JP4167379B2 - Cured body - Google Patents

Cured body Download PDF

Info

Publication number
JP4167379B2
JP4167379B2 JP2000090403A JP2000090403A JP4167379B2 JP 4167379 B2 JP4167379 B2 JP 4167379B2 JP 2000090403 A JP2000090403 A JP 2000090403A JP 2000090403 A JP2000090403 A JP 2000090403A JP 4167379 B2 JP4167379 B2 JP 4167379B2
Authority
JP
Japan
Prior art keywords
weight
parts
less
fibers
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000090403A
Other languages
Japanese (ja)
Other versions
JP2001270756A (en
Inventor
千春 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2000090403A priority Critical patent/JP4167379B2/en
Publication of JP2001270756A publication Critical patent/JP2001270756A/en
Application granted granted Critical
Publication of JP4167379B2 publication Critical patent/JP4167379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超高強度を発現し、かつ面粗度や平面度に優れる硬化体に関する。
【0002】
【従来の技術】
コンクリートは、一般に、セメント、細骨材、粗骨材、水及び減水剤よりなるものであり、任意の形状に成形できる、耐久性に優れる、遮音性に優れる等の利点があり、一般住宅やビル等の部材(壁材、床材、天井材等)として広く使用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、セメント、細骨材、粗骨材、水及び減水剤よりなる上記コンクリートでは、湿気の多い空間(例えば、一般住宅や旅館・ホテル等における浴室や浴場等)の壁材や天井材等として使用した場合、カビが発生しやすいという問題がある。
そのため、前記用途(湿気の多い空間の壁材や天井材等)に使用する場合は、何らかの表面処理(防カビ処理等)をする必要があり、手間がかかっていた。
【0004】
また、セメント、細骨材、粗骨材、水及び減水剤よりなる上記コンクリートでは、一般に高級感や重厚感に乏しいことが指摘されており、例えば、旅館・ホテルのロビーの壁材や床材等のように高級感や重厚感を必要とするような用途には、そのままでは適用することは困難であった。
そのため、前記高級感や重厚感を必要とするような用途(旅館・ホテルのロビーの壁材や床材等)に使用する場合も、やはり何らかの表面処理(塗装、光沢処理等)をする必要があり、手間がかかっていた。
【0005】
また、従来より、一般住宅やビル等の部材を製造するのに使用されているコンクリートの圧縮強度は、通常20〜30MPaである。そのため、部材(壁材、床材、天井材等)の厚さが厚くなり、プレキャスト製品においては、運搬等が困難であった。
【0006】
そのため、本発明においては、部材(壁材、床材、天井材等)の厚さを薄くすることができ、かつ湿気の多い空間の壁材等に使用してもカビが発生しにくく、さらに高級感や重厚感のある硬化体を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者は、上記課題を解決するために鋭意研究した結果、特定の材料を組み合わせた配合物の硬化体であり、かつ表面粗さ(Rmax)が極めて小さければ、上記課題を解決することができるとの知見を得、本発明に到達した。
【0008】
即ち、本発明は、セメント100重量部、5〜50重量部のポゾラン質微粉末、粒径2mm以下の細骨材50〜250重量部、減水剤を固形分換算で0.5〜4.0重量部、及び10〜30重量部の水を含む配合物を樹脂型枠に流し込んで得た硬化体であって、表面研磨をせずに、表面粗さ(Rmax)が10μm以下であることを特徴とする硬化体(請求項1)。配合物に、配合物の体積の4%未満の金属繊維及び/又は配合物の体積の10%未満の有機質繊維を含む請求項1に記載の硬化体(請求項2)。金属繊維が、径0.01〜1.0mm、長さ2〜30mmの鋼繊維である請求項2記載の硬化体(請求項3)。有機質繊維が、径0.005〜1.0mm、長さ2〜30mmのビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、アラミド繊維、炭素繊維から選ばれる1種以上の繊維である請求項2記載の硬化体(請求項4)。配合物に、平均粒径3〜20μmの無機粉末(セメント100重量部に対して50重量部以下)を含む請求項1〜4のいずれかに記載の硬化体(請求項5)。配合物に、平均粒度1mm以下の繊維状粒子又は薄片状粒子(セメント100重量部に対して35重量部以下)を含む請求項1〜5のいずれかに記載の硬化体(請求項6)。
【0009】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明は、少なくとも、セメント、ポゾラン質微粉末、最大粒径2mm以下の細骨材、減水剤、及び水を含む配合物の硬化体であって、表面粗さ(以降、Rmaxと称す)が10μm以下の硬化体である。
本発明において、セメントの種類は限定するものではなく、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントや高炉セメント、フライアッシュセメント等の混合セメントを使用することができる。
本発明において、硬化体の早期強度を向上しようとする場合は、早強ポルトランドセメントを使用することが好ましく、配合物の流動性を向上しようとする場合は、中庸熱ポルトランドセメントや低熱ポルトランドセメントを使用することが好ましい。
【0010】
ポゾラン質微粉末としては、シリカフューム、シリカダスト、フライアッシュ、スラグ、火山灰、シリカゾル、沈降シリカ等が挙げられる。
一般に、シリカフュームやシリカダストでは、その平均粒径は、1.0μm以下であり、粉砕等をする必要がないので本発明のポゾラン質微粉末として好適である。
ポゾラン質微粉末の配合量は、硬化体の強度とRmaxから、セメント100重量部に対して5〜50重量部が好ましい。ポゾラン質微粉末が少ないと強度発現性が低下し、部材の厚さを薄くすることが困難である。また、Rmaxを10μm以下にすることも困難である。ポゾラン質微粉末の添加量が多くなると単位水量が増大するのでやはり強度が低下する。
【0011】
本発明においては、粒径2mm以下の細骨材が用いられる。ここで、本発明における細骨材の粒径とは、85%重量累積粒径である。細骨材の粒径が2mmを超えると、硬化体の強度が低下する。また、Rmaxを10μm以下にすることが困難になる。
なお、本発明においては、最大粒径が2mm以下の細骨材を用いることが好ましく、
最大粒径が1.5mm以下の細骨材を用いることがより好ましい。
細骨材としては、川砂、陸砂、海砂、砕砂、珪砂及びこれらの混合物を使用することができる。
細骨材の配合量は、硬化体の強度とRmaxから、セメント100重量部に対して50〜250重量部が好ましく、80〜180重量部がより好ましい。
【0012】
減水剤としては、リグニン系、ナフタレンスルホン酸系、メラミン系、ポリカルボン酸系の減水剤、AE減水剤、高性能減水剤又は高性能AE減水剤を使用することができる。これらのうち、減水効果の大きな高性能減水剤又は高性能AE減水剤を使用することが好ましい。
減水剤の配合量は、セメント100重量部に対して、固形分換算で0.5〜4.0重量部が好ましい。セメント100重量部に対して、減水剤量(固形分換算)が0.5重量部未満では、混練が困難になるとともに、配合物の流動性が低く成形などの作業も困難である。また、硬化体のRmaxを10μm以下にすることも困難である。セメント100重量部に対して、減水剤量(固形分換算)が4.0重量部を超えると、硬化体の強度が低下する。
なお、減水剤は、液状又は粉末状どちらでも使用可能である。
【0013】
水量は、セメント100重量部に対して10〜30重量部が好ましく、より好ましくは15〜25重量部である。セメント100重量部に対して、水量が10重量部未満では、混練が困難になるとともに、配合物の流動性が低く成形などの作業も困難である。また、硬化体のRmaxを10μm以下にすることも困難である。セメント100重量部に対して、水量が30重量部を超えると、硬化体の強度が低下する。
【0014】
本発明において、硬化体のRmaxは10μm以下である。Rmaxが小さい(面粗度や平面度に優れる)ことにより、湿気の多い空間(例えば、一般住宅や旅館・ホテル等における浴室や浴場等)の壁材や天井材等に使用しても、カビは発生しにくくなる。また、光沢がでて、高級感や重厚感のある硬化体となる。
硬化体のRmaxが10μmを超えると、湿気の多い空間で使用した場合、カビが発生しやすくなる。また、高級感や重厚感も低下するので好ましくない。
【0015】
本発明においては、硬化体の曲げ強度を大幅に高める観点から、前記配合物に金属繊維及び/又は有機質繊維を含ませることが好ましい。
金属繊維としては、鋼繊維、アモルファス繊維等が挙げられるが、中でも鋼繊維は強度に優れており、またコストや入手のし易さの点からも好ましいものである。金属繊維は、径0.01〜1.0mm、長さ2〜30mmのものが好ましい。径が0.01mm未満では繊維自身の強度が不足し、張力を受けた際に切れやすくなる。径が1.0mmを超えると、同一配合量での本数が少なくなり、曲げ強度を向上させる効果が低下する。長さが30mmを超えると、混練の際ファイバーボールが生じやすくなる。長さが2mm未満では曲げ強度を向上させる効果が低下する。
金属繊維の配合量は、配合物の体積の4%未満が好ましく、より好ましくは3%未満である。金属繊維の含有量が多くなると混練時の作業性等を確保するために単位水量も増大するので、金属繊維の配合量は前記の量が好ましい。
【0016】
有機質繊維としては、ビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、アラミド繊維、炭素繊維等が挙げられる。有機質繊維は、径0.005〜1.0mm、長さ2〜30mmのものが好ましい。
有機質繊維の配合量は、配合物の体積の10%未満が好ましく、8%未満がより好ましい。
なお、本発明においては、金属繊維と有機質繊維を併用することは差し支えない。
【0017】
本発明においては、硬化体の充填密度を高め、硬化体の高級感や重厚感をより高める観点から、配合物に、平均粒径3〜20μm、より好ましくは平均粒径4〜10μmの無機粉末を含ませることが好ましい。無機粉末としては、石英粉末、石灰石粉末、炭化物、窒化物等が挙げられるが、なかでも石英粉末は、コストの点や硬化体の品質安定性の点から好ましいものである。
石英粉末としては、石英や非晶質石英、オパール質やクリストバライト質のシリカ含有粉末等が挙げられる。
無機粉末の配合量は、硬化体の強度やRmax、さらには、硬化体の高級感や重厚感から、セメント100重量部に対して50重量部以下が好ましく、20〜35重量部がより好ましい。
【0018】
本発明においては、硬化体の靱性を高める観点から、配合物に、平均粒度が1mm以下の繊維状粒子又は薄片状粒子を含ませることが好ましい。ここで、粒子の粒度とは、その最大寸法の大きさ(特に、繊維状粒子ではその長さ)である。
繊維状粒子としては、ウォラストナイト、ボーキサイト、ムライト等が、薄片状粒子としては、マイカフレーク、タルクフレーク、バーミキュライトフレーク、アルミナフレーク等が挙げられる。
繊維状粒子又は薄片状粒子の配合量は、硬化体の強度、Rmaxや靱性から、セメント100重量部に対して35重量部以下が好ましく、10〜25重量部がより好ましい。
なお、繊維状粒子においては、硬化体の靱性を高める観点から、長さ/直径の比で表される針状度が3以上のものを用いるのが好ましい。
【0019】
本発明において、配合物の混練方法は、特に限定するものではなく、例えば、1)水、減水剤以外の材料を予め混合しておき(プレミックス)、該プレミックス、水、減水剤をミキサに投入し、混練する。
2)水以外の材料を予め混合しておき(プレミックス、ただし減水剤は粉末タイプのものを使用する)、該プレミックス、水をミキサに投入し、混練する。
3)各材料を、それぞれ個別にミキサに投入し、混練する。
などの方法が挙げられる。
【0020】
混練に用いるミキサは、通常のコンクリートの混練に用いられるどのタイプのものでもよく、例えば、揺動型ミキサ、パンタイプミキサ、二軸練りミキサ等が用いられる。
【0021】
混練後、所定の型枠に配合物を投入して成形し、その後、養生して硬化させる。硬化体のRmaxを10μm以下にするには、表面研磨(例えば、#140砥石研磨、ブラスト処理等)を行えば良い。
なお、成形の際に、型枠として樹脂(例えば、ポリエチレン、ポリウレタン等)製の型枠を使用することは、表面研磨を行わなくても硬化体のRmaxを10μm以下にすることができるうえ、光沢がでて、高級感や重厚感を高くすることができ好ましいものである。
【0022】
本発明において、養生は、気中養生や蒸気養生等を行えば良いが、硬化体の高級感や重厚感をより高くしようとする場合は、気中養生を行うことが好ましい。
【0023】
本発明の配合物は、「JIS R 5201(セメントの物理試験方法)11.フロー試験」に記載される方法において、15回の落下運動を行わないで測定したフロー値が、200mm以上と流動性に優れるものであり、型枠への投入等の作業が容易である。
また、本発明の配合物の硬化体は、200MPaを超える圧縮強度と20MPaを超える曲げ強度を発現するので、本発明の硬化体を使用することにより部材(壁材、床材、天井材等)の厚さを薄くすることができる。
なお、本発明において、硬化体の高級感や重厚感をより高くするために、配合物に顔料を含ませることは差し支えない。
【0024】
【実施例】
以下、実施例により本発明を説明する。
1.使用材料
以下に示す材料を使用した。
1)セメント ;低熱ポルトランドセメント(太平洋セメント(株)製)
2)ポゾラン質微粉末;シリカフューム(平均粒径0.7μm)
3)細骨材 ;珪砂4号と珪砂5号の2:1(重量比)混合品
4)金属繊維 ;鋼繊維(直径:0.2mm、長さ:15mm)
5)高性能AE減水剤;ポリカルボン酸系高性能AE減水剤
6)水 ;水道水
7)無機粉末 ;石英粉(平均粒径7μm)
8)繊維状粒子 ;ウォラストナイト(平均長さ0.3mm、長さ/直径の比4)
【0025】
実施例1
低熱ポルトランドセメント100重量部、シリカフューム32.5重量部、細骨材120重量部、高性能AE減水剤1.0重量部(セメントに対する固形分)、水22重量部を二軸練りミキサに投入し、混練した。
該配合物のフロー値を、「JIS R 5201(セメントの物理試験方法)11.フロー試験」に記載される方法において、15回の落下運動を行わないで測定した。その結果、フロー値は270mmであった。
また、前記配合物をφ50×100mmの型枠(鋼製)に流し込み、20℃で48時間前置き後90℃で48時間蒸気養生した。該硬化体の圧縮強度(3本の平均値)は210MPaであった。
また、前記配合物を4×4×16cmの型枠(鋼製)に流し込み、20℃で48時間前置き後90℃で48時間蒸気養生した。該硬化体の曲げ強度(3本の平均値)は25MPaであった。
また、前記配合物を4×4×16cmの型枠(ポリエチレン製)に流し込み、20℃で48時間前置き後90℃で48時間蒸気養生した。該硬化体の表面粗さ(Rmax)を「JIS B 0651」に基づいて表面粗さ計を使用して測定した。その結果、表面粗さ(Rmax)は5.0μmであった。また、該硬化体の表面を観察したところ、高級感や重厚感のあるものであった。
【0026】
実施例2
低熱ポルトランドセメント100重量部、シリカフューム32.5重量部、細骨材120重量部、高性能AE減水剤1.0重量部(セメントに対する固形分)、水22重量部、鋼繊維(配合物中の体積の2%)を二軸練りミキサに投入し、混練した。
該配合物のフロー値を実施例1と同様に測定した。その結果、フロー値は250mmであった。
また、圧縮強度と曲げ強度も実施例1と同様に測定した。その結果、圧縮強度は210MPa、曲げ強度は47MPaであった。
また、表面粗さ(Rmax)も実施例1と同様に測定した。その結果、Rmaxは5.0μmであった。
また、表面粗さ測定用の硬化体の表面を観察したところ、高級感や重厚感のあるものであった。
【0027】
実施例3
低熱ポルトランドセメント100重量部、シリカフューム32.5重量部、細骨材120重量部、高性能AE減水剤1.0重量部(セメントに対する固形分)、水22重量部、石英粉30重量部、ウォラストナイト24重量部、鋼繊維(配合物中の体積の2%)を二軸練りミキサに投入し、混練した。
該配合物のフロー値を実施例1と同様に測定した。その結果、フロー値は250mmであった。
また、圧縮強度と曲げ強度も実施例1と同様に測定した。その結果、圧縮強度は230MPa、曲げ強度は47MPaであった。
また、表面粗さ(Rmax)も実施例1と同様に測定した。その結果、Rmaxは4.8μmであった。
また、表面粗さ測定用の硬化体の表面を観察したところ、高級感や重厚感のあるものであった。
また、表面粗さ測定用の硬化体を100日間浴室(一般住宅)に設置し、カビの発生の有無を観察した。その結果、カビの発生は認められなかった。
【0028】
実施例4
実施例3の配合物を4×4×16cmの型枠(ポリエチレン製)に流し込み、20℃で28日間気中養生した。
該硬化体の表面を観察したところ、光沢があり、高級感や重厚感に優れるものであった。
【0029】
【発明の効果】
以上説明したように、本発明の硬化体は、200MPaを超える圧縮強度と20MPaを超える曲げ強度を発現するので、本発明の硬化体を使用することにより部材(壁材、床材、天井材等)の厚さを薄くすることができる。
また、本発明の硬化体は、表面粗さ(Rmax)が小さい(10μm以下)ので、湿気の多い空間(例えば、一般住宅や旅館・ホテル等における浴室や浴場等)の壁材等に使用してもカビが発生しにくい。また、高級感や重厚感のあるものである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cured product that exhibits ultra-high strength and is excellent in surface roughness and flatness.
[0002]
[Prior art]
Concrete is generally made of cement, fine aggregate, coarse aggregate, water and water reducing agent, and can be molded into any shape, has excellent durability, excellent sound insulation, etc. Widely used as building materials (wall materials, floor materials, ceiling materials, etc.).
[0003]
[Problems to be solved by the invention]
However, in the above concrete made of cement, fine aggregate, coarse aggregate, water and water reducing agent, as a wall material or ceiling material in a humid space (for example, bathrooms and baths in general houses, inns, hotels, etc.) When used, there is a problem that mold tends to occur.
For this reason, when used for the above applications (wall materials or ceiling materials in humid spaces), it is necessary to perform some kind of surface treatment (anti-mold treatment, etc.), which is troublesome.
[0004]
In addition, it has been pointed out that the above concrete made of cement, fine aggregate, coarse aggregate, water and water reducing agent is generally poor in luxury and solidity. For applications that require a high-class feeling or profound feeling such as the above, it has been difficult to apply as it is.
Therefore, some surface treatment (painting, gloss treatment, etc.) is also necessary when used for applications that require the above-mentioned luxury or profound feeling (wall materials, flooring, etc. of ryokan / hotel lobbies). There was a lot of trouble.
[0005]
Conventionally, the compressive strength of concrete that is used to manufacture members such as ordinary houses and buildings is usually 20 to 30 MPa. For this reason, the thickness of the members (wall materials, floor materials, ceiling materials, etc.) is increased, and it is difficult to transport the precast products.
[0006]
Therefore, in the present invention, the thickness of members (wall materials, floor materials, ceiling materials, etc.) can be reduced, and even when used for a wall material in a humid space, mold is not easily generated. An object is to provide a cured product having a high-class feeling and a profound feeling.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventor can solve the above-mentioned problems if it is a cured product of a combination of specific materials and the surface roughness (Rmax) is extremely small. The knowledge that it can be obtained was obtained and the present invention was reached.
[0008]
That is, the present invention relates to 100 parts by weight of cement, 5 to 50 parts by weight of pozzolanic fine powder, 50 to 250 parts by weight of fine aggregate having a particle size of 2 mm or less, and 0.5 to 4.0 in terms of solid content. A cured product obtained by pouring a compound containing 10 parts by weight of water and 10 to 30 parts by weight of water into a resin mold, and having a surface roughness (Rmax) of 10 μm or less without surface polishing. A cured product (claim 1). The hardened body according to claim 1, wherein the blend contains metal fibers less than 4% of the volume of the blend and / or organic fibers less than 10% of the volume of the blend (claim 2). The hardened body according to claim 2, wherein the metal fibers are steel fibers having a diameter of 0.01 to 1.0 mm and a length of 2 to 30 mm. The cured body according to claim 2, wherein the organic fiber is one or more fibers selected from vinylon fibers having a diameter of 0.005 to 1.0 mm and a length of 2 to 30 mm, polypropylene fibers, polyethylene fibers, aramid fibers, and carbon fibers. 4). The hardened | cured material in any one of Claims 1-4 which contains the inorganic powder (50 weight part or less with respect to 100 weight part of cements) with an average particle diameter of 3-20 micrometers in a formulation. The hardened body according to any one of claims 1 to 5, wherein the blend contains fibrous particles or flaky particles having an average particle size of 1 mm or less (35 parts by weight or less with respect to 100 parts by weight of cement).
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The present invention is a cured product of a composition containing at least cement, fine powder of pozzolanic material, fine aggregate having a maximum particle size of 2 mm or less, a water reducing agent, and water, and has a surface roughness (hereinafter referred to as Rmax). It is a cured product of 10 μm or less.
In the present invention, the type of cement is not limited, and various portland cements such as ordinary portland cement, early-strength portland cement, medium-heated portland cement, low heat portland cement, and mixed cements such as blast furnace cement and fly ash cement are used. be able to.
In the present invention, when trying to improve the early strength of the cured body, it is preferable to use early-strength Portland cement, and when trying to improve the fluidity of the blend, use moderately hot Portland cement or low heat Portland cement. It is preferable to use it.
[0010]
Examples of the pozzolanic fine powder include silica fume, silica dust, fly ash, slag, volcanic ash, silica sol, and precipitated silica.
In general, silica fume and silica dust have an average particle size of 1.0 μm or less, and are not necessary to be pulverized or the like, and thus are suitable as the pozzolanic fine powder of the present invention.
The blending amount of the pozzolanic fine powder is preferably 5 to 50 parts by weight with respect to 100 parts by weight of cement from the strength and Rmax of the cured body. If there is little pozzolanic fine powder, strength development will fall and it will be difficult to make thickness of a member thin. It is also difficult to make Rmax 10 μm or less. As the amount of pozzolanic fine powder added increases, the amount of unit water increases, so the strength also decreases.
[0011]
In the present invention, a fine aggregate having a particle size of 2 mm or less is used. Here, the particle size of the fine aggregate in the present invention is an 85% weight cumulative particle size. When the particle size of the fine aggregate exceeds 2 mm, the strength of the hardened body decreases. Moreover, it becomes difficult to make Rmax 10 μm or less.
In the present invention, it is preferable to use a fine aggregate having a maximum particle size of 2 mm or less,
It is more preferable to use a fine aggregate having a maximum particle size of 1.5 mm or less.
As fine aggregates, river sand, land sand, sea sand, crushed sand, quartz sand and mixtures thereof can be used.
The blending amount of the fine aggregate is preferably 50 to 250 parts by weight, more preferably 80 to 180 parts by weight based on 100 parts by weight of cement, based on the strength and Rmax of the cured body.
[0012]
As the water reducing agent, a lignin-based, naphthalenesulfonic acid-based, melamine-based, or polycarboxylic acid-based water reducing agent, an AE water reducing agent, a high-performance water reducing agent, or a high-performance AE water reducing agent can be used. Among these, it is preferable to use a high performance water reducing agent or a high performance AE water reducing agent having a large water reducing effect.
The blending amount of the water reducing agent is preferably 0.5 to 4.0 parts by weight in terms of solid content with respect to 100 parts by weight of cement. When the amount of water reducing agent (in terms of solid content) is less than 0.5 parts by weight with respect to 100 parts by weight of cement, kneading becomes difficult, and the fluidity of the blend is low, and operations such as molding are difficult. It is also difficult to make the Rmax of the cured product 10 μm or less. When the amount of the water reducing agent (in terms of solid content) exceeds 4.0 parts by weight with respect to 100 parts by weight of cement, the strength of the cured body decreases.
The water reducing agent can be used in a liquid or powder form.
[0013]
The amount of water is preferably 10 to 30 parts by weight, more preferably 15 to 25 parts by weight, based on 100 parts by weight of cement. When the amount of water is less than 10 parts by weight with respect to 100 parts by weight of cement, kneading becomes difficult, and the fluidity of the blend is low, and operations such as molding are difficult. It is also difficult to make the Rmax of the cured product 10 μm or less. When the amount of water exceeds 30 parts by weight with respect to 100 parts by weight of cement, the strength of the cured body decreases.
[0014]
In the present invention, the Rmax of the cured body is 10 μm or less. Rmax is small (excellent surface roughness and flatness), so even if it is used for walls and ceiling materials in humid spaces (for example, bathrooms and baths in general houses, inns, hotels, etc.) Is less likely to occur. Moreover, it becomes glossy and becomes a hardened body with a high-class feeling and profound feeling.
If the Rmax of the cured product exceeds 10 μm, molds tend to occur when used in a humid space. Moreover, since a high-class feeling and profound feeling also fall, it is not preferable.
[0015]
In the present invention, from the viewpoint of greatly increasing the bending strength of the cured body, it is preferable to include metal fibers and / or organic fibers in the blend.
Examples of the metal fibers include steel fibers and amorphous fibers, among which steel fibers are excellent in strength and are preferable from the viewpoint of cost and availability. The metal fiber preferably has a diameter of 0.01 to 1.0 mm and a length of 2 to 30 mm. If the diameter is less than 0.01 mm, the strength of the fiber itself is insufficient, and it is easy to break when subjected to tension. When the diameter exceeds 1.0 mm, the number of the same compounding amount decreases, and the effect of improving the bending strength decreases. If the length exceeds 30 mm, fiber balls are likely to occur during kneading. If the length is less than 2 mm, the effect of improving the bending strength decreases.
The blending amount of the metal fibers is preferably less than 4% of the blend volume, more preferably less than 3%. When the content of the metal fiber is increased, the unit water amount is also increased in order to ensure workability at the time of kneading. Therefore, the amount of the metal fiber is preferably the above amount.
[0016]
Examples of the organic fiber include vinylon fiber, polypropylene fiber, polyethylene fiber, aramid fiber, and carbon fiber. The organic fiber preferably has a diameter of 0.005 to 1.0 mm and a length of 2 to 30 mm.
The compounding amount of the organic fiber is preferably less than 10% of the volume of the compound, and more preferably less than 8%.
In the present invention, it is possible to use metal fibers and organic fibers in combination.
[0017]
In the present invention, an inorganic powder having an average particle diameter of 3 to 20 μm, more preferably an average particle diameter of 4 to 10 μm is used from the viewpoint of increasing the packing density of the cured body and further enhancing the sense of quality and solidity of the cured body. Is preferably included. Examples of the inorganic powder include quartz powder, limestone powder, carbide, nitride, and the like. Of these, quartz powder is preferable from the viewpoint of cost and quality stability of the cured product.
Examples of the quartz powder include quartz, amorphous quartz, opal and cristobalite silica-containing powders, and the like.
The blending amount of the inorganic powder is preferably 50 parts by weight or less, more preferably 20 to 35 parts by weight with respect to 100 parts by weight of the cement, in view of the strength and Rmax of the cured body, and further, the high-grade feeling and heavy feeling of the cured body.
[0018]
In the present invention, from the viewpoint of increasing the toughness of the cured product, it is preferable to include fibrous particles or flaky particles having an average particle size of 1 mm or less in the blend. Here, the particle size of the particle is the size of the maximum dimension (particularly, the length of the fibrous particle).
Examples of fibrous particles include wollastonite, bauxite, mullite, and examples of flaky particles include mica flakes, talc flakes, vermiculite flakes, and alumina flakes.
The blending amount of the fibrous particles or flaky particles is preferably 35 parts by weight or less, more preferably 10 to 25 parts by weight with respect to 100 parts by weight of cement, from the strength, Rmax and toughness of the cured body.
In addition, it is preferable to use a fibrous particle having a needle-like degree represented by a length / diameter ratio of 3 or more from the viewpoint of increasing the toughness of the cured body.
[0019]
In the present invention, the kneading method of the compound is not particularly limited. For example, 1) Materials other than water and a water reducing agent are mixed in advance (premix), and the premix, water and water reducing agent are mixed in a mixer. And knead.
2) Materials other than water are mixed in advance (premix, except that the water reducing agent is a powder type), and the premix and water are put into a mixer and kneaded.
3) Put each material individually into a mixer and knead.
And the like.
[0020]
The mixer used for kneading may be of any type used for ordinary concrete kneading. For example, an oscillating mixer, a pan type mixer, a biaxial kneader, or the like is used.
[0021]
After kneading, the composition is put into a predetermined mold and molded, and then cured and cured. In order to reduce the Rmax of the cured body to 10 μm or less, surface polishing (for example, # 140 grinding wheel polishing, blasting, etc.) may be performed.
In addition, the use of a resin (for example, polyethylene, polyurethane, etc.) mold as the mold during molding can reduce the Rmax of the cured body to 10 μm or less without performing surface polishing. It is glossy and is preferred because it can increase the sense of luxury and profoundness.
[0022]
In the present invention, the curing may be air curing, steam curing or the like, but it is preferable to perform air curing when it is desired to increase the sense of quality and profoundness of the cured body.
[0023]
The composition of the present invention has a flow value of 200 mm or more measured without performing the falling motion 15 times in the method described in “JIS R 5201 (Cement physical test method) 11. Flow test”. And is easy to perform operations such as loading into a mold.
In addition, since the cured product of the composition of the present invention expresses a compressive strength exceeding 200 MPa and a bending strength exceeding 20 MPa, members (wall materials, flooring materials, ceiling materials, etc.) can be obtained by using the cured product of the present invention. Can be made thinner.
In the present invention, a pigment may be included in the blend in order to further increase the sense of quality and profoundness of the cured product.
[0024]
【Example】
Hereinafter, the present invention will be described by way of examples.
1. Materials used The following materials were used.
1) Cement: Low heat Portland cement (manufactured by Taiheiyo Cement Co., Ltd.)
2) Pozzolanic fine powder; silica fume (average particle size 0.7 μm)
3) Fine aggregate: Silica sand No. 4 and silica sand No. 5 2: 1 (weight ratio) mixture 4) Metal fiber: Steel fiber (diameter: 0.2mm, length: 15mm)
5) High-performance AE water-reducing agent; polycarboxylic acid-based high-performance AE water-reducing agent 6) Water; Tap water 7) Inorganic powder; Quartz powder (average particle size 7 μm)
8) Fibrous particles: Wollastonite (average length 0.3mm, length / diameter ratio 4)
[0025]
Example 1
100 parts by weight of low heat Portland cement, 32.5 parts by weight of silica fume, 120 parts by weight of fine aggregate, 1.0 part by weight of high-performance AE water reducing agent (solid content with respect to cement), and 22 parts by weight of water were charged into a biaxial kneader and kneaded.
The flow value of the blend was measured in the method described in “JIS R 5201 (Cement physical test method) 11. Flow test” without performing 15 drop motions. As a result, the flow value was 270 mm.
Further, the blend was poured into a φ50 × 100 mm mold (made of steel), pre-positioned at 20 ° C. for 48 hours, and then steam-cured at 90 ° C. for 48 hours. The cured body had a compressive strength (average of 3) of 210 MPa.
The blend was poured into a 4 × 4 × 16 cm mold (steel), pre-set at 20 ° C. for 48 hours, and then steam-cured at 90 ° C. for 48 hours. The bending strength (average value of 3 pieces) of the cured product was 25 MPa.
The blend was poured into a 4 × 4 × 16 cm mold (made of polyethylene), pre-positioned at 20 ° C. for 48 hours, and then steam-cured at 90 ° C. for 48 hours. The surface roughness (Rmax) of the cured product was measured using a surface roughness meter based on “JIS B 0651”. As a result, the surface roughness (Rmax) was 5.0 μm. Further, when the surface of the cured product was observed, it was found to have a high-class feeling and a profound feeling.
[0026]
Example 2
Low heat Portland cement 100 parts by weight, silica fume 32.5 parts by weight, fine aggregate 120 parts by weight, high performance AE water reducing agent 1.0 part by weight (solid content with respect to cement), water 22 parts by weight, steel fiber (2% of the volume in the formulation) ) Was put into a biaxial mixer and kneaded.
The flow value of the formulation was measured as in Example 1. As a result, the flow value was 250 mm.
The compressive strength and bending strength were also measured in the same manner as in Example 1. As a result, the compressive strength was 210 MPa and the bending strength was 47 MPa.
The surface roughness (Rmax) was also measured in the same manner as in Example 1. As a result, Rmax was 5.0 μm.
Further, when the surface of the cured body for measuring the surface roughness was observed, it was found to have a high-class feeling and a heavy feeling.
[0027]
Example 3
Low heat Portland cement 100 parts by weight, silica fume 32.5 parts by weight, fine aggregate 120 parts by weight, high performance AE water reducing agent 1.0 part by weight (solid content to cement), water 22 parts by weight, quartz powder 30 parts by weight, wollastonite 24 parts by weight Part, steel fiber (2% of the volume in the blend) was charged into a biaxial mixer and kneaded.
The flow value of the formulation was measured as in Example 1. As a result, the flow value was 250 mm.
The compressive strength and bending strength were also measured in the same manner as in Example 1. As a result, the compressive strength was 230 MPa, and the bending strength was 47 MPa.
The surface roughness (Rmax) was also measured in the same manner as in Example 1. As a result, Rmax was 4.8 μm.
Further, when the surface of the cured body for measuring the surface roughness was observed, it was found to have a high-class feeling and a heavy feeling.
Moreover, the hardened | cured material for surface roughness measurement was installed in the bathroom (general house) for 100 days, and the presence or absence of generation | occurrence | production of mold | fungi was observed. As a result, no mold was observed.
[0028]
Example 4
The formulation of Example 3 was poured into a 4 × 4 × 16 cm mold (made of polyethylene) and cured in air at 20 ° C. for 28 days.
When the surface of the cured body was observed, it was glossy and excellent in a high-class feeling and a heavy feeling.
[0029]
【The invention's effect】
As described above, since the cured body of the present invention expresses a compressive strength exceeding 200 MPa and a bending strength exceeding 20 MPa, members (wall materials, flooring materials, ceiling materials, etc.) can be obtained by using the cured body of the present invention. ) Can be made thinner.
Further, since the cured body of the present invention has a small surface roughness (Rmax) (10 μm or less), it is used for wall materials in humid spaces (for example, bathrooms and baths in general houses, inns, hotels, etc.). Even mold is hard to occur. Moreover, it has a high-class feeling and profound feeling.

Claims (6)

セメント100重量部、5〜50重量部のポゾラン質微粉末、粒径2mm以下の細骨材50〜 250 重量部、減水剤を固形分換算で0.5〜4.0重量部、及び10〜30重量部の水を含む配合物を樹脂型枠に流し込んで得た硬化体であって、表面研磨をせずに、表面粗さ(Rmax)が10μm以下であることを特徴とする硬化体。 100 parts by weight of cement , 5 to 50 parts by weight of pozzolanic fine powder, 50 to 250 parts by weight of fine aggregate having a particle size of 2 mm or less , 0.5 to 4.0 parts by weight of water reducing agent in terms of solid content , and 10 to 10 parts by weight A cured product obtained by pouring a compound containing 30 parts by weight of water into a resin mold , and having a surface roughness (Rmax) of 10 μm or less without surface polishing . 配合物に、配合物の体積の4%未満の金属繊維及び/又は配合物の体積の10%未満の有機質繊維を含む請求項1に記載の硬化体。The cured body according to claim 1, wherein the blend contains less than 4% metal fibers and / or less than 10% organic fibers of the blend volume . 金属繊維が、径0.01〜1.0mm、長さ2〜30mmの鋼繊維である請求項2記載の硬化体。  The hardened body according to claim 2, wherein the metal fibers are steel fibers having a diameter of 0.01 to 1.0 mm and a length of 2 to 30 mm. 有機質繊維が、径0.005〜1.0mm、長さ2〜30mmのビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、アラミド繊維、炭素繊維から選ばれる1種以上の繊維である請求項2記載の硬化体。  The cured body according to claim 2, wherein the organic fiber is one or more fibers selected from vinylon fibers having a diameter of 0.005 to 1.0 mm and a length of 2 to 30 mm, polypropylene fibers, polyethylene fibers, aramid fibers, and carbon fibers. 配合物に、平均粒径3〜20μmの無機粉末(セメント100重量部に対して50重量部以下)を含む請求項1〜4のいずれかに記載の硬化体。The hardened | cured material in any one of Claims 1-4 which contains the inorganic powder (50 weight part or less with respect to 100 weight part of cement) of average particle diameters 3-20 micrometers in a compounding material. 配合物に、平均粒度1mm以下の繊維状粒子又は薄片状粒子(セメント100重量部に対して35重量部以下)を含む請求項1〜5のいずれかに記載の硬化体。The cured product according to any one of claims 1 to 5, wherein the blend contains fibrous particles or flaky particles having an average particle size of 1 mm or less (35 parts by weight or less with respect to 100 parts by weight of cement) .
JP2000090403A 2000-03-29 2000-03-29 Cured body Expired - Fee Related JP4167379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000090403A JP4167379B2 (en) 2000-03-29 2000-03-29 Cured body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000090403A JP4167379B2 (en) 2000-03-29 2000-03-29 Cured body

Publications (2)

Publication Number Publication Date
JP2001270756A JP2001270756A (en) 2001-10-02
JP4167379B2 true JP4167379B2 (en) 2008-10-15

Family

ID=18606013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000090403A Expired - Fee Related JP4167379B2 (en) 2000-03-29 2000-03-29 Cured body

Country Status (1)

Country Link
JP (1) JP4167379B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137414A (en) * 2008-12-10 2010-06-24 Taiheiyo Cement Corp Method for manufacturing cement-based sheet

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112695A (en) * 2003-10-10 2005-04-28 Dps Bridge Works Co Ltd Concrete bar member
JP4849447B2 (en) * 2006-03-31 2012-01-11 太平洋セメント株式会社 Noise barrier block
CL2009000371A1 (en) * 2008-03-03 2009-10-30 United States Gypsum Co Cementitious composition, containing a continuous phase that results from the curing of a cementitious mixture, in the absence of silica flour, and comprising inorganic cement, inorganic mineral, pozzolanic filler, polycarboxylate and water; and use of the composition in a cementitious panel and barrier.
CL2009000373A1 (en) * 2008-03-03 2009-10-30 United States Gypsum Co Method to make an explosive resistant panel, with the steps of preparing an aqueous cementitious mixture of cement, inorganic fillers and pozzolanic, polycarboxylate self-leveling agent, and forming the mixture into a panel with fiber reinforcement, then curing, polishing, cutting and cure the panel.
JP5938221B2 (en) * 2012-02-01 2016-06-22 太平洋プレコン工業株式会社 Cementitious molded body
JP5873377B2 (en) * 2012-04-09 2016-03-01 丸栄コンクリート工業株式会社 Formation of concrete surface pattern
JP2015006977A (en) * 2013-05-30 2015-01-15 株式会社ビービーエム Fiber-reinforced flowable high strength concrete
JP6204091B2 (en) * 2013-07-09 2017-09-27 黒崎播磨株式会社 Metal fiber composite

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267146A (en) * 1989-04-10 1990-10-31 Denki Kagaku Kogyo Kk Concrete composition reinforced with high-strength fiber, product using the composition and production of the product
JP2628486B2 (en) * 1992-09-30 1997-07-09 竹本油脂株式会社 Dispersant for cement
JP2646449B2 (en) * 1992-09-30 1997-08-27 株式会社竹中工務店 Ultra high strength hydraulic cement composition
FR2708263B1 (en) * 1993-07-01 1995-10-20 Bouygues Sa Composition of metal fiber concrete for molding a concrete element, elements obtained and thermal cure process.
JPH08217561A (en) * 1995-02-13 1996-08-27 Chichibu Onoda Cement Corp Light-weight calcium silicate formed body and its production
JPH11130508A (en) * 1997-10-30 1999-05-18 Taiheiyo Cement Corp Cement-based composition and its hardened body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137414A (en) * 2008-12-10 2010-06-24 Taiheiyo Cement Corp Method for manufacturing cement-based sheet

Also Published As

Publication number Publication date
JP2001270756A (en) 2001-10-02

Similar Documents

Publication Publication Date Title
JP2009227574A (en) Cement composition and method for producing the same
JP4167379B2 (en) Cured body
JP2001181004A (en) High-strength mortar and high-strength concrete
JP2001240440A (en) Steel fiber for reinforcing concrete and fiber reinforced concrete
JP2009084092A (en) Mortar-based restoring material
JP2009149475A (en) Method for producing cement premix composition
JP2002037653A (en) Cement slurry
JP2002068806A (en) Ultrahigh strength hydraulic composition
JP2003055019A (en) Hardened body
JP4745480B2 (en) Steel pipe concrete pile
JP2001212817A (en) Method for producing fiber-reinforced concrete
JP5268612B2 (en) Cement-based sheet manufacturing method
JP2002285667A (en) Board for buried form
JP2010120798A (en) Cement composition
JP2008201631A (en) Cementitious hardened body
JP2001213661A (en) Composite material
JP2001207577A (en) Embedded form
JP4812983B2 (en) Surface plate
JP2003267764A (en) Reinforcing plate
JP4865643B2 (en) Method for producing hardened cementitious body
JP2003252671A (en) Hardened body
JP2001253745A (en) Fiber-reinforced concrete
JP2001233652A (en) Concrete pole
JP2001271340A (en) Complex pile
JP2001205581A (en) Surface plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees