JP4179489B2 - Method for producing Al alloy electrode film - Google Patents

Method for producing Al alloy electrode film Download PDF

Info

Publication number
JP4179489B2
JP4179489B2 JP22730999A JP22730999A JP4179489B2 JP 4179489 B2 JP4179489 B2 JP 4179489B2 JP 22730999 A JP22730999 A JP 22730999A JP 22730999 A JP22730999 A JP 22730999A JP 4179489 B2 JP4179489 B2 JP 4179489B2
Authority
JP
Japan
Prior art keywords
film
alloy
electrode film
etching
dry etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22730999A
Other languages
Japanese (ja)
Other versions
JP2001053024A (en
Inventor
洋 高島
誠 赤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Hitachi Metals Ltd
Original Assignee
Tokyo Electron Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd, Hitachi Metals Ltd filed Critical Tokyo Electron Ltd
Priority to JP22730999A priority Critical patent/JP4179489B2/en
Publication of JP2001053024A publication Critical patent/JP2001053024A/en
Application granted granted Critical
Publication of JP4179489B2 publication Critical patent/JP4179489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体集積回路、液晶等の電極膜に用いられるAl合金電極膜とその形成に用いられるスパッタリング用ターゲットに関するものである。
【0002】
【従来の技術】
フラットパネルディスプレイのなかでも特にTFT−LCD(Thin Film Transistor Liquid Crystal Display)は、画素の高精細化と開口率の増加に伴って画素駆動用の電極膜の幅が縮小されており、従来より用いられているCr、Ta、Mo合金等の膜では比抵抗が高く信号遅延を生じることから、最近ではこれらに比べて比抵抗が低いAl系電極膜が採用され始めている。
【0003】
Al電極膜は耐熱性に劣るため、半導体集積回路においては膜応力に起因したストレスマイグレーションや駆動電流によるジュール熱に起因したエレクトロマイグレーションにより断線を生じる問題がある。また、TFTの製造工程においては、電極膜形成後CVD(Chemical Vapor Deposition)により絶縁膜を形成する工程で200〜600℃の加熱を行う際にヒロックと呼ばれる突起物が発生し、電極が短絡する問題がある。
このため、合金化による耐熱性の改良が検討されており、次の合金が開示されている。
【0004】
IBM J.Res.Develop.、461−463(1970)にはAl−Si合金にCuを添加することによりエレクトロマイグレーション耐性が向上することが開示されている。J.Vac.Sci.Technol.A8(3)、1480−1483(1990)には希土類元素のSmを添加したAl−Sm合金膜は耐熱性とヒロック耐性を有することが開示されておりJ.Vac.Sci.Technol.B9、2542(1991)には、希土類元素であるYを添加したAl−Y合金膜は高い耐ヒロック性を有することが開示されている。また、特開平7−45555にはFe、Co、Ni、Ru、Rh、Ir、希土類元素を添加したAl合金膜は耐ヒロック性に優れることが開示されている。
特に最近、希土類元素であるNdを添加したAl−Nd合金膜はTFT−LCDの電極膜として広く実用化されている。
【0005】
【発明が解決しようとする課題】
現在、TFT−LCDのエッチング工程はウェットエッチングが主流であるが、使用する薬液にかかるコストが高く、廃液処理が煩雑であり、しかも環境への影響が懸念されることから、これらの問題が無く、エッチング制御性に優れたドライエッチングへの移行が検討されている。Al系膜のドライエッチングはエッチングガスとしてClガス、BClガスを用いて陰極、陽極間に高周波電界を印加し塩化物を生成し、その揮発性を利用してエッチングを行う方法が主流である。
しかしながら、上述のAl−Nd合金に代表されるAl−希土類元素合金膜は希土類元素の塩化物が不揮発性で、エッチング残さが発生するため、ドライエッチングの適用が極めて困難である。また、Al系膜にはドライエッチング後、膜が腐食するアフターコロージョンと呼ばれる問題がある。
【0006】
上述の問題は、Al系電極膜のパターニング工程のドライエッチング化を妨げる大きな問題である。
本発明は以上の問題点を鑑みてなされたものであり、ドライエッチング性に優れたAl合金電極膜の製造方法を提供することを目的としている。
【0007】
本発明者は、上述の課題を解決すべく鋭意検討を行った結果、B、C、4a族、5a族、6a族、Fe、Co、Ni、Ru、Rh、Pd、Ptから選ばれる元素の添加とLi、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Baの低減によりドライエッチング性に優れたAl合金電極が得られることを見出し本発明に到達した。
すなわち、本発明は、B、C、4a族、5a族、6a族、Fe、Co、Ni、Ru、Rh、Pd、Ptから選ばれる元素のうち少なくとも1種以上の元素を総量として0.1〜5原子%含有し、残部Alおよび不可避的混入元素からなり、該不可避的混入元素のうちLi、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Baの各元素の総含有量を2.90重量ppm以下に低減したスパッタリング用ターゲット材を用いて、スパッタリングによりAl合金膜を成膜し、次いで該Al合金膜を塩素系ガスを用いたドライエッチングによりパターン形成するAl合金電極膜の製造方法である。
【0009】
【発明の実施の形態】
本発明のAl合金電極膜の重要な特徴の一つは添加元素としてB、C、4a族、5a族、6a族、Fe、Co、Ni、Ru、Rh、Pd、Ptから選ばれる元素のうち少なくとも1種以上の元素を0.1〜5原子%含有することにある。
本発明の電極膜に添加されるB、C、4a族、5a族、6a族、Fe、Co、Ni、Ru、Rh、Pd、Ptはスパッタリングによる成膜ままではマトリックスに固溶状態にあるが、加熱工程においてその一部または全てが典型的には粒界に析出し、ヒロック、マイグレーションの発生を防止する耐熱性向上作用があり、しかも塩素系ガスを用いたドライエッチング時に揮発性生成物として除去されるため残さが生じ難いという特徴を持つ。
【0010】
上述の添加元素の含有量を0.1〜5原子%と定めた理由は、総添加量が0.1原子%未満では耐熱性が不十分で、5原子%を超えると膜の比抵抗が高くなるためである。添加元素の選択と総量の設定は必要とされる耐熱性と比抵抗値を考慮して行うことが好ましい。
尚、上述の添加元素群から適当な元素を選択することによって、製品製造中に該電極膜が曝される雰囲気や製品を使用する雰囲気に対する耐食性を付与することも可能である。例えば、上述の添加元素のうちCr、Ta、Tiは不動を形成する元素であるため、耐酸化性高める効果がある。また、Ru、Rh、Pd、Ptは電気化学的に貴な元素であるため、添加することにより電極電位を高める作用があり、例えばITO(Indium Tin Oxide)とAl合金電極を積層する構造において、アルカリ性の現像液を用いた場合に生じる積層界面の酸化、還元反応による導通不良を防止する効果がある。
【0011】
本発明においてLi、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Baから選ばれる元素の総含有量を100重量ppm以下と定めたのは、含有量が100重量ppmを超えるとアフターコロージョンの発生が顕著となるためである。これらの元素によりアフターコロージョンが引き起こされる機構は明らかでないが、比較的安定な塩化物を生成する元素であるため、含有量が増加すると膜表面に生成されるこれらの元素の塩化物が増加し、大気解放時に空気中に含まれる水分等と反応して膜を腐食させると思われる。また、Li、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Baは電極膜の導電性を低下させる原因にもなるため、比抵抗を低減する目的からも含有量を可能な限り低減することが好ましい。Li、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Baの含有量は好ましくは50重量ppm以下であり、さらに好ましくは10重量ppm以下である。
尚、上記以外の不可避的に混入し得る元素はドライエッチング性に影響を与えないが、導電性に影響するため、総含有量は好ましくは1000重量ppm以下、さらに好ましくは500ppm以下である。
【0012】
上述の本発明の電極膜は、B、C、4a族、5a族、6a族、Fe、Co、Ni、Ru、Rh、Pd、Ptの総含有量が0.1〜5原子%の範囲にあり、Li、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Baの総含有量が100重量ppm以下、残部実質的にAlからなる本発明のスパッタリング用ターゲットを用いてスパッタリングすることにより形成することができる。
【0013】
本発明のスパッタリング用ターゲットは、Al原料にZone Melting法、三層式電解法、Ziegler法、AlCl浴電解精製法等の精製を適用したものを用い、添加元素原料についても同様にZone Melting法、若しくは個々の元素に応じた精製を適用したものを用い、溶解鋳造法、粉末冶金法、スプレーフォーミング法、Liquid Dynamic Compaction等の技術を適用することにより得られる。
尚、本発明のAl合金膜のドライエッチング方法は特に限定されるものではないが、プラズマエッチング、反応性イオンエッチング等の公知の技術によりエッチング可能である。
【0014】
【実施例】
三層式電解法により精製された純度99.99%のAl原料を所望の組成となるよう秤量後、真空溶解し、鋳塊をφ100×4tに機械加工を施して表1に示す各組成のスパッタリング用ターゲットを作製した。
また、比較例としてAl原料に純度99%以上の再生塊を使用し、上記の本発明例と同様に製造を行ったスパッタリング用ターゲットを作製した。
【0015】
【表1】

Figure 0004179489
【0016】
これらのスパッタリング用ターゲットをスパッタ装置に装着し、DCマグネトロンスパッタによりArガスを用いて25×50×1.1mm、100×100×1.1mmのコーニング社製#7059ガラス上に膜厚2000Åの薄膜を形成した。25×50×1.1mmサイズの試料は10−1Pa以下に排気を行いながら、250、350、450℃で30分間熱処理を行った後、直流4探針法にて比抵抗を測定した。また、耐ヒロック性評価として450℃で熱処理を施した試料の表面をSEM観察した。
100×100×1.1mmサイズの試料は東京応化工業製フォトレジスト商品名OFPRを2μm塗布し、20μm幅の短冊形パターンを露光後、東京応化工業製現像液商品名NMD−3を用いて現像を行いレジストパターンを形成した。次にこれらを平行平板型ドライエッチング装置を用いてBCl:Cl=2:1、圧力10mTorr、RF電力1500Wの条件下で反応性イオンエッチングを施し、レジスト剥離液によりレジストを除去後、エッチング部の表面状態をSEM観察した。
【0017】
(エッチング後の表面状態)
ドライエッチング後のSEM観察の結果、本発明のAl合金膜のエッチング表面の残さやアフターコロージョンによる膜面の腐食痕は見られず、ドライエッチング性に優れると判断された。また、これらと主成分含有量が同じでLi、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Baの含有量が多い比較例のAl合金膜にはエッチング部表面の残さは見られなかったもののアフターコロージョンによる腐食痕が見られた。
比較例のAl−Nd合金膜はNd含有量が少ない組成はエッチング残さが見られなかったものの、Nd含有量が多い組成にはエッチング残さとアフターコロージョンによる膜面の腐食痕が見られた。尚、このアフターコロージョンはエッチング残さに含まれる塩素により引き起こされたと推定される。
【0018】
(耐熱性)
本発明のAl合金膜はヒロックが見られなかった。比較例のAl−Nd合金膜は、Nd含有量が多い組成はヒロックが観察されなかった。Nd含有量の少ない組成はヒロックが観察された。
【0019】
(比抵抗)
本発明例のAl合金膜、比較例のAl合金膜いずれも熱処理温度が高いほど比抵抗が低下する傾向が認められた。主成分含有量が同じ本発明の膜と比較例の膜の比抵抗を比較するとLi、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Baの含有量が少ない本発明のAl合金膜の方が比抵抗が低い。
本発明例の添加元素のなかで特にB、Cは熱処理温度全域に渡って比抵抗が低く、次いでCo、Niが低い傾向が認められた。また、4a族元素は熱処理温度が低い領域では前記元素に比べて比抵抗が高いが、熱処理温度450℃では前記元素に次ぐ水準まで低下した。以上の結果を表2に示す。
【0020】
【表2】
Figure 0004179489
【0021】
比較例のAl−Nd合金膜は耐熱性を保ちつつエッチング残さを低減することが不可能であるため、耐熱性とドライエッチング性を要求される電極膜には不適格であるのに対し、本発明のAl合金電極膜は耐熱性とドライエッチング性を両立する優れた性質を有していることが判る。
【0022】
【発明の効果】
本発明によれば、耐熱性とドライエッチング性を両立するAl合金膜が得られ、高精細なAl合金電極膜の形成に際して欠くことのできない技術となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an Al alloy electrode film used for an electrode film of a semiconductor integrated circuit, a liquid crystal or the like, and a sputtering target used for the formation thereof.
[0002]
[Prior art]
Among flat panel displays, TFT-LCDs (Thin Film Transistor Liquid Crystal Displays) have been used in the past because the width of the electrode film for driving the pixels has been reduced with the increase in pixel definition and the increase in aperture ratio. Since films such as Cr, Ta, and Mo alloys that are used have a high specific resistance and cause signal delay, recently, Al-based electrode films having a low specific resistance compared to these films have begun to be adopted.
[0003]
Since the Al electrode film is inferior in heat resistance, the semiconductor integrated circuit has a problem of disconnection due to stress migration due to film stress and electromigration due to Joule heat due to drive current. In the TFT manufacturing process, a protrusion called hillock is generated when heating is performed at 200 to 600 ° C. in the process of forming an insulating film by CVD (Chemical Vapor Deposition) after the electrode film is formed, and the electrode is short-circuited. There's a problem.
For this reason, improvement in heat resistance by alloying has been studied, and the following alloys are disclosed.
[0004]
IBM J.M. Res. Develop. 461-463 (1970) discloses that electromigration resistance is improved by adding Cu to an Al-Si alloy. J. et al. Vac. Sci. Technol. A8 (3), 1480-1483 (1990) discloses that Al—Sm alloy films added with rare earth element Sm have heat resistance and hillock resistance. Vac. Sci. Technol. B9, 2542 (1991) discloses that an Al—Y alloy film doped with rare earth element Y has high hillock resistance. Japanese Patent Application Laid-Open No. 7-45555 discloses that an Al alloy film added with Fe, Co, Ni, Ru, Rh, Ir, and a rare earth element has excellent hillock resistance.
Particularly recently, an Al—Nd alloy film added with Nd, which is a rare earth element, has been widely put into practical use as an electrode film for TFT-LCD.
[0005]
[Problems to be solved by the invention]
Currently, the etching process of TFT-LCD is mainly wet etching, but there is no such problem because the cost of chemicals used is high, the waste liquid treatment is complicated, and there are concerns about the impact on the environment. The transition to dry etching having excellent etching controllability has been studied. For dry etching of Al-based films, Cl 2 gas and BCl 3 gas are used as etching gases to apply a high-frequency electric field between the cathode and anode to generate chloride, and etching is performed using the volatility thereof. is there.
However, the Al-rare earth element alloy film typified by the Al-Nd alloy described above is extremely difficult to apply dry etching because the rare earth element chloride is nonvolatile and etching residue is generated. In addition, the Al-based film has a problem called after-corrosion in which the film corrodes after dry etching.
[0006]
The above problem is a big problem that hinders dry etching in the patterning process of the Al-based electrode film.
The present invention has been made in view of the above problems, and an object thereof is to provide a method for producing an Al alloy electrode film having excellent dry etching properties.
[0007]
As a result of intensive studies to solve the above-mentioned problems, the present inventor has found an element selected from B, C, 4a group, 5a group, 6a group, Fe, Co, Ni, Ru, Rh, Pd, and Pt. The inventors have found that an Al alloy electrode excellent in dry etching can be obtained by addition and reduction of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, and Ba, and the present invention has been achieved.
That is, the present invention provides a total amount of at least one element selected from B, C, 4a, 5a, 6a, Fe, Co, Ni, Ru, Rh, Pd, and Pt. ˜5 atomic%, comprising the balance Al and unavoidable mixed elements, and among these unavoidable mixed elements, the total content of each element of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba An Al alloy electrode film in which an Al alloy film is formed by sputtering using a sputtering target material reduced to 2.90 wt ppm or less, and then the Al alloy film is patterned by dry etching using a chlorine-based gas It is a manufacturing method.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
One of the important features of the Al alloy electrode film of the present invention is that among the elements selected from B, C, 4a group, 5a group, 6a group, Fe, Co, Ni, Ru, Rh, Pd, and Pt as additive elements. There exists in containing 0.1-5 atomic% of at least 1 or more types of element.
B, C, 4a group, 5a group, 6a group, Fe, Co, Ni, Ru, Rh, Pd, and Pt added to the electrode film of the present invention are in a solid solution state in the matrix as they are formed by sputtering. In the heating process, a part or all of it typically precipitates at the grain boundary, has an effect of improving heat resistance to prevent the occurrence of hillocks and migration, and as a volatile product during dry etching using a chlorine-based gas. Since it is removed, it has a feature that it is difficult to produce a residue.
[0010]
The reason why the content of the above-mentioned additive element is set to 0.1 to 5 atomic% is that the heat resistance is insufficient when the total addition amount is less than 0.1 atomic%, and the specific resistance of the film exceeds 5 atomic %. This is because it becomes higher. The selection of the additive element and the setting of the total amount are preferably performed in consideration of the required heat resistance and specific resistance value.
In addition, by selecting an appropriate element from the above-described additive element group, it is possible to impart corrosion resistance to the atmosphere in which the electrode film is exposed during the manufacture of the product or the atmosphere in which the product is used. For example, Cr of additive elements described above, Ta, since Ti is an element forming a stationary state, an effect of increasing oxidation resistance. In addition, since Ru, Rh, Pd, and Pt are electrochemically noble elements, they have the effect of increasing the electrode potential when added. For example, in a structure in which ITO (Indium Tin Oxide) and an Al alloy electrode are stacked, There is an effect of preventing poor conduction due to oxidation and reduction reaction of the laminated interface that occurs when an alkaline developer is used.
[0011]
In the present invention, the total content of elements selected from Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, and Ba is set to 100 ppm by weight or less when the content exceeds 100 ppm by weight. This is because the occurrence of after-corrosion becomes remarkable. The mechanism by which after-corrosion is caused by these elements is not clear, but since it is an element that produces relatively stable chloride, when the content increases, the chloride of these elements generated on the film surface increases, It seems to react with moisture contained in the air when it is released to the atmosphere and corrode the film. In addition, Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, and Ba also cause a decrease in the conductivity of the electrode film, so the content can be reduced as much as possible for the purpose of reducing the specific resistance. It is preferable to reduce. The content of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, and Ba is preferably 50 ppm by weight or less, and more preferably 10 ppm by weight or less.
Elements other than the above that can be inevitably mixed do not affect the dry etching property, but affect the conductivity, so that the total content is preferably 1000 ppm by weight or less, more preferably 500 ppm or less.
[0012]
In the electrode film of the present invention described above, the total content of B, C, 4a group, 5a group, 6a group, Fe, Co, Ni, Ru, Rh, Pd, and Pt is in the range of 0.1 to 5 atomic%. Yes, sputtering is performed using the sputtering target of the present invention in which the total content of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, and Ba is 100 ppm by weight or less and the balance is substantially Al. Can be formed.
[0013]
The sputtering target of the present invention uses an Al raw material obtained by applying purification such as Zone Melting method, three-layer electrolysis method, Ziegler method, AlCl 3 bath electrolytic purification method, etc., and also for the additive element raw material Zone Melting method Alternatively, it can be obtained by applying a technique such as a melt casting method, a powder metallurgy method, a spray forming method, a liquid dynamic compaction, etc. using a material to which purification according to individual elements is applied.
The dry etching method for the Al alloy film of the present invention is not particularly limited, but can be etched by a known technique such as plasma etching or reactive ion etching.
[0014]
【Example】
An Al raw material having a purity of 99.99% purified by a three-layer electrolytic method is weighed so as to have a desired composition, then melted in vacuum, and the ingot is machined to φ100 × 4t, and each composition shown in Table 1 is obtained. A sputtering target was produced.
Further, as a comparative example, a reclaimed lump having a purity of 99% or more was used as an Al raw material, and a sputtering target manufactured in the same manner as in the above-described example of the present invention was produced.
[0015]
[Table 1]
Figure 0004179489
[0016]
A thin film having a film thickness of 2000 mm is mounted on a # 7059 glass manufactured by Corning Corporation using Ar gas by DC magnetron sputtering and 25 × 50 × 1.1 mm and 100 × 100 × 1.1 mm. Formed. A 25 × 50 × 1.1 mm size sample was heat-treated at 250, 350, and 450 ° C. for 30 minutes while evacuating to 10 −1 Pa or less, and then the specific resistance was measured by a direct current four-probe method. Moreover, the surface of the sample which heat-processed at 450 degreeC as Shillock resistance evaluation was observed by SEM.
A 100 × 100 × 1.1 mm sample was coated with 2 μm of a photoresist product OFPR manufactured by Tokyo Ohka Kogyo Co., Ltd., exposed to a strip pattern having a width of 20 μm, and developed using a developer product product NMD-3 manufactured by Tokyo Ohka Kogyo Co., Ltd. To form a resist pattern. Next, these were subjected to reactive ion etching using a parallel plate type dry etching apparatus under the conditions of BCl 3 : Cl 2 = 2: 1, pressure 10 mTorr, RF power 1500 W, and the resist was removed with a resist stripping solution, followed by etching. The surface state of the part was observed by SEM.
[0017]
(Surface condition after etching)
As a result of SEM observation after dry etching, the etching surface residue of the Al alloy film of the present invention and the film surface corrosion marks due to after-corrosion were not found, and it was judged that the dry etching property was excellent. In addition, the residue of the etched portion surface is not observed in the Al alloy film of the comparative example having the same main component content and having a large content of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, and Ba. Although it was not, corrosion marks due to after-corrosion were observed.
The Al—Nd alloy film of the comparative example showed no etching residue in the composition with a small Nd content, but the composition with a large Nd content showed etching residue and corrosion marks on the film surface due to after-corrosion. This after-corrosion is presumed to be caused by chlorine contained in the etching residue.
[0018]
(Heat-resistant)
No hillocks were observed in the Al alloy film of the present invention. In the Al—Nd alloy film of the comparative example, no hillock was observed in the composition having a high Nd content. Hillock was observed in the composition having a low Nd content.
[0019]
(Resistivity)
In both the Al alloy film of the present invention and the Al alloy film of the comparative example, it was recognized that the specific resistance tended to decrease as the heat treatment temperature increased. When the specific resistance of the film of the present invention having the same main component content and the film of the comparative example are compared, the Al alloy of the present invention having a small content of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, and Ba The specific resistance of the film is lower.
Among the additive elements in the examples of the present invention, B and C were found to have low specific resistance over the entire heat treatment temperature, and then Co and Ni tended to be low. Further, the group 4a element has a higher specific resistance than the element in the region where the heat treatment temperature is low, but it decreased to a level next to the element at a heat treatment temperature of 450 ° C. The results are shown in Table 2.
[0020]
[Table 2]
Figure 0004179489
[0021]
Since the Al—Nd alloy film of the comparative example cannot reduce the etching residue while maintaining heat resistance, it is not suitable for an electrode film that requires heat resistance and dry etching properties. It can be seen that the Al alloy electrode film of the invention has excellent properties that achieve both heat resistance and dry etching properties.
[0022]
【The invention's effect】
According to the present invention, an Al alloy film having both heat resistance and dry etching properties can be obtained, which is an indispensable technique for forming a high-definition Al alloy electrode film.

Claims (2)

B、C、4a族、5a族、6a族、Fe、Co、Ni、Ru、Rh、Pd、Ptから選ばれる元素のうち少なくとも1種以上の元素を総量として0.1〜5原子%含有し、残部Alおよび不可避的混入元素からなり、該不可避的混入元素のうちLi、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Baの各元素の総含有量を2.90重量ppm以下に低減したスパッタリング用ターゲット材を用いて、スパッタリングによりAl合金膜を成膜し、次いで該Al合金膜を塩素系ガスを用いたドライエッチングによりパターン形成することを特徴とするAl合金電極膜の製造方法。Contains at least one element selected from B, C, 4a, 5a, 6a, Fe, Co, Ni, Ru, Rh, Pd, and Pt in a total amount of 0.1 to 5 atomic%. , Balance Al and inevitable mixed elements, and the total content of each element of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba among the inevitable mixed elements is 2.90 ppm by weight An Al alloy electrode film characterized by forming an Al alloy film by sputtering using a sputtering target material reduced to the following, and then patterning the Al alloy film by dry etching using a chlorine-based gas . Production method. 前記のドライエッチングは、プラズマエッチングまたは反応性イオンエッチングであることを特徴とする請求項1に記載のAl合金電極膜の製造方法。  The method for producing an Al alloy electrode film according to claim 1, wherein the dry etching is plasma etching or reactive ion etching.
JP22730999A 1999-08-11 1999-08-11 Method for producing Al alloy electrode film Expired - Fee Related JP4179489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22730999A JP4179489B2 (en) 1999-08-11 1999-08-11 Method for producing Al alloy electrode film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22730999A JP4179489B2 (en) 1999-08-11 1999-08-11 Method for producing Al alloy electrode film

Publications (2)

Publication Number Publication Date
JP2001053024A JP2001053024A (en) 2001-02-23
JP4179489B2 true JP4179489B2 (en) 2008-11-12

Family

ID=16858795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22730999A Expired - Fee Related JP4179489B2 (en) 1999-08-11 1999-08-11 Method for producing Al alloy electrode film

Country Status (1)

Country Link
JP (1) JP4179489B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186779A (en) * 2005-04-26 2007-07-26 Mitsui Mining & Smelting Co Ltd Al-Ni-B ALLOY WIRING MATERIAL, AND ELEMENT STRUCTURE USING THE SAME
JP3979605B2 (en) * 2005-04-26 2007-09-19 三井金属鉱業株式会社 Al-Ni-B alloy wiring material and element structure using the same
WO2006117884A1 (en) * 2005-04-26 2006-11-09 Mitsui Mining & Smelting Co., Ltd. Al-Ni-B ALLOY WIRING MATERIAL AND DEVICE STRUCTURE USING SAME
US7531904B2 (en) 2005-04-26 2009-05-12 Mitsui Mining & Smelting Co., Ltd. Al-Ni-B alloy wiring material and element structure using the same
KR20080086997A (en) * 2006-08-09 2008-09-29 미쓰이 긴조꾸 고교 가부시키가이샤 Junction structure of device
KR100999908B1 (en) * 2006-10-16 2010-12-13 미쓰이 긴조꾸 고교 가부시키가이샤 Al-Ni-B ALLOY MATERIAL FOR REFLECTION FILM
JP4377906B2 (en) * 2006-11-20 2009-12-02 株式会社コベルコ科研 Al-Ni-La-based Al-based alloy sputtering target and method for producing the same

Also Published As

Publication number Publication date
JP2001053024A (en) 2001-02-23

Similar Documents

Publication Publication Date Title
JP3365954B2 (en) Al-Ni-Y alloy thin film for semiconductor electrode and sputtering target for forming Al-Ni-Y alloy thin film for semiconductor electrode
JP5975186B1 (en) Ag alloy sputtering target and method for producing Ag alloy film
US20060091792A1 (en) Copper alloy thin films, copper alloy sputtering targets and flat panel displays
WO2007063991A1 (en) Thin film transistor substrate and display device
US20130136949A1 (en) Aluminum alloy film, wiring structure having aluminum alloy film, and sputtering target used in producing aluminum alloy film
TWI471439B (en) Al - based alloy sputtering target and Cu - based alloy sputtering target
TW201305353A (en) Silver alloy sputtering target for forming electroconductive film, and method for manufacture same
JP4179489B2 (en) Method for producing Al alloy electrode film
JP4815194B2 (en) Conductive thin film, alloy target material for protective layer thereof, and manufacturing method thereof
JP3634208B2 (en) Electrode / wiring material for liquid crystal display and sputtering target
JP2013084907A (en) Wiring structure for display device
CN105473760B (en) Diaphragm formation sputtering target and stacking wiring film
JP5547574B2 (en) Al-based alloy sputtering target
TW201627505A (en) Sputtering target and layered film
KR20010015335A (en) Αl ALLOY THIN FILM FOR SEMICONDUCTOR DEVICE ELECTRODE AND SPUTTERING TARGET FOR FORMING Αl ALLOY THIN FILM FOR SEMICONDUCTOR DEVICE ELECTRODE
JP4188299B2 (en) Ag-based alloy wiring electrode film for flat panel display, Ag-based alloy sputtering target, and flat panel display
JP4405008B2 (en) Electrode / wiring material for liquid crystal display and manufacturing method thereof
US20040057864A1 (en) Alloy target used for producing flat panel displays
JP4009165B2 (en) Al alloy thin film for flat panel display and sputtering target for forming Al alloy thin film
JP3061654B2 (en) Semiconductor device material for liquid crystal display and molten sputtering target material for manufacturing semiconductor device material for liquid crystal display
JP4264397B2 (en) Ag-based alloy wiring electrode film for flat panel display, Ag-based alloy sputtering target, and flat panel display
JP2011017944A (en) Aluminum alloy film for display device, display device, and aluminum alloy sputtering target
JP2698752B2 (en) High purity titanium material for forming a thin film, target and thin film formed using the same
KR20110030745A (en) Manufacturing method of an array substrate for liquid crystal display
KR102329427B1 (en) Alloy composition for wired electrodes and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060123

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees