JP4167749B2 - スパッタリング方法及びスパッタリング装置 - Google Patents

スパッタリング方法及びスパッタリング装置 Download PDF

Info

Publication number
JP4167749B2
JP4167749B2 JP11543598A JP11543598A JP4167749B2 JP 4167749 B2 JP4167749 B2 JP 4167749B2 JP 11543598 A JP11543598 A JP 11543598A JP 11543598 A JP11543598 A JP 11543598A JP 4167749 B2 JP4167749 B2 JP 4167749B2
Authority
JP
Japan
Prior art keywords
sputtering
substrate
target
distance
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11543598A
Other languages
English (en)
Other versions
JPH11302842A (ja
Inventor
正彦 小林
信行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP11543598A priority Critical patent/JP4167749B2/ja
Publication of JPH11302842A publication Critical patent/JPH11302842A/ja
Application granted granted Critical
Publication of JP4167749B2 publication Critical patent/JP4167749B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本願の発明は、スパッタリングによって基板の表面に所定の薄膜を作成するスパッタリング方法及び装置に関し、特に、基板の表面に形成された微小なホールの内面への成膜に適したスパッタリング方法及び装置に関するものである。
【0002】
【従来の技術】
各種メモリやロジック等の半導体デバイスの製造工程において、配線用導電膜の作成や異種層の相互拡散を防止するバリア膜の作成にスパッタリングの手法が多用されている。スパッタリングプロセスに要求される特性は色々あるが、基板の表面に形成されたホールの内面を十分な厚さの薄膜で被覆できることが、最近強く求められている。
具体的に説明すると、FET構造を有する多くの半導体デバイスの製造では、チャンネルの上側に形成した絶縁層にコンタクトホールを設け、このコンタクトホール内を導電膜で埋め込んでチャンネル配線とすることが行われている。このようなチャンネル配線の形成工程では、配線用の導電膜と下地であるチャンネルとの相互拡散等を防止するため、コンタクトホールの内面(底面及び側面)にバリア膜を作成することが行われる。また、多層配線構造を採るデバイスの製造では、層間配線用のスルーホールの内面に同様のバリア膜を設け、層間配線と下地配線層との相互拡散を防止する場合がある。
このようなコンタクトホールやスルーホールは、デバイスの高集積度化や高機能化を背景として、そのアスペクト比がどんどん高くなる傾向にある。アスペクト比は、ホールの開口の直径又は幅に対するホールの深さの比である。スパッタリングは、ターゲットをスパッタすることでターゲットの材料の粒子(以下、スパッタ粒子)をターゲットから放出させ、このスパッタ粒子を対象物の表面に到達させて成膜する技術であるが、アスペクト比が高くなると、ホールの内面にくまなくスパッタ粒子を到達させることが難しくなる。この結果、ホールの内面への成膜が不十分となる。
【0003】
コンタクトホールやスルーホールのような微小なホールの内面への成膜の指標として、ボトムカバレッジ率という指標がある。ボトムカバレッジ率は、ホールの周囲の面(ホール外の面)への成膜速度に対するホールの底面への成膜速度の比である。上記のように、高アスペクト比のホールについては、ホールの底面へのスパッタ粒子の到達が不十分になるので、ボトムカバレッジ率が低下する問題がある。ボトムカバレッジ率が低下すると、バリア膜の場合、ホールの底面でバリア膜が薄くなり、ジャンクションリーク等のデバイス特性に致命的な欠陥を与える恐れがある。
ボトムカバレッジ率を向上させるスパッタリングの手法として、イオン化スパッタリングの手法が実用化されている。イオン化スパッタリングは、ターゲットから放出されるスパッタ粒子をイオン化するとともに、ホールの深さ方向の電界を設定し、イオン化したスパッタ粒子(以下、イオン化スパッタ粒子)を電界で基板に垂直に導いてホール内に到達させる手法である。イオン化スパッタリングでは、イオン化スパッタ粒子が基板に対して垂直に飛行して多く基板に入射するので、ボトムカバレッジ率の高い成膜ができるメリットがある。
【0004】
【発明が解決しようとする課題】
しかしながら、益々高くなるデバイスの集積度を背景として、ホールのアスペクト比もどんどん高くなってきている。このため、上記イオン化スパッタリングの手法でも限界があると予想される。
即ち、DRAM(記憶保持動作が必要な随時読み出し書き込み型メモリ)を例にすると、現在、64メガビットクラスのDRAMの量産が本格的に開始されようとしている。64メガビットクラスでは、回路の線幅は0.25ミクロン前後であり、コンタクトホールのアスペクト比は4〜5程度である。この程度のホールであれば、上述したイオン化スパッタリングでも15%程度のボトムカバレッジ率が得られ、量産対応が可能であると考えられる。
しかしながら、次世代デバイスといわれる線幅0.18〜0.13ミクロンのデバイスでは、アスペクト比は7〜10程度にまで達すると予想される。この程度にまで高くなったアスペクト比のホールについては、上記イオン化スパッタリングでは十分なボトムカバレッジ率での成膜が不可能であり、技術的なブレークスルーが必要であると考えられる。
【0005】
この点を、図6を使用してより具体的に説明する。図6は、高アスペクト比のホールに対する成膜の技術的困難性を説明した図である。図6には、次世代デバイスの製造に使用される基板の一例として、アスペクト比10のホールを有する基板9の断面概略図が示されている。
前述した従来のイオン化スパッタリングの手法をこの図6に示すホール90内の成膜に利用した場合、従来と同じ条件ではボトムカバレッジ率が不足し、実用化は困難である。従来のイオン化スパッタリングの延長線上で考えると、スパッタ粒子のイオン化効率を向上させたり、イオン化スパッタ粒子を導く電界の強度を高くしたりすることで、ある程度の改善が行われ、ボトムカバレッジ率の点では量産化に対応できる可能性がある。
【0006】
しかしながら、発明者の検討によると、このような改善を行っていくと、サイドカバレッジ率の低下という問題が発生し、量産化の新たな障害となることが分かった。サイドカバレッジ率は、ホール90外の面に対するホール90の側面91への成膜速度の比である。
より具体的に説明すると、イオン化効率を向上させてさらに多くのスパッタ粒子をイオン化させ、電界強度を高くしてさらに多くのイオン化スパッタ粒子をホールの深さ方向に飛行させて成膜を行うと、基板9に入射するスパッタ粒子は、殆どがホール90の深さ方向に飛行するものになってしまう。この結果、ホール90内に進入しても、スパッタ粒子は殆どがホール90の底面92に達し、ホール90の側面91には殆ど達しない。このため、ホール90の側面91への成膜速度が極端に低下してしまう。バリア膜の場合、ボトムカバレッジ率のみならずサイドカバレッジ率についても20%程度は必要であると考えられるが、上述した従来のイオン化スパッタリングの延長線上ではこれを達成することは困難であり、根本的な解決が必要であると考えられる。
【0007】
本願の発明は、上記課題を解決するために成されたものであり、線幅が0.18ミクロン以下となる次世代のデバイスをにらみ、7以上の高アスペクト比のホールに対してボトムカバレッジ率のみならずサイドカバレッジ率も十分高い成膜が行えるブレークスルーを提案するものである。
【0008】
【課題を解決するための手段】
上記課題を解決するため、本願の請求項1記載の発明は、基板の表面に形成されたホールの内面にスパッタリングによって所定の薄膜を作成するスパッタリング方法であって、
ターゲットから放出されるスパッタ粒子をイオン化させるとともに前記ホールの深さ方向に成分を持つ電界を設定する電界設定手段を動作させ、イオン化したスパッタ粒子を電界設定手段による電界で加速することで前記ホールの底面への成膜速度を高めた底面成膜工程と、底面成膜工程に比べてターゲットと基板との距離を長くするとともに圧力を低くしてスパッタリングを行って前記ホールの側面への成膜速度を高める側面成膜工程とを含み、底面成膜工程と側面成膜工程とが真空中で連続して行われる方法であり、
側面成膜工程は、前記電界設定手段による電界設定無しに行われる工程であるという構成を有する。
また、上記課題を解決するため、請求項2記載の発明は、上記請求項1の構成において、前記底面成膜工程での圧力は10mTorrから100mTorrの範囲内であって前記側面成膜工程での圧力は1mTorr以下であり、前記底面成膜工程でのターゲットと基板との距離は基板の最大幅の1/2.5から1/1の範囲内の距離であって前記側面成膜工程でのターゲットと基板との距離は基板の最大幅の1から1.5倍の範囲内の距離であるという構成を有する。
また、上記課題を解決するため、請求項3記載の発明は、上記請求項1又は2の構成において、前記底面成膜工程では前記ターゲットに高周波電圧を印加してスパッタリングを行い、前記側面成膜工程では前記ターゲットに負の直流電圧を印加してスパッタリングを行うという構成を有する。
また、上記課題を解決するため、請求項4記載の発明は、上記請求項1乃至3いずれかの構成において、前記ターゲットとは別に設けられた補助電極を接地電位から絶縁するか又は当該補助電極に対して高周波電圧を与えることで前記スパッタ粒子をイオン化する方法であり、補助電極は、前記ターゲットと前記基板との間の前記スパッタ粒子の飛行空間を取り囲む円筒状であるという構成を有する。
また、上記課題を解決するため、請求項5記載の発明は、基板の表面に形成されたホールの内面にスパッタリングによって所定の薄膜を作成するスパッタリング方法であって、
ターゲットから放出されるスパッタ粒子をイオン化させるとともに前記ホールの深さ方向に成分を持つ電界を設定し、イオン化したスパッタ粒子をこの電界で加速することで前記ホールの底面への成膜速度を高めた底面成膜工程と、底面成膜工程に比べてターゲットと基板との距離を長くするとともに圧力を低くしてスパッタリングを行って前記ホールの側面への成膜速度を高める側面成膜工程とを含み、底面成膜工程と側面成膜工程とが真空中で連続して行われる方法であり、
前記底面成膜工程での圧力は10mTorrから100mTorrの範囲内であって前記側面成膜工程での圧力は1mTorr以下であり、前記底面成膜工程でのターゲットと基板との距離は基板の最大幅の1/2.5から1/1の範囲内の距離であって前記側面成膜工程でのターゲットと基板との距離は基板の最大幅の1から1.5倍の範囲内の距離であるという構成を有する。
また、上記課題を解決するため、請求項記載の発明は、基板の表面に形成されたホールの内面にスパッタリングによって所定の薄膜を作成するスパッタリング装置であって、
排気系を備えたスパッタチャンバーと、スパッタチャンバー内に所定のガスを導入するガス導入系と、スパッタチャンバー内に被スパッタ面が露出するようにして設けられたターゲットと、ターゲットに電圧を印加してターゲットをスパッタするスパッタ電源と、スパッタによりターゲットから放出されたスパッタ粒子をイオン化するためのイオン化手段と、スパッタチャンバー内の所定位置に基板を保持するための基板ホルダーと、イオン化手段によりイオン化されたスパッタ粒子を基板に垂直に加速するための電界を設定する電界設定手段と、ターゲットと基板との間の距離を変更する距離変更機構と、排気系、ガス導入系、イオン化手段、電界設定手段及び距離変更機構を制御することが可能な制御部を備えており、
前記制御部は、前記イオン化手段及び前記電界設定手段を動作させる際には前記スパッタチャンバー内の圧力を高い第一の圧力に保つよう前記排気系及び前記ガス導入系を制御するとともに前記ターゲットと基板との距離を短い第一の距離になるよう距離変更手段を制御し、前記前記イオン化手段及び前記電界設定手段を動作させない際には前記スパッタチャンバー内の圧力を第一の圧力より低い第二の圧力に保つよう前記排気系を制御するとともに前記ターゲットと基板との距離を第一の距離より長い第二の距離になるよう距離変更手段を制御するものであるという構成を有する。
また、上記課題を解決するため、請求項記載の発明は、上記請求項の構成において、前記スパッタ電源は高周波電源であり、この高周波電源によって設定された電界により前記スパッタ粒子をイオン化させることが可能であって前記スパッタ電源は前記イオン化手段に兼用されており、さらに、前記ターゲットに負の直流電圧を印加する負の直流電源が設けられており、高周波電源の電圧と負の直流電源の電圧とが選択的に又は同時に前記ターゲットに印加されるようにするスイッチ回路を有している。
また、上記課題を解決するため、請求項8記載の発明は、上記請求項6の構成において、前記スパッタ電源は高周波電源であり、さらに、前記ターゲットに負の直流電圧を印加する負の直流電源が設けられており、高周波電源の電圧と負の直流電源の電圧とが選択的に又は同時に前記ターゲットに印加されるようにするスイッチ回路を有しており、
前記制御部は、前記ホールの内面のうちの底面に多く薄膜を堆積させる際には高周波電源である前記スパッタ電源を動作させてターゲットに高周波電圧を印加し、前記ホールの内面のうちの側面に多く薄膜を堆積させる際には負の直流電源を動作させてターゲットに負の直流電圧を印加する制御を行うものであるという構成を有する。
また、上記課題を解決するため、請求項9記載の発明は、上記請求項6乃至8いずれかの構成において、前記イオン化手段は、前記ターゲットとは別に設けられた補助電極と、この補助電極を接地電位から絶縁することで前記スパッタ粒子をイオン化させるコンデンサ又は当該補助電極に対して高周波電圧を与えることで前記スパッタ粒子をイオン化する高周波電源とによって構成されており、補助電極は、前記ターゲットと前記基板との間の前記スパッタ粒子の飛行空間を取り囲む円筒状であるという構成を有する。
また、上記課題を解決するため、請求項10記載の発明は、中央に設けられたセパレーションチャンバーの周囲に少なくとも一つのロードロックチャンバーと複数の処理チャンバーとを気密に接続したマルチチャンバータイプのスパッタリング装置であって、前記複数の処理チャンバーのうちの一つは第一スパッタチャンバーであって、他の一つは第二スパッタチャンバーであり、前記第一スパッタチャンバーには、第一スパッタチャンバー内を排気する第一排気系と、第一スパッタチャンバー内に所定のガスを導入する第一ガス導入系と、第一スパッタチャンバー内に被スパッタ面が露出するようにして設けられた第一ターゲットと、第一ターゲットに電圧を印加してターゲットをスパッタする第一スパッタ電源と、スパッタにより第一ターゲットから放出されたスパッタ粒子をイオン化するためのイオン化手段と、第一スパッタチャンバー内の所定位置に基板を保持するための第一基板ホルダーと、イオン化手段によりイオン化されたスパッタ粒子を基板に垂直に加速するための電界を設定する電界設定手段とが設けられており、第一の排気系及び第一ガス導入系は第一スパッタチャンバー内を高い第一の圧力に維持することが可能であり、また、第一基板ホルダーは基板と第一ターゲットとの間の距離が短い第一の距離となるよう基板を保持するものであり、前記第二スパッタチャンバーには、第二スパッタチャンバー内を排気する第二排気系と、第二スパッタチャンバー内に被スパッタ面が露出するようにして設けられた第二ターゲットと、第二ターゲットに電圧を印加して第二ターゲットをスパッタする第二スパッタ電源と、第二スパッタチャンバー内の所定位置に基板を保持するための第二基板ホルダーとが設けられており、前記第二排気系は第二スパッタチャンバー内を第一の圧力より低い第二の圧力に維持することが可能であり、前記第二基板ホルダーは基板と第二ターゲットとの間の距離が第一の距離より長い第二の距離となるよう基板を保持するものであるという構成を有する。
また、上記課題を解決するため、請求項11記載の発明は、上記請求項10の構成において、前記第一のスパッタチャンバーは、前記ターゲットとは別に設けられた補助電極と、この補助電極を接地電位から絶縁することで前記スパッタ粒子をイオン化させるコンデンサ又は当該補助電極に対して高周波電圧を与えることで前記スパッタ粒子をイオン化する高周波電源とを備えており、補助電極は、前記ターゲットと前記基板との間の前記スパッタ粒子の飛行空間を取り囲む円筒状であるという構成を有する。
また、上記課題を解決するため、請求項12記載の発明は、上記請求項10又は11の構成において、前記第一スパッタ電源は高周波電源であり、前記第二スパッタ電源は負の直流電源であるという構成を有する。
また、上記課題を解決するため、請求項13記載の発明は、上記請求項6乃至12いずれかの構成において、前記第一の圧力は10mTorrから100mTorrの範囲内であって前記第二の圧力は1mTorr以下であり、前記第一の距離は基板の最大幅の1/2.5から1/1の範囲内の距離であって前記第二の距離は基板の最大幅の1から1.5倍の範囲内の距離であるという構成を有する。
【0009】
【発明の実施の形態】
以下、本願発明の実施の形態について説明する。
まず、請求項2及び3のスパッタリング装置の発明に属する第一の実施形態について説明する。図1は、請求項2及び3の発明に属する第一の実施形態に係るスパッタリング装置の構成を示した平面概略図である。
図1に示すスパッタリング装置はマルチチャンバータイプの装置であり、中央に配置されたセパレーションチャンバー1と、セパレーションチャンバー1の周囲に気密に接続された複数の処理チャンバー2,3,4,8及び二つのロードロックチャンバー5からなるチャンバー配置になっている。各チャンバー1,2,3,4,5,8は専用又は兼用の不図示の排気系を備えており、所定の圧力まで排気されるようになっている。各チャンバー同士の接続箇所にはゲートバルブ6が設けられている。
【0010】
セパレーションチャンバー1内には、チャンバー間で基板9の搬送を行うための搬送機構として搬送ロボット11が設けられている。搬送ロボット11は、多関節ロボットが使用されている。この搬送ロボット11はいずれか一方のロードロックチャンバー5から基板9を一枚ずつ取り出し各処理チャンバー2,3,4,8に送って順次処理を行い、最後の処理を終了した後、いずれか一方のロードロックチャンバー5に戻すようになっている。
そして、ロードロックチャンバー5の外側にはオートローダ7が設けられている。オートローダ7は大気側にある外部カセット62から基板9を一枚ずつ取り出し、ロードロックチャンバー5内のロック内カセット51に収容するようになっている。
複数の処理チャンバー2,3,4,8のうち一つは、スパッタリングによって所定の薄膜を作成するスパッタチャンバー4である。また、別の処理チャンバー2,3,8の一つは、スパッタリングの前に基板9を予備加熱するプリヒートチャンバー2であり、さらに別の一つは、スパッタリングの前に基板9の表面の自然酸化膜又は保護膜を除去するための前処理エッチングを行う前処理エッチングチャンバー3である。
【0011】
次に、本実施形態の装置の主要部を成すスパッタチャンバー4の構成について図2を使用して説明する。図2は、図1に示すスパッタチャンバー4の構成を示す正面概略図である。
図2に示すように、スパッタチャンバー4は、内部を排気する排気系41と、スパッタチャンバー4内に被スパッタ面を露出されるようにして設けられたターゲット42と、ターゲット42に所定の電力を与える二つのスパッタ電源421,422と、ターゲット42の背後に設けられた磁石機構43と、スパッタチャンバー4内に所定のスパッタ用ガスを導入するガス導入系44と、ターゲット42に対向したスパッタチャンバー4内の所定の位置に基板9を配置するための基板ホルダー45とから主に構成されている。
【0012】
排気系41は、クライオポンプ等の真空ポンプ411を使用してスパッタチャンバー4内を10-8Torr程度まで排気可能に構成される。排気系41は、バリアブルオリフィス等の排気速度調整器412を有する。
ターゲット42は、絶縁材420を介してスパッタチャンバー4に取り付けられている。ターゲット42は、この実施形態ではチタン製である。
二つのスパッタ電源421,422は、本実施形態の装置の大きな特徴点を成している。二つのスパッタ電源の一つは負の直流電圧をターゲット42に印加する電源(以下、スパッタ用直流電源)421であり、他の一つは高周波電圧を印加する電源(以下、スパッタ用高周波電源)422である。
スパッタ用直流電源421としては、−400〜−600V程度の電圧をターゲット42に印加するものが使用される。スパッタ用直流電源421のターゲット42への投入電力は10〜20kW程度である。また、スパッタ用高周波電源422としては、周波数が13.56MHzで実効値300〜500V程度の電圧をターゲット42に印加するものが使用される。スパッタ用高周波電源422のターゲット42への投入電力は3〜8kW程度である。尚、スパッタ用高周波電源422とスイッチ回路423の間には、整合器424が設けられている。
スパッタ用直流電源421を使用すると、通常の直流スパッタと同様にターゲット42がスパッタされる。また、スパッタ用高周波電源422を使用すると、高周波スパッタの原理によりスパッタが行われる。
【0013】
高周波スパッタについてより詳しく説明すると、ターゲット42とスパッタ用高周波電源422との間には、コンデンサ等のキャパシタンスが設けられている。スパッタ用高周波電源422によってターゲット42に高周波電圧を印加すると、ターゲット42を臨む空間に高周波放電が生じ、プラズマが形成される。この際、キャパシタンスを介してターゲット42に高周波電圧を印加すると、キャパシタンスの充放電にプラズマ中の電子と正イオンが作用し、電子と正イオンの移動度の違いによって基板9に負の自己バイアス電圧が生じる。プラズマの空間電位は0〜40ボルト程度の正の電位であり、負の自己バイアス電圧が生じたターゲット42とプラズマとの間にターゲット42に向かって徐々に電位が下がる電界が設定される。プラズマ中の正イオンはこの電界によって加速されてターゲット42に衝突し、ターゲット42をスパッタしてスパッタ放電が持続する。
尚、スパッタ用直流電源421とスパッタ用高周波電源422とはターゲット42に対してパラレルに接続されており、その分岐部分にはスイッチ回路423が設けられている。図2から分かる通り、スイッチ回路423は、スパッタ用直流電源421,スパッタ用高周波422のいずれかを接続するか、もしくは、その両方を同時に接続するかが選択できるよう構成されている。
【0014】
磁石機構43は、中心に配置された柱状の中心磁石431と、中心磁石431を取り囲むリング状の周辺磁石432と、中心磁石431と周辺磁石432とを繋ぐヨーク433とから構成されている。中心磁石431の前面と周辺磁石432の前面とは互いに異なる磁極になっており、図2に示すようなアーチ状の磁力線434がターゲット42を貫いて設定されるようになっている。
スパッタ用直流電源421がターゲット42を介してスパッタチャンバー4内に設定する電界は、アーチ状の磁力線434の頂点付近で磁界と直交する。このため、形成されるスパッタ放電において、電子はマグネトロン運動を行うようになり、マグネトロン放電が達成される。このため、中性ガス分子のイオン化の効率が高くなり、高効率でスパッタリングが行える。
【0015】
ガス導入系44は、本実施形態では、アルゴンガスをスパッタ用ガスとして導入するようになっている。ガス導入系44は、アルゴンガスを溜めたボンベ442とスパッタチャンバー4とを繋ぐ配管441と、配管441上に設けたバルブ443や流量調整器444等から構成されている。
基板ホルダー45は、上面に基板9を載置して保持するよう構成されている。基板ホルダー45には、静電吸着によって基板9を所定位置に固定する静電吸着機構が必要に応じて設けられる。また、基板9を所定温度に加熱するヒータ451が基板ホルダー45内に設けられている。
【0016】
さて、本実施形態の装置の大きな特徴点は、基板ホルダー45に、ターゲット42と基板9との距離を変えるための距離変更機構46が備えられている点である。具体的に説明すると、基板ホルダー45は支柱452によって支えられている。距離変更機構46は、この支柱452の下端を保持した保持板463と、保持板463を固定した被駆動体464と、被駆動体464を駆動するボールネジ461と、このボールネジ461を回転させるモータ462とから主に構成されている。
【0017】
被駆動体464は、ボールネジ461の外径に適合した内径を有する筒状の部材である。被駆動体464の内面は、精度よくねじ切りされており、ボールネジ461にかみ合っている。また、被駆動体464は、不図示の回転止めによって回転しないようになっている。
モータ462によってボールネジ461が回転すると、この回転の力は被駆動体464に伝えられる。被駆動体464は、不図示の回転止めにより回転しないようになっているのため上下動のみ行う。この結果、被駆動体464に固定された保持板463を介して支柱452が上下動し、これに伴い基板ホルダー45も上下動するようになっている。ターゲット42はスパッタチャンバー4内に固定されているため、上記のような距離変更機構46の動作により基板ホルダー45に載置された基板9とターゲット42との距離を変えることができるようになっている。
尚、支柱452はスパッタチャンバー4の底板を気密に貫通している。そして、支柱452の上下動を許容しつつ貫通部分を封止するメカニカルシール等の封止手段453が設けられている。
【0018】
本実施形態の装置の別の特徴点は、スパッタチャンバー4内でイオン化スパッタが行えるようになっている点である。即ち、本実施形態の装置は、ターゲット42から放出されるスパッタ粒子をイオン化するイオン化手段を有する。そして、このイオン化手段には前述したスパッタ用高周波電源422が兼用されており、イオン化手段は、スパッタ用高周波電源422と、イオン化スパッタを効果的に行うための補助電極47及び電界設定手段48等から構成されている。
【0019】
補助電極47は、ターゲット42と基板ホルダー45との間のスパッタ粒子の飛行空間を取り囲むように設けられた円筒状である。補助電極47は、スパッタチャンバー4外に設けられたコンデンサ471を介して接地されている。また、コンデンサ471と並列に補助電源472が設けられている。そして、補助電源472への線路とコンデンサ471への線路とが分岐する部分には、スイッチ473が設けられており、コンデンサ471を介して補助電極47を接地するか、補助電源472を介して接地するかが選択できるようになっている。補助電源472は高周波電源であり、例えば周波数13.56MHz出力2kW程度のものである。尚、スパッタチャンバー4は接地されており、補助電極47とスイッチ473とを結ぶ線路がスパッタチャンバー4の器壁を気密に貫通する部分には不図示の絶縁材が設けられている。
【0020】
ガス導入系44によってスパッタ用ガスがスパッタチャンバー4に導入されている状態でスパッタ用高周波電源422を動作させると、前述したように、ターゲット42が高周波スパッタされる。この際、高周波電界によってガスがプラズマ化してプラズマが形成される。ターゲット42から放出される中性スパッタ粒子は、このプラズマ中通過する際に、プラズマ中のイオンや電子と衝突してイオン化する(以下、イオン化スパッタ粒子)ようになっている。
このイオン化スパッタ粒子は、電界設定手段48が設定する電界によって加速されてプラズマから引き出され、基板9に対してより垂直に近い角度で飛行して基板9に入射するようになっている。具体的には、電界設定手段48には、基板ホルダー45に高周波電圧を印加して高周波とプラズマとの相互作用により基板9に負の自己バイアス電圧を与える高周波電源481が採用されている。高周波電源481としては、例えば13.56MHz出力1W程度のものが使用できる。高周波電源481と基板ホルダー45との間には、整合器482が設けられている。さらに、基板9及び基板ホルダー45がいずれも導体である場合、高周波の伝送経路に所定のコンデンサが設けられ、コンデンサを介して基板9に高周波電圧を印加するよう構成される。
【0021】
前述したスパッタ用高周波電源422の場合と同様に、キャパシタンスを介して基板9に高周波電圧を印加すると、基板9に自己バイアス電圧が生じ、基板9とプラズマとの間に基板9に向かって徐々に電位が下がる電界が設定される。この電界の向きは基板9に対して垂直であり、正にイオン化されたスパッタ粒子はこの電界によって加速されて基板9に垂直に入射するようになっている。
上記イオン化スパッタにおいて、プラズマ中のイオンは、電界の向きの周期的な変化に追従するようにして運動方向を変える。この際、補助電極47はコンデンサ471によって接地電位から絶縁されるか補助電源472が接続されるため、補助電極47付近にも電界が設定される。この結果、イオンは広い範囲にわたって運動を行うようになっており、イオンが中性スパッタ粒子に衝突してイオン化する確率が高い。つまり、補助電極47は、スパッタ粒子のイオン化効率を高める作用を持っている。
【0022】
また、本実施形態の装置は、スパッタチャンバー4内の動作を制御する不図示の制御部を有している。この制御部は、排気系41、スパッタ電源421,422、スイッチ回路423、ガス導入系44、ヒータ451、距離変更機構46及びイオン化手段47等に制御信号を送って、後述する動作を各部が行うよう構成されている。
【0023】
次に、請求項1のスパッタリング方法の実施形態の説明も兼ね、このスパッタチャンバー4内における装置の動作について、図2を使用して説明する。
まず、基板9は搬送ロボット11によってセパレーションチャンバー1からゲートバルブ6を通してスパッタチャンバー4内に搬入される。スパッタチャンバー4内は、排気系41によって所定圧力まで予め排気されており、基板9は基板ホルダー45に載置される。基板ホルダー45内のヒータ451が予め動作しており、基板ホルダー45に載置された基板9は、ヒータ451の熱によって所定温度まで急速に加熱され、その温度が維持される。
そして、ゲートバルブ6を閉じた後、ガス導入系44が動作してスパッタリングが行われる。本実施形態の装置及び方法の大きな特徴点は、表面に微細なホールが形成された基板9に対して成膜を行うに際し、ホールの底面への成膜速度を高めた底面成膜工程と、ホールの側面への成膜速度を高めた側面成膜工程とを分けて行う点である。特に順序は問わないが、以下の例では、最初に底面成膜工程を行い、次に側面成膜工程を行うとして説明する。
【0024】
まず、底面成膜工程を行う場合、排気速度調整器412及び流量調整器444を制御してスパッタチャンバー4内を高い第一の圧力に保つ。また、距離変更機構46は、ターゲット42と基板9との距離(以下、TS距離)が短い第一の距離になるよう予め基板ホルダー45を移動させている。この状態で、スパッタ用高周波電源422及び電界設定手段48を動作させ、イオン化スパッタを行う。即ち、前述したように、スパッタ用高周波電源422がターゲット42に与える電圧により高周波スパッタを行うとともにプラズマ中でスパッタ粒子をイオン化させる。そして、電界設定手段48が設定した電界によりイオン化スパッタ粒子を引き出して基板9により垂直に入射させる。スパッタ粒子が基板9により垂直に入射するようになると、スパッタ粒子はホールの底面まで到達し易くなるから、ホールの底面での膜堆積が促進される。即ち、ホールの底面の成膜速度が増加する。尚、このように圧力を低くし、且つ、TS距離を長くして行うスパッタは、「低圧遠隔スパッタ」と呼ばれる。
【0025】
次に、側面成膜工程を行う。具体的には、距離変更機構46を動作させ、TS距離が長い第二の距離になるよう予め基板ホルダー45を移動させる。また、排気速度調整器412及び流量調整器444を制御してスパッタチャンバー4内を低い第二の圧力に保つ。この状態で、スパッタ用直流電源421を動作させ、直流スパッタを行う。この際、TS距離が長く圧力が低いので、ホールの側面への膜堆積が促進され、側面成膜速度の高いスパッタリングが行える。そして、このスパッタリングを所定時間行った後、スパッタ用高周波電源422、電界設定手段48、ガス導入系44等の動作を止め、基板9をスパッタチャンバー4から取り出す。
【0026】
上述したスパッタチャンバー4内での動作における側面成膜速度の向上について、図3を使用してさらに詳しく説明する。図3は、側面成膜速度の向上について模式的に説明した図である。
図3に示すように、TS距離をL1からL2へと長くした場合、ホール90の側面の一点Pから見ることのできるターゲット42の被スパッタ面の面積は、L1に比べてL2の場合の方が大きくなる(S1<S2)。ターゲット42の被スパッタ面の面積(S1,S2)は、ホールの側面の一点Pに到達することが可能なスパッタ粒子の放出部分の面積であるから、L1に比べてL2の場合の方が点Pに到達するスパッタ粒子の量が多くなる。このため、側面成膜速度を高くできるのである。また、圧力を低くすると、このようにホール90の側面に向かって飛行するスパッタ粒子がガス分子に散乱されることが少なくなる。このため、スパッタ粒子がより確実にホール90の側面に到達し、側面成膜速度の向上に寄与する。
【0027】
上記スパッタチャンバー4における動作において、高い第一の圧力は10mTorr〜100mTorrの範囲とすることが好ましい。この範囲より高くなると、多数のガス分子の存在によってイオン化スパッタ粒子が散乱され、基板9に十分到達できない問題がある。また、この範囲より低くなると、プラズマ密度が低下してイオン化効率が十分でなくなる問題がある。また、低い第二の圧力は、放電が持続する範囲内で1mTorr以下とすることが好ましい。この圧力より高くなると、前述した低圧遠隔スパッタの効果が十分得られなくなる問題がある。
さらに、短い第一の距離は、具体的には、基板9の最大幅の1/2.5から1/1の範囲内の距離とすることが好ましい。尚、基板9の「最大幅」とは、最も幅が広くなる方向で見た基板9の幅の意味であり、基板9が円形であれば直径である。第一の距離が上記範囲より短くなると、膜厚等の膜特性の面内分布が悪化する恐れがある。また、この範囲より長くなると、基板9に到達できないスパッタ粒子がいたずらに多くなり、効率が悪くなる。
また、長い第二の距離は、基板の最大幅の1から1.5倍の範囲内の距離とすることが好ましい。この範囲より長くなると、成膜の効率があまりにも悪くなって好適ではない。また、この範囲より短くなると、上記低圧遠隔スパッタの効果が得られない。
【0028】
次に、図1に戻り、本実施形態のスパッタリング装置の他の構成について説明する。
図1に示す前処理エッチングチャンバー3は、成膜に先だって基板9をエッチングして基板9の表面の自然酸化膜や保護膜を除去するよう構成されている。前処理エッチングチャンバー3は、内部にプラズマを形成し、プラズマ中のイオンを基板9の表面に衝突させて自然酸化膜や保護膜をエッチング除去するようになっている。
また、プリヒートチャンバー2は、成膜に先だって基板9を加熱して、基板9の吸蔵ガスを放出させるよう構成されている。この吸蔵ガスの放出を行わない場合、成膜時の熱により吸蔵ガスが急激に放出され、発泡によって膜の表面が粗くなる問題がある。プリヒートチャンバー2内には、所定の温度に加熱維持される不図示のヒートステージが設けられている。基板9はこのヒートステージに載置され、所定の温度に加熱されることによりプリヒートされる。
【0029】
次に、本実施形態のスパッタリング装置の全体の動きについて説明する。
外部カセット62に収容された基板9は、オートローダ7によってロードロックチャンバー5内のロック内カセット51に搬入される。ロック内カセット51に搬入された基板9は、セパレーションチャンバー1に設けられた搬送ロボット11により、まずプリヒートチャンバー2に搬入される。プリヒートチャンバー2内に搬入された基板9は、不図示のヒートステージに載置され、所定の温度に加熱される。これによって基板9は予備加熱され、基板9中の吸蔵ガスが放出される。次に、基板9は前処理エッチングチャンバー3に搬送され、基板9の表面の自然酸化膜又は保護膜がエッチングされる。その後、基板9は下地膜作成チャンバー8に搬入され、下地膜としてチタン薄膜が薄く作成される。
そして、基板9はスパッタチャンバー4に搬入される。そして、スパッタチャンバー4内で上述したように底面成膜工程と側面成膜工程とを行う。この結果、基板9がアスペクト比の高いホールを有する場合でも、ホールの底面及び側面に十分な厚さの薄膜が作成される。
【0030】
その後、基板9はスパッタチャンバー4から搬出され、必要に応じて反射防止膜の作成や冷却等の処理をした後、搬送ロボット11によりロードロックチャンバー5内のロック内カセット51に収容される。その後、ロック内カセット51に所定数の処理済みの基板9が収容されると、オートローダ7が動作し、処理済みの基板9を外部カセット62に搬出する。
【0031】
成膜の一例について説明すると、本実施形態の装置は、バリア膜の作成に使用されると好適である。具体的には、チタン製のターゲット42を使用してスパッタリングを行う。最初はアルゴンガスを導入してチタン薄膜を作成し、その後、窒素ガスを導入して窒素とチタンとの反応を補助的に利用しながら窒化チタン薄膜を作成するようにする。この結果、チタン薄膜の上に窒化チタン薄膜を積層したバリア膜の構造が得られる。
尚、上述した本実施形態の装置において、スパッタ用直流電源421とスパッタ用高周波電源422とを同時に動作させても、一定のメリットが得られる場合がある。これらを同時に動作させると、スパッタ用高周波電源422の高周波電圧にスパッタ用直流電源421の負の直流電圧を重畳させてターゲット42に印加することになる。
例えば側面成膜工程で上記重畳を行うと、低圧遠隔スパッタを行いながらスパッタ粒子の一部をイオン化してイオン化スパッタを補助的に利用しながら成膜を行うことができる。あまり圧力が低いとイオン化効率が悪くなるし、圧力が高くなると低圧遠隔スパッタの効果が薄れるので、この際の圧力選定が難しいが、例えば1〜1.5mTorr程度でよい。また、底面成膜工程で上記重畳を行うと、前述した自己バイアス電圧に加えてスパッタ用直流電源421の電圧によってもイオンが加速されるので、全体のスパッタリングの効率が良くなる効果がある。
【0032】
また、本実施形態の装置では、スパッタ用高周波電源422がイオン化手段に兼用されているが、スパッタ用の電源とは別の電源を使用してイオン化を行ってもよい。具体的には、補助電極47に設けた補助電源472を動作させてこの補助電源472からの高周波エネルギーを主に利用してイオン化を行ってもよい。
【0033】
次に、請求項4の発明に属する第二の実施形態について説明する。
図4は、第二の実施形態のスパッタリング装置の構成を説明する平面概略図、図5は、図4に示すスパッタリング装置のX−Xにおける断面概略図である。
上述した第一の実施形態の装置では、一つのスパッタチャンバー4内で底面成膜工程と側面成膜工程とが連続して行われた。しかしながら、スパッタチャンバーを二つ設け、一方のスパッタチャンバーで底面成膜工程を行い、他方のスパッタチャンバーで側面成膜工程を行うようにすることができる。図4及び図5に示す装置は、この構成である。
具体的には、図4に示すように、複数の処理チャンバーのうちの二つがスパッタチャンバー81,82である。そして、二つのスパッタチャンバーのうちの一つが底面成膜工程を行う第一スパッタチャンバー81であり、他の一つが側面成膜工程を行う第二スパッタチャンバー82である。
【0034】
図5に示すように、二つのスパッタチャンバー81,82とも、図2に示す第一の実施形態のスパッタチャンバーとほぼ同じ構成である。即ち、第一スパッタチャンバー81は、内部を排気する第一排気系811と、被スパッタ面を内部に露出させた第一ターゲット812と、第一ターゲット812をスパッタするための第一スパッタ電源813と、内部にガスを導入する第一ガス導入系814と、内部の所定位置に基板9を保持する第一基板ホルダー815とを備えている。また、第二スパッタチャンバー82は、内部を排気する第二排気系821と、被スパッタ面を内部に露出させた第二ターゲット822と、第二ターゲット822をスパッタするための第二スパッタ電源823と、内部にガスを導入する第二ガス導入系824と、内部の所定位置に基板9を保持する第二基板ホルダー825とを備えている。
【0035】
また、第一スパッタ電源813は、第一の実施形態におけるスパッタ用高周波電源422と同様の高周波電源である。そして、第一スパッタ電源813と第一ターゲット812との間には不図示の整合器が設けられている。また、第一基板ホルダー815は、TS距離が短い第一の距離になるように基板9を保持するよう構成されている。
さらに、第一スパッタチャンバー81内には、第一の実施形態の補助電極47と同様の補助電極817が設けられており、基板ホルダー815には第一の実施形態の電界設定手段48と同様の電界設定手段818が設けられている。
また一方、第二スパッタチャンバー82の第二スパッタ電源823は、第一の実施形態におけるスパッタ用直流電源421と同様の負の直流電源である。また、第二基板ホルダー825は、TS距離が長い第二の距離になるように基板9を保持するよう構成されている。
【0036】
上記構成に係る第二の実施形態の装置では、基板9は、第一スパッタチャンバー81においてイオン化スパッタによりホールの底面の成膜速度を高くした成膜が行われ、第二スパッタチャンバー82において低圧遠隔スパッタによりホールの側面の成膜速度を高くした成膜が行われる。この場合も、第一の実施形態の場合と同様に、アスペクト比7以上の非常に高いアスペクト比のホールの内面に対して十分な厚さで成膜を行うことができる。
尚、底面成膜工程と側面成膜工程とが真空中で連続して行われるので、両工程の間で基板9が汚損されることがなく、良質な薄膜が作成できる。また、底面成膜工程と側面成膜工程とが別のスパッタチャンバー81,82で行われるので、タクトタイムを短くできる点である。従って、前述した第一の実施形態で、各処理チャンバーのうちスパッタチャンバー4内での処理が最も時間を要している場合、この第二の実施形態によると生産性の向上が望める。但し、スパッタチャンバーが二つになるので、装置のコストとしては高くなる。逆に言うと、前述した第一の実施形態は、装置のコストの点では有利である。
【0037】
【実施例】
次に、上記実施形態の発明の実施例を説明する。
まず、底面成膜工程及び側面成膜工程の双方に共通した条件は、以下の通りである。
・基板;直径200mmのシリコンウェーハ
・ホール;開口直径0.4μm,深さ2μm,アスペクト比5
・ターゲット;直径300mmのチタン製
【0038】
また、底面成膜工程の条件は、以下の条件で行える。
・成膜圧力;60mTorr
・放電用ガス;アルゴン又は窒素
・ガス流量;60cc/分
・スパッタ電源:周波数13.56MHz出力3kW
・ターゲットへの印加電圧;300V
・TS距離;90mm
・基板の温度;350℃
・基板の自己バイアス電圧;100V
上記条件によると、ホールの底面に対して350オングストローム毎分程度の成膜速度で薄膜の作成ができる。この際のボトムカバレッジ率(ホール外の面に対するホールの底面への成膜速度の比)は、70%程度である。
【0039】
また、側面成膜工程は、以下の条件で行える。
・成膜圧力;0.3mTorr
・放電用ガス;アルゴン又は窒素
・ガス流量;10cc/分
・スパッタ電源;−600V
・ターゲットへの投入電力;12kW
・TS距離;230mm
・基板の温度;350℃
上記条件によると、ホールの側面に対して700オングストローム毎分程度の成膜速度で薄膜の作成ができる。この際のサイドカバレッジ率(ホール外の面に対するホールの側面への成膜速度の比)は、25%程度である。
【0040】
上述した各実施形態及び実施例において、必要な厚さの薄膜を底面成膜工程一回と側面成膜工程一回で作成するのでなく、複数回に分けて作成するようにしてもよい。即ち、例えば底面成膜工程の後に側面成膜工程を行い、このサイクルを複数回繰り返すようにしてもよい。このようにすると、底面成膜工程で作成された薄膜と側面成膜工程作成された薄膜とは互い違いに積層された構造が得られる。底面成膜工程で作成される薄膜と側面成膜工程で作成される薄膜に多少の特性の相違がある場合、この相違を緩和し、全体に均質な薄膜を作成できるメリットがある。
【0041】
【発明の効果】
以上説明した通り、本願の請求項1の方法及び請求項の装置によれば、イオン化スパッタによる底面成膜工程と低圧遠隔スパッタによる側面成膜工程とを組み合わせて真空中で連続して行うので、アスペクト比7以上のホールの内面に対しても十分な厚さで成膜を行うことができる。従って、線幅0.18μm以下の次世代デバイスの生産にためのブレークスルーを提供することができる。
また、請求項の装置によれば、上記請求項の効果に加え、スパッタチャンバーが一つで済むので、装置のコストが安くできる。
また、請求項10の発明によれば、請求項の効果に加え、底面成膜工程と側面成膜程とが別のスパッタチャンバーで行われるので、タクトタイムが短くなり、生産性を高くできる可能性がある。
さらに、請求項13の発明によれば、底面成膜工程及び側面成膜工程の圧力及びTS距離の条件が最適なものとなり、上記請求項の効果をより確実に得ることができる。
【図面の簡単な説明】
【図1】請求項2及び3の発明に属する第一の実施形態に係るスパッタリング装置の構成を示した平面概略図である。
【図2】図1に示すスパッタチャンバー4の構成を示す正面概略図である。
【図3】側面成膜速度の向上について模式的に説明した図である。
【図4】第二の実施形態のスパッタリング装置の構成を説明する平面概略図
【図5】図4に示すスパッタリング装置のX−Xにおける断面概略図である。
【図6】高アスペクト比のホールに対する成膜の技術的困難性を説明した図である。
【符号の説明】
1 セパレーションチャンバー
11 搬送ロボット
2 プリヒートチャンバー
3 前処理エッチングチャンバー
4 スパッタチャンバー
41 排気系
42 ターゲット
421 スパッタ用直流電源
422 スパッタ用高周波電源
423 スイッチ回路
43 磁石機構
44 ガス導入系
45 基板ホルダー
451 ヒータ
46 距離変更機構
47 補助電極
471 コンデンサ
472 補助電源
5 ロードロックチャンバー
6 ゲートバルブ
7 オートローダ
81 第一スパッタチャンバー
82 第二スパッタチャンバー
9 基板

Claims (13)

  1. 基板の表面に形成されたホールの内面にスパッタリングによって所定の薄膜を作成するスパッタリング方法であって、
    ターゲットから放出されるスパッタ粒子をイオン化させるとともに前記ホールの深さ方向に成分を持つ電界を設定する電界設定手段を動作させ、イオン化したスパッタ粒子を電界設定手段による電界で加速することで前記ホールの底面への成膜速度を高めた底面成膜工程と、底面成膜工程に比べてターゲットと基板との距離を長くするとともに圧力を低くしてスパッタリングを行って前記ホールの側面への成膜速度を高める側面成膜工程とを含み、底面成膜工程と側面成膜工程とが真空中で連続して行われる方法であり、
    側面成膜工程は、前記電界設定手段による電界設定無しに行われる工程であることを特徴とするスパッタリング方法。
  2. 前記底面成膜工程での圧力は10mTorrから100mTorrの範囲内であって前記側面成膜工程での圧力は1mTorr以下であり、前記底面成膜工程でのターゲットと基板との距離は基板の最大幅の1/2.5から1/1の範囲内の距離であって前記側面成膜工程でのターゲットと基板との距離は基板の最大幅の1から1.5倍の範囲内の距離であることを特徴とする請求項1に記載のスパッタリング方法。
  3. 前記底面成膜工程では前記ターゲットに高周波電圧を印加してスパッタリングを行い、前記側面成膜工程では前記ターゲットに負の直流電圧を印加してスパッタリングを行うことを特徴とする請求項1又は2に記載のスパッタリング方法。
  4. 前記ターゲットとは別に設けられた補助電極を接地電位から絶縁するか又は当該補助電極に対して高周波電圧を与えることで前記スパッタ粒子をイオン化する方法であり、補助電極は、前記ターゲットと前記基板との間の前記スパッタ粒子の飛行空間を取り囲む円筒状であることを特徴とする請求項1乃至3いずれかに記載のスパッタリング方法。
  5. 基板の表面に形成されたホールの内面にスパッタリングによって所定の薄膜を作成するスパッタリング方法であって、
    ターゲットから放出されるスパッタ粒子をイオン化させるとともに前記ホールの深さ方向に成分を持つ電界を設定し、イオン化したスパッタ粒子をこの電界で加速することで前記ホールの底面への成膜速度を高めた底面成膜工程と、底面成膜工程に比べてターゲットと基板との距離を長くするとともに圧力を低くしてスパッタリングを行って前記ホールの側面への成膜速度を高める側面成膜工程とを含み、底面成膜工程と側面成膜工程とが真空中で連続して行われる方法であり、
    前記底面成膜工程での圧力は10mTorrから100mTorrの範囲内であって前記側面成膜工程での圧力は1mTorr以下であり、前記底面成膜工程でのターゲットと基板との距離は基板の最大幅の1/2.5から1/1の範囲内の距離であって前記側面成膜工程でのターゲットと基板との距離は基板の最大幅の1から1.5倍の範囲内の距離であることを特徴とするスパッタリング方法。
  6. 基板の表面に形成されたホールの内面にスパッタリングによって所定の薄膜を作成するスパッタリング装置であって、
    排気系を備えたスパッタチャンバーと、スパッタチャンバー内に所定のガスを導入するガス導入系と、スパッタチャンバー内に被スパッタ面が露出するようにして設けられたターゲットと、ターゲットに電圧を印加してターゲットをスパッタするスパッタ電源と、スパッタによりターゲットから放出されたスパッタ粒子をイオン化するためのイオン化手段と、スパッタチャンバー内の所定位置に基板を保持するための基板ホルダーと、イオン化手段によりイオン化されたスパッタ粒子を基板に垂直に加速するための電界を設定する電界設定手段と、ターゲットと基板との間の距離を変更する距離変更機構と、排気系、ガス導入系、イオン化手段、電界設定手段及び距離変更機構を制御することが可能な制御部を備えており、
    前記制御部は、前記イオン化手段及び前記電界設定手段を動作させる際には前記スパッタチャンバー内の圧力を高い第一の圧力に保つよう前記排気系及び前記ガス導入系を制御するとともに前記ターゲットと基板との距離を短い第一の距離になるよう前記距離変更機構を制御し、前記イオン化手段及び前記電界設定手段を動作させない際には前記スパッタチャンバー内の圧力を第一の圧力より低い第二の圧力に保つよう前記排気系を制御するとともに前記ターゲットと基板との距離を第一の距離より長い第二の距離になるよう前記距離変更機構を制御するものであることを特徴とするスパッタリング装置。
  7. 前記スパッタ電源は高周波電源であり、この高周波電源によって設定された電界により前記スパッタ粒子をイオン化させることが可能であって前記スパッタ電源は前記イオン化手段に兼用されており、さらに、前記ターゲットに負の直流電圧を印加する負の直流電源が設けられており、高周波電源の電圧と負の直流電源の電圧とが選択的に又は同時に前記ターゲットに印加されるようにするスイッチ回路を有していることを特徴とする請求項記載のスパッタリング装置。
  8. 前記スパッタ電源は高周波電源であり、さらに、前記ターゲットに負の直流電圧を印加する負の直流電源が設けられており、高周波電源の電圧と負の直流電源の電圧とが選択的に又は同時に前記ターゲットに印加されるようにするスイッチ回路を有しており、
    前記制御部は、前記ホールの内面のうちの底面に多く薄膜を堆積させる際には高周波電源である前記スパッタ電源を動作させてターゲットに高周波電圧を印加し、前記ホールの内面のうちの側面に多く薄膜を堆積させる際には負の直流電源を動作させてターゲットに負の直流電圧を印加する制御を行うものであることを特徴とする請求項6記載のスパッタリング装置。
  9. 前記イオン化手段は、前記ターゲットとは別に設けられた補助電極と、この補助電極を接地電位から絶縁することで前記スパッタ粒子をイオン化させるコンデンサ又は当該補助電極に対して高周波電圧を与えることで前記スパッタ粒子をイオン化する高周波電源とによって構成されており、補助電極は、前記ターゲットと前記基板との間の前記スパッタ粒子の飛行空間を取り囲む円筒状であることを特徴とする請求項6乃至8いずれかに記載のスパッタリング装置。
  10. 中央に設けられたセパレーションチャンバーの周囲に少なくとも一つのロードロックチャンバーと複数の処理チャンバーとを気密に接続したマルチチャンバータイプのスパッタリング装置であって、
    前記複数の処理チャンバーのうちの一つは第一スパッタチャンバーであって、他の一つは第二スパッタチャンバーであり、
    前記第一スパッタチャンバーには、第一スパッタチャンバー内を排気する第一排気系と、第一スパッタチャンバー内に所定のガスを導入する第一ガス導入系と、第一スパッタチャンバー内に被スパッタ面が露出するようにして設けられた第一ターゲットと、第一ターゲットに電圧を印加してターゲットをスパッタする第一スパッタ電源と、スパッタにより第一ターゲットから放出されたスパッタ粒子をイオン化するためのイオン化手段と、第一スパッタチャンバー内の所定位置に基板を保持するための第一基板ホルダーと、イオン化手段によりイオン化されたスパッタ粒子を基板に垂直に加速するための電界を設定する電界設定手段とが設けられており、第一の排気系及び第一ガス導入系は第一スパッタチャンバー内を高い第一の圧力に維持することが可能であり、また、第一基板ホルダーは基板と第一ターゲットとの間の距離が短い第一の距離となるよう基板を保持するものであり、
    前記第二スパッタチャンバーには、第二スパッタチャンバー内を排気する第二排気系と、第二スパッタチャンバー内に被スパッタ面が露出するようにして設けられた第二ターゲットと、第二ターゲットに電圧を印加して第二ターゲットをスパッタする第二スパッタ電源と、第二スパッタチャンバー内の所定位置に基板を保持するための第二基板ホルダーとが設けられており、前記第二排気系は第二スパッタチャンバー内を第一の圧力より低い第二の圧力に維持することが可能であり、前記第二基板ホルダーは基板と第二ターゲットとの間の距離が第一の距離より長い第二の距離となるよう基板を保持するものであることを特徴とするスパッタリング装置。
  11. 前記第一のスパッタチャンバーは、前記ターゲットとは別に設けら れた補助電極と、この補助電極を接地電位から絶縁することで前記スパッタ粒子をイオン化させるコンデンサ又は当該補助電極に対して高周波電圧を与えることで前記スパッタ粒子をイオン化する高周波電源とを備えており、補助電極は、前記ターゲットと前記基板との間の前記スパッタ粒子の飛行空間を取り囲む円筒状であることを特徴とする請求項10記載のスパッタリング装置。
  12. 前記第一スパッタ電源は高周波電源であり、前記第二スパッタ電源は負の直流電源であることを特徴とする請求項10又は11記載のスパッタリング装置。
  13. 前記第一の圧力は10mTorrから100mTorrの範囲内であって前記第二の圧力は1mTorr以下であり、前記第一の距離は基板の最大幅の1/2.5から1/1の範囲内の距離であって前記第二の距離は基板の最大幅の1から1.5倍の範囲内の距離であることを特徴とする請求項6乃至12いずれかに記載のスパッタリング装置。
JP11543598A 1998-04-24 1998-04-24 スパッタリング方法及びスパッタリング装置 Expired - Lifetime JP4167749B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11543598A JP4167749B2 (ja) 1998-04-24 1998-04-24 スパッタリング方法及びスパッタリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11543598A JP4167749B2 (ja) 1998-04-24 1998-04-24 スパッタリング方法及びスパッタリング装置

Publications (2)

Publication Number Publication Date
JPH11302842A JPH11302842A (ja) 1999-11-02
JP4167749B2 true JP4167749B2 (ja) 2008-10-22

Family

ID=14662501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11543598A Expired - Lifetime JP4167749B2 (ja) 1998-04-24 1998-04-24 スパッタリング方法及びスパッタリング装置

Country Status (1)

Country Link
JP (1) JP4167749B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2357371B (en) * 1999-11-04 2004-02-11 Trikon Holdings Ltd A method of forming a barrier layer
US7608308B2 (en) * 2006-04-17 2009-10-27 Imra America, Inc. P-type semiconductor zinc oxide films process for preparation thereof, and pulsed laser deposition method using transparent substrates
US20100264017A1 (en) * 2007-07-25 2010-10-21 Sang-Cheol Nam Method for depositing ceramic thin film by sputtering using non-conductive target
JP5069255B2 (ja) * 2009-01-05 2012-11-07 キヤノンアネルバ株式会社 スパッタリング装置及びスパッタリング方法
JP2013163856A (ja) * 2012-02-13 2013-08-22 Tokyo Electron Ltd スパッタ装置
US20220122815A1 (en) * 2020-10-15 2022-04-21 Oem Group, Llc Systems and methods for unprecedented crystalline quality in physical vapor deposition-based ultra-thin aluminum nitride films

Also Published As

Publication number Publication date
JPH11302842A (ja) 1999-11-02

Similar Documents

Publication Publication Date Title
JP4021601B2 (ja) スパッタ装置および成膜方法
JP4344019B2 (ja) イオン化スパッタ方法
EP0859070B1 (en) Coating of inside of vacuum chambers
US20050205414A1 (en) Method and apparatus for improving sidewall coverage during sputtering in a chamber having an inductively coupled plasma
KR100297971B1 (ko) 스퍼터화학증착복합장치
KR20010051386A (ko) 기판상에 하나 이상의 층을 증착하기 위한 방법
US6451179B1 (en) Method and apparatus for enhancing sidewall coverage during sputtering in a chamber having an inductively coupled plasma
JPH10330932A (ja) スパッタリング装置
US6220204B1 (en) Film deposition method for forming copper film
JP4833088B2 (ja) 高温リフロースパッタリング装置
JP4167749B2 (ja) スパッタリング方法及びスパッタリング装置
JP2008045219A (ja) リフロースパッタリング方法及びリフロースパッタリング装置
JP2007197840A (ja) イオン化スパッタ装置
JPH10237639A (ja) 集積回路用バリア膜を作成するスパッタリング装置
JP2001140066A (ja) 薄膜形成方法及び形成装置
JP3987617B2 (ja) コンタクト膜バリア膜連続作成装置及び異種薄膜連続作成装置
JP2007221171A (ja) 異種薄膜作成装置
JP4335981B2 (ja) 高温リフロースパッタリング方法及び高温リフロースパッタリング装置
KR20200136826A (ko) 성막 장치
JP4833014B2 (ja) 高温リフロースパッタリング装置
JPH06168891A (ja) 半導体製造装置
JPH01149957A (ja) 薄膜形成装置および薄膜形成方法
JP3208931B2 (ja) プラズマ処理装置とこれを用いたプラズマ処理方法
JP2001230217A (ja) 基板処理装置及び方法
WO2020161957A1 (ja) 成膜装置および成膜方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term