JP4163302B2 - Method for preparing hydrocarbon reforming catalyst and magnesium oxide molded body for forming catalyst carrier - Google Patents

Method for preparing hydrocarbon reforming catalyst and magnesium oxide molded body for forming catalyst carrier Download PDF

Info

Publication number
JP4163302B2
JP4163302B2 JP27824398A JP27824398A JP4163302B2 JP 4163302 B2 JP4163302 B2 JP 4163302B2 JP 27824398 A JP27824398 A JP 27824398A JP 27824398 A JP27824398 A JP 27824398A JP 4163302 B2 JP4163302 B2 JP 4163302B2
Authority
JP
Japan
Prior art keywords
magnesium oxide
catalyst
ruthenium
rhodium
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27824398A
Other languages
Japanese (ja)
Other versions
JP2000103604A (en
Inventor
冬樹 八木
篤郎 南雲
幸隆 和田
光則 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP27824398A priority Critical patent/JP4163302B2/en
Publication of JP2000103604A publication Critical patent/JP2000103604A/en
Application granted granted Critical
Publication of JP4163302B2 publication Critical patent/JP4163302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素の改質用触媒の調製方法及びその触媒担体形成用酸化マグネシウム成形体に関するものである。
【0002】
【従来の技術】
炭化水素を改質することによって得られる合成ガスは、水素と一酸化炭素からなる混合ガスで、アンモニア、メタノール、酢酸等の工業製品の合成原料として広く利用されている。
一般に、合成ガスは、炭化水素に触媒の存在下でスチーム及び/又は炭酸ガスを反応させることによって製造することができる(特開平5−208801号、特開平6−279003号、特開平9−168740号等)。
しかしながら、この反応に於いては、その副反応として、炭素析出反応が起こって炭素が析出し、この析出炭素によって触媒被毒が生じるという問題がある。この改質反応において、貴金属を触媒金属として使用すると、Ni等の遷移金属に比べ、炭素析出が抑制され易いことは良く知られているが、この場合、貴金属が非常に高価であるため、なるべく少量の金属を反応に有効に利用し得る触媒の調製方法の確立が望まれていた。
【0003】
【発明が解決しようとする課題】
本発明は、貴金属の担持量が少なく、使用に際しての炭素析出量の少ない炭化水素の改質用触媒の調製方法及びその触媒担体形成用酸化マグネシウム成形体を提供することをその課題とする。
【0004】
【課題を解決するための手段】
本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、本発明を完成するに至った。即ち、本発明によれば、(i) 1000℃以上の高温で焼成して得られた比表面積が0.01〜5 m 2 /gの担体酸化マグネシウムに、ロジウム及び/又はルテニウムを金属換算量で10〜5000wtppmの割合で担持させ、次いで焼成することを特徴とする炭化水素の改質用触媒の調製方法が提供される。また、本発明によれば、(i) 1000℃以上の高温で焼成して得られた比表面積が0.01〜5 m 2 /gの担体酸化マグネシウムを得る第1工程、(ii) 該第1工程で得られた担体酸化マグネシウムに、水溶性のロジウム化合物及び/又はルテニウム化合物を含有する水溶液を用い、平衡吸着法にてpH8以上のアルカリ領域でロジウム及び/又はルテニウムを金属換算量で10〜5000wtppmの割合で担持させる第2工程、(iii) 該第2工程で得られたロジウム及び/又はルテニウム担持酸化マグネシウムを乾燥させる第3工程、(iv) 該第3工程で得られた乾燥状態のロジウム及び/又はルテニウム担持酸化マグネシウムを焼成する第4工程からなることを特徴とする炭化水素の改質用触媒の調製方法が提供される。さらに、本発明によれば、(i) 1000℃以上の高温で焼成して得られた比表面積が0.01〜5 m 2 /gの担体酸化マグネシウムを得る第1工程、(ii) 該第1工程で得られた担体酸化マグネシウムに、水溶性のロジウム化合物及び/又はルテニウム化合物を含有する水溶液を用い、平衡吸着法にてpH8以上のアルカリ領域でロジウム及び/又はルテニウムを金属換算量で10〜5000wtppmの割合で担持させる第2工程、(iii) 該第2工程により得られたロジウム及び/又はルテニウム担持酸化マグネシウムを、35℃以下で少なくとも6時間以上乾燥させる第3工程、(iv) 該第3工程で得られた乾燥状態のロジウム及び/又はルテニウム担持酸化マグネシウムを焼成する第4工程からなることを特徴とする炭化水素の改質用触媒の調製方法が提供される。さらにまた、本発明によれば、(i) 1000℃以上の高温で焼成して得られた比表面積が0.01〜5 m 2 /gの担体酸化マグネシウムを得る第1工程、(ii) 該第1工程で得られた担体酸化マグネシウムに、水溶性のロジウム化合物及び/又はルテニウム化合物を含有する水溶液を用い、平衡吸着法にてpH8以上のアルカリ領域でロジウム及び/又はルテニウムを金属換算量で10〜5000wtppmの割合で担持させる第2工程、(iii) 該第2工程で得られたロジウム及び/又はルテニウム担持酸化マグネシウムを、35℃以下で少なくとも6時間以上乾燥させる第3工程、(iv) 該第3工程で得られた乾燥状態のロジウム及び/又はルテニウム担持酸化マグネシウムを、200℃以上の高温で焼成する第4工程からなることを特徴とする炭化水素の改質用触媒の調製方法が提供される。さらにまた、本発明によれば、請求項1〜4のいずれかに記載の炭化水素の改質用触媒の調製方法で用いる担体酸化マグネシウムを形成するための酸化マグネシウム成形体であり、酸化マグネシウムと成形助剤との混合物を成形して形成されており、上記成形助剤が(i) 炭素、(ii) 炭素数12〜22の脂肪酸又はそのマグネシウム塩、(iii) カルボキシルメチルセルロース又はそのマグネシウム塩及び(iv) ポリビニルアルコールの中から選ばれる少なくとも1種であり、かつその添加量が0.1〜5重量%であることを特徴とする酸化マグネシウム成形体が提供される。
【0005】
【発明の実施の形態】
本発明においては、触媒担体として、1000℃以上の高温で焼成して得られた比表面積が0.01〜5 m 2 /g 酸化マグネシウム(以下、単にMgOとも言う)を用いる。このMgOとしては市販品を用いることができ、その形状は特に制約されず、触媒として用いられている各種の形状、例えば、粉末状、粒状、球状、柱状、筒状等の形状であることができる。MgOとしては、水酸化マグネシウムを1000〜1500℃、好ましくは1100〜1300℃で焼成して得られたものや、炭酸マグネシウム又は塩基性炭酸マグネシウムを1000〜1500℃、好ましくは1100〜1300℃で焼成して得られたものを用いることが可能である。
【0006】
本発明により炭化水素改質用触媒(以下、単に触媒とも言う)を調製するための好ましい方法を示すと、以下の通りである。先ず、第1工程において、1000℃以上の高温で焼成して得られた比表面積が0.01〜5 m 2 /gの担体MgOを得る。工業触媒においては、ペレット状やリング状等の形状に成形した担体が好ましく用いられるが、このような形状のMgO成形体を用いる場合、そのMgOの比表面積が前記範囲より大きくなり、結晶化度が低くなると、触媒金属の担持に際してそのMgO成形体を水溶液中に浸した場合、そのMgO成形体に割れを生じるという問題がある。また、工業触媒の場合、通常、30〜40kg/個の半径方向の圧縮強度を有する必要があるが、比表面積が前記範囲より大きくなり、その結晶化度が低いMgO成形体ではこのような強度を得ることが困難になる。さらに、担体MgOの結晶化度が低くなると、触媒金属の担持量が多くなり、また、触媒の酸強度が強くなりすぎて、触媒表面の酸的特性が不満足のものとなる。一方、担体MgOの結晶化度が大きくなりすぎると、触媒金属の担持量が少なくなりすぎて、十分な活性を有する触媒が得られなくなる。この点から、担体MgOの比表面積は0.01m2/g以上であって5 m 2 /g 以下にするのが好ましい。
【0007】
前記範囲の比表面積を有する担体MgOを得る1つの方法としては、水酸化マグネシウムを1000〜1500℃、好ましくは1100〜1300℃で焼成することにより製造することができる他、炭酸マグネシウム又は塩基性炭酸マグネシウムを1000〜1500℃、好ましくは1100〜1300℃で焼成することにより製造することができる。また、1000℃以下の低い温度で焼成する場合も、焼成の際に副生する水の分圧を高くしてMgOの結晶化促進し、MgOの結晶子サイズを制御することによって所望の担体MgOを得ることができる。さらに、市販のMgO等のその比表面積が前記範囲より小さいものは、そのMgOを1000〜1500℃、好ましくは1100〜1300℃で焼成することにより、所望の担体MgOを得ることができる。
さらに、低表面積の担体MgOを得る場合、1000℃以下の温度でその焼成系に高い水の分圧を形成することによりそのMgOの結晶化を促進させることができるが、この場合、水の分圧に代えて、CO2のようなガス(気体)の高い分圧を形成することによっても、MgOの結晶化を促進させることができる。
前記焼成に際しての雰囲気としては、通常、空気雰囲気が使用されるが、他のガス、例えば、窒素ガス等の不活性ガスであってもよい。焼成時間は1時間以上、好ましくは3時間以上であり、その上限値は特に制約されないが、通常、72時間程度である。また焼成法のみに限らず、この様な低表面積のMgOを得ることができれば、いかなる方法を採用しても良い。
【0008】
本発明による担体MgOは、高い結晶化度を有し、そのMgOの表面は安定化され、強酸点を極力抑えたMgOとなる。そして、このような安定化されたMgOでは、酸強度(Ho)が2以上の酸点のみを有し、その量が0.03mmol/gより少ないMgOが得られる。従って、1000℃以上の高温焼成された高結晶化度のMgOを触媒金属担持用担体として用いることにより、強酸点の発現を極力抑え、炭素析出反応が抑制された安定した活性を有する触媒を得ることが可能となる。本発明で用いるMgOの表面積は0.01〜5m2/g、好ましくは0.05〜3m2/gである。担体MgOの表面積が前記範囲より高くなると、触媒金属の担持量が多くなり、また、触媒の酸強度が強くなりすぎて、触媒表面の酸的特性が不満足のものとなる。一方、担体MgOの表面積が前記範囲より小さくなると、触媒金属の担持量が少なくなりすぎて、十分な活性を有する触媒が得られなくなる。
【0009】
一般に、金属酸化物の表面積とその結晶子サイズは、ほぼ反比例の関係にあることが良く知られている。従って、本発明で規定しているMgOの比表面積は、その粒子サイズにより規定することも可能である。例えば、比表面積が5m2/g以下のMgOの結晶子サイズは、粒子を球形又は立方体の均一粒子と仮定することにより、MgOの密度、比表面積から算出することができる。この方法は、文献「触媒構座3(固体触媒のキャラクタリゼーション)」(1985年出版、講談社サイエンティフィク、触媒学会編、P203)に記載されている。例えば、1010℃で焼成した比表面積5m2/gのMgOの結晶子サイズは、3500Åとなる。
【0010】
また、MgOの結晶子サイズは、X線回折法を用いて測定することもできる。本明細書中の表面積が5m2/g以下のMgOの結晶子サイズを、X線回折法を用いた「ラインブロードニング」法により測定すると、その値は、900Å以上となった。測定装置としては、島津製作所のX線回折装置「XRD−6000」が用いられた。標準物質として、金属Siを用いて測定すると、MgOの結晶サイズは、MgOの2θ=42.7°の回折ピークとSiのMgOの2θ=28.4°の回折ピークの半値幅から算出した。X線回折測定における測定条件を以下に示す。
X線管球:Cu(λ=1.5406Å)、管電圧:40.0kV、管電流:30.0mA、測定範囲:40.0〜80.0°、ステップ幅:0.02°、計数時間:0.6秒、スリット:DS(発散スリット)=0.5°、SS(散乱防止)=0.5°、RS(受光)=0.15mm、標準物質:金属Si
このラインブロードニング法の詳細は、文献「実験化学構座4(固体物理化学)」(1956年出版、丸善、日本化学会編、P238〜P250)に記載されている。
【0011】
前記のようにして得た担体酸化マグネシウムに対しては、第2工程(触媒金属担持工程)において、触媒金属を含む水溶液を用い、平衡吸着法にてpH8以上のアルカリ領域でその触媒水溶液を担持させる。本発明では、触媒金属としては、ロジウム及び/又はルテニウムが用いられる。
前記担持工程では、触媒金属は水溶液状で担体酸化マグネシウムに担持されるが、この場合の触媒金属は水溶性化合物の形態で用いられる。このようなものとしては、ハロゲン化物、硝酸塩、硫酸塩、有機酸塩(酢酸塩等)、錯塩(キレート)等が挙げられる。
担体MgOに対する触媒金属水溶液の担持には、平衡吸着法が採用される。この方法は、担体を触媒水溶液中に浸漬し、平衡条件下で水溶液中の触媒金属を担体に吸着担持させる方法である。この場合、触媒金属を担体に担持させる時間(浸漬時間)は1時間以上、好ましくは3時間以上であり、その上限は、特に制約されないが、通常、48時間程度である。この平衡吸着法の詳細は、文献「触媒調整化学」(1980年出版、講談社サイエンティフィク、P49)に記載されている。
【0012】
前記のようにして触媒金属を担体MgOに担持させる場合、その触媒水溶液のpHは8以上、好ましくは8.5以上のアルカリ領域とする。その上限値は、特に制約されないが、通常、pH13程度である。その水溶液のpH調節には、水酸化ナトリウムや水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等のアルカリ性物質やアンモニア水が用いられる。
本発明においては、担体MgOに対する触媒金属の担持量は、触媒金属換算量で、担体MgOに対して10〜5000wtppm、好ましくは100〜2000wtppmの割合に規定する。触媒金属担持量が前記範囲より多くなると、触媒コストが高くなるとともに、触媒の炭素析出活性が高くなり、触媒の使用に際し、炭素析出量が多くなる。一方、前記範囲より少ないと、十分な触媒活性が得られなくなる。触媒金属担持量の調節は、担体MgOに対して触媒金属水溶液を担持する際の条件、例えば、水溶液中の触媒金属濃度や、担体MgOの表面積等によって行うことができる。
【0013】
前記のようにして、担体MgOに触媒金属を水溶液状で担持させることによって得られた触媒金属担持MgOは、第3工程(乾燥工程)において、35℃以下の温度で6時間以上保持して乾燥させる。好ましい乾燥温度は10〜25℃である。乾燥時間は6時間以上であればよく、好ましくは12時間以上であり、その上限値は、特に制約されないが、通常、約72時間程度である。このような乾燥処理により、MgOからの急激な水分の蒸発が回避され、その結果、触媒金属は凝集することなく担体MgOに高分散状態で担持される。乾燥温度や乾燥時間が前記範囲を逸脱すると、高分散性の触媒金属を含む触媒を得ることができなくなる。
【0014】
前記のようにして得られた乾燥物は、これを第4工程において、200℃以上の高温で1時間以上焼成する。この場合、焼成雰囲気としては、通常、空気が用いられるが、他のガス(不活性ガス等)であってもよい。焼成温度は200℃以上であり、好ましくは500℃以上であり、その上限値は、特に制約されないが、通常、1100℃程度である。好ましい焼成時間は2時間以上、より好ましくは3時間以上であり、その上限値は、特に制約されないが、通常24時間程度である。この2次焼成により、触媒金属の熱安定性が高められ、熱安定性の良い触媒を得ることができる。
【0015】
触媒コストの低減化を図るには、担体に担持させる触媒金属の担持量をできるだけ低減化させると同時に、十分な反応活性を発現するように、担体に担持された触媒金属粒子の凝集化をできるだけ抑制して微粒子化することが必要となる。本発明者らの研究によれば、担体MgOの結晶化を高めてその比表面積を5m2/g以下の範囲に保持するとともに、その担体MgOに対する触媒金属の担持量を10〜5000wtppmと極く少量に保持し、かつその触媒金属を担体MgOに担持させるに際し、平衡吸着法により触媒金属を平衡条件下で長時間をかけてゆっくりと水溶液状で担持させ、その担持後においては、35℃以下の温度でゆっくりと乾燥するときには、触媒金属は均一に担持され、炭化水素改質用触媒として十分な活性を有する安価な触媒が得られることが見出された。
【0016】
前記した触媒の調製方法においては、種々の変更が可能である。例えば、担体酸化マグネシウムに触媒金属を担持させる方法としては、平衡吸着法に限らず、他の方法、例えば、慣用の含浸法や、浸漬法、イオン交換法等を用いることができる。また、触媒金属を含む水溶液を担体酸化マグネシウムに担持させた後、乾燥する場合には、場合によっては35〜200℃程度の加温条件を採用するし、また、その乾燥物の焼成は、場合によっては、200〜800℃程度の温度で行うことも可能である。
【0017】
本発明により触媒を調製する場合、その触媒担体形成用酸化マグネシウムは、酸化マグネシウムに成形助剤を配合して形成した酸化マグネシウム成形体として用いるのが好ましい。この成形助剤を用いることによって、成形時の作業性が向上すると共に得られた成形体の強度は向上する。この場合の成形助剤としては、(i)炭素(カーボン)、(ii)炭素数12〜22の脂肪酸又はそのマグネシウム塩、(iii)カルボキシルメチルセルロース(CMC)又はそのマグネシウム塩及び(iv)ポリビニルアルコールの中から選ばれる少なくとも1種の化合物を用いるのが好ましい。これらの成形助剤は、通常、粉末状で用いられる。
前記カーボンとしては、グラファイト、カーボンブラック、活性炭などが用いられる。前記脂肪酸としては、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸等が挙げられる。
【0018】
前記触媒担体用酸化マグネシウム成形体を製造するには、粉末状の酸化マグネシウムに成形助剤を添加し、均一に混合した後、この混合物を所要形状に成形する。粉末状酸化マグネシウムの平均粒径は1〜1000μm、好ましくは10〜100μmである。一方、成形助剤の平均粒径は1〜1000μm、好ましくは10〜100μmである。酸化マグネシウムに添加する成形助剤の量は、酸化マグネシウムと成形助剤の合計量に対し、0.1〜5重量%、好ましくは0.5〜3.0重量%である。
前記酸化マグネシウムと成形助剤との混合物を形成する場合、その成形条件としては、通常、常温で3000〜100kg/cm2G、好ましくは2000〜200kg/cm2Gの圧力が採用される。成形方法としては、プレス成形法が採用されるが、その他、打錠成形法等も採用することができる。成形体の形状は、特に制約されず、通常の触媒に採用されている形状であればよい。このような形状には、タブレット状、円柱状、リング状、中空円筒状等が包含される。その成形体の寸法は、通常、その長軸長さで、3〜30mm、好ましくは5〜25mmであるが、触媒床に応じて適宜の寸法を採用すればよい。
【0019】
本発明による前記酸化マグネシウム成形体は、焼成後の機械的強度にすぐれ、通常、30〜70kg/個の半径方向の圧縮強度を有する。
従って、このような成形体は、取扱い性の良好なもので、その焼成に際して、容易に破壊されるようなことはない。
また、この酸化マグネシウム成形体は、そのMgOの結晶化度が低いときには、所望する担体酸化マグネシウムを得るために、通常、1000℃以上の高温で一次焼成されるが、この一次焼成により、成形体中の成形助剤は酸化除去される。このようにして得られる酸化マグネシウムは、本発明触媒の調製に用いる担体酸化マグネシウムとして好適のものである。
【0020】
前記のようにして得られる本発明触媒において、その触媒金属担持量は、担体MgOに対して、10〜5000wtppm、好ましくは100〜2000wtppmであり、その比表面積は0.01〜5m2/g、好ましくは0.05〜3m2/gである。
なお、本明細書中で触媒及びMgOに関して言う比表面積は、「BET」法により、温度15℃で測定されたものであり、その測定装置としては、柴田科学社製の「SA−100」が用いられた。
【0021】
前記のようにして得られる本発明の触媒は、炭化水素改質用触媒として好ましい酸的性質を有する。触媒表面に強い酸点が多量に存在すると、その酸点上で副反応である炭素析出反応が促進され、炭素が析出し、この析出炭素によって触媒被毒が生じるようになる。
【0022】
本発明の触媒は、一般的には、その酸強度(Ho)は2より大きい、好ましくは3.3以上の酸点のみからなり、その含量は0.03mmol/gより少なく、好ましくは0.02mmol/g以下である。酸強度(Ho)の調節は、担体MgOを1次焼成する際の温度及び時間により行うことができる。本発明の触媒は、強酸点の発現が抑制され、炭素析出活性が大きく抑制されたものである。
【0023】
なお、本明細書で言う酸強度(Ho)は、触媒が塩基性指示薬(B-)にプロトンを与える能力として表示され、次式で表される。
Ho=pKa(=pKB - H +)+log[B]/[B-+] (1)
前記式中、KB - H +は、塩基性指示薬B-と酸性点H+Bとを反応させて、塩基性指示薬の酸性体(B-+)を生成させる反応におけるその酸性体B-+の解離定数を示す。[B]/[B-+]は、B-とB-+の濃度比を示す。
強酸点ほど、pKB - H +の小さな指示薬をより多くプロトン化するのでそのHo値は小さくなる。
【0024】
本明細書における酸強度は以下のようにして測定されたものである。
(酸強度の測定方法)
本明細書における酸強度Ho(ハメット指数)関数は、酸強度関数で、触媒学会編「触媒実験ハンドブック」(1986年出版、講談社サイエンティフィク)、p.172に記載の「Benesi法」により測定されたものである。触媒にpKaが分かっている指示薬を添加し、変色すると、HoがそのpKaより小さい酸点があることを示す。塩基性分子であるブチルアミンを酸点に所定量吸着させ、pKaの異なる指示薬で滴定すると、ブチルアミンの量から酸点の数が、pKaの値から酸強度が測定できる。測定温度は室温である。
【0025】
本発明の触媒を用いて合成ガス(水素と一酸化炭素との混合ガス)を製造するには、触媒の存在下において、炭化水素とスチーム及び/又は二酸化炭素(CO2)とを反応させるか、炭化水素と酸素とを反応させればよい。炭化水素としては、メタン、エタン、プロパン、ブタン、ナフサ等の低級炭化水素が用いられるが、好ましくはメタンが用いられる。本発明においては、炭酸ガスを含む天然ガス(メタンガス)を反応原料として有利に用いることができる。
メタンと二酸化炭素(CO2)とを反応させる方法(CO2リフォーミング)の場合、その反応は次式で示される。
【化1】

Figure 0004163302
メタンとスチームとを反応させる方法(スチームリフォーミング)の場合、その反応は次式で示される。
【化2】
Figure 0004163302
【0026】
CO2リフォーミングにおいて、その反応温度は500〜1200℃、好ましくは600〜1000℃であり、その反応圧力は加圧であり、5〜40kg/cm2G、好ましくは5〜30kg/cm2Gである。また、この反応を固定床方式で行う場合、そのガス空間速度(GHSV)は1,000〜10,000hr-1、好ましくは2,000〜8,000hr-1である。原料炭化水素に対するCO2の使用割合を示すと、原料炭化水素中の炭素1モル当り、CO220〜0.5モル、好ましくは10〜1モルの割合である。
スチームリフォーミングにおいて、その反応温度は600〜1200℃、好ましくは600〜1000℃であり、その反応圧力は加圧であり、1〜40kg/cm2G、好ましくは5〜30kg/cm2Gである。また、この反応を固定床方式で行う場合、そのガス空間速度(GHSV)は1,000〜10,000hr-1、好ましくは2,000〜8,000hr-1以下である。原料炭化水素に対するスチーム使用割合を示すと、原料炭化水素中の炭素1モル当り、スチーム(H2O)0.5〜5モル、好ましくは1〜2モル、より好ましくは1〜1.5モルの割合である。
本発明によりスチームリフォーミングを行う場合、前記のように、原料炭化水素の炭素1モル当りのスチーム(H2O)を2モル以下に保持しても、炭素析出を抑制して、工業的に有利に合成ガスを製造することができる。従来の場合には、原料炭化水素の炭素1モル当り2〜5モルのスチームを必要としていたことを考えると、2モル以下のスチームの使用によってリフォーミング反応を円滑に進行させ得ることは、本発明触媒の工業上の大きな利点である。
本発明の触媒は、炭化水素に、スチームとCO2の混合物を反応させる際の触媒として有利に用いられる。この場合、スチームとCO2との混合割合は特に制約されないが、一般的には、H2O/CO2モル比で、0.1〜10である。
【0027】
本発明の触媒を用いて炭化水素と酸素とを反応させる場合、その炭化水素としては、前記した如き炭化水素系が用いられるが、好ましくはメタンである。酸素源としては、酸素や、空気、富酸素化空気が用いられる。本発明においては、炭酸ガスを含む天然ガス(メタンガス)を反応原料として有利に用いることができる。
メタンと酸素とを反応させる場合、その反応は次式で示される。
【化3】
Figure 0004163302
この炭化水素の部分酸化において、その反応温度は500〜1500℃、好ましくは700〜1200℃であり、その反応圧力は加圧であり、5〜50kg/cm2G、好ましくは10〜40kg/cm2Gである。また、この反応を固定床方式で行う場合、そのガス空間速度(GHSV)は1,000〜50,000hr-1、好ましくは2,000〜20,000hr-1である。原料炭化水素と酸素の使用割合を示すと、原料炭化水素中の炭素のモル数と酸素分子のモル数との比C/O2で、4〜0.1、好ましくは2〜0.5である。また、この部分酸化法は、大きな発熱反応であるため、水蒸気や炭酸ガスを原料に添加して、オートサーミック式の反応方式を採用することもできる。
本発明の触媒を用いる前記各種の反応は、固定床方式、流動床方式、懸濁床方式、移動床方式等の各種の触媒方式で実施されるが、好ましくは固定床方式で実施される。
【0028】
【実施例】
次に本発明を実施例によりさらに詳細に説明する。
【0029】
実施例1
市販の純度98.7wt%以上の酸化マグネシウム(MgO)の粉末に滑択材として3.0wt%のカーボンを混合し、タブレット形成した1/8インチペレットを空気中で1060℃で3h(時間)焼成し、これを触媒担体MgO(A)として用いた。
次に、3.9wt%のRhを含むロジウム(III)アセテート水溶液に26h(時間)浸漬した。その水溶液は水酸化マグネシウム水溶液を用い、pHは9.7に調整した。このようにして、Rhを触媒担体MgO(A)に平衡吸着させた後、濾過して、Rhを水溶液状で吸着した触媒担体MgO(A)を得た。この場合のRh担持量は、Rh金属換算量で、担体MgO(A)に対して、3750wtppmである。
次に、Rhを吸着した担体MgO(A)を空気中において35℃の温度で52h乾燥した後、空気中において850℃で3h焼成し、本発明触媒(A)を得た。
この触媒(A)は、RhをRh金属として担体MgOに対し3750wtppm含有するもので、その表面積は1.2m2/gであった。また、その酸点は、酸強度(Ho)が3.3以上の酸点のみからなり、その含量は0.01mmol/gであった。
【0030】
実施例2
市販の純度98.0wt%の酸化マグネシウム(MgO)を用いて形成したMgOの1/8インチペレットを空気中で1000℃で2h(時間)焼成し、これを触媒担体MgO(B)として用いた。
次に、0.1wt%のRuを含むルテニウム(III)クロライド水溶液に19h(時間)浸漬した。その水溶液は水酸化マグネシウム水溶液を用い、pHは9.7に調整した。このようにして、Ruを触媒担体MgO(B)に平衡吸着させた後、濾過して、Ruを水溶液状で吸着した触媒担体MgO(B)を得た。この場合のRu担持量は、Ru金属換算量で、担体MgO(B)に対して、125wtppmである。
次に、Ruを吸着した担体MgO(B)を空気中において30℃の温度で72h乾燥した後、空気中において860℃で2.5h焼成し、本発明触媒(B)を得た。
この触媒(B)は、RuをRu金属として担体MgO(B)に対し125wtppmの割合で含有するもので、その表面積は4.8m2/gであった。また、その酸点は、酸強度(Ho)が3.3以上の酸点のみからなり、その含量は0.03mmol/gであった。
【0031】
実施例3
市販の純度99.9wt%の酸化マグネシウム(MgO)に2.5wt%ステアリン酸マグネシウムを混合して成形したMgOの1/8インチペレットを空気中で1200℃で2.5h(時間)焼成し、これを触媒担体MgO(C)として用いた。
次に、2.6wt%のRhを含むロジウム(III)アセテート水溶液に26h(時間)浸漬した。その水溶液は水酸化マグネシウム水溶液を用い、pHは9.7に調整した。このようにして、Rhを触媒担体MgO(C)に平衡吸着させた後、濾過して、Rhを水溶液状で吸着した触媒担体MgO(C)を得た。この場合のRh担持量は、Rh金属換算量で、担体MgO(C)に対して、1750wtppmである。
次に、Rhを吸着した担体MgO(C)を空気中において20℃の温度で34h乾燥した後、空気中において950℃で3.5h焼成し、本発明触媒(C)を得た。
この触媒(C)は、RhをRh金属として担体MgOに対し1750wtppm含有するもので、その表面積は0.2m2/gであった。また、その酸点は、酸強度(Ho)が3.3以上の酸点のみからなり、その含量は0.002mmol/gであった。
【0032】
反応例1
実施例1で調製した触媒(A)30ccを反応器に充填し、メタンのCO2リフォーミング試験を実施した。
触媒は、予めH2気流中900℃で1h還元処理を行った後、CH4:CO2モル比=1:0.4、CH4:H2Oモル比=1:0.85の原料ガスを、圧力20kg/cm2G,温度820℃,メタン基準のGHSV=4000hr-1の条件で処理した。反応開始から5h経過後のCH4転化率は、50%(実験条件下でのCH4の平衡転化率=50%)であり、また反応開始から1200h経過後のCH4の転化率は、50%であった。
ここで、CH4の転化率は、次式で定義される。
CH4の転化率(%)=(A−B)/A×100
A:原料中のCH4モル数
B:生成物中のCH4モル数
【0033】
反応例2
実施例2で調製した触媒(B)30ccを反応器に充填し、メタンのCO2リフォーミング試験を実施した。
触媒は、予めH2気流中900℃で1h還元処理を行った後、CH4:CO2モル比=1:1の原料ガスを、圧力10kg/cm2G,温度840℃,メタン基準のGHSV=5000hr-1の条件で処理した。反応開始から5h経過後のCH4転化率は、65%(実験条件下でのCH4の平衡転化率=65%)であり、また反応開始から460h経過後のCH4の転化率は、65%であった。
【0034】
反応例3
実施例3で調製した触媒(C)30ccを反応器に充填し、メタンのCO2リフォーミング試験を実施した。
触媒は、予めH2気流中900℃で1h還元処理を行った後、CH4:CO2モル比=1:1の原料ガスを、圧力20kg/cm2G,温度840℃,メタン基準のGHSV=3500hr-1の条件で処理した。反応開始から5h経過後のCH4転化率は、53%(実験条件下でのCH4の平衡転化率=53%)であり、また反応開始から250h経過後のCH4の転化率は、53%であった。
【0035】
【発明の効果】
本発明によれば、触媒金属の担持量が極く少量でありながら、炭素析出活性が著しく抑制された安価な炭化水素改質用触媒を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for preparing a hydrocarbon reforming catalyst and a magnesium oxide molded body for forming the catalyst carrier.
[0002]
[Prior art]
Syngas obtained by reforming hydrocarbons is a mixed gas composed of hydrogen and carbon monoxide, and is widely used as a raw material for synthesizing industrial products such as ammonia, methanol, and acetic acid.
In general, synthesis gas can be produced by reacting hydrocarbons with steam and / or carbon dioxide in the presence of a catalyst (Japanese Patent Laid-Open Nos. 5-208801, 6-279003, and 9-168740). Issue).
However, in this reaction, as a side reaction, there is a problem that a carbon deposition reaction occurs to deposit carbon, which causes catalyst poisoning. In this reforming reaction, it is well known that when a noble metal is used as a catalyst metal, carbon deposition is more easily suppressed than a transition metal such as Ni, but in this case, the noble metal is very expensive, so It has been desired to establish a method for preparing a catalyst that can effectively use a small amount of metal for the reaction.
[0003]
[Problems to be solved by the invention]
It is an object of the present invention to provide a method for preparing a hydrocarbon reforming catalyst with a small amount of noble metal supported and a small amount of carbon deposition during use, and a magnesium oxide molded body for forming the catalyst carrier.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, according to the present invention, (i) the amount of rhodium and / or ruthenium converted into metal in the carrier magnesium oxide having a specific surface area of 0.01 to 5 m 2 / g obtained by firing at a high temperature of 1000 ° C. or higher. A method for preparing a catalyst for reforming hydrocarbons is provided in which the catalyst is supported at a rate of 10 to 5000 wtppm and then calcined. According to the present invention, (i) a first step of obtaining carrier magnesium oxide having a specific surface area of 0.01 to 5 m 2 / g obtained by firing at a high temperature of 1000 ° C. or higher , (ii) the first step An aqueous solution containing a water-soluble rhodium compound and / or ruthenium compound is used as the carrier magnesium oxide obtained in one step, and rhodium and / or ruthenium is 10 in terms of metal in an alkaline region having a pH of 8 or higher by an equilibrium adsorption method. A second step of loading at a rate of ˜5000 wtppm, (iii) a third step of drying the rhodium and / or ruthenium-supported magnesium oxide obtained in the second step, and (iv) a dried state obtained in the third step A method for preparing a hydrocarbon reforming catalyst comprising the fourth step of calcining the rhodium and / or ruthenium-supported magnesium oxide is provided. Furthermore, according to the present invention, (i) a first step of obtaining carrier magnesium oxide having a specific surface area of 0.01 to 5 m 2 / g obtained by firing at a high temperature of 1000 ° C. or higher , (ii) the first step An aqueous solution containing a water-soluble rhodium compound and / or ruthenium compound is used as the carrier magnesium oxide obtained in one step, and rhodium and / or ruthenium is 10 in terms of metal in an alkaline region having a pH of 8 or higher by an equilibrium adsorption method. A second step of loading at a rate of ˜5000 wtppm, (iii) a third step of drying the rhodium and / or ruthenium supported magnesium oxide obtained in the second step at 35 ° C. or lower for at least 6 hours, (iv) the step A method for preparing a hydrocarbon reforming catalyst comprising the fourth step of calcining the rhodium and / or ruthenium-supported magnesium oxide obtained in the third step is proposed. It is. Furthermore, according to the present invention, (i) a first step of obtaining carrier magnesium oxide having a specific surface area of 0.01 to 5 m 2 / g obtained by firing at a high temperature of 1000 ° C. or higher , (ii) An aqueous solution containing a water-soluble rhodium compound and / or ruthenium compound is used as the carrier magnesium oxide obtained in the first step, and rhodium and / or ruthenium is converted into a metal equivalent in an alkaline region having a pH of 8 or higher by an equilibrium adsorption method. A second step of loading at a rate of 10 to 5000 wtppm, (iii) a third step of drying the rhodium and / or ruthenium-supported magnesium oxide obtained in the second step at 35 ° C. or lower for at least 6 hours, (iv) A modified hydrocarbon comprising the fourth step of firing the rhodium and / or ruthenium-supported magnesium oxide obtained in the third step at a high temperature of 200 ° C. or higher. Process for the preparation of use catalyst. Furthermore, according to the present invention, there is provided a magnesium oxide molded body for forming a carrier magnesium oxide used in the method for preparing a hydrocarbon reforming catalyst according to any one of claims 1 to 4, is formed by molding a mixture of a molding aid us is, the molding auxiliary (i) carbon, (ii) a fatty acid or its magnesium salt having 12 to 22 carbon atoms, (iii) carboxymethyl cellulose or its magnesium And (iv) at least one selected from polyvinyl alcohol, and an added amount thereof is 0.1 to 5% by weight.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, as a catalyst carrier, the specific surface area obtained by firing at a high temperature of at least 1000 ° C. is 0.01 to 5 m 2 / g of magnesium oxide (hereinafter, also simply referred to as MgO) is used. As this MgO, a commercial product can be used, and the shape is not particularly limited, and may be various shapes used as a catalyst, for example, powder, granular, spherical, columnar, cylindrical, etc. it can. MgO is obtained by baking magnesium hydroxide at 1000 to 1500 ° C, preferably 1100 to 1300 ° C, or magnesium carbonate or basic magnesium carbonate at 1000 to 1500 ° C, preferably 1100 to 1300 ° C. It is possible to use what was obtained.
[0006]
A preferred method for preparing a hydrocarbon reforming catalyst (hereinafter also simply referred to as catalyst) according to the present invention is as follows. First, in the first step, a carrier MgO having a specific surface area of 0.01 to 5 m 2 / g obtained by firing at a high temperature of 1000 ° C. or higher is obtained. In an industrial catalyst, a carrier molded into a shape such as a pellet or a ring is preferably used. When an MgO molded body having such a shape is used, the specific surface area of MgO is larger than the above range, and the crystallinity is If the MgO molded body is immersed in an aqueous solution when the catalyst metal is supported, the MgO molded body is cracked. Further, in the case of an industrial catalyst, it is usually necessary to have a radial compressive strength of 30 to 40 kg / piece, but in the case of an MgO molded body having a specific surface area larger than the above range and a low crystallinity, such strength. It becomes difficult to get. Further, when the crystallinity of the carrier MgO is lowered, the amount of the catalyst metal supported is increased, and the acid strength of the catalyst becomes too strong, so that the acid characteristics of the catalyst surface become unsatisfactory. On the other hand, if the crystallinity of the carrier MgO is too large, the amount of catalyst metal supported becomes too small to obtain a catalyst having sufficient activity. From this point, the specific surface area of the carrier MgO is preferably 0.01 m 2 / g or more and 5 m 2 / g or less .
[0007]
As one method for obtaining a carrier MgO having a specific surface area in the above range, it can be produced by calcining magnesium hydroxide at 1000 to 1500 ° C., preferably 1100 to 1300 ° C., or magnesium carbonate or basic carbonate. It can be produced by firing magnesium at 1000-1500 ° C, preferably 1100-1300 ° C. Also, when firing at a low temperature of 1000 ° C. or lower, the desired carrier MgO is controlled by increasing the partial pressure of water produced during firing to promote crystallization of MgO and controlling the crystallite size of MgO. Can be obtained. Furthermore, when the specific surface area of commercially available MgO or the like is smaller than the above range, the desired support MgO can be obtained by firing the MgO at 1000 to 1500 ° C., preferably 1100 to 1300 ° C.
Furthermore, when obtaining a low surface area support MgO, crystallization of the MgO can be promoted by forming a high partial pressure of water in the firing system at a temperature of 1000 ° C. or lower. The crystallization of MgO can be promoted by forming a high partial pressure of a gas (gas) such as CO 2 instead of the pressure.
As an atmosphere for the firing, an air atmosphere is usually used, but another gas, for example, an inert gas such as nitrogen gas may be used. The firing time is 1 hour or longer, preferably 3 hours or longer, and the upper limit is not particularly limited, but is usually about 72 hours. Moreover, not only a baking method but any method may be adopted as long as such a low surface area MgO can be obtained.
[0008]
The carrier MgO according to the present invention has a high crystallinity, the surface of the MgO is stabilized, and MgO with a strong acid point suppressed as much as possible is obtained. And in such stabilized MgO, an acid strength (Ho) has only an acid point of 2 or more, and MgO whose amount is less than 0.03 mmol / g is obtained. Therefore, by using MgO having a high degree of crystallinity, which is fired at a high temperature of 1000 ° C. or higher, as a carrier for supporting a catalytic metal, a catalyst having a stable activity in which the occurrence of a strong acid point is suppressed as much as possible and the carbon deposition reaction is suppressed is obtained. It becomes possible. The surface area of MgO used in the present invention is 0.01 to 5 m 2 / g, preferably 0.05 to 3 m 2 / g. When the surface area of the support MgO is higher than the above range, the supported amount of the catalyst metal increases, and the acid strength of the catalyst becomes too strong, so that the acid characteristics of the catalyst surface become unsatisfactory. On the other hand, when the surface area of the support MgO is smaller than the above range, the amount of the catalyst metal supported becomes too small to obtain a catalyst having sufficient activity.
[0009]
In general, it is well known that the surface area of a metal oxide and its crystallite size are in an inversely proportional relationship. Therefore, the specific surface area of MgO defined in the present invention can be defined by the particle size. For example, the crystallite size of MgO having a specific surface area of 5 m 2 / g or less can be calculated from the density and specific surface area of MgO by assuming that the particles are spherical or cubic uniform particles. This method is described in the document “Catalyst Constitution 3 (Characterization of Solid Catalyst)” (published in 1985, Kodansha Scientific, edited by the Catalysis Society of Japan, P203). For example, the crystallite size of MgO having a specific surface area of 5 m 2 / g fired at 1010 ° C. is 3500 mm.
[0010]
The crystallite size of MgO can also be measured using an X-ray diffraction method. When the crystallite size of MgO having a surface area of 5 m 2 / g or less in the present specification was measured by a “line broadening” method using an X-ray diffraction method, the value was 900 mm or more. As a measuring apparatus, an X-ray diffractometer “XRD-6000” manufactured by Shimadzu Corporation was used. When measured using metal Si as a standard substance, the crystal size of MgO was calculated from the half-value width of the diffraction peak of 2θ = 22.7 ° of MgO and the diffraction peak of 2θ = 28.4 ° of MgO of Si. The measurement conditions in the X-ray diffraction measurement are shown below.
X-ray tube: Cu (λ = 1.5406 mm), tube voltage: 40.0 kV, tube current: 30.0 mA, measurement range: 40.0 to 80.0 °, step width: 0.02 °, counting time : 0.6 seconds, slit: DS (divergence slit) = 0.5 °, SS (scattering prevention) = 0.5 °, RS (light reception) = 0.15 mm, standard material: metallic Si
Details of this line broadening method are described in the document “Experimental Chemistry Structure 4 (Solid Physical Chemistry)” (published in 1956, Maruzen, edited by The Chemical Society of Japan, P238-P250).
[0011]
For the support magnesium oxide obtained as described above, in the second step (catalyst metal supporting step), an aqueous solution containing the catalyst metal is used, and the aqueous catalyst solution is supported in an alkaline region having a pH of 8 or higher by the equilibrium adsorption method. Let In the present invention, rhodium and / or ruthenium is used as the catalyst metal.
In the supporting step, the catalyst metal is supported on the support magnesium oxide in the form of an aqueous solution. In this case, the catalyst metal is used in the form of a water-soluble compound. Examples of such compounds include halides, nitrates, sulfates, organic acid salts (such as acetates), complex salts (chelates), and the like.
An equilibrium adsorption method is used for supporting the catalytic metal aqueous solution on the support MgO. In this method, the support is immersed in the aqueous catalyst solution, and the catalytic metal in the aqueous solution is adsorbed and supported on the support under equilibrium conditions. In this case, the time for which the catalyst metal is supported on the carrier (immersion time) is 1 hour or more, preferably 3 hours or more, and the upper limit is not particularly limited, but is usually about 48 hours. Details of this equilibrium adsorption method are described in the document "Catalyst Preparation Chemistry" (published in 1980, Kodansha Scientific, P49).
[0012]
When the catalyst metal is supported on the carrier MgO as described above, the pH of the catalyst aqueous solution is 8 or more, preferably 8.5 or more. The upper limit is not particularly limited, but is usually about pH 13. For adjusting the pH of the aqueous solution, an alkaline substance such as sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, or aqueous ammonia is used.
In the present invention, the amount of the catalyst metal supported on the support MgO is defined as a catalyst metal equivalent amount of 10 to 5000 wtppm, preferably 100 to 2000 wtppm with respect to the support MgO. When the amount of the catalyst metal supported exceeds the above range, the catalyst cost increases and the carbon deposition activity of the catalyst increases, and the amount of carbon deposition increases when the catalyst is used. On the other hand, if the amount is less than the above range, sufficient catalytic activity cannot be obtained. The amount of the catalyst metal supported can be adjusted by the conditions for supporting the catalyst metal aqueous solution on the support MgO, for example, the catalyst metal concentration in the aqueous solution, the surface area of the support MgO, and the like.
[0013]
In the third step (drying step), the catalyst metal-supported MgO obtained by supporting the catalyst metal in the form of an aqueous solution on the support MgO as described above is held at a temperature of 35 ° C. or lower for 6 hours or more and dried. Let A preferable drying temperature is 10 to 25 ° C. The drying time may be 6 hours or more, preferably 12 hours or more, and the upper limit is not particularly limited, but is usually about 72 hours. By such a drying treatment, rapid evaporation of moisture from MgO is avoided, and as a result, the catalyst metal is supported on the support MgO in a highly dispersed state without agglomeration. When the drying temperature or drying time is out of the above range, a catalyst containing a highly dispersible catalyst metal cannot be obtained.
[0014]
The dried product obtained as described above is baked at a high temperature of 200 ° C. or higher for 1 hour or longer in the fourth step. In this case, air is usually used as the firing atmosphere, but other gases (inert gas or the like) may be used. The firing temperature is 200 ° C. or higher, preferably 500 ° C. or higher, and the upper limit is not particularly limited, but is usually about 1100 ° C. The preferred firing time is 2 hours or more, more preferably 3 hours or more, and the upper limit is not particularly limited, but is usually about 24 hours. By this secondary calcination, the thermal stability of the catalyst metal is enhanced, and a catalyst with good thermal stability can be obtained.
[0015]
In order to reduce the catalyst cost, the amount of catalyst metal supported on the support should be reduced as much as possible, and at the same time, the catalyst metal particles supported on the support should be agglomerated as much as possible so as to develop sufficient reaction activity. It is necessary to suppress and form fine particles. According to the study by the present inventors, the crystallization of the support MgO is increased to maintain the specific surface area in a range of 5 m 2 / g or less, and the supported amount of the catalyst metal on the support MgO is extremely 10 to 5000 wtppm. When the catalyst metal is held in a small amount and supported on the support MgO, the catalyst metal is slowly supported in the form of an aqueous solution under equilibrium conditions over a long period of time by the equilibrium adsorption method. It has been found that when the catalyst is dried slowly at a temperature of 5 ° C., the catalyst metal is supported uniformly and an inexpensive catalyst having sufficient activity as a hydrocarbon reforming catalyst can be obtained.
[0016]
Various modifications can be made in the above-described catalyst preparation method. For example, the method of supporting the catalyst metal on the carrier magnesium oxide is not limited to the equilibrium adsorption method, and other methods such as a conventional impregnation method, an immersion method, an ion exchange method, and the like can be used. In addition, in the case where the aqueous solution containing the catalyst metal is supported on the magnesium oxide and then dried, a heating condition of about 35 to 200 ° C. is used in some cases, and the dried product is calcined. Depending on the temperature, it may be performed at a temperature of about 200 to 800 ° C.
[0017]
When the catalyst is prepared according to the present invention, the magnesium oxide for forming the catalyst carrier is preferably used as a magnesium oxide molded body formed by blending a molding aid with magnesium oxide. By using this molding aid, workability at the time of molding is improved and the strength of the obtained molded body is improved. Molding aids in this case include (i) carbon (carbon), (ii) fatty acids having 12 to 22 carbon atoms or magnesium salts thereof, (iii) carboxymethyl cellulose (CMC) or magnesium salts thereof, and (iv) polyvinyl alcohol. It is preferable to use at least one compound selected from the group consisting of These molding aids are usually used in powder form.
As the carbon, graphite, carbon black, activated carbon and the like are used. Examples of the fatty acid include lauric acid, myristic acid, palmitic acid, stearic acid, and behenic acid.
[0018]
In order to produce the magnesium oxide molded body for the catalyst carrier, a molding aid is added to the powdered magnesium oxide and mixed uniformly, and then the mixture is molded into a required shape. The average particle size of the powdered magnesium oxide is 1-1000 μm, preferably 10-100 μm. On the other hand, the average particle size of the molding aid is 1-1000 μm, preferably 10-100 μm. The amount of the molding aid added to the magnesium oxide is 0.1 to 5% by weight, preferably 0.5 to 3.0% by weight, based on the total amount of magnesium oxide and the molding aid.
When forming a mixture of the magnesium oxide forming aid As the molding conditions, usually, at ordinary temperature 3000~100kg / cm 2 G, and preferably a pressure of 2000~200kg / cm 2 G adopted. As a molding method, a press molding method is employed, but a tableting molding method or the like can also be employed. The shape of the molded body is not particularly limited as long as it is a shape adopted for a normal catalyst. Such shapes include tablet shapes, columnar shapes, ring shapes, hollow cylindrical shapes, and the like. The dimension of the molded body is usually 3 to 30 mm, preferably 5 to 25 mm, in terms of the major axis length, but an appropriate dimension may be adopted depending on the catalyst bed.
[0019]
The magnesium oxide molded body according to the present invention has excellent mechanical strength after firing, and usually has a compressive strength in the radial direction of 30 to 70 kg / piece.
Accordingly, such a molded article has good handleability and is not easily broken during firing.
In addition, when the MgO shaped body has a low crystallinity of MgO, it is usually subjected to primary firing at a high temperature of 1000 ° C. or higher in order to obtain a desired carrier magnesium oxide. The molding aid inside is oxidized and removed. The magnesium oxide thus obtained is suitable as the carrier magnesium oxide used for the preparation of the catalyst of the present invention.
[0020]
In the catalyst of the present invention obtained as described above, the catalyst metal loading is 10 to 5000 wtppm, preferably 100 to 2000 wtppm, with respect to the support MgO, and the specific surface area is 0.01 to 5 m 2 / g, Preferably it is 0.05-3 m < 2 > / g.
In addition, the specific surface area said regarding a catalyst and MgO in this specification is measured at the temperature of 15 degreeC by "BET" method, As a measuring device, "SA-100" by Shibata Kagakusha is used. Used.
[0021]
The catalyst of the present invention obtained as described above has an acidic property that is preferable as a catalyst for hydrocarbon reforming. When a large amount of strong acid sites are present on the catalyst surface, a carbon deposition reaction as a side reaction is promoted on the acid sites, carbon is deposited, and catalyst poisoning occurs due to the deposited carbon.
[0022]
The catalyst of the present invention generally has only an acid strength (Ho) greater than 2, preferably 3.3 or higher, and its content is less than 0.03 mmol / g, preferably 0.8. It is 02 mmol / g or less. The acid strength (Ho) can be adjusted by adjusting the temperature and time when the support MgO is first calcined. In the catalyst of the present invention, the expression of a strong acid point is suppressed and the carbon deposition activity is greatly suppressed.
[0023]
The acid strength (Ho) in the present specification is expressed as the ability of the catalyst to give protons to the basic indicator (B ), and is represented by the following formula.
Ho = pKa (= pK B - H +) + log [B] / [B - H +] (1)
In the formula, K B - H + is a basic indicator B - and the acidic sites H + B is reacted, the acid of basic indicator (B - H +) its acidic substance in the reaction to produce the B - The dissociation constant of H + is shown. [B] / [B H + ] indicates the concentration ratio of B and B H + .
The stronger the acid point, the more the proton with a small pK B H + is protonated, so the Ho value becomes smaller.
[0024]
The acid strength in this specification is measured as follows.
(Measurement method of acid strength)
The acid strength Ho (Hammett index) function in this specification is an acid strength function, edited by the Catalysis Society of Japan, "Catalyst Experiment Handbook" (published in 1986, Kodansha Scientific), p. 172, measured by “Benesi method”. Addition of an indicator with known pKa to the catalyst and discoloration indicates that Ho has an acid point smaller than its pKa. When a predetermined amount of butylamine, which is a basic molecule, is adsorbed to an acid point and titrated with an indicator having a different pKa, the number of acid points can be measured from the amount of butylamine and the acid strength can be measured from the value of pKa. The measurement temperature is room temperature.
[0025]
In order to produce synthesis gas (a mixed gas of hydrogen and carbon monoxide) using the catalyst of the present invention, hydrocarbons and steam and / or carbon dioxide (CO 2 ) are reacted in the presence of the catalyst. A hydrocarbon and oxygen may be reacted. As the hydrocarbon, lower hydrocarbons such as methane, ethane, propane, butane, and naphtha are used, and methane is preferably used. In the present invention, natural gas (methane gas) containing carbon dioxide gas can be advantageously used as a reaction raw material.
In the case of a method of reacting methane and carbon dioxide (CO 2 ) (CO 2 reforming), the reaction is represented by the following formula.
[Chemical 1]
Figure 0004163302
In the case of a method of reacting methane and steam (steam reforming), the reaction is represented by the following equation.
[Chemical 2]
Figure 0004163302
[0026]
In the CO 2 reforming, the reaction temperature is 500 to 1200 ° C., preferably 600 to 1000 ° C., the reaction pressure is pressurization, 5 to 40 kg / cm 2 G, preferably 5 to 30 kg / cm 2 G. It is. When this reaction is carried out in a fixed bed system, the gas space velocity (GHSV) is 1,000 to 10,000 hr −1 , preferably 2,000 to 8,000 hr −1 . The proportion of CO 2 used relative to the raw material hydrocarbon is 20 to 0.5 moles of CO 2 , preferably 10 to 1 mole per mole of carbon in the raw material hydrocarbon.
In steam reforming, the reaction temperature is 600 to 1200 ° C., preferably 600 to 1000 ° C., the reaction pressure is pressurized, 1 to 40 kg / cm 2 G, preferably 5 to 30 kg / cm 2 G. is there. When this reaction is carried out in a fixed bed system, the gas space velocity (GHSV) is 1,000 to 10,000 hr −1 , preferably 2,000 to 8,000 hr −1 or less. In terms of the steam usage ratio relative to the raw material hydrocarbon, 0.5 to 5 mol, preferably 1 to 2 mol, more preferably 1 to 1.5 mol of steam (H 2 O) per mol of carbon in the raw material hydrocarbon. Is the ratio.
When performing steam reforming according to the present invention, as described above, even if the steam (H 2 O) per mole of the raw material hydrocarbon is kept at 2 moles or less, carbon deposition is suppressed and industrially produced. Advantageously, synthesis gas can be produced. In the conventional case, considering that 2 to 5 mol of steam is required per 1 mol of carbon of the raw material hydrocarbon, the reforming reaction can proceed smoothly by using 2 mol or less of steam. This is a great industrial advantage of the inventive catalyst.
The catalyst of the present invention is advantageously used as a catalyst for reacting a mixture of steam and CO 2 with a hydrocarbon. In this case, the mixing ratio of steam and CO 2 is not particularly limited, but is generally 0.1 to 10 in terms of H 2 O / CO 2 molar ratio.
[0027]
When the hydrocarbon and oxygen are reacted using the catalyst of the present invention, as the hydrocarbon, the hydrocarbon system as described above is used, and preferably methane. As the oxygen source, oxygen, air, or oxygen-enriched air is used. In the present invention, natural gas (methane gas) containing carbon dioxide gas can be advantageously used as a reaction raw material.
When methane and oxygen are reacted, the reaction is represented by the following formula.
[Chemical 3]
Figure 0004163302
In this partial oxidation of hydrocarbon, the reaction temperature is 500-1500 ° C, preferably 700-1200 ° C, the reaction pressure is pressurized, 5-50 kg / cm 2 G, preferably 10-40 kg / cm. 2 G. When this reaction is carried out in a fixed bed system, the gas space velocity (GHSV) is 1,000 to 50,000 hr −1 , preferably 2,000 to 20,000 hr −1 . When the ratio of the raw material hydrocarbon and oxygen used is shown, the ratio C / O 2 between the number of moles of carbon and the number of moles of oxygen molecules in the raw material hydrocarbon is 4 to 0.1, preferably 2 to 0.5. is there. Further, since this partial oxidation method is a large exothermic reaction, it is also possible to adopt an autothermic reaction method by adding water vapor or carbon dioxide gas to the raw material.
The various reactions using the catalyst of the present invention are carried out in various catalyst systems such as a fixed bed system, a fluidized bed system, a suspension bed system, and a moving bed system, but are preferably carried out in a fixed bed system.
[0028]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0029]
Example 1
Commercially available powder of 98.7 wt% or more of magnesium oxide (MgO) was mixed with 3.0 wt% carbon as a lubricant, and tablet-formed 1/8 inch pellets were air-treated at 1060 ° C for 3 hours (hours) After firing, this was used as a catalyst carrier MgO (A).
Next, it was immersed in a rhodium (III) acetate aqueous solution containing 3.9 wt% Rh for 26 hours (hours). The aqueous solution was an aqueous magnesium hydroxide solution, and the pH was adjusted to 9.7. In this way, Rh was adsorbed on the catalyst carrier MgO (A) by equilibrium, and then filtered to obtain catalyst carrier MgO (A) on which Rh was adsorbed in the form of an aqueous solution. The amount of Rh supported in this case is 3750 wtppm with respect to the carrier MgO (A) in terms of Rh metal.
Next, the carrier MgO (A) adsorbing Rh was dried in air at a temperature of 35 ° C. for 52 h, and then calcined in air at 850 ° C. for 3 h to obtain the catalyst (A) of the present invention.
This catalyst (A) contains 3750 wtppm of Rh as Rh metal with respect to the carrier MgO, and its surface area was 1.2 m 2 / g. Moreover, the acid point consisted only of the acid point whose acid strength (Ho) is 3.3 or more, and the content was 0.01 mmol / g.
[0030]
Example 2
MgO 1/8 inch pellets formed with commercially available 98.0 wt% magnesium oxide (MgO) were calcined in air at 1000 ° C. for 2 h (hours) and used as catalyst support MgO (B). .
Next, it was immersed in a ruthenium (III) chloride aqueous solution containing 0.1 wt% Ru for 19 hours (hours). The aqueous solution was an aqueous magnesium hydroxide solution, and the pH was adjusted to 9.7. In this way, Ru was adsorbed on the catalyst carrier MgO (B) in equilibrium, and then filtered to obtain a catalyst carrier MgO (B) on which Ru was adsorbed in the form of an aqueous solution. In this case, the amount of Ru supported is 125 wtppm with respect to the support MgO (B) in terms of Ru metal.
Next, the carrier MgO (B) on which Ru was adsorbed was dried in air at a temperature of 30 ° C. for 72 h and then calcined in air at 860 ° C. for 2.5 h to obtain the catalyst (B) of the present invention.
This catalyst (B) contains Ru as a Ru metal in a proportion of 125 wtppm with respect to the carrier MgO (B), and its surface area was 4.8 m 2 / g. Moreover, the acid point consisted only of the acid point whose acid strength (Ho) is 3.3 or more, and the content was 0.03 mmol / g.
[0031]
Example 3
A commercially available magnesium oxide (MgO) having a purity of 99.9 wt% was mixed with 2.5 wt% magnesium stearate, and 1/8 inch pellets of MgO were fired in air at 1200 ° C for 2.5 hours (hours). This was used as catalyst support MgO (C).
Next, it was immersed in a rhodium (III) acetate aqueous solution containing 2.6 wt% Rh for 26 h (hour). The aqueous solution was an aqueous magnesium hydroxide solution, and the pH was adjusted to 9.7. In this way, Rh was adsorbed on the catalyst support MgO (C) by equilibrium, and then filtered to obtain a catalyst support MgO (C) in which Rh was adsorbed in the form of an aqueous solution. The amount of Rh supported in this case is 1750 wtppm with respect to the carrier MgO (C) in terms of Rh metal.
Next, the carrier MgO (C) adsorbing Rh was dried in air at a temperature of 20 ° C. for 34 h, and then calcined in air at 950 ° C. for 3.5 h to obtain the catalyst (C) of the present invention.
The catalyst (C) contained 1750 wtppm of Rh as Rh metal with respect to the carrier MgO, and its surface area was 0.2 m 2 / g. Moreover, the acid point consisted of only an acid point having an acid strength (Ho) of 3.3 or more, and its content was 0.002 mmol / g.
[0032]
Reaction example 1
30 cc of the catalyst (A) prepared in Example 1 was charged into a reactor, and a CO 2 reforming test of methane was performed.
The catalyst, after 1h reduction treatment beforehand with H 2 900 ° C. in a stream, CH 4: CO 2 molar ratio = 1: 0.4, CH 4: H 2 O molar ratio = 1: 0.85 of the raw material gas Was treated under the conditions of a pressure of 20 kg / cm 2 G, a temperature of 820 ° C., and a methane standard GHSV = 4000 hr −1 . The CH 4 conversion after 5 hours from the start of the reaction is 50% (equilibrium conversion of CH 4 under experimental conditions = 50%), and the CH 4 conversion after 1200 hours from the start of the reaction is 50%. %Met.
Here, the conversion rate of CH 4 is defined by the following equation.
CH 4 conversion (%) = (A−B) / A × 100
A: CH 4 molar number in the raw material B: CH 4 molar number [0033] of the product
Reaction example 2
30 cc of the catalyst (B) prepared in Example 2 was charged into a reactor, and a CO 2 reforming test of methane was performed.
The catalyst was previously reduced in an H 2 stream at 900 ° C. for 1 h, and then a raw material gas of CH 4 : CO 2 molar ratio = 1: 1 was used, a pressure of 10 kg / cm 2 G, a temperature of 840 ° C., and a methane standard GHSV. = Treated under the condition of 5000 hr -1 . The CH 4 conversion after 5 h from the start of the reaction is 65% (equilibrium conversion of CH 4 under the experimental conditions = 65%), and the CH 4 conversion after 460 h from the start of the reaction is 65%. %Met.
[0034]
Reaction example 3
30 cc of the catalyst (C) prepared in Example 3 was charged into the reactor, and a CO 2 reforming test of methane was performed.
The catalyst was previously reduced in an H 2 stream at 900 ° C. for 1 h, and then a raw material gas having a CH 4 : CO 2 molar ratio = 1: 1 was used, a pressure of 20 kg / cm 2 G, a temperature of 840 ° C., and a methane standard GHSV. = 3500 hr -1 . The CH 4 conversion after 5 hours from the start of the reaction is 53% (CH 4 equilibrium conversion under experimental conditions = 53%), and the CH 4 conversion after 250 hours from the start of the reaction is 53%. %Met.
[0035]
【The invention's effect】
According to the present invention, it is possible to obtain an inexpensive hydrocarbon reforming catalyst in which carbon deposition activity is remarkably suppressed while the amount of catalyst metal supported is extremely small.

Claims (5)

(i) 1000℃以上の高温で焼成して得られた比表面積が0.01〜5 m 2 /gの担体酸化マグネシウムに、ロジウム及び/又はルテニウムを金属換算量で10〜5000wtppmの割合で担持させ、次いで焼成することを特徴とする炭化水素の改質用触媒の調製方法。(i) Supporting rhodium and / or ruthenium in a metal conversion amount of 10 to 5000 wtppm on a carrier magnesium oxide having a specific surface area of 0.01 to 5 m 2 / g obtained by firing at a high temperature of 1000 ° C. or higher. And then calcining, a method for preparing a hydrocarbon reforming catalyst. (i) 1000℃以上の高温で焼成して得られた比表面積が0.01〜5 m 2 /gの担体酸化マグネシウムを得る第1工程、(ii) 該第1工程で得られた担体酸化マグネシウムに、水溶性のロジウム化合物及び/又はルテニウム化合物を含有する水溶液を用い、平衡吸着法にてpH8以上のアルカリ領域でロジウム及び/又はルテニウムを金属換算量で10〜5000wtppmの割合で担持させる第2工程、(iii) 該第2工程で得られたロジウム及び/又はルテニウム担持酸化マグネシウムを乾燥させる第3工程、(iv) 該第3工程で得られた乾燥状態のロジウム及び/又はルテニウム担持酸化マグネシウムを焼成する第4工程からなることを特徴とする炭化水素の改質用触媒の調製方法。(i) a first step of obtaining carrier magnesium oxide having a specific surface area of 0.01 to 5 m 2 / g obtained by firing at a high temperature of 1000 ° C. or higher ; (ii) carrier oxidation obtained in the first step. Using an aqueous solution containing a water-soluble rhodium compound and / or ruthenium compound on magnesium, rhodium and / or ruthenium is supported at a rate of 10 to 5000 wtppm in terms of metal in an alkaline region having a pH of 8 or higher by an equilibrium adsorption method. Two steps, (iii) a third step of drying the rhodium and / or ruthenium-supported magnesium oxide obtained in the second step, (iv) a dried rhodium and / or ruthenium-supported oxide obtained in the third step A method for preparing a hydrocarbon reforming catalyst, comprising a fourth step of calcining magnesium. (i) 1000℃以上の高温で焼成して得られた比表面積が0.01〜5 m 2 /gの担体酸化マグネシウムを得る第1工程、(ii) 該第1工程で得られた担体酸化マグネシウムに、水溶性のロジウム化合物及び/又はルテニウム化合物を含有する水溶液を用い、平衡吸着法にてpH8以上のアルカリ領域でロジウム及び/又はルテニウムを金属換算量で10〜5000wtppmの割合で担持させる第2工程、(iii) 該第2工程により得られたロジウム及び/又はルテニウム担持酸化マグネシウムを、35℃以下で少なくとも6時間以上乾燥させる第3工程、(iv) 該第3工程で得られた乾燥状態のロジウム及び/又はルテニウム担持酸化マグネシウムを焼成する第4工程からなることを特徴とする炭化水素の改質用触媒の調製方法。(i) a first step of obtaining carrier magnesium oxide having a specific surface area of 0.01 to 5 m 2 / g obtained by firing at a high temperature of 1000 ° C. or higher ; (ii) carrier oxidation obtained in the first step. Using an aqueous solution containing a water-soluble rhodium compound and / or ruthenium compound on magnesium, rhodium and / or ruthenium is supported at a rate of 10 to 5000 wtppm in terms of metal in an alkaline region having a pH of 8 or higher by an equilibrium adsorption method. Two steps, (iii) a third step of drying the rhodium and / or ruthenium-supported magnesium oxide obtained in the second step at 35 ° C. or lower for at least 6 hours, (iv) the drying obtained in the third step A method for preparing a hydrocarbon reforming catalyst, comprising a fourth step of firing the rhodium and / or ruthenium-supported magnesium oxide in a state. (i) 1000℃以上の高温で焼成して得られた比表面積が0.01〜5 m 2 /gの担体酸化マグネシウムを得る第1工程、(ii) 該第1工程で得られた担体酸化マグネシウムに、水溶性のロジウム化合物及び/又はルテニウム化合物を含有する水溶液を用い、平衡吸着法にてpH8以上のアルカリ領域でロジウム及び/又はルテニウムを金属換算量で10〜5000wtppmの割合で担持させる第2工程、(iii) 該第2工程で得られたロジウム及び/又はルテニウム担持酸化マグネシウムを、35℃以下で少なくとも6時間以上乾燥させる第3工程、(iv) 該第3工程で得られた乾燥状態のロジウム及び/又はルテニウム担持酸化マグネシウムを、200℃以上の高温で焼成する第4工程からなることを特徴とする炭化水素の改質用触媒の調製方法。(i) a first step of obtaining carrier magnesium oxide having a specific surface area of 0.01 to 5 m 2 / g obtained by firing at a high temperature of 1000 ° C. or higher ; (ii) carrier oxidation obtained in the first step. A magnesium-based aqueous solution containing a water-soluble rhodium compound and / or ruthenium compound is used, and rhodium and / or ruthenium is supported at a ratio of 10 to 5000 wtppm in terms of metal in an alkaline region having a pH of 8 or higher by an equilibrium adsorption method. 2 steps, (iii) a third step of drying the rhodium and / or ruthenium-supported magnesium oxide obtained in the second step at 35 ° C. or lower for at least 6 hours, (iv) a drying obtained in the third step A method for preparing a hydrocarbon reforming catalyst, comprising a fourth step of calcining the rhodium and / or ruthenium-supported magnesium oxide at a high temperature of 200 ° C. or higher. 請求項1〜4のいずれかに記載の炭化水素の改質用触媒の調製方法で用いる担体酸化マグネシウムを形成するための酸化マグネシウム成形体であり、酸化マグネシウムと成形助剤との混合物を成形して形成されており、上記成形助剤が(i) 炭素、(ii) 炭素数12〜22の脂肪酸又はそのマグネシウム塩、(iii) カルボキシルメチルセルロース又はそのマグネシウム塩及び(iv) ポリビニルアルコールの中から選ばれる少なくとも1種であり、かつその添加量が0.1〜5重量%であることを特徴とする酸化マグネシウム成形体。 A magnesium oxide molded body for forming a support magnesium oxide used in the method for preparing a hydrocarbon reforming catalyst according to any one of claims 1 to 4, wherein a mixture of magnesium oxide and a molding aid is molded. Ri Contact is formed Te, the molding auxiliary (i) carbon, (ii) a fatty acid or its magnesium salt having 12 to 22 carbon atoms, (iii) carboxymethyl cellulose or its magnesium salt, and (iv) in the polyvinyl alcohol A magnesium oxide molded body characterized in that it is at least one selected from the group consisting of 0.1 to 5% by weight.
JP27824398A 1998-07-28 1998-09-30 Method for preparing hydrocarbon reforming catalyst and magnesium oxide molded body for forming catalyst carrier Expired - Lifetime JP4163302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27824398A JP4163302B2 (en) 1998-07-28 1998-09-30 Method for preparing hydrocarbon reforming catalyst and magnesium oxide molded body for forming catalyst carrier

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21317098 1998-07-28
JP10-213170 1998-07-28
JP27824398A JP4163302B2 (en) 1998-07-28 1998-09-30 Method for preparing hydrocarbon reforming catalyst and magnesium oxide molded body for forming catalyst carrier

Publications (2)

Publication Number Publication Date
JP2000103604A JP2000103604A (en) 2000-04-11
JP4163302B2 true JP4163302B2 (en) 2008-10-08

Family

ID=26519648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27824398A Expired - Lifetime JP4163302B2 (en) 1998-07-28 1998-09-30 Method for preparing hydrocarbon reforming catalyst and magnesium oxide molded body for forming catalyst carrier

Country Status (1)

Country Link
JP (1) JP4163302B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061772A (en) * 2004-08-25 2006-03-09 Chiyoda Corp Method for preparing synthesis gas producing catalyst

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4189068B2 (en) * 1998-09-30 2008-12-03 千代田化工建設株式会社 Method for producing dimethyl ether from lower hydrocarbon gas
WO2003004405A1 (en) * 2001-07-04 2003-01-16 Chiyoda Corporation Device and method for manufacturing synthesis gas from low-grade hydrocarbon gas
JP4528059B2 (en) * 2004-08-24 2010-08-18 千代田化工建設株式会社 Synthesis gas production catalyst, synthesis gas production catalyst preparation method, and synthesis gas production method
JP6131370B1 (en) * 2016-06-10 2017-05-17 千代田化工建設株式会社 Syngas production catalyst carrier and production method thereof, synthesis gas production catalyst and production method thereof, and synthesis gas production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061772A (en) * 2004-08-25 2006-03-09 Chiyoda Corp Method for preparing synthesis gas producing catalyst
JP4589682B2 (en) * 2004-08-25 2010-12-01 千代田化工建設株式会社 Method for preparing catalyst for syngas production

Also Published As

Publication number Publication date
JP2000103604A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
JP3345782B2 (en) Catalyst for syngas production and method for producing carbon monoxide
JP3345783B2 (en) Synthesis gas production method
EP0979799B1 (en) Process for preparing synthesis gas by autothermal reforming
WO2007029862A1 (en) Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas
JPH09131533A (en) Catalyst composition for production of synthetic gas and production of synthetic gas using same
JP5531462B2 (en) Carbon dioxide reforming catalyst, method for producing the same, carrier for carbon dioxide reforming catalyst, reformer, and method for producing synthesis gas
JP4226684B2 (en) Method for producing synthesis gas by partial oxidation method
JP2002535119A (en) Catalyst carrier supporting nickel, ruthenium and lanthanum
JP4163302B2 (en) Method for preparing hydrocarbon reforming catalyst and magnesium oxide molded body for forming catalyst carrier
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP4163292B2 (en) Hydrocarbon reforming catalyst and reforming method
JP3328845B2 (en) Hydrogen production method and catalyst used for it
US6387843B1 (en) Method of preparing Rh- and/or Ru-catalyst supported on MgO carrier and reforming process using the catalyst
JP4203248B2 (en) Method for preparing hydrocarbon oxidation reforming catalyst and method for producing synthesis gas using the catalyst
JP4203326B2 (en) Operation method of synthesis gas production
JP4189068B2 (en) Method for producing dimethyl ether from lower hydrocarbon gas
JP2017217630A (en) Magnesia catalyst carrier and method for producing the same
JP4226685B2 (en) Method for producing hydrogen
JP4168230B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP4092538B2 (en) Method for producing hydrogen-containing gas
JP2000000466A (en) Catalyst for production of synthetic gas and production of synthetic gas
JPS6246482B2 (en)
KR20230057253A (en) Catalyst for reforming of methane and method for manufacturing thereof
JP2008136907A (en) Catalyst for manufacturing synthetic gas
JP2003154270A (en) Hydrogen production catalyst and method for producing hydrogen using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term