JP4169303B2 - Single crystal pulling equipment and operating method thereof - Google Patents

Single crystal pulling equipment and operating method thereof Download PDF

Info

Publication number
JP4169303B2
JP4169303B2 JP14304699A JP14304699A JP4169303B2 JP 4169303 B2 JP4169303 B2 JP 4169303B2 JP 14304699 A JP14304699 A JP 14304699A JP 14304699 A JP14304699 A JP 14304699A JP 4169303 B2 JP4169303 B2 JP 4169303B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal pulling
vacuum pump
main
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14304699A
Other languages
Japanese (ja)
Other versions
JP2000327480A (en
Inventor
大輔 北村
信幸 佐藤
昭夫 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP14304699A priority Critical patent/JP4169303B2/en
Publication of JP2000327480A publication Critical patent/JP2000327480A/en
Application granted granted Critical
Publication of JP4169303B2 publication Critical patent/JP4169303B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、単結晶引上げ設備及びその操作方法に関し、より詳細には、単結晶引上げ装置を複数台配設した単結晶引上げ設備であって、主、副2種の真空ポンプを備え、各単結晶引き上げ装置内を減圧真空化するに際し、減圧の態様に応じて該2種の真空ポンプを切り替えて使用できるように構成された単結晶引上げ設備及びその操作方法に関する。
【0002】
【従来の技術】
半導体製造工業においては、半導体デバイス製造のため、リコン単結晶ウエハ等の単結晶ウエハを大量に使用している。これらのウエハ、例えばシリコン単結晶ウエハは、そのほとんどが単結晶引上げ装置を用いた所謂チョクラルスキー法による単結晶インゴットから作製される。
また、最近では、これら単結晶インゴットを大量生産する必要性から、単結晶引上げ装置を多数台まとめて設置した単結晶引上げ設備での生産が一般化している。
【0003】
従来、単結晶引上げ装置は、例えば図2の模式図に示したように、内部にシリコン融液等の単結晶構成物質の融液を貯留する石英坩堝21、該石英坩堝21を支承するカーボン製受器22、及び加熱用発熱体23等を内部に収容した主チャンバーC1 と、その上部に仕切弁AV1 を介して配置され、単結晶引上げ治具24等が収容された上部チャンバーC2 とから構成されている。
【0004】
また前記主チャンバーC1 と上部チャンバーC2 には、それぞれのチャンバー内を減圧真空化するための排気用配管の接続ポートP2 、P1 とArガス等の不活性ガスを導入するためのガス供給配管の接続ポートQ2 、Q1 とが配設されている。
そして、一般に、単結晶の引上げ操作は真空中で実施され、単結晶引き上げ治具24に結晶核となる種結晶を取付ける場合や、引上げられた単結晶の搬出や原料シリコンチップ等を搬入する場合等には、前記不活性ガスを導入してチャンバー内を常圧に戻してから実施される。
従来の単結晶引上げ装置では、図3に示すように、装置内を常圧から真空に減圧する場合、主チャンバーC1 の排気用配管接続ポートP2 からの配管の端末に接続配設された主真空ポンプVP1 を駆動させて系内を減圧真空化する。
【0005】
一方、単結晶引上げ操作中は、ガス供給配管接続ポートQ1 から不活性ガスを少量ずつ供給しながら主真空ポンプVP1 を駆動させて排気し真空状態を維持する。
前記単結晶引き上げ治具24に結晶核となる種結晶を取付ける場合等、主チャンバーC1 を真空状態に保ったまま上部チャンバーC2 を常圧に戻して操作する場合には、前記仕切弁AV1 を閉じ、ポートQ1 から不活性ガスを供給して該上部チャンバーC2 を常圧に戻し、一方主チャンバーC1 はポートQ2 から少量の不活性ガスを供給しながら主真空ポンプVP1 により排気を続行し、主チャンバーC1 内の真空状態を維持する。
そして、上記の常圧に戻した上部チャンバーC2 を再び真空状態に戻す場合には、今度は副真空ポンプVP2 を駆動させて排気し、上記主チャンバーC1 とほぼ同等の真空度に達した時点で前記仕切弁AV1 を開き、同時に弁LV2 を閉じてから副真空ポンプVP2 を停止する。
【0006】
従来の単結晶引上げ設備では、上記のような単結晶引上げ装置と真空ポンプ及び配管等の真空系統諸設備とが一対で複数組併設された態様のものが一般的であった。
このように各単結晶引上げ装置毎に真空系統諸設備を設けた態様の単結晶引上げ設備が一般的であった理由は、設置された単結晶引上げ装置を全て稼動して同時に引き上げ操作を実施する場合、あるいは、装置を逐次的に稼動して操業させる場合、あるいはまた、装置の一部のみ稼動させる場合等、色々な実施の態様があったためである。
【0007】
【発明が解決しようとする課題】
ところで、最近では、半導体製造コストの低減が強く求められるようになってきており、当然、単結晶引き上げに要するコストの低減も重要な課題となっている。また、最近の単結晶引上げ設備の大規模化傾向に伴い、単結晶引上げ装置を数十台以上設置した設備が一般的になってきている。そのため、多数の主副真空ポンプを設置する必要が生じ、その設置場所を広く必要とすると共に、設備費が嵩むという課題があった。
【0008】
本発明は、単結晶引上げ装置を複数台配設した単結晶引上げ設備において、単結晶引上げ装置の上部チャンバーを排気真空化する副真空ポンプを共用することによって、従来の単結晶引上げ設備に比較して設備コスト及び運転コストが低く、かつスペース効率性に優れた単結晶引上げ設備、及び該設備の操作方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
上記目的を達成するためになされた本発明にかかる単結晶引上げ設備は、坩堝を収容する主チャンバーの上部に仕切弁を介して上部チャンバーが設けられた単結晶引上げ装置を複数台配設した単結晶引上げ設備において、各単結晶引上げ装置の主チャンバー、上部チャンバーを減圧するための主、副真空ポンプを具備し、主真空ポンプは、各単結晶引上げ装置毎にその主チャンバーからの配管に接続されて配設されると共に、副真空ポンプは、各装置の上部チャンバーからの各配管を接続集合してなる共用配管に接続設置され、かつ前記上部チャンバー・共用配管間の接続配管と前記主チャンバー・主真空ポンプ間の接続配管との間に連絡配管が配設され、各単結晶引上げ装置において前記副真空ポンプが共用可能に構成されると共に前記各チャンバーの減圧操作に応じて主真空ポンプと副真空ポンプとが切替え可能に構成されていることを特徴としている。
【0010】
ここで、前記各単結晶引上げ装置の上部チャンバー・共用配管間の接続配管と主チャンバー・主真空ポンプ間の接続配管の連絡配管接続部の前後に弁が設けられると共に、前記連絡配管の途中及び前記共用配管の副真空ポンプ接続部の前に弁が設けられていることが望ましい。
また、前記副真空ポンプの排気容量が、前記各単結晶引上げ装置に設けられた主真空ポンプの排気容量より大きく、かつ、その到達真空度が10-3乃至10-4mmHgであり、前記主真空ポンプの到達真空度が10-1至10-2mmHgであることが望ましく、また前記主真空ポンプがメカニカルブースターポンプと水封ポンプの直列組合せであり、前記副真空ポンプがメカニカルブースターポンプとドライポンプの直列組合せであることが望ましい。
【0011】
また、上記目的を達成するためになされた本発明にかかる単結晶引上げ設備の減圧操作方法は、主チャンバーの上部に仕切弁を介して上部チャンバーが設けられた単結晶引上げ装置が複数台配設され、各単結晶引上げ装置を減圧するための主、副真空ポンプを備え、主真空ポンプは、各単結晶引上げ装置毎にその主チャンバーからの排気配管に接続して配設され、副真空ポンプは、各装置の上部チャンバーからの各配管を接続集合してなる共用配管に接続設置され、かつ、上部チャンバー・共用配管間の接続配管と主チャンバー・主真空ポンプ間の接続配管との間に、連絡配管が配設された単結晶引上げ設備の減圧操作方法において、常圧からの排気減圧に際して、主真空ポンプを停止又はアイドリング状態として、副真空ポンプを駆動させて排気し、前記単結晶引上げ装置内が所定の真空度に達した時に、前記副真空ポンプを停止し、主真空ポンプを駆動させて排気し、単結晶引き上げ装置内を所望の真空度に維持することを特徴としている。
【0012】
また、上記目的を達成するためになされた本発明にかかる単結晶引上げ設備の減圧操作方法は、常圧からの排気減圧に際しては、主真空ポンプにより単結晶引上げ装置及び配管内を共用配管と概ね同程度に減圧した後、単結晶引上げ装置及び配管を共用配管と連結し、その後に主真空ポンプは停止又はアイドリング状態として、副真空ポンプを駆動させて排気し、前記単結晶引上げ装置内が所定の真空度に達した時に、前記副真空ポンプを停止し、主真空ポンプを駆動させて排気し、単結晶引き上げ装置内を所望の真空度に維持することを特徴としている。
ここで、前記副真空ポンプ停止時に、共用配管内を減圧状態のままに維持することが望ましい。
【0013】
本発明の単結晶引き上げ設備は、各単結晶引上げ装置を減圧するための主、副2種の真空ポンプを備え、主真空ポンプが、各単結晶引上げ装置毎に、排気配管系に接続して配設されていること、また副真空ポンプが共用配管に接続設置されて共用されること、更に主真空ポンプの排気配管系と副真空ポンプの排気配管系との間に開閉弁を備えた連絡配管が配設されていることに特徴がある。
上記のように副真空ポンプが共用可能な本発明の単結晶引き上げ設備は、従来の単結晶引上げ設備に必要とされた各単結晶引き上げ装置毎の副真空ポンプの設置を省略でき、これに要する設備購入費、設置費等の費用を節約することができる。
更に、本発明の単結晶引上げ設備の特定の排気ライン構成により、該設備の立ち上げ等に際し、比較的大きな排気容量を必要とする各単結晶引上げ装置の常圧からある程度の真空度に達するまでの排気を該共用の副真空ポンプを用いて行うことができるため、各単結晶引上げ装置毎に設置される主真空ポンプの容量を、例えば、単結晶引上げ操作中に必要とされる排気容量程度にまで小型化することができる。
【0014】
また、上記構成により本発明の単結晶引き上げ設備は、従来の設備に比べて著しくその所要スペースを低減することができる。
特に、各単結晶引上げ装置に設置される主真空ポンプとして、メカニカルブースターポンプと水封ポンプを直列に組合せて用い、共用の副真空ポンプとしてメカニカルブースターポンプとドライポンプを直列に組合せて用いた態様のものは、排気操作中における単結晶引上げ装置の主チャンバー内や上部チャンバー内への真空ポンプ油等の油滴の逆拡散を回避することができ、また、停電あるいは瞬間電圧低下等のトラブルが発生した場合でも油の逆流が回避できるため装置内を油汚染することがなく好都合である。
【0015】
【発明の実施の形態】
以下に、本発明の一実施形態を図1に基づき説明する。なお、図1は、本発明の単結晶引上げ設備の一実施形態を示した概略図であって、その配管系統を示す図である。
図1に示した単結晶引上げ設備の例では、単結晶引上げ装置1は少なくとも4台(1a、1b、1c、1d)併設され、これら単結晶引き上げ装置1は、それぞれ、従来と同様に内部にシリコン融液等の融液を貯留する石英坩堝、該石英坩堝を支承するカーボン製受器及び加熱用発熱体等(いずれも図示せず)を収容した主チャンバーC1 と、その上部に仕切弁AV1 を介して配置され、単結晶引き上げ治具等(図示せず)が収容された上部チャンバーC2 とから構成されている。
【0016】
前記主チャンバーC1 と上部チャンバーC2 には、それぞれのチャンバー内を減圧真空化するための排気用配管の接続ポートP2 、P1 とArガス等の不活性ガスを導入するためのガス供給配管の接続ポートQ2 、Q1 とが配設されている。前記両チャンバーC1 、C2 のガス供給配管接続ポートQ2 、Q1 には、それぞれ開閉弁を介して不活性ガス貯槽等のガス供給源に通ずる不活性ガス供給配管が接続される(図示せず)。
また、主チャンバーC1 の排気用配管接続ポートP2 には、弁LV1 、連絡配管L3 との接続部(分岐部)LB1 及び弁V1 が、この順序に配設された真空排気用配管L1 が接続され、その下流側端末には主真空ポンプVP1 が接続されている。
また、上部チャンバーC2 の排気用配管接続ポートP1 には、弁LV2 、連絡配管L3 との接続部(分岐部)LB2 及び弁V3 が、この順序に配設された真空排気用配管L2 が接続され、該配管L2 の他方の端末は共用配管10に接続されてい。更に、前記共用配管10には、弁V4 を介して副真空ポンプVP2 が接続されている。
【0017】
前記主真空ポンプVP1 に通ずる真空排気用配管L1 と共用配管10に通ずる真空排気用配管L2 のそれぞれの分岐部(接続部)LB1 ,LB2 には、連絡配管L3 が接続配設され、該連絡配管L3 には途中に弁V2 が設けられている。
【0018】
次に、図1に示した本発明にかかる単結晶引上げ設備を稼動させて、初期状態から所望の単結晶引上げ装置(例えば、単結晶引上げ装置1a)を排気真空化する動作について説明する。
まず、弁V1 、LV2 を閉じて、主真空ポンプVP1 を停止又はアイドリング状態にし、主チャンバーC1 のポートP2 に接続する真空排気用配管L1 の弁LV1 と連絡配管L3 の途中に設けられた弁V2 を開く。そして、副真空ポンプVP2 を起動させると共に共用配管10に接続する真空排気用配管L2 に設けられた弁V3 、該共用配管10の副真空ポンプVP2 の前に設けられた弁V4 をそれぞれ開き、副真空ポンプVP2 により単結晶引き上げ装置1aの系内を排気減圧化する。このとき、仕切弁AV1 は開き、上部チャンバーC2 と主チャンバーC1 とは連通状態にある。
【0019】
このとき、後述するように、共用配管10は減圧状態(50Torr)になされているため、真空ポンプVP2 の起動時における装置内の急激な減圧衝撃を回避するため、また、該ポンプVP2 が異物を吸入するトラブルを回避するため、該主ポンプVP1 を動作して、共用配管10と同程度の真空度にしてから弁V3 の開放を行うのが好ましい。
前記弁V3 、V4 を開く前に、先ず弁V1 を開き、主真空ポンプVP1 を用いて初期排気し、急激な減圧衝撃がない程度に減圧してから前記弁V3 を開く。そして、副真空ポンプVP2 を起動し、続いてV4 を開くようにすることによって、共用配管10の減圧状態による急激な減圧衝撃等を回避することができる。
【0020】
また、前記弁V3 の弁開度制御を行うことによって、前記した共用配管10の減圧状態による急激な減圧衝撃等を回避することもできる。即ち、弁V3 の開度制御を行う場合には、該弁V3 にガス流量制御用弁等を使用して、弁V3 を通過するガス流量を徐々に増やさせる開度制御を行い、副真空ポンプVP2 による急激な減圧衝撃等を回避する。
【0021】
そして、副真空ポンプVP2 によって、該単結晶引上げ装置1a内の真空度、即ち主チャンバーC1 及び上部チャンバーC2 内の真空度を、副真空ポンプVP2 の到達真空度の10-3乃至10-4mmHg程度にし、ここで一旦、チャンバ内に漏れがないかを確認する。すなわちチャンバ内の漏れチェックは排気容量が大きく且つ到達真空度が高い副真空ポンプVP2 によって行われる。またこの副真空ポンプVP2 は排気容量が大きいためチャンバ内の圧力を、前記共通配管10の50Torrから10-3乃至10-4mmHgまで短時間に達することができる。
その後、前記連絡配管L3 の途中の弁V2 を閉じ、副真空ポンプVP2 を停止して、主真空ポンプVP1 を起動させる。ガス供給配管接続ポートQ2 から極少量の不活性ガスを導入し、チャンバ圧力を10-1乃至10-2mmHg程度にした後、主真空ポンプの前の弁V1 を開き、装置内が所定の真空度、例えば10-1乃至10-2mmHgに維持するように排気する。
この副真空ポンプVP2 から主真空ポンプVP1 への切替え後においては、前記上部チャンバーC2 のガス供給配管接続ポートQ1 から極少量の不活性ガスを導入しながら主真空ポンプVP1 を駆動させて所望の真空度に到達させる。この不活性ガスの導入は、装置内に残存する微量の反応性ガスを除去し、系内を完全に不活性化する観点からなされる。
【0022】
一方、前記副真空ポンプVP2 から主真空ポンプVP1 への切替えた後、副真空ポンプVP2 を停止する際に、弁V3 と弁V4 を閉じる。そして、共用配管10の真空度(例えば50Torr程度)を保持する。
このように、共用配管10の真空度(例えば50Torr程度)を保持することは、引き続き別の単結晶引上げ装置1を立ち上げる場合に、あるいは後述する単結晶引上げ工程において引上げ治具に種結晶を取付ける場合に、あるいは単結晶搬出の場合に、主チャンバーC1 を真空状態に保ったまま上部チャンバーC2 を常圧に戻して操作し、操作後再び該上部チャンバーC2 を真空化するのに適している。
即ち、予め共用配管10が所定の真空度に保持されているため、副真空ポンプVP2 再起動時の当初排気範囲が弁V4 の下流側(弁V4 から副真空ポンプVP2 の間)だけと狭くなり、単結晶引上げ装置1の早期立ち上げ及び単結晶引上げ運転のサイクル期間短縮化を図ることができる。
【0023】
単結晶引上げ装置1内が、目的とする真空度に到達し、単結晶の引上げ運転を実施する際は、前記ガス供給配管接続ポートQ1 から系内への不活性ガス導入を続行しながら主真空ポンプVP1 による排気を続け系内を所定の真空度に維持する。
単結晶引上げ運転において、引上げ治具に種結晶を取付ける場合や単結晶搬出の場合等、主チャンバーC1 を真空状態に保ったまま上部チャンバーC2 を常圧に戻す場合には、先ず仕切弁AV1 を閉じて両チャンバーC1 、C2 を隔離して後、前記ガス供給配管接続ポートQ1 から不活性ガスを導入して常圧に戻す。
この時、該隔離された主チャンバーC1 内には、ガス供給配管接続ポートQ2 から不活性ガスを極少量導入しながら主真空ポンプVP1 による排気を続け、該主チャンバーC1 内の真空を維持する。
【0024】
操作が終了して後、再び該上部チャンバーC2 を真空状態に戻す場合には、副真空ポンプVP2 を起動させて、弁LV2 、V3 、V4 を開く。そして、該チャンバーC2 内を前記主チャンバーC1 内の真空度とほぼ等しい真空度に到達したとき仕切弁AV1 を開いて弁LV2 、V3 、V4 を閉じ、前記した手順で副真空ポンプVP2 を停止する。
2番目以降の単結晶引上げ装置の立ち上げに際しては、単結晶引上げ装置1aについて例示した上述の操作手順を用いて順次立ち上げることができる。このとき、前述したように副真空ポンプから主真空ポンプへの切替え時に、共用配管10を真空に保持し、主真空ポンプで初期排気してから副真空ポンプを起動する前記した別手順の操作を採用しても良い。これにより、装置の早期立ち上げ、及び引上げサイクル短縮化を図ることができる。
【0025】
本発明の単結晶引上げ設備に設置される単結晶引上げ装置は、例えば、図2に示したような主チャンバーと上部チャンバー及び仕切弁を備えた、所謂チョクラルスキー法に用いられる単結晶引上げ装置あれば特に限定されるものではなく、従来型の装置を含め任意の装置を用いることができる。
また、本発明の単結晶引上げ設備で用いる主、副真空ポンプに関しては、それらの排気容量は、設置される単結晶引上げ装置の台数、各単結晶引上げ装置の大きさ、各装置の配置レイアウト等、単結晶引上げ設備の規模、態様を勘案して、適宜設定される。
また、主真空ポンプは、各単結晶引上げ装置毎に配設される関係から、その容積に基づいて定められ、通常8インチサイズの単結晶インゴット引上げ装置の場合、5乃至10Nm3 /min程度、12インチサイズの単結晶インゴット引上げ装置の場合、10乃至20Nm3 /min程度のものが用いられる。
【0026】
副真空ポンプは、共用されること及び常圧からの排気にも使用されることから少なくとも主真空ポンプより大きな排気容量のものが用いられる。
副真空ポンプの排気容量は、上記した諸要件に依存してかなり大きく変わるが、例えば、12インチサイズの単結晶インゴット引上げ装置を4台設置した標準レイアウトの単結晶引上げ設備の場合、排気容量15乃至35Nm3 /min程度のものが用いられる。
また、真空ポンプの到達真空度に関しては、副真空ポンプは、10-3乃至10-4mmHgのものを用いることが好ましく、主真空ポンプは副真空ポンプより消費電力を小さくするため到達真空度が低い、通常10-1乃至10-2mmHgのものを用いることが好ましい。
【0027】
更に、排気操作中における単結晶引上げ装置の主チャンバー内や上部チャンバー内への真空ポンプ油等の油滴の逆拡散や停電あるいは瞬間電圧低下等の場合における真空ポンプ油の逆流等の装置内汚染を回避するめ、主、副両真空ポンプにはオイルレスタイプの真空ポンプを使用することが好ましい。特に、主真空ポンプには、メカニカルブースターポンプと水封ポンプを直列に組合せて用い、共用副真空ポンプとしてメカニカルブースターポンプとドライポンプを直列に組合せて用いるのが好ましい。
本発明の単結晶引上げ設備において、例えば不活性ガス供給配管系、不活性ガス貯槽、その他の付帯設備、一般機器、制御システム等は、この種の単結晶引上げ設備で通常使用されている公知のものを用いることができる。
【0028】
【発明の効果】
本発明の単結晶引上げ設備は、上記した特定の構成により、単結晶引上げ装置を多数配設した場合においても、各単結晶引上げ装置を排気真空化する副真空ポンプを共用することができ、しかも、稼動させる単結晶引上げ装置を自在に選択できると共に該稼動装置のみを選択的に排気真空化できる。
また、従来の単結晶引上げ設備に比較して設備コスト及び運転コストが低く、かつ、スペース効率性に優れている。
【図面の簡単な説明】
【図1】本発明の単結晶引上げ設備の一実施形態を示した概略図である。
【図2】単結晶引上げ装置の構造を説明するための概略図である。
【図3】従来の単結晶引上げ設備における単結晶引上げ装置の減圧配管系統図である。
【符号の説明】
1 単結晶引上げ装置
1a、1b、1c、1d 単結晶引上げ装置
10 共用配管
21 石英坩堝
22 カーボン製受器
23 加熱用発熱体
24 単結晶引上げ治具
1 主チャンバー
2 上部チャンバー
1 真空排気用配管(主チャンバー・主真空ポンプ間)
2 真空排気用配管(上部チャンバー・共用配管間)
3 連絡配管
LB1 分岐部(接続部)
LB2 分岐部(接続部)
AV1 仕切弁
LV1 、LV2 、V1 、V2 、V3 、V4
1 、P2 接続ポート(排気用配管)
1 、Q2 接続ポート(ガス供給配管)
VP1 主真空ポンプ
VP2 副真空ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a single crystal pulling equipment and a method for operating the single crystal pulling equipment. More specifically, the present invention relates to a single crystal pulling equipment in which a plurality of single crystal pulling devices are arranged, and includes two main and sub vacuum pumps. The present invention relates to a single crystal pulling equipment and a method for operating the single crystal pulling apparatus that are configured so that the two types of vacuum pumps can be switched and used in accordance with a reduced pressure mode when the inside of the crystal pulling apparatus is evacuated.
[0002]
[Prior art]
In the semiconductor manufacturing industry, a large amount of single crystal wafers such as recon single crystal wafers are used for manufacturing semiconductor devices. Most of these wafers, for example, silicon single crystal wafers, are produced from a single crystal ingot by the so-called Czochralski method using a single crystal pulling apparatus.
Recently, due to the necessity of mass production of these single crystal ingots, production in a single crystal pulling facility in which a large number of single crystal pulling apparatuses are installed together has become common.
[0003]
2. Description of the Related Art Conventionally, as shown in the schematic diagram of FIG. 2, for example, a single crystal pulling apparatus includes a quartz crucible 21 that stores therein a melt of a single crystal constituent material such as a silicon melt, and a carbon product that supports the quartz crucible 21. A main chamber C 1 in which the receiver 22 and the heating element 23 for heating are accommodated, and an upper chamber C 2 that is disposed on the upper portion of the main chamber C 1 via a gate valve AV 1 and accommodates the single crystal pulling jig 24 and the like. It consists of and.
[0004]
In addition, the main chamber C 1 and the upper chamber C 2 are connected to exhaust ports for evacuating and vacuuming the respective chambers P 2 , P 1 and a gas for introducing an inert gas such as Ar gas. Supply piping connection ports Q 2 and Q 1 are provided.
In general, the pulling operation of the single crystal is performed in a vacuum, and when a seed crystal serving as a crystal nucleus is attached to the single crystal pulling jig 24, when the pulled single crystal is taken out, or a raw silicon chip is loaded For example, the inert gas is introduced to return the inside of the chamber to normal pressure.
In the conventional single crystal pulling apparatus, as shown in FIG. 3, when the inside of the apparatus is depressurized from normal pressure to vacuum, it is connected to the end of the pipe from the exhaust pipe connection port P 2 of the main chamber C 1 . The main vacuum pump VP 1 is driven to evacuate the system.
[0005]
On the other hand, during the single crystal pulling operation, the main vacuum pump VP 1 is driven to exhaust while maintaining the vacuum state while supplying the inert gas from the gas supply pipe connection port Q 1 little by little.
When the upper chamber C 2 is returned to normal pressure while the main chamber C 1 is kept in a vacuum state, such as when a seed crystal serving as a crystal nucleus is attached to the single crystal pulling jig 24, the gate valve AV 1 is closed and an inert gas is supplied from the port Q 1 to return the upper chamber C 2 to normal pressure, while the main chamber C 1 supplies the main vacuum pump VP 1 while supplying a small amount of inert gas from the port Q 2. Then, evacuation is continued, and the vacuum state in the main chamber C 1 is maintained.
When the upper chamber C 2 having been returned to the normal pressure is returned to the vacuum state again, this time, the sub vacuum pump VP 2 is driven and evacuated to reach a vacuum level substantially equal to that of the main chamber C 1. At that time, the gate valve AV 1 is opened, and at the same time, the valve LV 2 is closed, and then the auxiliary vacuum pump VP 2 is stopped.
[0006]
Conventional single crystal pulling equipment generally has a mode in which a plurality of pairs of the single crystal pulling apparatus as described above and various vacuum system equipment such as a vacuum pump and piping are provided side by side.
The reason why the single crystal pulling equipment in which the vacuum system equipment is provided for each single crystal pulling apparatus in this way is common is that all the single crystal pulling apparatuses installed are operated and simultaneously performing the pulling operation. This is because there are various embodiments, such as when the apparatus is operated and operated sequentially, or when only a part of the apparatus is operated.
[0007]
[Problems to be solved by the invention]
By the way, recently, reduction of semiconductor manufacturing cost has been strongly demanded. Naturally, reduction of cost required for single crystal pulling is also an important issue. In addition, with the recent trend of increasing the scale of single crystal pulling equipment, equipment with several tens or more of single crystal pulling apparatuses has become common. Therefore, it is necessary to install a large number of main and sub vacuum pumps, and there is a problem that the installation place is wide and the equipment cost is increased.
[0008]
The present invention is a single crystal pulling facility in which a plurality of single crystal pulling devices are arranged, and uses a sub-vacuum pump for evacuating and evacuating the upper chamber of the single crystal pulling device, thereby comparing with a conventional single crystal pulling device. It is an object of the present invention to provide a single crystal pulling equipment with low equipment cost and operation cost and excellent space efficiency, and a method of operating the equipment.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the single crystal pulling equipment according to the present invention includes a single crystal pulling device in which a plurality of single crystal pulling devices each having an upper chamber provided via a gate valve are arranged above a main chamber that houses a crucible. The crystal pulling equipment is equipped with main and sub vacuum pumps for depressurizing the main chamber and upper chamber of each single crystal pulling device, and the main vacuum pump is connected to the pipe from the main chamber for each single crystal pulling device. The sub-vacuum pump is connected to a common pipe formed by connecting and collecting the pipes from the upper chamber of each device, and the connection pipe between the upper chamber and the common pipe and the main chamber・ Communication pipes are arranged between the main vacuum pumps and connecting pipes, and each single crystal pulling device is configured so that the sub vacuum pumps can be used in common. Depending on depressurization of Yanba is characterized in that it is configured to be able to switch the main vacuum pump and a sub-vacuum pump.
[0010]
Here, a valve is provided before and after the connecting pipe connecting portion of the connecting pipe between the upper chamber and the common pipe of each single crystal pulling apparatus and the connecting pipe between the main chamber and the main vacuum pump, and in the middle of the connecting pipe and It is desirable that a valve be provided in front of the sub vacuum pump connection portion of the common pipe.
The sub-vacuum pump has an exhaust capacity larger than an exhaust capacity of a main vacuum pump provided in each single crystal pulling device, and an ultimate vacuum is 10 −3 to 10 −4 mmHg, The ultimate vacuum of the vacuum pump is preferably 10 −1 to 10 −2 mmHg, the main vacuum pump is a series combination of a mechanical booster pump and a water ring pump, and the sub vacuum pump is a dry combination of a mechanical booster pump and a dry pump. A series combination of pumps is desirable.
[0011]
Further, in order to achieve the above object, the method for depressurizing the single crystal pulling equipment according to the present invention includes a plurality of single crystal pulling devices in which an upper chamber is provided above the main chamber via a gate valve. And a main vacuum pump for depressurizing each single crystal pulling device, and the main vacuum pump is connected to an exhaust pipe from the main chamber for each single crystal pulling device. Is connected to a common pipe made by connecting and connecting each pipe from the upper chamber of each device, and between the connection pipe between the upper chamber and the common pipe and the connection pipe between the main chamber and the main vacuum pump. In the depressurization operation method of the single crystal pulling equipment provided with the communication pipe, when the exhaust pressure is reduced from the normal pressure, the main vacuum pump is stopped or idling state, and the sub vacuum pump is driven. When the inside of the single crystal pulling apparatus reaches a predetermined degree of vacuum, the sub vacuum pump is stopped, the main vacuum pump is driven to exhaust, and the inside of the single crystal pulling apparatus is maintained at a desired degree of vacuum. It is characterized by that.
[0012]
Further, the pressure reducing operation method of the single crystal pulling equipment according to the present invention, which has been made to achieve the above-mentioned object, is generally used in the single crystal pulling apparatus and the pipe by the main vacuum pump when the exhaust pressure is reduced from normal pressure. After depressurizing to the same extent, the single crystal pulling device and piping are connected to the common piping, and then the main vacuum pump is stopped or idling, and the sub vacuum pump is driven to exhaust and the inside of the single crystal pulling device is predetermined. When the degree of vacuum is reached, the sub-vacuum pump is stopped, the main vacuum pump is driven and evacuated, and the inside of the single crystal pulling apparatus is maintained at a desired degree of vacuum.
Here, it is desirable to maintain the inside of the common pipe in a reduced pressure state when the sub-vacuum pump is stopped.
[0013]
The single crystal pulling equipment of the present invention comprises two main and sub vacuum pumps for depressurizing each single crystal pulling device, and the main vacuum pump is connected to the exhaust piping system for each single crystal pulling device. The auxiliary vacuum pump is connected to the common pipe and used in common, and the main vacuum pump exhaust piping system and the auxiliary vacuum pump exhaust piping system are equipped with an open / close valve. It is characterized in that piping is provided.
As described above, the single crystal pulling equipment of the present invention that can be shared by the sub vacuum pump can omit the installation of the sub vacuum pump for each single crystal pulling apparatus required for the conventional single crystal pulling equipment, and this is required. Costs such as equipment purchase costs and installation costs can be saved.
Furthermore, with the specific exhaust line configuration of the single crystal pulling equipment of the present invention, when the equipment is started up, etc., until a certain degree of vacuum is reached from the normal pressure of each single crystal pulling apparatus that requires a relatively large exhaust capacity. Therefore, the capacity of the main vacuum pump installed for each single crystal pulling apparatus is, for example, about the exhaust capacity required during the single crystal pulling operation. It is possible to reduce the size.
[0014]
Moreover, the single crystal pulling equipment of the present invention can significantly reduce the required space as compared with the conventional equipment.
In particular, as a main vacuum pump installed in each single crystal pulling device, a mechanical booster pump and a water seal pump are used in combination in series, and a mechanical booster pump and a dry pump are used in combination as a common sub vacuum pump Can avoid back-diffusion of oil droplets such as vacuum pump oil into the main chamber and upper chamber of the single crystal pulling device during the exhaust operation, and troubles such as power failure or instantaneous voltage drop can be avoided. Even if it occurs, since the back flow of the oil can be avoided, the inside of the apparatus is advantageously not contaminated with oil.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic view showing an embodiment of the single crystal pulling equipment of the present invention, and is a view showing a piping system thereof.
In the example of the single crystal pulling equipment shown in FIG. 1, at least four single crystal pulling apparatuses 1 (1a, 1b, 1c, 1d) are provided side by side. A main chamber C 1 containing a quartz crucible for storing a melt such as a silicon melt, a carbon receiver for supporting the quartz crucible and a heating element (not shown), and a gate valve above the main chamber C 1 The upper chamber C 2 is disposed via the AV 1 and accommodates a single crystal pulling jig or the like (not shown).
[0016]
Said main chamber in the C 1 and the upper chamber C 2, a gas supply for introducing an inert gas such as connection ports P 2, P 1 and Ar gas in the exhaust pipe for vacuum evacuating the respective chambers Piping connection ports Q 2 and Q 1 are provided. The gas supply pipe connection ports Q 2 and Q 1 of both the chambers C 1 and C 2 are connected to an inert gas supply pipe that leads to a gas supply source such as an inert gas storage tank via an on-off valve, respectively (see FIG. Not shown).
In addition, the exhaust pipe connection port P 2 of the main chamber C 1 includes a valve LV 1 , a connection part (branch part) LB 1 to the communication pipe L 3 , and a valve V 1 arranged in this order. A pipe L 1 is connected, and a main vacuum pump VP 1 is connected to the downstream end thereof.
In addition, the exhaust pipe connection port P 1 of the upper chamber C 2 includes a valve LV 2 , a connection part (branch part) LB 2 to the communication pipe L 3 , and a valve V 3 arranged in this order. use pipe L 2 is connected, the other terminal of the pipe L 2 is not connected to the shared pipe 10. Further, a sub vacuum pump VP 2 is connected to the common pipe 10 via a valve V 4 .
[0017]
A connecting pipe L 3 is connected to each branch portion (connection part) LB 1 , LB 2 of the vacuum exhaust pipe L 1 leading to the main vacuum pump VP 1 and the vacuum exhaust pipe L 2 leading to the common pipe 10. The connecting pipe L 3 is provided with a valve V 2 on the way.
[0018]
Next, an operation of operating the single crystal pulling equipment according to the present invention shown in FIG. 1 and evacuating a desired single crystal pulling apparatus (for example, the single crystal pulling apparatus 1a) from the initial state will be described.
First, valve V 1, close the LV 2, the main vacuum pump VP 1 stop or idle, the main chamber C valve LV 1 evacuation pipe L 1 that is connected to the port P 2 1 and connecting pipe L 3 Open the valve V 2 provided in the middle of. Then, the auxiliary vacuum pump VP 2 is activated and the valve V 3 provided in the vacuum exhaust pipe L 2 connected to the common pipe 10, and the valve V 4 provided in front of the sub vacuum pump VP 2 of the common pipe 10. open each, evacuated vacuum the inside of the system of the single crystal pulling apparatus 1a by the sub-vacuum pump VP 2. At this time, the gate valve AV 1 is opened, and the upper chamber C 2 and the main chamber C 1 are in communication.
[0019]
At this time, as will be described later, since the common pipe 10 is in a decompressed state (50 Torr), in order to avoid a sudden decompression shock in the apparatus when the vacuum pump VP 2 is started, the pump VP 2 In order to avoid the trouble of inhaling foreign matter, it is preferable to open the valve V 3 after operating the main pump VP 1 so that the degree of vacuum is the same as that of the common pipe 10.
Before opening the valves V 3 and V 4 , first, the valve V 1 is opened, initial evacuation is performed using the main vacuum pump VP 1 , and the pressure is reduced to a level where there is no sudden decompression shock, and then the valve V 3 is opened. Then, by starting the sub-vacuum pump VP 2 and subsequently opening V 4 , it is possible to avoid a sudden depressurization impact due to the depressurized state of the common pipe 10.
[0020]
Further, by controlling the valve opening degree of the valve V 3 , it is possible to avoid a sudden pressure reduction impact due to the pressure reduction state of the common pipe 10 described above. That is, when performing opening control of the valve V 3, using the gas flow control valve or the like valve V 3, was gradually opening control to increase the gas flow rate through the valve V 3, to avoid rapid decompression shock due sub-vacuum pump VP 2.
[0021]
Then, the sub-vacuum pump VP 2, vacuum of the single crystal pulling apparatus 1a, namely the degree of vacuum in the main chamber C 1 and the upper chamber C 2, 10 -3 to the ultimate vacuum of the sub-vacuum pump VP 2 The pressure is set to about 10 −4 mmHg, and once it is confirmed whether there is any leakage in the chamber. That is, the leak check in the chamber is performed by the sub vacuum pump VP 2 having a large exhaust capacity and a high ultimate vacuum. Further, since the sub-vacuum pump VP 2 has a large exhaust capacity, the pressure in the chamber can reach the pressure in the common pipe 10 from 50 Torr to 10 −3 to 10 −4 mmHg in a short time.
Thereafter, the valve V 2 in the middle of the communication pipe L 3 is closed, the sub vacuum pump VP 2 is stopped, and the main vacuum pump VP 1 is started. After introducing a very small amount of inert gas from the gas supply pipe connection port Q 2 and setting the chamber pressure to about 10 −1 to 10 −2 mmHg, the valve V 1 in front of the main vacuum pump is opened, and the inside of the apparatus is predetermined. The vacuum is maintained so as to maintain a vacuum degree of, for example, 10 −1 to 10 −2 mmHg.
After switching from the sub vacuum pump VP 2 to the main vacuum pump VP 1 , the main vacuum pump VP 1 is driven while introducing a very small amount of inert gas from the gas supply pipe connection port Q 1 of the upper chamber C 2. To achieve the desired degree of vacuum. The introduction of the inert gas is performed from the viewpoint of completely inactivating the system by removing a trace amount of reactive gas remaining in the apparatus.
[0022]
Meanwhile, after the switching from the sub-vacuum pump VP 2 to the main vacuum pump VP 1, when stopping the auxiliary vacuum pump VP 2, closing the valve V 3 and the valve V 4. And the vacuum degree (for example, about 50 Torr) of the common piping 10 is maintained.
In this way, maintaining the degree of vacuum (for example, about 50 Torr) of the common pipe 10 means that the seed crystal is placed on the pulling jig when another single crystal pulling apparatus 1 is subsequently started up or in the single crystal pulling step described later. When mounting or when carrying out a single crystal, the upper chamber C 2 is returned to normal pressure while the main chamber C 1 is kept in a vacuum state, and the upper chamber C 2 is evacuated again after the operation. Is suitable.
That is, since the pre-shared pipe 10 is maintained at a predetermined vacuum degree, the downstream side of the original exhaust the range of the sub-vacuum pump VP 2 restart valve V 4 (between valve V 4 of the sub-vacuum pump VP 2) As a result, the single crystal pulling apparatus 1 can be started up early and the cycle period of the single crystal pulling operation can be shortened.
[0023]
When the inside of the single crystal pulling apparatus 1 reaches the target degree of vacuum and the single crystal pulling operation is performed, the main operation is continued while introducing the inert gas from the gas supply pipe connection port Q 1 into the system. The system is kept evacuated by the vacuum pump VP 1 and maintained at a predetermined degree of vacuum.
When the upper chamber C 2 is returned to normal pressure while the main chamber C 1 is kept in a vacuum state, such as when a seed crystal is attached to the pulling jig or when the single crystal is unloaded in the single crystal pulling operation, first the gate valve After AV 1 is closed and both chambers C 1 and C 2 are isolated, an inert gas is introduced from the gas supply pipe connection port Q 1 to return to normal pressure.
At this time, evacuation by the main vacuum pump VP 1 is continued in the isolated main chamber C 1 while introducing a very small amount of inert gas from the gas supply pipe connection port Q 2, and the vacuum in the main chamber C 1 is continued. To maintain.
[0024]
When the upper chamber C 2 is returned to the vacuum state again after the operation is completed, the sub vacuum pump VP 2 is activated and the valves LV 2 , V 3 and V 4 are opened. Then, the chamber C 2 to close the said main chamber C 1 valve LV 2 by opening the gate valve AV 1 upon reaching the vacuum degree of approximately equal degree of vacuum in, V 3, V 4, the sub in the described procedure to stop the vacuum pump VP 2.
When starting up the second and subsequent single crystal pulling apparatuses, the single crystal pulling apparatus 1a can be sequentially started using the above-described operation procedure. At this time, as described above, when switching from the sub-vacuum pump to the main vacuum pump, the common pipe 10 is held in vacuum, and the operation of the above-described separate procedure for starting the sub-vacuum pump after initial evacuation by the main vacuum pump is performed. It may be adopted. As a result, early start-up of the apparatus and shortening of the pull-up cycle can be achieved.
[0025]
The single crystal pulling apparatus installed in the single crystal pulling equipment of the present invention is, for example, a single crystal pulling apparatus used in the so-called Czochralski method, which includes a main chamber, an upper chamber and a gate valve as shown in FIG. There is no particular limitation as long as it is, and any device including a conventional device can be used.
In addition, regarding the main and sub vacuum pumps used in the single crystal pulling equipment of the present invention, their exhaust capacity is the number of single crystal pulling devices installed, the size of each single crystal pulling device, the layout of each device, etc. It is set as appropriate in consideration of the scale and mode of the single crystal pulling equipment.
Further, the main vacuum pump is determined based on the volume of each single crystal pulling device, and is usually about 5 to 10 Nm 3 / min in the case of a single crystal ingot pulling device of 8 inch size. In the case of a 12-inch size single crystal ingot pulling device, a device of about 10 to 20 Nm 3 / min is used.
[0026]
Since the auxiliary vacuum pump is used in common and exhausted from normal pressure, an auxiliary vacuum pump having at least an exhaust capacity larger than that of the main vacuum pump is used.
The exhaust capacity of the sub-vacuum pump varies considerably depending on the above-mentioned requirements. For example, in the case of a standard layout single crystal pulling equipment in which four 12-inch single crystal ingot pulling apparatuses are installed, an exhaust capacity of 15 One having a thickness of about 35 Nm 3 / min is used.
As for the ultimate vacuum of the vacuum pump, it is preferable to use a sub vacuum pump of 10 −3 to 10 −4 mmHg, and the main vacuum pump has a ultimate vacuum of less power consumption than the auxiliary vacuum pump. It is preferable to use a low one, usually 10 −1 to 10 −2 mmHg.
[0027]
Furthermore, contamination inside the equipment such as back-flow of vacuum pump oil in the case of back-diffusion of oil droplets such as vacuum pump oil into the main chamber and upper chamber of the single crystal pulling device during exhaust operation, power outage or instantaneous voltage drop etc. In order to avoid this, it is preferable to use an oilless vacuum pump for both the main and sub vacuum pumps. In particular, it is preferable to use a mechanical booster pump and a water ring pump in series in combination for the main vacuum pump, and a mechanical booster pump and dry pump in combination in series as a common sub vacuum pump.
In the single crystal pulling equipment of the present invention, for example, an inert gas supply piping system, an inert gas storage tank, other ancillary equipment, general equipment, a control system, etc. are well-known commonly used in this type of single crystal pulling equipment. Things can be used.
[0028]
【The invention's effect】
The single crystal pulling equipment of the present invention can share a sub-vacuum pump for evacuating each single crystal pulling device even when a large number of single crystal pulling devices are arranged due to the specific configuration described above. The single crystal pulling device to be operated can be freely selected and only the operating device can be selectively evacuated.
In addition, the equipment cost and the operation cost are low as compared with the conventional single crystal pulling equipment, and the space efficiency is excellent.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of the single crystal pulling equipment of the present invention.
FIG. 2 is a schematic view for explaining the structure of a single crystal pulling apparatus.
FIG. 3 is a reduced pressure piping system diagram of a single crystal pulling apparatus in a conventional single crystal pulling facility.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Single crystal pulling apparatus 1a, 1b, 1c, 1d Single crystal pulling apparatus 10 Common piping 21 Quartz crucible 22 Carbon receiver 23 Heating heating element 24 Single crystal pulling jig C 1 Main chamber C 2 Upper chamber L 1 Vacuum exhaust Piping (between main chamber and main vacuum pump)
L 2 vacuum exhaust piping (between upper chamber and common piping)
L 3 connection piping LB 1 branch (connection)
LB 2 branch (connection)
AV 1 gate valve LV 1 , LV 2 , V 1 , V 2 , V 3 , V 4 valve P 1 , P 2 connection port (exhaust piping)
Q 1 and Q 2 connection port (gas supply piping)
VP 1 main vacuum pump VP 2 sub vacuum pump

Claims (7)

坩堝を収容する主チャンバーの上部に仕切弁を介して上部チャンバーが設けられた単結晶引上げ装置を複数台配設した単結晶引上げ設備において、
各単結晶引上げ装置の主チャンバー、上部チャンバーを減圧するための主、副真空ポンプを具備し、主真空ポンプは、各単結晶引上げ装置毎にその主チャンバーからの配管に接続されて配設されると共に、副真空ポンプは、各装置の上部チャンバーからの各配管を接続集合してなる共用配管に接続設置され、かつ前記上部チャンバー・共用配管間の接続配管と前記主チャンバー・主真空ポンプ間の接続配管との間に連絡配管が配設され、各単結晶引上げ装置において前記副真空ポンプが共用可能に構成されると共に前記各チャンバーの減圧操作に応じて主真空ポンプと副真空ポンプとが切替え可能に構成されていることを特徴とする単結晶引上げ設備。
In the single crystal pulling equipment in which a plurality of single crystal pulling devices in which an upper chamber is provided via a gate valve on the upper part of the main chamber containing the crucible,
The main and sub vacuum pumps for decompressing the main chamber and upper chamber of each single crystal pulling device are provided, and the main vacuum pump is connected to the piping from the main chamber for each single crystal pulling device. The auxiliary vacuum pump is connected to and installed in a common pipe formed by connecting and collecting the pipes from the upper chamber of each apparatus, and between the upper chamber and the common pipe and between the main chamber and the main vacuum pump. A connecting pipe is provided between the main vacuum pump and the sub-vacuum pump according to the decompression operation of each chamber. Single crystal pulling equipment characterized by being switchable.
前記各単結晶引上げ装置の上部チャンバー・共用配管間の接続配管と主チャンバー・主真空ポンプ間の接続配管の連絡配管接続部の前後に弁が設けられると共に、前記連絡配管の途中及び前記共用配管の副真空ポンプ接続部の前に弁が設けられていることを特徴とする請求項1に記載された単結晶引上げ設備。A valve is provided before and after the connecting pipe connecting portion of the connecting pipe between the upper chamber and the common pipe of each single crystal pulling apparatus and the connecting pipe between the main chamber and the main vacuum pump, and in the middle of the connecting pipe and the common pipe. The single crystal pulling equipment according to claim 1, wherein a valve is provided in front of the sub vacuum pump connecting portion. 前記副真空ポンプの排気容量が、前記各単結晶引上げ装置に設けられた主真空ポンプの排気容量より大きく、かつ、その到達真空度が10-3乃至10-4mmHgであり、前記主真空ポンプの到達真空度が10-1乃至10-2mmHgであることを特徴とする請求項1または請求項2に記載された単結晶引上げ設備。The sub-vacuum pump has an evacuation capacity larger than the evacuation capacity of the main vacuum pump provided in each single crystal pulling device, and the ultimate vacuum is 10 −3 to 10 −4 mmHg, and the main vacuum pump The single crystal pulling equipment according to claim 1 or 2, wherein the ultimate vacuum degree is 10 -1 to 10 -2 mmHg. 前記主真空ポンプがメカニカルブースターポンプと水封ポンプの直列組合せであり、前記副真空ポンプがメカニカルブースターポンプとドライポンプの直列組合せであることを特徴とする請求項1乃至請求項3のいずれかに記載された単結晶引上げ設備。4. The main vacuum pump is a serial combination of a mechanical booster pump and a water ring pump, and the sub-vacuum pump is a serial combination of a mechanical booster pump and a dry pump. The single crystal pulling equipment described. 主チャンバーの上部に仕切弁を介して上部チャンバーが設けられた単結晶引上げ装置が複数台配設され、各単結晶引上げ装置を減圧するための主、副真空ポンプを備え、主真空ポンプは、各単結晶引上げ装置毎にその主チャンバーからの排気配管に接続して配設され、副真空ポンプは、各装置の上部チャンバーからの各配管を接続集合してなる共用配管に接続設置され、かつ、上部チャンバー・共用配管間の接続配管と主チャンバー・主真空ポンプ間の接続配管との間に、連絡配管が配設された単結晶引上げ設備の操作方法において、
常圧からの排気減圧に際して、主真空ポンプを停止又はアイドリング状態として、副真空ポンプを駆動させて排気し、
前記単結晶引上げ装置内が所定の真空度に達した時に、前記副真空ポンプを停止し、主真空ポンプを駆動させて排気し、単結晶引き上げ装置内を所望の真空度に維持することを特徴とする単結晶引上げ設備の操作方法。
A plurality of single crystal pulling devices each having an upper chamber provided via a gate valve at the upper part of the main chamber are provided, and each main crystal pulling device is equipped with main and sub vacuum pumps for depressurization. Each single crystal pulling apparatus is connected to the exhaust pipe from the main chamber, and the sub vacuum pump is connected to a common pipe formed by connecting and connecting the pipes from the upper chamber of each apparatus, and In the operation method of the single crystal pulling equipment in which the connecting pipe is arranged between the connecting pipe between the upper chamber and the common pipe and the connecting pipe between the main chamber and the main vacuum pump,
At the time of exhaust pressure reduction from normal pressure, the main vacuum pump is stopped or idling state, the sub vacuum pump is driven and exhausted,
When the inside of the single crystal pulling apparatus reaches a predetermined degree of vacuum, the sub vacuum pump is stopped, the main vacuum pump is driven and evacuated, and the inside of the single crystal pulling apparatus is maintained at a desired degree of vacuum. How to operate the single crystal pulling equipment.
主チャンバーの上部に仕切弁を介して上部チャンバーが設けられた単結晶引上げ装置が複数台配設され、各単結晶引上げ装置を減圧するための主、副真空ポンプを備え、主真空ポンプは、各単結晶引上げ装置毎にその主チャンバーからの排気配管に接続して配設され、副真空ポンプは、各装置の上部チャンバーからの各配管を接続集合してなる共用配管に接続設置され、かつ、上部チャンバー・共用配管間の接続配管と主チャンバー・主真空ポンプ間の接続配管との間に、連絡配管が配設された単結晶引上げ設備の操作方法において、
常圧からの排気減圧に際しては、主真空ポンプにより単結晶引上げ装置及び配管内を共用配管と概ね同程度に減圧した後、単結晶引上げ装置及び配管を共用配管と連結し、その後に主真空ポンプは停止又はアイドリング状態として、副真空ポンプを駆動させて排気し、
前記単結晶引上げ装置内が所定の真空度に達した時に、前記副真空ポンプを停止し、主真空ポンプを駆動させて排気し、単結晶引き上げ装置内を所望の真空度に維持することを特徴とする単結晶引上げ設備の操作方法。
A plurality of single crystal pulling devices each having an upper chamber provided via a gate valve at the upper part of the main chamber are provided, and each main crystal pulling device is equipped with main and sub vacuum pumps for depressurization. Each single crystal pulling apparatus is connected to the exhaust pipe from the main chamber, and the sub vacuum pump is connected to a common pipe formed by connecting and connecting the pipes from the upper chamber of each apparatus, and In the operation method of the single crystal pulling equipment in which the connecting pipe is arranged between the connecting pipe between the upper chamber and the common pipe and the connecting pipe between the main chamber and the main vacuum pump,
When reducing the exhaust pressure from normal pressure, the main vacuum pump depressurizes the single crystal pulling device and piping to the same level as the common piping, and then connects the single crystal pulling device and piping to the common piping, and then the main vacuum pump Is in a stopped or idling state, the sub vacuum pump is driven to exhaust,
When the inside of the single crystal pulling apparatus reaches a predetermined degree of vacuum, the sub vacuum pump is stopped, the main vacuum pump is driven and evacuated, and the inside of the single crystal pulling apparatus is maintained at a desired degree of vacuum. How to operate the single crystal pulling equipment.
前記副真空ポンプ停止時に、共用配管内を減圧状態のままに維持することを特徴とする請求項5または請求項6に記載された単結晶引上げ設備の操作方法。The method for operating a single crystal pulling facility according to claim 5 or 6, wherein the common pipe is maintained in a reduced pressure state when the sub vacuum pump is stopped.
JP14304699A 1999-05-24 1999-05-24 Single crystal pulling equipment and operating method thereof Expired - Lifetime JP4169303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14304699A JP4169303B2 (en) 1999-05-24 1999-05-24 Single crystal pulling equipment and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14304699A JP4169303B2 (en) 1999-05-24 1999-05-24 Single crystal pulling equipment and operating method thereof

Publications (2)

Publication Number Publication Date
JP2000327480A JP2000327480A (en) 2000-11-28
JP4169303B2 true JP4169303B2 (en) 2008-10-22

Family

ID=15329657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14304699A Expired - Lifetime JP4169303B2 (en) 1999-05-24 1999-05-24 Single crystal pulling equipment and operating method thereof

Country Status (1)

Country Link
JP (1) JP4169303B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586958B2 (en) * 2004-01-14 2010-11-24 信越半導体株式会社 Single crystal pulling equipment and evacuation method
CN110644046A (en) * 2019-09-29 2020-01-03 扬州荣德新能源科技有限公司 Method for controlling multiple polycrystalline furnaces to operate by one vacuum pump on polycrystalline furnace table
JP7460010B1 (en) 2023-06-28 2024-04-02 信越半導体株式会社 Silicon single crystal manufacturing equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275187A (en) * 1985-05-29 1986-12-05 Toshiba Ceramics Co Ltd Process for checking leakage of pulling device for pulling silicon single crystal
JPS63315588A (en) * 1987-06-16 1988-12-23 Nippon Fueroo Furuideikusu Kk Production of single crystal and apparatus therefor
JPH0244092A (en) * 1988-08-02 1990-02-14 Toshiba Ceramics Co Ltd Recovery device of inert gas for single crystal producting furnace
JP3526908B2 (en) * 1994-03-31 2004-05-17 コマツ電子金属株式会社 Vacuum pump system and semiconductor single crystal pulling device
JP3402039B2 (en) * 1995-12-25 2003-04-28 信越半導体株式会社 Single crystal manufacturing equipment
JPH09221381A (en) * 1996-02-08 1997-08-26 Komatsu Electron Metals Co Ltd Evacuating device for device for pulling up single crystal
JPH09219377A (en) * 1996-02-13 1997-08-19 Fujitsu Ltd Apparatus and method for vacuum process
DE19806949A1 (en) * 1998-02-19 1999-08-26 Leybold Systems Gmbh Crystal growth process control e.g. in the growth of germanium or silicon single crystals by the Czochralski method

Also Published As

Publication number Publication date
JP2000327480A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
KR101570657B1 (en) Twin chamber processing system with shared vaccum pump
US6672864B2 (en) Method and apparatus for processing substrates in a system having high and low pressure areas
JP3486821B2 (en) Processing apparatus and method of transporting object to be processed in processing apparatus
JP3765925B2 (en) Semiconductor device manufacturing equipment and driving method thereof
KR19980014187A (en) Pumping apparatus connected to multiple reaction chambers and method of using same
JPH0874737A (en) Evacuating system for disposal device
JPH08291384A (en) Device for adjusting pressure and method for communicating chamber using the device
US6896490B2 (en) Vacuum apparatus
JP4169303B2 (en) Single crystal pulling equipment and operating method thereof
KR20100027965A (en) Gas treatment apparatus, gas treatment method, and storage medium
JP2004052759A (en) Vacuum pump system and its control method
JP2007142284A (en) Substrate treatment apparatus
JPH09306972A (en) Semiconductor manufacturing apparatus
WO2012008439A1 (en) Substrate processing method and substrate processing system
JP4586958B2 (en) Single crystal pulling equipment and evacuation method
KR100560772B1 (en) Reaction Chamber System Having Gas Supply Apparatus
JPH0982594A (en) Depressurizing method for chamber in semiconductor manufacturing equipment
JP3470701B2 (en) Load lock device and its operation method
JPH09306851A (en) Decompression exhaust system and decompression vapor-phase treating apparatus
JP4136405B2 (en) Vacuum exhaust system and operation method thereof
JP2002249876A (en) Evacuating method and vacuum device
JPH07206586A (en) Apparatus for epitaxial growth
TWI835484B (en) Wafer processing apparatus enable to parallel high-pressure process and vacuum-process, and wafer processing method using decompression
JPH11230034A (en) Evacuating system and its operating method
TW202326981A (en) Wafer processing apparatus enable to parallel high-pressure process and vacuum-process, and wafer processing method using decompression

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term