JPH11169727A - Photocatalyst body and application thereof - Google Patents

Photocatalyst body and application thereof

Info

Publication number
JPH11169727A
JPH11169727A JP9341333A JP34133397A JPH11169727A JP H11169727 A JPH11169727 A JP H11169727A JP 9341333 A JP9341333 A JP 9341333A JP 34133397 A JP34133397 A JP 34133397A JP H11169727 A JPH11169727 A JP H11169727A
Authority
JP
Japan
Prior art keywords
photocatalyst
silica sol
titanium dioxide
coating film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9341333A
Other languages
Japanese (ja)
Other versions
JP4112661B2 (en
Inventor
Tokumitsu Kurihara
得光 栗原
Koichi Morimitsu
廣一 森光
Tatsuo Saito
辰夫 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Titan Kogyo KK
Original Assignee
Titan Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Titan Kogyo KK filed Critical Titan Kogyo KK
Priority to JP34133397A priority Critical patent/JP4112661B2/en
Publication of JPH11169727A publication Critical patent/JPH11169727A/en
Application granted granted Critical
Publication of JP4112661B2 publication Critical patent/JP4112661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To contrive decomposition and removal of hazardous substances and environmental contaminants such as a toxic gas, agricultural chemicals and the like and enhance sterilization effect and the like by providing a binder having particle sizes within a specified range and setting ratio of primary particle size of a photocatalyst titanium dioxide to that of silica sol within a specified range, in a photocatalyst. SOLUTION: A coating film containing a silica sol as a binder component and titanium dioxide as a photocatalyst component is formed on a base constituting a wall, plate, table, support, box or the like to be deodorized. The binder as the coating film component has a particle size of 0.1-10 nm and ratio (A/B) of particle size of silica sol (B) to primary particle size (A) of the photocatalyst titanium oxide is set within a range of 200-2. By such a constitution, malodor gases such as acetaldehyde, mercaptan and the like, toxic gases such as NOx and the like, and hazardous substances and environmental pollutants such as agricultural chemicals can be decomposed and removed and sterilization effect can be enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光触媒体及びその
用途に関し、更に詳しくは、紫外線照射によって、各種
有機物及び無機物の分解効果を示す光触媒機能を有する
二酸化チタンを用いた光触媒体と、それを利用した、日
常生活において発生する各種悪臭ガスや有害ガスを除去
するのに有用な脱臭剤等に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst and a use thereof, and more particularly, to a photocatalyst using titanium dioxide having a photocatalytic function of decomposing various organic and inorganic substances by irradiation with ultraviolet rays, and a photocatalyst using the same. The present invention relates to a deodorant and the like useful for removing various odorous and harmful gases generated in daily life.

【0002】[0002]

【従来の技術】二酸化チタンなどの光触媒は紫外線を照
射すると、光励起により価電子帯から伝導帯に電子が移
行して、n型半導体となり、各種化合物の分解及び殺菌
効果を示すことは広く知られており、水中有機物の分解
(『用水と廃水』vol.30No.10(1988)p
943−948)、有機物分解や脱臭、殺菌(『表面』
vol.25 No.8(1987)p477−495、
『セラミックス』21(1986)No.4,p326
−333)等に使用できることが報告されている。
2. Description of the Related Art It is widely known that when a photocatalyst such as titanium dioxide is irradiated with ultraviolet rays, electrons are transferred from a valence band to a conduction band by photoexcitation to form an n-type semiconductor, which exhibits decomposition and sterilization effects of various compounds. Decomposition of underwater organic matter ("Water and wastewater" vol. 30 No. 10 (1988) p.
943-948), organic matter decomposition, deodorization, sterilization ("surface")
vol.25 No.8 (1987) p477-495,
"Ceramics" 21 (1986) No. 4, p326
-333).

【0003】しかし、実際にその光触媒活性を、排気ガ
ス中の有害ガスやタバコ、トイレ等の悪臭ガス、農薬な
どの有害物質、環境汚染物質の分解除去及び殺菌等の目
的で使用する場合、その使用勝手から、何らかの基体上
に担持、固定することが必要である。その他、近年、開
発されている脱臭剤などの各種機能性物質粉末について
も、粉末の形態で使用されるものは僅かである。
However, when the photocatalytic activity is actually used for the purpose of decomposing and removing harmful gas in exhaust gas, odorous gas such as tobacco and toilets, harmful substances such as pesticides, environmental pollutants, etc. For ease of use, it is necessary to carry and fix it on some kind of substrate. In addition, powders of various functional substances, such as deodorants, which have been recently developed, are rarely used in the form of powder.

【0004】機能性物質粉末の例として、光触媒用二酸
化チタンを基体に担持させる方法としては、例えば以下
のものが提案されている。
As an example of the functional substance powder, the following method has been proposed as a method for supporting titanium dioxide for a photocatalyst on a substrate.

【0005】(1)ニトロセルロース、ガラス、ポリ塩
化ビニル、ナイロン、メタクリル樹脂、ポリプロピレン
等の光透過性物質材料からなるフィルム状、ビーズ状、
ボード状、繊維状等の形状の基体に酸化チタン微粉末を
付着させる方法(特開昭62−66861号公報)。
(1) Films, beads, and the like made of a light-transmitting substance such as nitrocellulose, glass, polyvinyl chloride, nylon, methacrylic resin, and polypropylene.
A method in which titanium oxide fine powder is adhered to a substrate such as a board or a fiber (Japanese Patent Application Laid-Open No. 62-66861).

【0006】(2)多孔性ガラス支持体にチタン(IV)
テトラブトキシオキサイドのアルコール溶液を含浸し、
加熱して、アナターゼ型の酸化チタンにすることによっ
て多孔性ガラス支持体に保持・固定する方法(特開平2
−50154号公報)。
(2) Titanium (IV) on a porous glass support
Impregnated with an alcohol solution of tetrabutoxy oxide,
A method of heating and converting to titanium oxide of the anatase type to hold and fix it on a porous glass support (Japanese Patent Laid-Open No.
-50154).

【0007】(3)色素又は金属錯体などの光増感剤を
側鎖として持つ多孔性高分子膜(例えばポリフッ化エチ
レン樹脂)中に圧入、含浸、付着等の方法により、半導
体触媒粉末を保持・固定する方法(特開昭58−125
602号公報)。
(3) The semiconductor catalyst powder is retained by a method such as press-fitting, impregnating, or adhering into a porous polymer film (for example, a polyfluoroethylene resin) having a photosensitizer such as a dye or a metal complex as a side chain. .Fixing method (Japanese Patent Laid-Open No. 58-125)
602).

【0008】(4)ポリプロピレン繊維あるいはセラミ
ックスからなる濾過フィルターに酸化チタンを担持する
方法(特開平2−68190号公報)。
(4) A method in which titanium oxide is supported on a filter made of polypropylene fiber or ceramics (JP-A-2-68190).

【0009】(5)石英、ガラス、プラスチックの繊維
のからみの中に二酸化チタン粉末を保持・固定しその両
面を光透過性のガラスでおさえつける方法(アメリカ特
許4888101号)。
(5) A method in which titanium dioxide powder is held and fixed in the entanglement of quartz, glass, and plastic fibers, and both surfaces thereof are held down with light-transmitting glass (US Pat. No. 4,888,101).

【0010】(6)アルミナ基板に白金をスパッタリン
グ法により固着させ、その上にアナターゼ型の酸化チタ
ン粉末とメチルメタクリレートの有機溶媒溶液との混合
分散液をスピンコーティング法により塗着し、しかるの
ちに結着剤としてのメチルメタクリレートを加熱分解す
るとともに、アナターゼ型の酸化チタンをルチル型の酸
化チタンにする方法(Robert E.Hetri
c,AppliedPhysics Communic
ations,5,(3),177−187(198
5))。
(6) Platinum is fixed to an alumina substrate by a sputtering method, and a mixed dispersion of an anatase type titanium oxide powder and an organic solvent solution of methyl methacrylate is applied thereon by a spin coating method. A method of thermally decomposing methyl methacrylate as a binder and converting anatase type titanium oxide to rutile type titanium oxide (Robert E. Hetri
c, AppliedPhysics Communic
ations, 5, (3), 177-187 (198
5)).

【0011】(7)ポリエステル布の表面に酸化チタン
を低温溶射方法で溶射担持する方法(桜田司、表面技術
41巻、10号、P60(1990))。
(7) A method of spray-supporting titanium oxide on the surface of a polyester cloth by a low-temperature thermal spraying method (T. Sakurada, Surface Technology Vol. 41, No. 10, P60 (1990)).

【0012】(8)難分解性結着剤を介して光触媒粒子
を基体に接着させる方法(特開平7−171408号公
報)。
(8) A method of adhering photocatalyst particles to a substrate via a hardly decomposable binder (Japanese Patent Application Laid-Open No. 7-171408).

【0013】上記の公知の光触媒二酸化チタンの基体へ
の担持方法には、それぞれ以下の欠点があった。
The above-described known methods for supporting the photocatalytic titanium dioxide on the substrate have the following disadvantages.

【0014】(1),(3),(4),(5)などの有
機物バインダ−とする固定では、二酸化チタンの光触媒
作用で大部分の有機物が分解されるので、長期使用時の
固定は信頼性が無い。(2)の方法は、高価な有機チタ
ン化合物を原料とする上に、破損し易いガラスに直接担
持させているため、強度の信頼性が無い。また(6),
(7)の方法は固定の際に非常に高温になり、二酸化チ
タンの高い光触媒活性が失われるので好ましくない。
In the fixing with an organic binder such as (1), (3), (4) and (5), most of the organic substances are decomposed by the photocatalytic action of titanium dioxide. Not reliable. In the method (2), since an expensive organic titanium compound is used as a raw material, and the glass is directly supported on a glass which is easily broken, the strength is not reliable. (6),
The method (7) is not preferable because the temperature becomes extremely high during fixing and the high photocatalytic activity of titanium dioxide is lost.

【0015】(8)の方法では難分解性の結着剤を用い
ているが、難分解性とはいうものの結着剤が光触媒と接
触している限り、やがては樹脂が劣化してしまうので長
時間の使用はできない。
In the method (8), a hardly decomposable binder is used. However, as long as the binder is in contact with the photocatalyst, the resin is eventually degraded. It cannot be used for a long time.

【0016】その他、よく使用される方法として、単に
無機多孔質体、繊維にスラリ状の二酸化チタンやチタニ
アゾルを含浸、担持させる方法、及びシリカ系、アルミ
ナ系等のアルカリ塩を加水分解や加熱溶融させたバイン
ダ−を使用する方法等があるが、前者では二酸化チタン
粒子が固定されていないために、振動、衝撃で容易に脱
落するし、後者では触媒を固定するためのバインダ−に
よって、触媒表面が被覆されて活性が大部分失われると
いう問題があった。
Other commonly used methods include simply impregnating and supporting slurry of titanium dioxide or titania sol on an inorganic porous material or fiber, or hydrolysis or heat melting of a silica-based or alumina-based alkali salt. There is a method of using a binder that has been used, but in the former case, the titanium dioxide particles are not fixed, so they easily fall off due to vibration and impact, and in the latter, the binder for fixing the catalyst causes the catalyst surface to be removed. Is coated and the activity is largely lost.

【0017】又、一般に光触媒の固定に使用されている
と称されているシリカゾルは粒径が10〜20nm程度
であり、二酸化チタンとの接触面積が小さく、接着力が
不十分であった。そのためバインダーとして使用する場
合、500℃以上の高温で焼き付けて一部溶融させるこ
とで固定化させることが必要であるが、焼き付けにより
シリカが二酸化チタン粒子表面を膜状に覆ってしまうた
め、活性点がほとんど消滅し光触媒能が大幅に低下す
る。また二酸化チタンも同時に加熱され比表面積が低下
するため、二酸化チタン自身の光触媒能も低下する。更
に水性シリカゾルの場合安定化のためにNaイオンを残
存させて塩基性のゾルとしているため、塗料としたとき
にNaイオンが二酸化チタンに吸着して光触媒能を大幅
に減衰させるため、一般には光触媒用二酸化チタンの固
定用バインダーとしては実用性のないものであった。
The silica sol generally used for fixing a photocatalyst has a particle size of about 10 to 20 nm, has a small contact area with titanium dioxide, and has insufficient adhesion. Therefore, when used as a binder, it is necessary to fix by baking at a high temperature of 500 ° C. or higher and partially melting it, but the baking causes silica to cover the surface of the titanium dioxide particles in a film form. Almost disappears, and the photocatalytic ability is greatly reduced. Also, titanium dioxide is heated at the same time and the specific surface area is reduced, so that the photocatalytic ability of titanium dioxide itself is also reduced. In addition, in the case of aqueous silica sol, since a basic sol is made by leaving Na ions for stabilization, Na ions are adsorbed on titanium dioxide and greatly attenuate the photocatalytic ability when used as a coating material. It was not practical as a binder for fixing titanium dioxide.

【0018】一方、オリゴマーを使用した場合、接着力
は強いものの、粒度が小さすぎて二酸化チタン表面の水
酸基をほとんど覆ってしまうため、光触媒能が極端に低
くなる欠点がある。
On the other hand, when an oligomer is used, the adhesive strength is strong, but the particle size is too small to cover almost all the hydroxyl groups on the surface of titanium dioxide, so that the photocatalytic activity is extremely low.

【0019】更にこれらの方法では耐熱性等が必要とさ
れるため、使用できる基体の種類も制限され、広い面へ
の固定や加工が困難なために、コストがかさむ一方、光
エネルギ−を充分に利用できないという問題があった。
Further, since these methods require heat resistance and the like, the types of substrates that can be used are limited, and fixing and processing on a wide surface are difficult, so that the cost is increased and the light energy is sufficiently increased. There was a problem that it could not be used.

【0020】また最近では光触媒用二酸化チタンを固定
する方法として、二酸化チタン粒子を凝集体とする、二
酸化チタン粒子を活性炭等の無機物粒子に担持させる、
二酸化チタン粒子をシリカやアルミナ等の無機物で被覆
する等の手段で、紙等の分解され易い物質中に、接触点
を減らすことで対処する方法や、セメント等に光触媒用
二酸化チタンを混ぜて使用する方法が比較的実用化に近
いとして発表されている。
Recently, as a method for fixing titanium dioxide for photocatalyst, titanium dioxide particles are aggregated, and titanium dioxide particles are supported on inorganic particles such as activated carbon.
Titanium dioxide particles are coated with an inorganic substance such as silica or alumina, etc. to reduce the number of contact points in easily decomposed materials such as paper, or by mixing titanium dioxide for photocatalyst with cement etc. It has been announced that the method is relatively close to practical use.

【0021】しかしながら、前者では光触媒用二酸化チ
タンとの接触点での分解が防げず、また後者は高価な光
触媒用二酸化チタンをセメント内部に無駄に使用する
上、セメント自体の強度を低下させない量の触媒では、
その効果は期待できない等の欠点が残されている。更に
これらの処理、加工を行うことの煩雑さは実用化を阻害
している。
However, the former cannot prevent decomposition at the point of contact with the titanium dioxide for photocatalyst, and the latter wastes expensive titanium dioxide for photocatalyst inside the cement and has an amount that does not reduce the strength of the cement itself. In the catalyst,
There are still disadvantages such as the effect cannot be expected. Further, the complexity of performing these processes and processing hinders practical use.

【0022】上記問題は二酸化チタン以外の光触媒や、
更に吸着剤、殺菌剤等の高活性物質全てに共通のもので
ある。
The above-mentioned problems are caused by a photocatalyst other than titanium dioxide,
Furthermore, it is common to all highly active substances such as adsorbents and bactericides.

【0023】従って、これら高活性物質を実用化するに
際して、活性を低下させること無く、強度に優れ、取り
扱いが容易な固定方法が望まれていた。
Accordingly, when these highly active substances are put to practical use, there has been a demand for a fixing method which is excellent in strength and easy to handle without lowering the activity.

【0024】[0024]

【発明が解決しようとする課題】本発明は上記の問題を
解決することを目的とし、アセトアルデヒド、メルカプ
タン等の悪臭ガス、NOX等の有害ガス、農薬等の有害
物質及び環境汚染物質の分解除去、殺菌効果や加工性及
び耐候性に優れた、微粒子シリカゾルをバインダーにし
て光触媒用二酸化チタンを固定した塗膜を有する光触媒
体を提供することにある。
[SUMMARY OF THE INVENTION The present invention aims to solve the above problems, acetaldehyde, malodorous gases mercaptan, decomposing and removing harmful substances and environmental pollutants harmful gases, pesticides such as NO X Another object of the present invention is to provide a photocatalyst having a coating film on which titanium dioxide for a photocatalyst is fixed by using a fine particle silica sol as a binder, which is excellent in sterilization effect, processability and weather resistance.

【0025】[0025]

【課題を解決するための手段】本発明者らは上記の目的
を達成するために鋭意研究を行った結果、基体及び基体
表面に特定の粒径を有する水性又は有機溶剤系シリカゾ
ルをバインダーにして、かつ、光触媒用二酸化チタンの
一次粒径とシリカゾルの粒径の比が特定の範囲で光触媒
用二酸化チタンを固定した塗膜を有する光触媒体は、そ
の活性が低下することなく強度に優れ、アセトアルデヒ
ド、メルカプタン等の悪臭ガス、NOX等の有害ガス、
農薬等の有害物質、環境汚染物質の分解除去及び殺菌効
果に優れていることを見いだし、本発明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above-mentioned object, and as a result, a base and an aqueous or organic solvent-based silica sol having a specific particle size are used as a binder. In addition, a photocatalyst having a coating film in which titanium dioxide for photocatalyst is fixed in a specific range of the primary particle size of titanium dioxide for photocatalyst and the particle size of silica sol has excellent strength without lowering its activity, acetaldehyde , malodorous gases mercaptan, harmful gases such as NO X,
The present inventors have found that they have excellent effects of decomposing and removing harmful substances such as pesticides and environmental pollutants and sterilizing them, and have completed the present invention.

【0026】すなわち本発明は、基体に、バインダー成
分としてのシリカゾルと光触媒成分としての二酸化チタ
ンとを含有する塗膜を形成した光触媒体であって、前記
バインダーが0.1〜10nmの粒径を有し、かつ前記
光触媒用二酸化チタンの一次粒径(A)と前記シリカゾ
ルの粒径(B)との比(A/B)が200〜2の範囲で
あることを特徴とする光触媒体である。
That is, the present invention provides a photocatalyst in which a coating containing silica sol as a binder component and titanium dioxide as a photocatalyst component is formed on a substrate, wherein the binder has a particle size of 0.1 to 10 nm. And a ratio (A / B) of a primary particle size (A) of the titanium dioxide for photocatalyst to a particle size (B) of the silica sol is in a range of 200 to 2. .

【0027】前記光触媒体において、前記シリカゾルの
添加量は、SiO2基準で前記光触媒用二酸化チタンに
対して20〜200重量部とすることが好ましい。
[0027] In the photocatalyst, the amount of the silica sol to be added is preferably 20 to 200 parts by weight with respect to the titanium dioxide for a photocatalyst based on SiO 2 .

【0028】前記光触媒体において、前記基体表面と前
記塗膜との間に接着層を介在させることもできる。
In the photocatalyst, an adhesive layer may be interposed between the substrate surface and the coating film.

【0029】前記光触媒体において、前記基体は、アル
ミニウム、鉄、チタン、ニッケル、クロム、銅、前記金
属の1種以上を含む合金、ガラス、セラミックス、セメ
ント、木材及び合成樹脂からなる群から少なくとも1種
以上選ぶことができる。
In the photocatalyst, the substrate may be at least one selected from the group consisting of aluminum, iron, titanium, nickel, chromium, copper, an alloy containing at least one of the above metals, glass, ceramics, cement, wood, and synthetic resin. You can choose more than species.

【0030】又、前記基体は、布、繊維、樹脂フィル
ム、板及び紙からなる群から選ぶことができる。
The substrate can be selected from the group consisting of cloth, fiber, resin film, board and paper.

【0031】前記の光触媒体を用いて脱臭剤、抗菌剤、
有害ガス除去剤、又は水浄化剤とすることもできる。
A deodorant, an antimicrobial agent,
It can also be a harmful gas remover or a water purifier.

【0032】[0032]

【発明の実施の形態】本発明の光触媒体に用いる光触媒
用二酸化チタンは、メタチタン酸を700℃以下の低温
で焼成したアナターゼ型のものが好ましく、一次粒子径
が10〜50nmでかつ凝集粒径が300〜800nm
になる様に調整したものやメタチタン酸を強酸性下で解
膠処理して10〜50nmの一次粒子に単分散化したも
のが使用できる。比表面積は20〜350m2/gが好
ましく、50〜350m2/gがさらに好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The titanium dioxide for photocatalyst used in the photocatalyst of the present invention is preferably an anatase type obtained by calcining metatitanic acid at a low temperature of 700 ° C. or less, and has a primary particle diameter of 10 to 50 nm and an agglomerated particle diameter. Is 300 to 800 nm
And those obtained by peptizing metatitanic acid under strong acidity and monodispersing into primary particles of 10 to 50 nm can be used. The specific surface area 20~350m 2 / g are preferred, more preferably 50~350m 2 / g.

【0033】また二酸化チタンには、W、Sn、Mo、
V、Mn及びZn等の触媒活性を向上させる金属酸化物
を含有させることもできる。
The titanium dioxide includes W, Sn, Mo,
Metal oxides such as V, Mn and Zn that improve the catalytic activity can also be included.

【0034】前記二酸化チタンの固定に使用するシリカ
ゾルはその粒径が0.1〜10nmの微粒子タイプであ
り、1〜10nmのものがより好ましい。このシリカゾ
ルは珪酸ソーダを原料にイオン交換樹脂で脱Naして得
られた水性シリカゾル、又はアルキルシリケートをアル
カリ触媒で加水分解する方法で得られた有機溶媒系シリ
カゾルを用いることができ、又、同様の微粒子タイプの
市販のシリカゾルを用いても良い。
The silica sol used for fixing the titanium dioxide is a fine particle type having a particle size of 0.1 to 10 nm, more preferably 1 to 10 nm. As the silica sol, an aqueous silica sol obtained by removing Na with an ion exchange resin using sodium silicate as a raw material, or an organic solvent-based silica sol obtained by hydrolyzing an alkyl silicate with an alkali catalyst can be used. A commercially available silica sol of the fine particle type may be used.

【0035】本発明に記載する微粒子タイプのシリカゾ
ルは二酸化チタンに対する添加量をSiO2基準で好ま
しくは20〜200重量部、更に好ましくは30〜15
0重量部にすることにより、200℃以下の比較的低温
での焼き付けでオリゴマーに近い強い接着力を有するも
のとなる。
The fine particle type silica sol described in the present invention is preferably added in an amount of 20 to 200 parts by weight, more preferably 30 to 15 parts by weight, based on SiO 2, based on SiO 2.
By setting the amount to 0 parts by weight, it becomes possible to have a strong adhesive force close to an oligomer by baking at a relatively low temperature of 200 ° C. or less.

【0036】シリカゾルと二酸化チタン粒子表面の結合
はゾル粒子と二酸化チタン粒子の接触点で生じるが、前
記微粒子シリカゾルは本発明で好ましいと考えられる二
酸化チタンの一次粒子径10〜50nmに対して適度の
大きさを有するため、二酸化チタン表面にはシリカと結
合していない活性サイトが多く存在する。このため光触
媒能は高く保持される。二酸化チタンの一次粒径(A)と
シリカゾルの粒径(B)の比(A/B)が200〜2、好ま
しくは100〜2、より好ましくは50〜2の範囲であ
れば、二酸化チタンの一次粒子に接着するシリカゾルの
個数は、光触媒固定膜としての接着力と分解能のバラン
ス上最適な状態となる。
The binding between the silica sol and the surface of the titanium dioxide particles occurs at the contact point between the sol particles and the titanium dioxide particles, and the fine particle silica sol has an appropriate size for the primary particle diameter of 10 to 50 nm of titanium dioxide which is considered to be preferable in the present invention. Due to its size, the titanium dioxide surface has many active sites that are not bonded to silica. Therefore, the photocatalytic ability is kept high. When the ratio (A / B) of the primary particle size (A) of titanium dioxide to the particle size (B) of silica sol is in the range of 200 to 2, preferably 100 to 2, more preferably 50 to 2, The number of silica sols that adhere to the primary particles is in an optimal state in terms of the balance between the adhesive force as the photocatalyst fixed film and the resolution.

【0037】前記(A/B)が200より大きい場合、接
着力は強いがシリカゾルが酸化チタン表面の活性点をほ
とんど覆ってしまうため分解能はほとんど認められなく
なる。一方、(A/B)が2より小さい場合、分解能は高
いが固定膜としての接着力が極端に低下する。またシリ
カゾルの添加量を上記の範囲で多くしても光触媒能はほ
とんど低下せず、塗膜の強度はその添加量にほぼ比例し
て向上する。
When the ratio (A / B) is more than 200, the adhesive force is strong, but the silica sol almost covers the active sites on the titanium oxide surface, so that the resolution is hardly recognized. On the other hand, when (A / B) is smaller than 2, the resolution is high but the adhesive strength as the fixing film is extremely reduced. Even if the amount of silica sol added is increased within the above range, the photocatalytic activity hardly decreases, and the strength of the coating film increases almost in proportion to the amount added.

【0038】第一層を覆った後の余分のシリカゾルはシ
リカゾル同士でその上にシロキサン結合のネットワーク
を形成し、塗膜強度の強化に貢献している。シリカゾル
の積層はnmオーダーの空孔が多く存在し、塗膜の空隙
率は30〜70%と比較的高く保たれるので、被分解ガ
スの吸着と反応生成ガスの脱離は容易であり、光触媒反
応を律速することは無いと考えられる。
Excess silica sol after covering the first layer forms a siloxane bond network between the silica sols, thereby contributing to the enhancement of the coating film strength. Since the lamination of the silica sol has many pores in the order of nm and the porosity of the coating film is kept relatively high at 30 to 70%, the adsorption of the gas to be decomposed and the desorption of the reaction product gas are easy, It is believed that the photocatalytic reaction does not limit the rate.

【0039】微粒子シリカゾルの粒径が0.1nmより
小さいものは、オリゴマーの性質に近く不安定でゲル化
しやすいため長期保存での安定性が必要な塗料用のバイ
ンダーとしては適さない。また粒径が10nmより大き
いと、シリカゾル同士及びシリカゾルと二酸化チタン粒
子、更にはシリカゾルと基板または基板上の接着層との
接着力が弱く、塗膜としての充分な剥離強度がとれない
ので好ましくない。
If the particle size of the fine particle silica sol is smaller than 0.1 nm, it is not suitable as a binder for a coating material which needs stability during long-term storage because it is unstable and easily gelled due to its oligomer properties. On the other hand, if the particle size is larger than 10 nm, the adhesion between the silica sol and the silica sol and the titanium dioxide particles, and furthermore, the adhesion between the silica sol and the substrate or the adhesive layer on the substrate is weak, so that sufficient peel strength as a coating film cannot be obtained. .

【0040】微粒子シリカゾルをバインダーにした光触
媒塗料は、基体の材質によっては直接塗布できない場合
がある。その際には接着層として耐光性樹脂を介在させ
ることで、塗膜の形成が可能である。また接着層を介在
させた方が塗膜の固定強度はより強いものとなる。
The photocatalytic paint using fine particle silica sol as a binder may not be directly applied depending on the material of the substrate. In this case, a coating film can be formed by interposing a light-resistant resin as an adhesive layer. Further, the fixing strength of the coating film is stronger when the adhesive layer is interposed.

【0041】基板上に接着層を形成する場合に用いる耐
光性樹脂は、樹脂単独で長時間の直射日光や紫外線の照
射によって劣化しないものであれば、いずれも使用でき
るが、例えばシリコン樹脂、アクリル変成シリコン樹
脂、アクリル樹脂、シランカップリング剤及び耐光性ウ
レタン樹脂のエマルジョンの少なくとも1種が使用でき
る。
As the light-resistant resin used for forming the adhesive layer on the substrate, any resin can be used as long as the resin alone does not deteriorate due to prolonged direct sunlight or ultraviolet irradiation. At least one of a modified silicone resin, an acrylic resin, a silane coupling agent and an emulsion of a light-resistant urethane resin can be used.

【0042】塗膜に残存するNaは、水洗することで取
り除くことができる。水洗により、脱臭、殺菌等の光触
媒能の向上幅はシリカゾル添加量によって異なるが、2
〜3倍向上する場合もある。
Na remaining in the coating film can be removed by washing with water. The degree of improvement in the photocatalytic ability such as deodorization and sterilization by water washing varies depending on the amount of silica sol added.
In some cases, it is improved by up to three times.

【0043】シリカゾルの結合を強固にする目的で、前
出の光触媒塗料に低濃度の酸、または少量の珪酸ソーダ
あるいはアルミン酸ソーダを添加することで、塗膜の剥
離強度を向上させることも可能である。
The peel strength of the coating film can be improved by adding a low-concentration acid or a small amount of sodium silicate or sodium aluminate to the above-mentioned photocatalytic paint for the purpose of strengthening the bond of the silica sol. It is.

【0044】被分解ガスの種類によっては、塗膜に二酸
化チタン以外の吸着剤を併用した方が光触媒効果が高く
できる場合もある。例えばNOX浄化用として用いる場
合には、吸着剤としてゼオライト、酸化亜鉛微粉末、チ
タン工業製吸着剤TZ−100等を酸化チタンに対して
1〜30重量部添加することで、NOX浄化能を大幅に
向上させることができる。
Depending on the type of the gas to be decomposed, it may be possible to enhance the photocatalytic effect by using an adsorbent other than titanium dioxide in the coating film. For example, when used as a NO X purifying, zeolites, zinc oxide fine powder, adding 1 to 30 parts by weight of titanium Kogyo adsorbent TZ-100 or the like to the titanium oxide in the adsorbent, NO X purification performance Can be greatly improved.

【0045】尚、光触媒塗膜に透明性が必要な場合、光
触媒用二酸化チタンにおいて前述した、メタチタン酸を
強酸性下で解膠処理して10〜50nmの一次粒子に単
分散化したものを用いれば、透明性の尺度であるヘーズ
値が10%以下の塗膜を得ることができる。メタチタン
酸を単分散化した原料には、メタチタン酸を強酸性下で
解膠処理したスラリー、前記スラリーを中和洗浄したケ
ーキ、前記ケーキを乾燥したもの等を用いることができ
るが、それらの中では中和洗浄したケーキが、酸の残存
が無くかつ乾燥時の固着による分散性の低下も無いため
最も適している。
When transparency is required for the photocatalyst coating film, a titanium dioxide for photocatalyst obtained by peptizing metatitanic acid under strong acid and monodispersed into primary particles of 10 to 50 nm is used. For example, a coating film having a haze value of 10% or less, which is a measure of transparency, can be obtained. As the raw material in which metatitanic acid is monodispersed, a slurry obtained by peptizing metatitanic acid under strong acidity, a cake obtained by neutralizing and washing the slurry, and a cake obtained by drying the cake can be used. The cake which has been neutralized and washed is most suitable because there is no residual acid and there is no decrease in dispersibility due to sticking during drying.

【0046】本発明にかかる光触媒体は代表的には、光
触媒用二酸化チタン及び微粒子シリカゾルを混合・分散
して塗料化し、基体上に塗布することによって製造され
る。
The photocatalyst according to the present invention is typically produced by mixing and dispersing titanium dioxide for photocatalyst and fine particle silica sol to form a coating and applying it to a substrate.

【0047】前記塗料を作製する際の、二酸化チタン粉
末に対する微粒子シリカゾルの添加比率は前述の如く、
SiO2基準で20〜200重量部である。20重量部
より少ないと塗膜を形成するための二酸化チタン粒子と
シリカゾルの接着、更には前記塗膜の基体への接着力が
弱く剥離が生じ、また200重量部より多いと光触媒塗
料中の酸化チタン濃度が低下し、結果的に塗膜中の酸化
チタン濃度が低下するため、光触媒塗膜の単位面積当た
りの光触媒能が低下するので好ましくない。
As described above, the addition ratio of the fine particle silica sol to the titanium dioxide powder in preparing the paint is as follows.
It is 20 to 200 parts by weight based on SiO 2 . If the amount is less than 20 parts by weight, the adhesion between the titanium dioxide particles and the silica sol to form a coating film, and further, the adhesion of the coating film to the substrate is weak, causing peeling. Since the titanium concentration decreases, and as a result, the titanium oxide concentration in the coating film decreases, the photocatalytic ability per unit area of the photocatalytic coating film decreases, which is not preferable.

【0048】尚、塗工性の改良を目的に、接着層に使用
する耐光性樹脂エマルジョンを少量添加しても良い。
For the purpose of improving coating properties, a small amount of a light-resistant resin emulsion used for the adhesive layer may be added.

【0049】前記塗料を前記基体上に塗布する方法とし
ては、公知の方法が使用できるが、基体の示す性質に応
じて、塗布、吹き付け、浸漬等の適当な塗装方法を選択
できる。
As a method of applying the paint on the substrate, a known method can be used, and an appropriate coating method such as application, spraying, dipping, etc. can be selected according to the properties of the substrate.

【0050】なお、本発明で使用する光触媒用二酸化チ
タンは、悪臭ガスの脱臭効果以外にも、NOX、アンモ
ニア、硫化水素等の無機ガスや農薬等の有害物質、環境
汚染物質の分解除去及び菌類、藻類に対する殺菌、除去
などが、光触媒効果として公知であり、脱臭効果が得ら
れる場合には、光触媒効果として知られているその他の
効果も同時に得られることは明かである。従って、本発
明にかかる光触媒体は脱臭剤、抗菌剤、有害ガス除去剤
及び水浄化剤として好適に使用される。
[0050] Incidentally, photocatalytic titanium dioxide for use in the present invention, in addition to deodorization effect of malodorous gases, NO X, ammonia, harmful substances inorganic gases and pesticides such as hydrogen sulfide, decomposition removal and environmental pollutants It is clear that sterilization and removal of fungi and algae are known as photocatalytic effects, and when a deodorizing effect is obtained, other effects known as photocatalytic effects can be obtained at the same time. Therefore, the photocatalyst according to the present invention is suitably used as a deodorant, an antibacterial agent, a harmful gas remover and a water purifier.

【0051】すなわち、前記の光触媒体を用いて脱臭剤
とし、日常生活において発生するタバコ、トイレ等の悪
臭ガスを除去することができる。この場合は、脱臭を行
うべき場所の壁、板、机、支持体、箱等の基体上に、前
述したバインダー成分としてのシリカゾルと光触媒成分
としての二酸化チタンとを含有する塗膜を形成すればよ
く、室内に入射する太陽光や室内照明光、蛍光灯等を利
用して光触媒体の脱臭効果を発揮させることができる。
That is, the photocatalyst is used as a deodorant to remove odorous gas such as tobacco and toilet generated in daily life. In this case, if a film containing silica sol as a binder component and titanium dioxide as a photocatalyst component is formed on a substrate such as a wall, a plate, a desk, a support, or a box where deodorization is to be performed. Often, the deodorizing effect of the photocatalyst can be exhibited by utilizing sunlight, indoor illumination light, fluorescent light, or the like that enters the room.

【0052】また、抗菌すべき水槽の内張り等に前記塗
膜を形成すること等により抗菌剤とし、紫外線等を用い
て水槽等の容器中の菌類、藻類に対する殺菌、除去を行
うこともできる。
The antibacterial agent may be formed by, for example, forming the coating film on the lining of a water tank to be subjected to antibacterial treatment, and sterilizing and removing fungi and algae in a container such as a water tank using ultraviolet rays or the like.

【0053】さらに、前記の光触媒体を用いて有害ガス
除去剤とし、排気ガス中の有害ガスの除去を行うことが
できる。ここでいう有害ガスとは、アルデヒド、メルカ
プタン、アンモニア及びNOX等が含まれる。この場合
には、有害ガスを通過させる容器、筒等の内張り等に、
前記塗膜を形成し、太陽光又は紫外線等を照射すること
により前記有害ガスの除去を行うことができる。
Further, the above-mentioned photocatalyst can be used as a harmful gas remover to remove harmful gases in exhaust gas. The harmful gas here, aldehydes, mercaptans, include ammonia and NO X, and the like. In this case, a container that allows harmful gas to pass,
The harmful gas can be removed by forming the coating film and irradiating it with sunlight or ultraviolet rays.

【0054】また、前記の光触媒体を用いて水浄化剤と
することができる。ここでいう水とは、工場排水、鉱業
排水、工業用水、農業用水、飲料水、湖沼、河川水、海
水等を含むものである。この場合は、これらの水が存在
する湖岸、川岸、海岸、流水路、貯水槽内、濾過器内、
下水道、あるいは水棲生物の飼養域内のこれらの水と接
触しうる基体箇所に前記塗膜を形成して水浄化剤とし、
次いで、紫外線を含有した光を照射させて水を浄化す
る。紫外線を含有した光としては、例えば、太陽光や蛍
光灯、ブラックランプ、キセノンフラッシュランプ、水
銀灯などの光があげられる。
Further, the above-mentioned photocatalyst can be used as a water purifying agent. The water referred to here includes industrial wastewater, mining wastewater, industrial water, agricultural water, drinking water, lakes and marshes, river water, seawater, and the like. In this case, the lake shore, river shore, shore, running water channel, reservoir, filter,
Sewerage, or form a coating film on the substrate location that can come into contact with these waters in the aquatic breeding area as a water purification agent,
Next, water containing ultraviolet rays is irradiated to purify the water. Examples of the light containing ultraviolet light include light from sunlight, a fluorescent lamp, a black lamp, a xenon flash lamp, and a mercury lamp.

【0055】以下に実施例を挙げて、本発明の内容をよ
り詳細に説明するが、これら実施例はあくまでも例示で
あり、本発明の範囲はこれに限定されるものではない。
Hereinafter, the contents of the present invention will be described in more detail with reference to examples, but these examples are merely examples, and the scope of the present invention is not limited thereto.

【0056】[0056]

【実施例】実施例1 光触媒用二酸化チタン(チタン工業製PC−102)6
gと水性シリカゾル(粒径5nm 二酸化チタンの一次
粒径/シリカゾルの粒径=4)23.5g(SiO2
準で4.8g、即ち、二酸化チタンに対して80重量
部)を3mmのガラスビーズ60gとともに120ml
のマヨネーズ瓶に仕込み、レッドデビル社製のペイント
コンディショナーで30分間分散して塗料とした。この
触媒塗料の酸化チタン含有率は20wt%である。これ
を、アクリル変成シリコン樹脂で接着層を形成させたア
ルミニウム基板の上に2ミルのドクターブレードで塗布
し、120℃で30分乾燥して塗膜とした。この塗膜を
90℃×30分の条件で洗浄してNaを溶出、除去し
た。この膜は塗布面を手でこすっても粉の付着はなかっ
た。
EXAMPLES Example 1 Titanium dioxide for photocatalyst (PC-102 manufactured by Titanium Kogyo Co., Ltd.) 6
g and aqueous silica sol (particle diameter: 5 nm, primary particle diameter of titanium dioxide / particle diameter of silica sol = 4), and 3 mm glass beads (4.8 g based on SiO 2 , that is, 80 parts by weight based on titanium dioxide). 120ml with 60g
In a mayonnaise bottle, and dispersed with a paint conditioner manufactured by Red Devil Co. for 30 minutes to obtain a paint. The titanium oxide content of this catalyst paint is 20% by weight. This was applied on an aluminum substrate having an adhesive layer formed of an acrylic modified silicone resin with a 2 mil doctor blade and dried at 120 ° C. for 30 minutes to form a coating film. This coating was washed at 90 ° C. for 30 minutes to elute and remove Na. This film showed no powder adhesion even when the coated surface was rubbed by hand.

【0057】上記の光触媒を塗布したアルミニウム基板
を5cm×1cmに切り出して120mlのガラス製瓶
に入れ、アセトアルデヒドを瓶内のガス濃度が100p
pmになる量注入し、瓶の外から波長352nmの紫外
線を0.4mW/cm2で30分間照射した後、瓶内の
空気を柳本製作所製ガスクロマトグラフG3800(検
出器FID)で測定したところ、アセトアルデヒド濃度
は0ppmであった。同様にして、エチルメルカプタン
の浄化能を測定した結果、30分間照射後のエチルメル
カプタン濃度は30ppmであった。
An aluminum substrate coated with the above photocatalyst was cut into 5 cm × 1 cm, placed in a 120 ml glass bottle, and acetaldehyde was added to the bottle at a gas concentration of 100 p.
pm, and irradiated with ultraviolet light having a wavelength of 352 nm from the outside of the bottle at 0.4 mW / cm 2 for 30 minutes. Then, the air in the bottle was measured with a Yanagimoto gas chromatograph G3800 (detector FID). The acetaldehyde concentration was 0 ppm. Similarly, as a result of measuring the purifying ability of ethyl mercaptan, the concentration of ethyl mercaptan after irradiation for 30 minutes was 30 ppm.

【0058】次に、氷酢酸を蒸留水中に溶解し、100
mg/lの酢酸溶液を調整した。調整した酢酸溶液50
mlを200mlビーカーに分取し、上記の光触媒を塗
布した5cm×1cmのガラス基板をビーカー底面に固
定した。上部より352nmの紫外線を4mW/cm2
で5時間照射した後、溶液中の酢酸の濃度を横河電機製
イオンクロマトグラフIC500で測定した。その結果
酢酸の濃度が40mg/lまで低下した。
Next, glacial acetic acid was dissolved in distilled water,
A mg / l acetic acid solution was prepared. Prepared acetic acid solution 50
ml was taken in a 200 ml beaker, and a 5 cm × 1 cm glass substrate coated with the above photocatalyst was fixed to the bottom of the beaker. 4 mW / cm 2 of 352 nm ultraviolet light from above
, And the concentration of acetic acid in the solution was measured with an ion chromatograph IC500 manufactured by Yokogawa Electric. As a result, the concentration of acetic acid was reduced to 40 mg / l.

【0059】更にこの塗膜をスガ試験機(株)製デュー
パネル光コントロールウェザーメーターを使用して、7
2時間の紫外線照射を行ったが、塗膜の変色、塗膜の剥
落は生じなかった。また、鉛筆硬度による塗膜剥離試験
(JIS−K5400)を行ったところ、付着性は評価点
10で、鉛筆硬度は3H以上であった。
Further, the coating film was coated with a Suga Test Machine Co., Ltd.
Irradiation with ultraviolet light for 2 hours did not cause discoloration of the coating film or peeling of the coating film. Also, paint film peeling test by pencil hardness
According to (JIS-K5400), the adhesion was evaluated at a score of 10, and the pencil hardness was 3H or more.

【0060】実施例2 実施例1において、有機溶剤系シリカゾルで粒径が2n
m(二酸化チタンの一次粒径/シリカゾルの粒径=10)
のものを使用した以外は同様にして光触媒塗料を作製し
た。この膜は塗布面を手でこすっても粉の付着は無かっ
た。
Example 2 In Example 1, an organic solvent-based silica sol having a particle size of 2n was used.
m (primary particle size of titanium dioxide / particle size of silica sol = 10)
A photocatalytic paint was prepared in the same manner except that the above-mentioned was used. This film had no powder adhered even when the coated surface was rubbed by hand.

【0061】上記の光触媒を塗布したアルミニウム基板
を5cm×1cmに切り出して120mlのガラス製瓶
に入れ、アセトアルデヒドを瓶内のガス濃度が100p
pmになる量注入し、瓶の外から波長352nmの紫外
線を0.4mW/cm2で30分間照射した後、瓶内の
空気を柳本製作所製ガスクロマトグラフG3800(検
出器FID)で測定したところ、アセトアルデヒド濃度
は20ppmであった。同様にして、エチルメルカプタ
ンの浄化能を測定した結果、30分間照射後のエチルメ
ルカプタン濃度は60ppmであった。
An aluminum substrate coated with the above photocatalyst was cut into 5 cm × 1 cm, placed in a 120 ml glass bottle, and acetaldehyde was added to the bottle at a gas concentration of 100 p.
pm, and irradiated with ultraviolet light having a wavelength of 352 nm from the outside of the bottle at 0.4 mW / cm 2 for 30 minutes. Then, the air in the bottle was measured with a Yanagimoto gas chromatograph G3800 (detector FID). The acetaldehyde concentration was 20 ppm. Similarly, as a result of measuring the purification ability of ethyl mercaptan, the ethyl mercaptan concentration after irradiation for 30 minutes was 60 ppm.

【0062】更にこの塗膜をスガ試験機(株)製デュー
パネル光コントロールウェザーメーターを使用して、7
2時間の紫外線照射を行ったが、塗膜の変色、塗膜の剥
落は生じなかった。
Further, the coating film was coated with a Suga Test Machine Co., Ltd.
Irradiation with ultraviolet light for 2 hours did not cause discoloration of the coating film or peeling of the coating film.

【0063】実施例3 実施例1に記載した塗料を直接織布及び紙に塗布した
が、塗膜の剥離は全く生じなかった。この塗膜をスガ試
験機(株)製デューパネル光コントロールウェザーメー
ターを使用して、72時間の紫外線照射を行ったが、塗
膜と織布及び紙の変色、塗膜の剥落は生じなかった。
Example 3 The paint described in Example 1 was directly applied to woven fabric and paper, but no peeling of the coating film occurred. The coating film was irradiated with ultraviolet light for 72 hours using a Suga Test Machine Co., Ltd. Dew Panel Light Control Weather Meter, but no discoloration of the coating film, woven fabric and paper, and no peeling of the coating film occurred. .

【0064】実施例4 実施例1において、アクリル変成シリコン樹脂エマルジ
ョンを1.3g併用した以外は、同様にして光触媒塗料
を作製した。この膜は塗布面を手でこすっても粉の付着
は無かった。
Example 4 A photocatalytic coating material was prepared in the same manner as in Example 1, except that 1.3 g of the modified silicone resin emulsion was used in combination. This film had no powder adhered even when the coated surface was rubbed by hand.

【0065】上記の光触媒を塗布したアルミニウム基板
を5cm×1cmに切り出して120mlのガラス製瓶
に入れ、アセトアルデヒドを瓶内のガス濃度が100p
pmになる量注入し、瓶の外から波長352nmの紫外
線を0.4mW/cm2で30分間照射した後、瓶内の
空気を柳本製作所製ガスクロマトグラフG3800(検
出器FID)で測定したところ、アセトアルデヒド濃度
は5ppmであった。同様にして、エチルメルカプタン
の浄化能を測定した結果、30分間照射後のエチルメル
カプタン濃度は40ppmであった。
An aluminum substrate coated with the above photocatalyst was cut into 5 cm × 1 cm, placed in a 120 ml glass bottle, and acetaldehyde was added to the bottle at a gas concentration of 100 p.
pm, and irradiated with ultraviolet light having a wavelength of 352 nm from the outside of the bottle at 0.4 mW / cm 2 for 30 minutes. Then, the air in the bottle was measured with a Yanagimoto gas chromatograph G3800 (detector FID). The acetaldehyde concentration was 5 ppm. Similarly, as a result of measuring the purifying ability of ethyl mercaptan, the concentration of ethyl mercaptan after irradiation for 30 minutes was 40 ppm.

【0066】更にこの塗膜をスガ試験機(株)製デュー
パネル光コントロールウェザーメーターを使用して、7
2時間の紫外線照射を行ったが、塗膜の変色、塗膜の剥
落は生じなかった。
Further, this coating film was coated with a Suga Test Machine Co., Ltd.
Irradiation with ultraviolet light for 2 hours did not cause discoloration of the coating film or peeling of the coating film.

【0067】実施例5 一次粒径が20nmのメタチタン酸を塩酸解膠処理し中
和洗浄したケーキを酸化チタンとして2.5gと水性シ
リカゾル(粒径5nm 二酸化チタンの一次粒径/シリ
カゾルの粒径=4)4.9g、さらに希釈水13.7g
を3mmのガラスビーズ60gとともに120mlのマ
ヨネーズ瓶に仕込み、レッドデビル社製のペイントコン
ディショナーで30分間分散して塗料とした。この触媒
塗料の酸化チタン含有率は8wt%である。これを、ア
クリル樹脂で接着層を形成させたガラス基板の上に1ミ
ルのドクダーブレードで塗布し、120℃で30分乾燥
して塗膜とした。この塗膜を90℃x30分の条件で洗
浄してNaを溶出、除去した。この膜は塗布面を手でこ
すっても粉の付着はなかった。
Example 5 2.5 g of a cake obtained by subjecting metatitanic acid having a primary particle diameter of 20 nm to a peptization treatment with hydrochloric acid and neutralized and washed as titanium oxide and an aqueous silica sol (particle diameter of 5 nm: primary particle diameter of titanium dioxide / particle diameter of silica sol) = 4) 4.9 g, and 13.7 g of dilution water
Was placed in a 120 ml mayonnaise bottle together with 60 g of 3 mm glass beads, and dispersed with a paint conditioner manufactured by Red Devil for 30 minutes to obtain a paint. The titanium oxide content of this catalyst paint is 8% by weight. This was applied on a glass substrate on which an adhesive layer was formed with an acrylic resin using a 1 mil dokuda blade, and dried at 120 ° C. for 30 minutes to form a coating film. This coating was washed at 90 ° C. for 30 minutes to elute and remove Na. This film showed no powder adhesion even when the coated surface was rubbed by hand.

【0068】スガ試験機(株)直読ヘーズ・コンピュー
ター HGM−2DPを使用して上記の光触媒を塗布し
たガラス基板のヘーズ値を測定した結果、ヘーズ値は9
%で、実施例1で使用した酸化チタンを用い、同一処方
で塗布したもののヘーズ値85%よりかなり低く、塗膜
の透明性が大幅に改良されたものであった。
The haze value of the glass substrate coated with the above photocatalyst was measured using a haze computer HGM-2DP directly read by Suga Test Instruments Co., Ltd.
%, The haze value of the titanium oxide used in Example 1 applied with the same formulation was much lower than 85%, and the transparency of the coating film was greatly improved.

【0069】上記の光触媒を塗布したガラス基板を5c
mx1cmに切り出して120mlのガラス製瓶に入
れ、アセトアルデヒドを瓶内のガス濃度が100ppm
になる量注入し、瓶の外から波長352nmの紫外線を
0.4mW/cm2で30分間照射した後、瓶内の空気
を柳本製作所製ガスクロマトグラフG3800(検出器
FID)で測定したところ、アセトアルデヒド濃度は5
0ppmであった。同様にして、エチルメルカプタンの
浄化能を測定した結果、30分間照射後のエチルメルカ
プタン濃度は65ppmであった。
The glass substrate coated with the above photocatalyst was
mx1cm, cut into a 120ml glass bottle, and acetaldehyde gas concentration in bottle is 100ppm
After irradiating with ultraviolet light having a wavelength of 352 nm from the outside of the bottle at 0.4 mW / cm 2 for 30 minutes, the air in the bottle was measured with a gas chromatograph G3800 (detector FID) manufactured by Yanagimoto Seisakusho. The concentration is 5
It was 0 ppm. Similarly, as a result of measuring the purifying ability of ethyl mercaptan, the ethyl mercaptan concentration after irradiation for 30 minutes was 65 ppm.

【0070】更にこの塗膜をスガ試験機(株)製デュー
パネル光コントロールウェザーメーターを使用して、7
2時間の紫外線照射を行ったが、塗膜の変色、塗膜の剥
落は生じなかった。また、鉛筆硬度による塗膜剥離試験
(JIS−K5400)を行ったところ、付着性は評価
点10で、鉛筆硬度は3H以上であった。
Further, this coating film was coated with a Suga Test Equipment Co., Ltd.
Irradiation with ultraviolet light for 2 hours did not cause discoloration of the coating film or peeling of the coating film. In addition, when a paint film peeling test (JIS-K5400) was performed using a pencil hardness, the adhesiveness was evaluated at a score of 10, and the pencil hardness was 3H or more.

【0071】比較例1 実施例1において、水性シリカゾルを粒径が14nmで
二酸化チタンの一次粒径/シリカゾルの粒径が1.4の
ものに代えた以外は同様にして光触媒塗料を作製し、ア
ルミニウム基板上の接着層に塗布した。この膜は塗布面
を手でこすると粉が少し付着した。
Comparative Example 1 A photocatalytic paint was prepared in the same manner as in Example 1 except that the aqueous silica sol was changed to a particle having a particle diameter of 14 nm and a primary particle diameter of titanium dioxide / a silica sol having a particle diameter of 1.4. It was applied to an adhesive layer on an aluminum substrate. When this film was rubbed by hand, a little powder adhered.

【0072】この塗膜のアセトアルデヒド浄化能を実施
例1と同様の方法で測定したところ、紫外線30分間照
射後のアセトアルデヒド濃度は0ppmであった。同様
にしてエチルメルカプタン浄化能を測定した結果、紫外
線30分間照射後のエチルメルカプタン濃度は30pp
mであった。
The acetaldehyde purification ability of this coating film was measured in the same manner as in Example 1. As a result, the acetaldehyde concentration after irradiation with ultraviolet rays for 30 minutes was 0 ppm. Ethyl mercaptan purifying ability was measured in the same manner. As a result, the concentration of ethyl mercaptan after irradiation for 30 minutes with ultraviolet light was 30 pp.
m.

【0073】この塗膜をスガ試験機(株)製デューパネ
ル光コントロールウェザーメーターを使用して、72時
間の紫外線照射を行ったところ、塗布面を手でこすると
粉が付着し、塗膜の剥落も生じた。
When this coating film was irradiated with ultraviolet light for 72 hours using a Dew panel light control weather meter manufactured by Suga Test Instruments Co., Ltd., the powder adhered when the coated surface was rubbed by hand, Shedding also occurred.

【0074】比較例2 実施例1において、水性シリカゾルの添加量が4.5g
及び純水を19g添加した以外は同様の方法で塗料を作
製し、アルミニウム基板上の接着層に塗布した。この膜
は塗布面を手でこすると粉が付着し、塗膜の剥離も生じ
た。
Comparative Example 2 In Example 1, the amount of the aqueous silica sol added was 4.5 g.
A coating material was prepared in the same manner except that 19 g of pure water was added, and applied to the adhesive layer on the aluminum substrate. When this film was rubbed with the hand by hand, powder adhered and peeling of the coating film occurred.

【0075】この塗膜をスガ試験機(株)製デューパネ
ル光コントロールウェザーメーターを使用して、72時
間の紫外線照射を行ったところ、塗布面を手でこすると
粉が付着し、塗膜の剥落も生じた。
When this coating film was irradiated with ultraviolet light for 72 hours using a Dew panel light control weather meter manufactured by Suga Test Instruments Co., Ltd., the powder adhered when the coated surface was rubbed by hand, and Shedding also occurred.

【0076】比較例3 実施例1において、シリカゾルの粒径が0.1nm以下
でほぼオリゴマーに近いと考えられる有機溶剤系シリカ
ゾル(珪酸エチルを出発原料に、酸触媒で加水分解して
得られたもの)を使用した以外は同様の方法で塗料を作
製し、アルミニウム基板上の接着層に塗布した。この膜
は塗布面を手でこすっても粉の付着は無かった。
Comparative Example 3 In Example 1, an organic solvent-based silica sol which was considered to be almost an oligomer with a particle diameter of silica sol of 0.1 nm or less (obtained by hydrolyzing an ethyl silicate as a starting material with an acid catalyst) Coating) was prepared in the same manner except that the above-mentioned coating composition was used, and applied to the adhesive layer on the aluminum substrate. This film had no powder adhered even when the coated surface was rubbed by hand.

【0077】上記の光触媒を塗布したアルミニウム基板
を5cm×1cmに切り出して120mlのガラス製瓶
に入れ、アセトアルデヒドを瓶内のガス濃度が100p
pmになる量注入し、瓶の外から波長352nmの紫外
線を0.4mW/cm2で30分間照射した後、瓶内の
空気を柳本製作所製ガスクロマトグラフG3800(検
出器FID)で測定したところ、アセトアルデヒド濃度
は90ppmであった。同様にして、エチルメルカプタ
ンの浄化能を測定した結果、30分間照射後のエチルメ
ルカプタン濃度は95ppmでほとんど光触媒能は認め
られなかった。
The aluminum substrate coated with the photocatalyst was cut into 5 cm × 1 cm pieces, placed in a 120 ml glass bottle, and acetaldehyde was added to the bottle at a gas concentration of 100 p.
pm, and irradiated with ultraviolet light having a wavelength of 352 nm from the outside of the bottle at 0.4 mW / cm 2 for 30 minutes. Then, the air in the bottle was measured with a Yanagimoto gas chromatograph G3800 (detector FID). The acetaldehyde concentration was 90 ppm. Similarly, the purification ability of ethyl mercaptan was measured. As a result, the concentration of ethyl mercaptan after irradiation for 30 minutes was 95 ppm, and almost no photocatalytic ability was recognized.

【0078】この塗膜をスガ試験機(株)製デューパネ
ル光コントロールウェザーメーターを使用して、72時
間の紫外線照射を行ったところ、塗膜の変色、塗膜の剥
落は生じなかった。
When this coating film was irradiated with ultraviolet light for 72 hours using a Dew panel light control weather meter manufactured by Suga Test Instruments Co., Ltd., no discoloration of the coating film and no peeling of the coating film occurred.

【0079】[0079]

【発明の効果】本発明の光触媒体は、特定の粒径を有す
るシリカゾルをバインダーとし、かつ、光触媒用二酸化
チタンの一次粒径とシリカゾルの粒径の比を特定の範囲
としているため、光触媒活性が低下することなく基体と
の接着性に優れ、また、アセトアルデヒド、メルカプタ
ン、NOX等の悪臭ガスや有害ガス、農薬等の有害物
質、環境汚染物質の分解除去及び殺菌効果に優れたもの
となる。
According to the photocatalyst of the present invention, the silica sol having a specific particle size is used as a binder, and the ratio of the primary particle size of titanium dioxide for photocatalyst to the particle size of the silica sol is within a specific range. There is excellent in adhesion to the substrate without lowering, also comprising acetaldehyde, mercaptans, malodorous gases and harmful gas such as NO X, harmful substances such as agricultural chemicals, and excellent decomposition removal and sterilization effects of environmental pollutants .

【0080】また、基体表面と塗膜との間に接着層を介
在させることにより、直接塗料を塗布できない基体に対
しても良好に塗膜を形成することができると共に、塗膜
の接着強度を更に向上させることができる。
By interposing an adhesive layer between the substrate surface and the coating film, a coating film can be formed well even on a substrate on which a coating material cannot be directly applied, and the adhesive strength of the coating film can be reduced. It can be further improved.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 基体に、バインダー成分としてのシリカ
ゾルと光触媒成分としての二酸化チタンとを含有する塗
膜を形成した光触媒体であって、前記シリカゾルが0.
1〜10nmの粒径を有し、かつ前記光触媒用二酸化チ
タンの一次粒径(A)と前記シリカゾルの粒径(B)と
の比(A/B)が200〜2の範囲であることを特徴と
する光触媒体。
1. A photocatalyst in which a coating film containing silica sol as a binder component and titanium dioxide as a photocatalyst component is formed on a substrate, wherein the silica sol is 0.1% or less.
A particle diameter of 1 to 10 nm, and a ratio (A / B) of a primary particle diameter (A) of the titanium dioxide for photocatalyst to a particle diameter (B) of the silica sol is in a range of 200 to 2. Characteristic photocatalyst.
【請求項2】 前記シリカゾルの添加量がSiO2基準
で前記光触媒用二酸化チタンに対して20〜200重量
部であることを特徴とする請求項1記載の光触媒体。
2. The photocatalyst according to claim 1, wherein an addition amount of the silica sol is 20 to 200 parts by weight based on SiO 2 based on the titanium dioxide for a photocatalyst.
【請求項3】 前記基体表面と前記塗膜との間に接着層
を介在させたことを特徴とする請求項1又は2に記載の
光触媒体。
3. The photocatalyst according to claim 1, wherein an adhesive layer is interposed between the substrate surface and the coating film.
【請求項4】 前記基体が、アルミニウム、鉄、チタ
ン、ニッケル、クロム、銅、前記金属の1種以上を含む
合金、ガラス、セラミックス、セメント、木材及び合成
樹脂からなる群から選ばれる少なくとも1種以上である
ことを特徴とする請求項1乃至3のいずれか1項に記載
の光触媒体。
4. The substrate according to claim 1, wherein the substrate is at least one selected from the group consisting of aluminum, iron, titanium, nickel, chromium, copper, an alloy containing at least one of the above metals, glass, ceramics, cement, wood, and synthetic resin. The photocatalyst according to any one of claims 1 to 3, wherein:
【請求項5】 前記基体が、布、繊維、樹脂フィルム、
板及び紙からなる群から選ばれることを特徴とする請求
項1乃至4のいずれか1項に記載の光触媒体。
5. The method according to claim 1, wherein the substrate is a cloth, a fiber, a resin film,
The photocatalyst according to any one of claims 1 to 4, wherein the photocatalyst is selected from the group consisting of a board and paper.
【請求項6】 請求項1乃至5のいずれか1項に記載の
光触媒体を用いた脱臭剤。
6. A deodorant using the photocatalyst according to any one of claims 1 to 5.
【請求項7】 請求項1乃至5のいずれか1項に記載の
光触媒体を用いた抗菌剤。
7. An antibacterial agent using the photocatalyst according to any one of claims 1 to 5.
【請求項8】 請求項1乃至5のいずれか1項に記載の
光触媒体を用いた有害ガス除去剤。
8. A harmful gas remover using the photocatalyst according to any one of claims 1 to 5.
【請求項9】 請求項1乃至5のいずれか1項に記載の
光触媒体を用いた水浄化剤。
9. A water purifying agent using the photocatalyst according to any one of claims 1 to 5.
JP34133397A 1997-12-11 1997-12-11 Photocatalyst and its use Expired - Fee Related JP4112661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34133397A JP4112661B2 (en) 1997-12-11 1997-12-11 Photocatalyst and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34133397A JP4112661B2 (en) 1997-12-11 1997-12-11 Photocatalyst and its use

Publications (2)

Publication Number Publication Date
JPH11169727A true JPH11169727A (en) 1999-06-29
JP4112661B2 JP4112661B2 (en) 2008-07-02

Family

ID=18345253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34133397A Expired - Fee Related JP4112661B2 (en) 1997-12-11 1997-12-11 Photocatalyst and its use

Country Status (1)

Country Link
JP (1) JP4112661B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005319422A (en) * 2004-05-11 2005-11-17 Babcock Hitachi Kk Manufacturing method of catalyst for removing nitrogen oxide
JP2008525188A (en) * 2004-12-28 2008-07-17 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ Automatic cleaning process of dirt by photocatalyst
WO2008123278A1 (en) 2007-03-26 2008-10-16 Toto Ltd. Photocatalyst-coated object and photocatalytic coating fluid therefor
JP2008307527A (en) * 2007-03-30 2008-12-25 Toto Ltd Coated-photocatalyst object and photocatalyst coating solution therefor
JP2010099644A (en) * 2008-03-28 2010-05-06 Toto Ltd Photocatalyst-coated body and photocatalytic coating liquid for the same
JP2010149099A (en) * 2009-01-09 2010-07-08 Toto Ltd Article coated with photocatalyst, and photocatalytic coating liquid therefor
US7919425B2 (en) 2008-03-26 2011-04-05 Toto Ltd. Photocatalyst-coated body and photocatalytic coating liquid for the same
WO2011040406A1 (en) 2009-09-30 2011-04-07 Toto株式会社 Photocatalyst-coated object and photocatalyst coating liquid therefor
WO2011040405A1 (en) 2009-09-30 2011-04-07 Toto株式会社 Photocatalyst-coated object and photocatalyst coating liquid therefor
RU2482912C1 (en) * 2011-09-30 2013-05-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Method of producing filtering-sorbing material with photo catalytic properties
JP6283922B1 (en) * 2016-12-16 2018-02-28 パナソニックIpマネジメント株式会社 Photocatalyst material and photocatalyst coating composition
JP2018192466A (en) * 2017-05-19 2018-12-06 株式会社希少金属材料研究所 Tungsten compound of visible light-responsive photocatalyst, and coating
CN110237844A (en) * 2019-04-29 2019-09-17 杭州通识水润科技有限公司 A kind of nickel foam of load nano-titanium dioxide and its preparation method and application

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005319422A (en) * 2004-05-11 2005-11-17 Babcock Hitachi Kk Manufacturing method of catalyst for removing nitrogen oxide
JP2008525188A (en) * 2004-12-28 2008-07-17 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ Automatic cleaning process of dirt by photocatalyst
US7977270B2 (en) 2007-03-26 2011-07-12 Toto Ltd. Photocatalyst-coated body and photocatalytic coating liquid therefor
WO2008123278A1 (en) 2007-03-26 2008-10-16 Toto Ltd. Photocatalyst-coated object and photocatalytic coating fluid therefor
DE112008000793T5 (en) 2007-03-26 2010-04-08 Toto Ltd., Kitakyushu Photocatalytically coated body and photocatalytic coating liquid therefor
US8372774B2 (en) 2007-03-26 2013-02-12 Toto Ltd. Photocatalyst-coated body and photocatalytic coating liquid therefor
US8216959B2 (en) 2007-03-26 2012-07-10 Toto Ltd. Photocatalyst-coated body, coating composition for the same, and process for producing photocatalyst-coated body
US8207079B2 (en) 2007-03-26 2012-06-26 Toto Ltd. Photocatalyst-coated body and photocatalytic coating liquid therefor
JP2008307527A (en) * 2007-03-30 2008-12-25 Toto Ltd Coated-photocatalyst object and photocatalyst coating solution therefor
US7919425B2 (en) 2008-03-26 2011-04-05 Toto Ltd. Photocatalyst-coated body and photocatalytic coating liquid for the same
JP2010099644A (en) * 2008-03-28 2010-05-06 Toto Ltd Photocatalyst-coated body and photocatalytic coating liquid for the same
JP2010149099A (en) * 2009-01-09 2010-07-08 Toto Ltd Article coated with photocatalyst, and photocatalytic coating liquid therefor
WO2011040405A1 (en) 2009-09-30 2011-04-07 Toto株式会社 Photocatalyst-coated object and photocatalyst coating liquid therefor
WO2011040406A1 (en) 2009-09-30 2011-04-07 Toto株式会社 Photocatalyst-coated object and photocatalyst coating liquid therefor
CN102574119A (en) * 2009-09-30 2012-07-11 Toto株式会社 Photocatalyst-coated object and photocatalyst coating liquid therefor
RU2482912C1 (en) * 2011-09-30 2013-05-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Method of producing filtering-sorbing material with photo catalytic properties
JP6283922B1 (en) * 2016-12-16 2018-02-28 パナソニックIpマネジメント株式会社 Photocatalyst material and photocatalyst coating composition
JP2018095797A (en) * 2016-12-16 2018-06-21 パナソニックIpマネジメント株式会社 Photocatalyst material and photocatalyst coating composition
WO2018110173A1 (en) * 2016-12-16 2018-06-21 パナソニックIpマネジメント株式会社 Photocatalytic material and photocatalytic coating composition
JP2018192466A (en) * 2017-05-19 2018-12-06 株式会社希少金属材料研究所 Tungsten compound of visible light-responsive photocatalyst, and coating
CN110237844A (en) * 2019-04-29 2019-09-17 杭州通识水润科技有限公司 A kind of nickel foam of load nano-titanium dioxide and its preparation method and application
CN110237844B (en) * 2019-04-29 2022-07-26 杭州菜番蕃科技有限公司 Foamed nickel loaded with nano titanium dioxide and preparation method and application thereof

Also Published As

Publication number Publication date
JP4112661B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP4256070B2 (en) Photocatalyst composition
JP2001269573A (en) Photocatalyst particles, method for manufacturing the same and use of photocatalyst particles
JPH09234375A (en) Photo-reactive harmful matter removing material
JPH08196903A (en) Porous photocatalyst and manufacture thereof
JPH11169727A (en) Photocatalyst body and application thereof
JP2001070800A (en) Photocatalyst film composition and photocatalyst body using the same
JPH11226422A (en) Powdery photocatalyst body, composition for photocatalyst, photocatalyst body and its use
IL121877A (en) Photocatalysts for the degradation of organic pollutants
JP3461227B2 (en) Article having a silica film containing titanium dioxide
JP5544515B2 (en) Method for producing emulsion paint for forming weather and stain resistant film, emulsion paint and weather and stain resistant paint film
JP5090787B2 (en) Titanium oxide composite particle aqueous dispersion and production method thereof
JP2001232206A (en) Porous photocatalyst and method of manufacturing the same
JPH09613A (en) Article with silica film containing powder of functional substance
JP2002159865A (en) Titanium oxide photocatalyst for basic gas removal
WO2005026276A1 (en) Coating material
JP2006089858A (en) Photocatalytic wallpaper and porous photocatalytic wallpaper derived from the same
JPH105598A (en) Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them
JPH09239277A (en) Photocatalytic powder, photocatalyst using the powder and environment cleaning method using them
JP2010058994A (en) Silicate-coated titanium oxide material for decomposing volatile organic compound
JPH09314714A (en) Functional film and article having it
JP2003268945A (en) Interior finish material
JP4182210B2 (en) Process for producing titanium oxide composite coated with silicate
JP3521748B2 (en) Air purification filter and air purifier
KR100333590B1 (en) Deodorizer and method for deodorizing in light-regeneration mode
JPH10237794A (en) Paper and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070524

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees