with imogolite can be obtained by performing a hydrothermal reaction at 100 ° C. for 48 hours using an autoclave. The coating film thickness for both allophane and imogolite is controlled by the reaction precursor concentration.

上記方法及び条件により、酸化チタンの表面にアロフェンを担持させた無機ケイ酸塩−酸化チタン複合体(図4) 及び酸化チタンの表面にイモゴライトを担持させた無機ケイ酸塩−酸化チタン複合体(図5) が合成される。アロフェンの場合では酸化チタン表面に塊状の球状アロフェン粒子凝集体が付着しているのが確認され、イモゴライトの場合は酸化チタン表面に繊維束が凝集したヒゲ状の塊が付着している様子が確認される。これらの生成物の理化学的性質を以下に示す。比表面積及びHK法による平均細孔直径がそれぞれ約200m2
/g及び約1nm程度であり、基材である酸化チタンに重量比で10wt%程度のアロフェン或いはイモゴライトがコーティングされている材料が生成する。X線的にはアナターゼのピークと、アロフェンならそのブロードなピーク、イモゴライトであるならその低角度側に特徴のあるピークが確認される。
According to the above method and conditions, an inorganic silicate-titanium oxide composite in which allophane is supported on the surface of titanium oxide (FIG. 4) and an inorganic silicate-titanium oxide composite in which imogolite is supported on the surface of titanium oxide ( Figure 5) is synthesized. In the case of allophane, it was confirmed that aggregated spherical allophane particle aggregates adhered to the surface of titanium oxide, and in the case of imogolite, a state where a whisker-shaped aggregate of aggregated fiber bundles adhered to the surface of titanium oxide was confirmed. Is done. The physicochemical properties of these products are shown below. Specific surface area and average pore diameter by the HK method are about 200 m 2, respectively.
/ G and about 1 nm, and a material in which titanium oxide as a base material is coated with about 10 wt% allophane or imogolite is produced. In terms of X-ray, a peak of anatase, a broad peak in the case of allophane, and a characteristic peak on the low angle side in the case of imogolite are confirmed.

また、本発明の複合材料は、酸化チタンをコーティングするケイ酸塩膜の骨格内部あるいは膜表面に、例えば、白金、ロジウム、ルテニウム、パラジウム、銀、銅、亜鉛等の金属を担持させることが可能であり、それにより、化学物質の酸化分解速度が更に大きくなり、殺菌、殺藻作用も大きくなる。   In addition, the composite material of the present invention can support, for example, a metal such as platinum, rhodium, ruthenium, palladium, silver, copper, or zinc inside the skeleton of the silicate film coated with titanium oxide or the film surface. Thereby, the rate of oxidative decomposition of chemical substances is further increased, and the bactericidal and algicidal action is also increased.

本発明の酸化チタン複合材料は、その表面のケイ酸塩化合物の多孔質性や膜厚、形状を、前駆体の組成や温度、浸積時間を変えることによって制御することができる。ケイ素や他の金属化合物の含有率を低くしたり、反応温度を低くしたり、時間を短くした場合には、基材の表面にドメイン状のケイ酸塩が生成したり、ケイ酸塩の薄膜が生成する。ケイ素や他の金属化合物の含有率を高くしたり、反応温度を高くすることによりケイ酸塩の膜厚を厚くすることができる。   In the titanium oxide composite material of the present invention, the porosity, film thickness, and shape of the silicate compound on the surface can be controlled by changing the composition, temperature, and immersion time of the precursor. When the content of silicon or other metal compounds is lowered, the reaction temperature is lowered, or the time is shortened, domain-like silicate is formed on the surface of the substrate, or a silicate thin film Produces. The silicate film thickness can be increased by increasing the content of silicon and other metal compounds or by increasing the reaction temperature.

こうして得られた本発明による酸化チタン複合材料は、表面が光触媒として不活性なケイ酸塩膜によって被覆され、更に、このケイ酸塩膜は、蛋白質やアミノ酸、細菌、ウイルス等を吸着する作用を有するので、表面のケイ酸塩膜が水中や空気中の細菌等を吸着することができる。そして、上記ケイ酸塩膜は、表面に細孔を有し、この細孔の底に光触媒として活性な酸化チタンが露出した状態となっているため、蛍光灯、白熱灯、ブラックライト、UVランプ、水銀灯、キセノンランプ、ハロゲンランプ、メタルハライドランプ等からの人工光や太陽光等はこの露出部分に照射される。そして、光の照射によって酸化チタンに生成した電子と正孔との酸化還元作用により、ケイ酸塩膜は、吸着した蛋白質やアミノ酸、細菌、ウイルス等を迅速に、かつ連続的に分解し、除去することができる。   The titanium oxide composite material according to the present invention thus obtained is coated on the surface with an inert silicate film as a photocatalyst, and this silicate film has an action of adsorbing proteins, amino acids, bacteria, viruses, etc. Therefore, the surface silicate film can adsorb bacteria or the like in water or air. The silicate film has pores on the surface, and active titanium oxide as a photocatalyst is exposed at the bottom of the pores, so that a fluorescent lamp, an incandescent lamp, a black light, a UV lamp Artificial light, sunlight, etc. from a mercury lamp, xenon lamp, halogen lamp, metal halide lamp, etc. are irradiated to this exposed portion. The silicate film decomposes and removes adsorbed proteins, amino acids, bacteria, viruses, etc. quickly and continuously by redox action of electrons and holes generated in titanium oxide by light irradiation. can do.

また、本発明の酸化チタン複合体は、例えば、環境浄化材料として使用される。上記環境浄化材料を繊維や樹脂等の媒体に練り込んで使用した場合、これらの有機化合物材料と接触している部分が光触媒として不活性なセラミックスであるため、上記有機化合物の分解を生じることなく、悪臭物質や窒素酸化物、硫黄酸化物等の空気中の有害物質、あるいは水中に溶解している有機溶剤や農薬等の、環境を汚染している有機化合物を吸着し、蛍光灯、白熱灯、ブラックライト、UVランプ、水銀灯、キセノンランプ、ハロゲンランプ、メタルハライドランプ等からの人工光や太陽光の照射によって酸化チタンに生成した電子と正孔の酸化還元作用によって迅速に、かつ連続的に分解、除去することができる。   Moreover, the titanium oxide composite of the present invention is used as an environmental purification material, for example. When the environmental purification material is used by being kneaded in a medium such as fiber or resin, the portion in contact with the organic compound material is a ceramic that is inactive as a photocatalyst, so that the organic compound is not decomposed. Adsorbs harmful substances in the air such as odorous substances, nitrogen oxides and sulfur oxides, or organic compounds that pollute the environment, such as organic solvents and agricultural chemicals dissolved in water. , Rapidly and continuously decomposed by redox action of electrons and holes generated in titanium oxide by irradiation of artificial light or sunlight from black light, UV lamp, mercury lamp, xenon lamp, halogen lamp, metal halide lamp, etc. Can be removed.

しかも、この環境浄化材料は、光を照射するだけで、低コスト・省エネルギー的で、かつメンテナンスフリーで使用できる。そして、酸化チタン粒子上にコーティングされるケイ酸塩の内部骨格に、白金あるいはロジウム、ルテニウム、パラジウム、銀、銅、鉄、亜鉛の金属を担持したものを用いた場合には、その触媒作用により、有機化合物の分解除去効果や抗菌抗黴効果等の環境浄化効果が一層増大する。   Moreover, this environmental purification material can be used at low cost, energy saving, and maintenance-free simply by irradiating light. And, when the one that supports platinum or rhodium, ruthenium, palladium, silver, copper, iron, zinc metal is used for the internal skeleton of the silicate coated on the titanium oxide particles, In addition, environmental purification effects such as the effect of decomposing and removing organic compounds and antibacterial and antifungal effects are further increased.

本発明による環境浄化材料の媒体としては、例えば、ポリエチレンやナイロン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエステル、ポリプロピレン、ポリエチレンオキシド、ポリエチレングリコール、ポリエチレンテレフタレート、シリコン樹脂、ポリビニルアルコール、ビニルアセタール樹脂、ポリアセテート、ABS樹脂、エポキシ樹脂、酢酸ビニル樹脂、セルロース、セルロース誘導体、ポリアミド、ポリウレタン、ポリカーボネート、ポリスチレン、尿素樹脂、フッ素樹脂、ポリフッ化ビニリデン、フェノール樹脂、セルロイド、キチン、デンプンシート等の、あらゆる種類の有機繊維やプラスチックスあるいはそれらの共重合体が適用可能である。   Examples of the medium for the environmental purification material according to the present invention include polyethylene, nylon, polyvinyl chloride, polyvinylidene chloride, polyester, polypropylene, polyethylene oxide, polyethylene glycol, polyethylene terephthalate, silicon resin, polyvinyl alcohol, vinyl acetal resin, and polyacetate. , ABS resin, epoxy resin, vinyl acetate resin, cellulose, cellulose derivative, polyamide, polyurethane, polycarbonate, polystyrene, urea resin, fluororesin, polyvinylidene fluoride, phenol resin, celluloid, chitin, starch sheet, etc. Fibers, plastics or copolymers thereof are applicable.

本発明により、(1)酸化チタンからなる表面を持つ基材の表面に、例えば、アロフェン、又はイモゴライト等の無機ケイ酸塩がコーティングされた新規無機ケイ酸塩−酸化チタン複合体を合成することができる、(2)表面を覆うケイ酸塩が多孔質であるため、細孔の底に酸化チタンが露出した状態となり、この部分において酸化チタンに光が照射される酸化チタン複合材料を提供できる、(3)光の照射によって生成した電子と正孔の酸化還元作用により、悪臭や空気中の有害物質あるいは水中に溶解している有機溶剤や農薬等の環境を汚染している有機化合物を容易に分解除去する機能を有する新規複合体を製造し、提供できる、(4)また、上記ケイ酸塩が光触媒として不活性であるため、環境浄化材料を有機繊維やプラスチックス等の媒体に練り込み等により添加して使用する場合でも、ケイ酸塩に保護されて繊維やプラスチック自身の分解を生じにくく、長期間その効果を持続させることができる、(5)更に、ケイ酸塩が雑菌等を吸着する性質を持つため、吸着した雑菌等を、光の照射により酸化チタンに生じる強力な酸化力によって確実に、しかも効率良く死滅・分解することができる、という効果が奏される。   According to the present invention, (1) synthesizing a novel inorganic silicate-titanium oxide composite in which the surface of a substrate having a surface made of titanium oxide is coated with an inorganic silicate such as allophane or imogolite. (2) Since the silicate covering the surface is porous, titanium oxide is exposed at the bottom of the pores, and a titanium oxide composite material can be provided in which titanium oxide is irradiated with light in this portion. (3) Oxidation / reduction of electrons and holes generated by light irradiation facilitates odors, harmful substances in the air, organic solvents dissolved in water, and organic compounds that pollute the environment such as agricultural chemicals. (4) Moreover, since the silicate is inactive as a photocatalyst, the environmental purification material can be used as an organic fiber or plastics. Even when added to the medium by kneading or the like, it is protected by the silicate and hardly decomposes the fiber or plastic itself, and the effect can be maintained for a long time. (5) Silicate Since the salt has the property of adsorbing bacteria, the adsorbed bacteria can be killed and decomposed reliably and efficiently by the strong oxidizing power generated in titanium oxide by light irradiation. The

以下、実施例により本発明を具体的に説明するが、本発明は以下の実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by the following example.

メタケイ酸ナトリウムを脱イオン水に溶解し、100mmol/l水溶液を38.46ml調製し、この水溶液に1mol/l水酸化ナトリウム水溶液7.5mlを添加した。これとは別に、塩化アルミニウムを脱イオン水に溶解し、100mmol/l水溶液を50ml調製した。次に、塩化アルミニウム溶液にメタケイ酸ナトリウム/水酸化ナトリウム混合水溶液に添加し、室温で1時間撹拌し、前駆体懸濁液を得た。この時のケイ素/アルミニウム比は0.75であった。この前駆体生成の際に、副成した塩化ナトリウムを除去するために、遠心分離機を用いて脱イオン水で充分に洗浄した。得られた前駆体を1000mlの脱イオン水中に分散させた。   Sodium metasilicate was dissolved in deionized water to prepare 38.46 ml of a 100 mmol / l aqueous solution, and 7.5 ml of a 1 mol / l sodium hydroxide aqueous solution was added to this aqueous solution. Separately, aluminum chloride was dissolved in deionized water to prepare 50 ml of a 100 mmol / l aqueous solution. Next, it added to the aluminum chloride solution to the sodium metasilicate / sodium hydroxide mixed aqueous solution and stirred at room temperature for 1 hour to obtain a precursor suspension. The silicon / aluminum ratio at this time was 0.75. In order to remove sodium chloride formed as a by-product during the production of the precursor, the precursor was sufficiently washed with deionized water using a centrifuge. The resulting precursor was dispersed in 1000 ml of deionized water.

この前駆体懸濁液に1gの二酸化チタン(アナターゼ)基材を投入し、充分に撹拌した後、この懸濁液をテフロン(登録商標)容器に封入し、100℃で48時間加熱した。加熱終了後、遠心分離機により充分に洗浄を行った。これは、基材表面に結合することができなかったアルミニウムケイ酸塩を除去するためである。二酸化チタン基材と、生成したアルミニウムケイ酸塩はその比重が異なるため、遠心分離による分離精製が可能である。その後、電気乾燥機中で40℃常圧で乾燥し、ケイ酸塩でコーティングされた環境浄化材料を得た。   1 g of titanium dioxide (anatase) base material was put into this precursor suspension, and after sufficiently stirring, this suspension was sealed in a Teflon (registered trademark) container and heated at 100 ° C. for 48 hours. After the heating, washing was sufficiently performed with a centrifuge. This is to remove aluminum silicate that could not be bonded to the substrate surface. Since the specific gravity of the titanium dioxide base material and the produced aluminum silicate are different, separation and purification by centrifugation are possible. Then, it dried at 40 degreeC normal pressure in the electric dryer, and obtained the environmental purification material coated with the silicate.

このようにして得られたケイ酸塩でコーティングされた環境浄化材料は、X回折図形から基材アナターゼのピークが確認されるのと同時に、非晶質ケイ酸塩成分の特徴であるブロードなピークも10°付近に確認された(図1)。窒素吸着による比表面積は約200m2 /g、平均細孔直径は約1nm、全細孔容積は0.06ml/g程度の値を示した。この材料の蛍光X線分析による化学組成分析結果では、TiO2 :91.9wt%、Al2 3 :3.64wt% 、SiO2 :3.51wt%であり、10wt%程度のアルミニウムケイ酸塩が二酸化チタン基材に被覆されていることが示唆された。この時のケイ素/アルミニウム比は0.79程度であり、初期投入量にほぼ見合った組成を有していることが明らかとなった。25℃における水蒸気吸着等温線を測定した結果、相対湿度が80〜100%付近での水蒸気吸着量が増加し、最大吸着水量は23wt%程度にまで達した(図2)。 The environmental purification material coated with the silicate thus obtained has a broad peak characteristic of the amorphous silicate component at the same time as the peak of the base material anatase is confirmed from the X-ray diffraction pattern. Was also confirmed around 10 ° (FIG. 1). The specific surface area by nitrogen adsorption was about 200 m 2 / g, the average pore diameter was about 1 nm, and the total pore volume was about 0.06 ml / g. As a result of the chemical composition analysis by fluorescent X-ray analysis of this material, TiO 2 : 91.9 wt%, Al 2 O 3 : 3.64 wt%, SiO 2 : 3.51 wt%, and about 10 wt% aluminum silicate It was suggested that is coated on a titanium dioxide substrate. At this time, the silicon / aluminum ratio was about 0.79, and it was revealed that the composition substantially matched the initial input amount. As a result of measuring the water vapor adsorption isotherm at 25 ° C., the amount of water vapor adsorbed when the relative humidity was around 80 to 100% increased, and the maximum amount of adsorbed water reached about 23 wt% (FIG. 2).

また、上記環境浄化材料を用いて染色排液の脱色を行った。モデル排液としてメチレンブルー10ppmの水溶液3mlを石英セルに入れた後、上記環境浄化材料及び参照試料をそれぞれ0.01wat%となるように投入し、脱色試験を行った。投入後30分間は暗所にて撹拌を行い、それから9WのU型UVランプを照射して30分間撹拌した。この間10分毎に試料の紫外可視吸収スペクトルを測定し、吸光度の変化を調べることによって、色素の分解率を測定し環境材料としての評価を行った。その結果を図3にグラフで示す。色素分解率が高いほど、光触媒活性が高いことを示す。その結果、UVランプ照射30分後には、参照試料のTiO2 アナターゼ粉末の色素分解率が29%であったのに対し、本発明の環境浄化材料では46%の高い分解率を示すことが明らかとなった。 Also, the dyeing effluent was decolored using the environmental purification material. After putting 3 ml of an aqueous solution of 10 ppm of methylene blue as a model effluent into a quartz cell, the environmental purification material and the reference sample were added so as to be 0.01 watt%, respectively, and a decolorization test was performed. Stirring was performed in the dark for 30 minutes after the addition, and then the mixture was stirred for 30 minutes by irradiation with a 9 W U-shaped UV lamp. During this time, the UV-visible absorption spectrum of the sample was measured every 10 minutes, and the change in absorbance was examined to determine the decomposition rate of the dye and evaluated as an environmental material. The results are shown graphically in FIG. It shows that photocatalytic activity is so high that a pigment decomposition rate is high. As a result, after 30 minutes of UV lamp irradiation, the pigment decomposition rate of the TiO 2 anatase powder of the reference sample was 29%, whereas the environmental purification material of the present invention shows a high decomposition rate of 46%. It became.

100mmol/lのオルトケイ酸ナトリウム水溶液と150mmol/l塩化アルミニウム水溶液を125mlずつそれぞれ秤量した。塩化アルミニウム水溶液中にオルトケイ酸ナトリウム水溶液を添加し、室温で十分に撹拌した。撹拌しながら1mol/lの水酸化ナトリウムを液性がpH6になるまで1ml/分の速度で添加した。生成した前駆体を遠心分離機により脱イオン水を用いて洗浄し、前駆体濃度が20mmol/lになるように1000mlのオートクレーブ中に分散させた。   125 ml each of 100 mmol / l sodium orthosilicate aqueous solution and 150 mmol / l aluminum chloride aqueous solution were weighed. A sodium orthosilicate aqueous solution was added to the aluminum chloride aqueous solution, and the mixture was sufficiently stirred at room temperature. While stirring, 1 mol / l sodium hydroxide was added at a rate of 1 ml / min until the liquid reached pH 6. The produced precursor was washed with deionized water by a centrifugal separator and dispersed in a 1000 ml autoclave so that the precursor concentration was 20 mmol / l.

この前駆体懸濁液に1.0gの二酸化チタン(アナターゼ) 基材を投入し、十分に撹拌した後に、5mol/lの塩酸水溶液をpH4程度になるまで添加した。撹拌後にテフロン(登録商標)容器に封入し、100℃で48時間の水熱反応を行った。反応終了後、アンモニアを添加して液性をpH10程度まで上昇させ、イモゴライトをゲル化し、環境浄化材料を凝集させた。脱イオン水を用いた遠心分離による洗浄を行い、基材表面に結合することができなかったイモゴライトを除去した。その後、電気乾燥機を用いて40℃常圧で乾燥し、イモゴライトでコーティングされた環境浄化材料を得た。   To this precursor suspension, 1.0 g of a titanium dioxide (anatase) base material was added, and after sufficient stirring, a 5 mol / l hydrochloric acid aqueous solution was added until the pH reached about 4. After stirring, it was sealed in a Teflon (registered trademark) container and subjected to a hydrothermal reaction at 100 ° C. for 48 hours. After completion of the reaction, ammonia was added to increase the liquidity to about pH 10, gelling of imogolite, and aggregating the environmental purification material. Washing by centrifugation using deionized water was performed to remove imogolite that could not be bound to the substrate surface. Then, it dried at 40 degreeC normal pressure using the electric dryer, and obtained the environmental purification material coated with imogolite.

以上詳述したように、本発明の方法により合成される新しい酸化チタン複合材料は、基材の表面を覆うケイ酸塩膜が多孔質であって、細孔あるいはケイ酸塩ドメインの空隙を通じて、基材表面の酸化チタンに光が照射されるため、ケイ酸塩膜で覆われていないものと殆ど遜色のない光触媒作用を得ることができる。しかも、上記ケイ酸塩膜が雑菌等の汚染物質を吸着する性質を持っているため、吸着した汚染物質を上記光触媒作用によって確実、かつ効果的に分解、除去することができる。   As described in detail above, the new titanium oxide composite synthesized by the method of the present invention has a porous silicate film covering the surface of the substrate, and through pores or voids in the silicate domain, Since the titanium oxide on the substrate surface is irradiated with light, a photocatalytic action almost inferior to that not covered with the silicate film can be obtained. In addition, since the silicate film has a property of adsorbing contaminants such as bacteria, the adsorbed contaminant can be reliably and effectively decomposed and removed by the photocatalytic action.

本発明による新しい酸化チタン複合材料は、無機化合物本来の優れた耐水性、耐熱性や耐腐食性に優れるため、例えば、悪臭や煙草の煙、NOx、SOxのような、空気中に存在する有害物質の分解除去、水中に溶解している有機溶剤や農薬のような有機化合物の分解除去、廃水処理や浄水処理、汚れの防止、抗菌及び抗かび、MRSA等による院内感染の防止等、触媒担体、居室内や車内等の生活環境の湿度を自律的に制御する湿度調節材や、その特異な形状を利用した薬剤のマイクロカプセルや浄水用フィルター等広範な産業分野での利用が可能であり、更に環境の浄化に極めて有効である。しかも、上記酸化チタンは、塗料や化粧品、歯磨き粉等にも使用され、食品添加物としても認められているものであって、無毒、かつ安全であり、安価で耐候性や耐久性にも優れるため、経済的である。   The new titanium oxide composite material according to the present invention has excellent water resistance, heat resistance and corrosion resistance inherent in inorganic compounds, and therefore, for example, bad odors and harmful smoke present in the air such as cigarette smoke, NOx and SOx. Decomposition and removal of substances, decomposition and removal of organic compounds dissolved in water and organic compounds such as agricultural chemicals, wastewater treatment and water purification treatment, prevention of dirt, antibacterial and antifungal, prevention of nosocomial infections by MRSA, etc. It can be used in a wide range of industrial fields, such as humidity control materials that autonomously control the humidity of living environments such as indoors and cars, and microcapsules and water purification filters for drugs that use their unique shapes. Furthermore, it is extremely effective for environmental purification. In addition, the titanium oxide is used in paints, cosmetics, toothpastes, etc., and is recognized as a food additive. It is non-toxic, safe, inexpensive, and excellent in weather resistance and durability. Is economical.

また、上記ケイ酸塩膜が光触媒として不活性であるため、酸化チタン複合材料を有機繊維やプラスチックス等の媒体に練り込み等によって添加して使用する場合でも、媒体を劣化させなることがなく、長期間その光触媒効果を持続させることができる。したがって、本発明による酸化チタン複合材料を有機繊維やプラスチックス等の媒体に添加することにより、自動車の車内や居間、台所、トイレ等の脱臭や、廃水処理、プールや貯水の浄化だけでなく、菌や黴の繁殖防止、食品の腐敗防止等、非常に幅広い用途に適用でき、しかも、化学薬品やオゾンのような有毒な物質を使用せず、電灯の光や自然光等の光を照射するだけで、低コストで省エネルギー的、かつ安全に、メンテナンスフリーで長期間使用することができる。   Further, since the silicate film is inactive as a photocatalyst, the medium is not deteriorated even when the titanium oxide composite material is used by being kneaded into a medium such as organic fiber or plastics. The photocatalytic effect can be maintained for a long time. Therefore, by adding the titanium oxide composite material according to the present invention to a medium such as organic fibers or plastics, not only deodorization in the interior of a car, living room, kitchen, toilet, etc., wastewater treatment, purification of pools and stored water, It can be applied to a wide range of uses, such as preventing the growth of fungi and straw, and preventing food spoilage, and does not use toxic substances such as chemicals or ozone, but only emits light such as electric light or natural light. Therefore, it can be used for a long period of time with low cost, energy saving and safety, maintenance-free.

更に、本発明による酸化チタン複合材料は、ケイ酸塩前駆体懸濁液に基材を投入して製造することができる。この時のケイ酸塩前駆体懸濁液の組成や反応温度、時間を変化させることによって、表面の細孔径の大きさや細孔分布の密度等を制御することができる。   Furthermore, the titanium oxide composite material according to the present invention can be produced by introducing a substrate into a silicate precursor suspension. By changing the composition, reaction temperature, and time of the silicate precursor suspension at this time, the size of the surface pore diameter, the density of the pore distribution, and the like can be controlled.

本発明の一実施例に係わる、ケイ酸塩でコーティングされた酸化チタン複合材料のX線回折図形である。1 is an X-ray diffraction pattern of a silicate coated titanium oxide composite according to one embodiment of the present invention. 本発明の一実施例に係わる、ケイ酸塩でコーティングされた酸化チタン複合材料の水蒸気吸着等温線である。2 is a water vapor adsorption isotherm of a silicate coated titanium oxide composite according to one embodiment of the present invention. 本発明の一実施例に係わる、ケイ酸塩でコーティングされた酸化チタン複合材料のメチレンブルー脱色試験結果である。4 is a result of a methylene blue decolorization test of a titanium oxide composite coated with a silicate according to an embodiment of the present invention. 本発明の一実施例に係わる、アロフェンでコーティングされた酸化チタン複合体の電子顕微鏡写真である。It is an electron micrograph of the titanium oxide composite coated with allophane according to one embodiment of the present invention. 本発明の一実施例に係わる、イモゴライトでコーティングされた酸化チタン複合体の電子顕微鏡写真である。It is an electron micrograph of the titanium oxide composite coated with imogolite according to one embodiment of the present invention.

Claims (14)

酸化チタンからなる表面を持つ基材の表面に、無機ケイ酸塩がコーティングされた無機ケイ酸塩−酸化チタン複合体を製造する方法であって、
(1)ケイ素化合物水溶液と、アルミニウム化合物あるいは遷移金属化合物水溶液を混合し、前駆体懸濁液を調製する、
(2)上記工程で副生成した塩を除去する、
(3)上記前駆体懸濁液に基材を入れ、水熱反応を行う、
(4)上記(1)〜(3)により、表面に無機ケイ酸塩を被覆した酸化チタン複合体を合成する、
ことを特徴とする無機ケイ酸塩−酸化チタン複合体の製造方法。
A method for producing an inorganic silicate-titanium oxide composite in which an inorganic silicate is coated on the surface of a substrate having a surface made of titanium oxide,
(1) A silicon compound aqueous solution and an aluminum compound or transition metal compound aqueous solution are mixed to prepare a precursor suspension.
(2) removing the by-produced salt in the above step;
(3) A substrate is put into the precursor suspension and a hydrothermal reaction is performed.
(4) By the above (1) to (3), a titanium oxide composite having a surface coated with an inorganic silicate is synthesized.
A method for producing an inorganic silicate-titanium oxide composite characterized by the above.
基材が、酸化チタン粒子であることを特徴とする、請求項1に記載の複合体の製造方法。   The method for producing a composite according to claim 1, wherein the base material is titanium oxide particles. 無機ケイ酸塩が、アロフェン、又はイモゴライトの非晶質体ないし準結晶質体からなるケイ酸塩であることを特徴とする、請求項1に記載の複合体の製造方法。   The method for producing a composite according to claim 1, wherein the inorganic silicate is an allophane or silicate composed of an amorphous or quasicrystalline substance of imogolite. 酸化チタンの結晶形がアナターゼであることを特徴とする、請求項1に記載の複合体の製造方法。   The method for producing a complex according to claim 1, wherein the crystal form of titanium oxide is anatase. 溶液濃度がそれぞれ1mmol/l〜10000mol/lのケイ素化合物溶液と、1mmol/l〜10000mol/lのアルミニウム化合物あるいは遷移金属化合物溶液を混合する、請求項1に記載の複合体の製造方法。   The method for producing a composite according to claim 1, wherein a silicon compound solution having a solution concentration of 1 mmol / l to 10000 mol / l and an aluminum compound or transition metal compound solution having a concentration of 1 mmol / l to 10000 mol / l are mixed. ケイ素アルミニウムあるいは遷移金属化合物に対するモル比率が0.1〜5.0である請求項1に記載の複合体の製造方法。 Method for producing a complex according to claim 1 mole ratio of aluminum or the transition metal compound of silicon is 0.1 to 5.0. ケイ素化合物水溶液と、アルミニウム化合物あるいは遷移金属化合物水溶液を分速1ml〜10000lで同時混合あるいは両溶液を急速混合して混合溶液を調製する、請求項1に記載の複合体の製造方法。   The method for producing a composite according to claim 1, wherein a silicon compound aqueous solution and an aluminum compound or transition metal compound aqueous solution are simultaneously mixed at a rate of 1 ml to 10,000 l per minute, or both solutions are rapidly mixed to prepare a mixed solution. 混合溶液の液性をpH3からpH8に調整する、請求項6に記載の複合体の製造方法。   The manufacturing method of the composite_body | complex of Claim 6 which adjusts the liquid property of mixed solution from pH3 to pH8. 凝集阻止剤として、ポリエチレングリコール、ポリビニールアルコール又は界面活性剤の水溶性あるいは非水溶性の試剤を添加する、請求項6に記載の複合体の製造方法。   The manufacturing method of the composite_body | complex of Claim 6 which adds the water-soluble or water-insoluble reagent of polyethyleneglycol, polyvinyl alcohol, or surfactant as an aggregation inhibitor. 得られた前駆体懸濁液を0.1〜72時間程度振盪した後、反応副生成物である塩を除去する、請求項1に記載の複合体の製造方法。   The method for producing a complex according to claim 1, wherein the resulting precursor suspension is shaken for about 0.1 to 72 hours, and then the salt that is a reaction byproduct is removed. 前駆体懸濁液に酸性溶液を添加してpH3から6の弱酸性に調整し、生成されるケイ酸塩の形態を制御する、請求項1に記載の複合体の製造方法。   The manufacturing method of the composite_body | complex of Claim 1 which adjusts the form of the silicate produced | generated by adding an acidic solution to a precursor suspension and adjusting to the weak acidity of pH 3-6. 反応温度50〜130℃、反応時間12〜240時間の条件で、懸濁液の水分が蒸発しない方法で水熱反応を行う、請求項1に記載の複合体の製造方法。   The method for producing a composite according to claim 1, wherein the hydrothermal reaction is carried out under the conditions of a reaction temperature of 50 to 130 ° C. and a reaction time of 12 to 240 hours in a manner that does not evaporate the water content of the suspension. 反応終了後の懸濁液にアルカリ性水溶液を添加して溶液の液性をpH8〜12程度に調整し、生成物をゲル状物質として凝集させて回収する、請求項1に記載の複合体の製造方法。   The composite according to claim 1, wherein an alkaline aqueous solution is added to the suspension after completion of the reaction to adjust the liquidity of the solution to about pH 8 to 12, and the product is aggregated and recovered as a gel substance. Method. 窒素吸着による比表面積が10m/g以上である複合体を合成する、請求項1に記載の複合体の製造方法。 The manufacturing method of the composite_body | complex of Claim 1 which synthesize | combines the composite_body | complex whose specific surface area by nitrogen adsorption is 10 m < 2 > / g or more.
JP2003310334A 2003-09-02 2003-09-02 Process for producing titanium oxide composite coated with silicate Expired - Lifetime JP4182210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003310334A JP4182210B2 (en) 2003-09-02 2003-09-02 Process for producing titanium oxide composite coated with silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003310334A JP4182210B2 (en) 2003-09-02 2003-09-02 Process for producing titanium oxide composite coated with silicate

Publications (2)

Publication Number Publication Date
JP2005075698A JP2005075698A (en) 2005-03-24
JP4182210B2 true JP4182210B2 (en) 2008-11-19

Family

ID=34412237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003310334A Expired - Lifetime JP4182210B2 (en) 2003-09-02 2003-09-02 Process for producing titanium oxide composite coated with silicate

Country Status (1)

Country Link
JP (1) JP4182210B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005057384A1 (en) * 2005-11-30 2007-05-31 Nanogate Ag Electrolytically deposited metal layer for coating engine parts comprises embedded particles having a silicon dioxide coating
JP5476581B2 (en) * 2008-06-30 2014-04-23 独立行政法人産業技術総合研究所 Thermochromic fine particles, dispersion thereof, production method thereof, and light control paint, light control film and light control ink
JP5610329B2 (en) * 2008-09-01 2014-10-22 独立行政法人産業技術総合研究所 Titanium oxide volatile organic compound decomposition material coated with silicate
JP5544515B2 (en) * 2008-12-25 2014-07-09 独立行政法人産業技術総合研究所 Method for producing emulsion paint for forming weather and stain resistant film, emulsion paint and weather and stain resistant paint film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW221381B (en) * 1992-04-28 1994-03-01 Du Pont
JPH07247118A (en) * 1994-03-09 1995-09-26 Mitsubishi Materials Corp Method for producing surface-coated titanium dioxide powder
JP3051645B2 (en) * 1994-11-21 2000-06-12 日本碍子株式会社 Method for producing adsorbent and adsorbent
FR2749777B1 (en) * 1996-06-12 1998-07-31 Kodak Pathe INORGANIC TRANSPARENT PHOTOCATALYTIC COMPOSITION
JPH105598A (en) * 1996-06-27 1998-01-13 Ishihara Sangyo Kaisha Ltd Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them

Also Published As

Publication number Publication date
JP2005075698A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
JP3275032B2 (en) Environmental purification material and method for producing the same
JP2775399B2 (en) Porous photocatalyst and method for producing the same
JP5845385B2 (en) Air purifier
JPH0899041A (en) Photocatalyst of titanium oxide porous thin film and preparation of the same
JP4293801B2 (en) Active tubular titanium oxide particles, catalyst containing the titanium oxide particles, and deodorant
JP2832342B2 (en) Photocatalyst particles and method for producing the same
JP4469975B2 (en) Photocatalyst composite and organic substance conversion method using the same
CN113164867A (en) Application of fullerene and fullerene derivative composite material in degradation of formaldehyde and indoor VOCs or bacteriostasis
JP5403584B2 (en) Stain resistant material synthesized by reprecipitation method and having weather resistance and method for producing the same
JP5610329B2 (en) Titanium oxide volatile organic compound decomposition material coated with silicate
JPH11290692A (en) Photocatalyst, its manufacture, and photocatalyst-containing molding and its manufacture
JPH11226422A (en) Powdery photocatalyst body, composition for photocatalyst, photocatalyst body and its use
JP5544515B2 (en) Method for producing emulsion paint for forming weather and stain resistant film, emulsion paint and weather and stain resistant paint film
JP4621859B2 (en) Method for producing porous photocatalyst
JPH11169727A (en) Photocatalyst body and application thereof
JP4182210B2 (en) Process for producing titanium oxide composite coated with silicate
JP4296529B2 (en) Titanium oxide photocatalyst for basic gas removal
JPH0975434A (en) Deodorant using photocatalyst
JP3118558B2 (en) Water treatment catalyst and water treatment method
JPH09239277A (en) Photocatalytic powder, photocatalyst using the powder and environment cleaning method using them
JPH105598A (en) Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them
JP3579082B2 (en) Photocatalyst
JP3276297B2 (en) Photocatalyst
KR100627972B1 (en) equipment for treatment of air using immobilized photocatalytic fiber filter
JPH1199384A (en) Water purifying system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4182210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term