JP2003154270A - Hydrogen production catalyst and method for producing hydrogen using the same - Google Patents

Hydrogen production catalyst and method for producing hydrogen using the same

Info

Publication number
JP2003154270A
JP2003154270A JP2001357305A JP2001357305A JP2003154270A JP 2003154270 A JP2003154270 A JP 2003154270A JP 2001357305 A JP2001357305 A JP 2001357305A JP 2001357305 A JP2001357305 A JP 2001357305A JP 2003154270 A JP2003154270 A JP 2003154270A
Authority
JP
Japan
Prior art keywords
catalyst
methanol
reaction
hydrogen
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001357305A
Other languages
Japanese (ja)
Inventor
Koki Takamura
光喜 高村
Mikio Yoneoka
幹男 米岡
Yasushi Hiramatsu
靖史 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2001357305A priority Critical patent/JP2003154270A/en
Publication of JP2003154270A publication Critical patent/JP2003154270A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst having high activity and capable of stably and industrially advantageously producing hydrogen over a prolonged period of time in a method for producing hydrogen by steam reforming of methanol, and to provide a method for producing hydrogen using the catalyst. SOLUTION: The hydrogen production catalyst includes silver and zinc oxide as principal components.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、メタノールの水蒸
気改質触媒、およびそれを用いる水素製造法に関する。
水素ガスは、例えばアンモニア合成、各種有機化合物の
水素化、石油精製、脱硫などの化学工業用、更に冶金工
業用、半導体工業用に多く使用されている。また、最近
では燃料電池技術の進展により、新しいエネルギ−源と
しても期待されており水素ガスの需要は益々増大の傾向
にある。
TECHNICAL FIELD The present invention relates to a steam reforming catalyst for methanol and a method for producing hydrogen using the same.
Hydrogen gas is widely used for chemical industries such as ammonia synthesis, hydrogenation of various organic compounds, petroleum refining, desulfurization, metallurgical industry, and semiconductor industry. In addition, due to recent advances in fuel cell technology, it is expected as a new energy source, and the demand for hydrogen gas tends to increase more and more.

【0002】[0002]

【従来の技術】水素ガスの製造法として従来広く行なわ
れてきた方法としては、たとえば液化石油ガス(LP
G)、液化天然ガス(LNG)およびナフサなどの炭化
水素の水蒸気改質法がある。この従来法は一般的に炭化
水素類の価格および供給が不安定であこと、原料炭化水
素の脱硫が必要であること、および反応温度が800〜
1000℃と非常に高く装置コストが高いことから、中
規模ないし小規模な水素ガス製造には不適当である。こ
れに対してメタノ−ルと水蒸気を反応させて水素ガスを
製造する方法は、原料メタノールの供給が容易であるこ
と、反応温度が300℃以下であり、原料の脱硫等が不
要なので、建設費が比較的安価であること等の特徴があ
り、特に上記の如き水素使用装置に隣接して中規模ない
し小規模の水素ガス製造設置することが多くなってい
る。
2. Description of the Related Art As a conventional method for producing hydrogen gas, for example, liquefied petroleum gas (LP) is used.
G), liquefied natural gas (LNG) and steam reforming of hydrocarbons such as naphtha. This conventional method generally has an unstable price and supply of hydrocarbons, requires desulfurization of raw hydrocarbons, and a reaction temperature of 800 to
Since it is very high at 1000 ° C. and the equipment cost is high, it is unsuitable for medium to small scale hydrogen gas production. On the other hand, the method of producing hydrogen gas by reacting methanol with water vapor makes it easy to supply the raw material methanol, the reaction temperature is 300 ° C. or lower, and the desulfurization of the raw material is unnecessary. Is relatively inexpensive, and in particular, there is an increasing number of cases where a medium-scale or small-scale hydrogen gas production plant is installed adjacent to the above-mentioned hydrogen-using device.

【0003】メタノ−ルの水蒸気改質反応は、(1)の
主反応の他に副反応として(2)で示す逆シフト反応も
起こり、生成した水素が消費されるとともに一酸化炭素
が副生する。 CH3OH+H2O → 3H2+CO2 (1) CO2+H2 → CO+H2O (2) その結果、改質ガス中には改質ガスからの分離除去が困
難な一酸化炭素が含有されることになる。熱力学的平衡
からは、反応温度が低い程、またメタノ−ルに対する水
の比率が高いほど(2)の反応が起りにくくなり、改質
ガス中の一酸化炭素濃度が低くなる。従って改質ガス中
の一酸化炭素濃度を低くするためには、低い温度で反応
を行なうことが必要になる。一方、メタノ−ルに対する
水の比率を高めれば一酸化炭素濃度が低くなるが、大過
剰の水の存在でメタノ−ルの水蒸気改質反応を行なうこ
とは蒸発のために多大のエネルギ−を必要とするので、
工業的にはメタノ−ルに対する水の比率(モル比)をで
きるだけ1に近づけた条件で行なうことが望ましい。
In the steam reforming reaction of methanol, a reverse shift reaction shown in (2) occurs as a side reaction in addition to the main reaction of (1), the produced hydrogen is consumed and carbon monoxide is a by-product. To do. CH 3 OH + H 2 O → 3H 2 + CO 2 (1) CO 2 + H 2 → CO + H 2 O (2) As a result, the reformed gas contains carbon monoxide which is difficult to separate and remove from the reformed gas. It will be. From thermodynamic equilibrium, the lower the reaction temperature and the higher the ratio of water to methanol, the more difficult the reaction (2) occurs, and the lower the carbon monoxide concentration in the reformed gas. Therefore, in order to lower the carbon monoxide concentration in the reformed gas, it is necessary to carry out the reaction at a low temperature. On the other hand, if the ratio of water to methanol is increased, the concentration of carbon monoxide will decrease, but carrying out the steam reforming reaction of methanol in the presence of a large excess of water requires a large amount of energy for evaporation. Since,
Industrially, it is desirable that the ratio of water to methanol (molar ratio) is as close to 1 as possible.

【0004】一方、メタノールのオートサーマル改質反
応は下式で表される。 CH3OH +x(1/2)O2+(1-x)H2O →(3-x)H2 +xCO2+(1-x)CO (3) オートサーマル改質反応ではメタノールの酸化による発
熱反応とメタノールの水蒸気改質反応がその場で同時に
進行するので、従来のメタノール水蒸気改質反応と比較
して外部からの加熱装置が不要となり、より簡素なプロ
セスと装置で水素を主成分とする改質ガスが得られるの
が特徴である。ただし、オートサーマル改質反応では触
媒層の温度は300℃以上の高温となるため、触媒の耐
久性に対しては、より過酷な条件となる。
On the other hand, the autothermal reforming reaction of methanol is represented by the following formula. CH 3 OH + x (1/2) O 2 + (1-x) H 2 O → (3-x) H 2 + xCO 2 + (1-x) CO (3) Oxidation of methanol in autothermal reforming reaction Since the exothermic reaction and the steam reforming reaction of methanol proceed simultaneously on the spot, compared to the conventional methanol steam reforming reaction, an external heating device is not required, and hydrogen is the main component in a simpler process and device. The characteristic is that a reformed gas that can be obtained is obtained. However, in the autothermal reforming reaction, the temperature of the catalyst layer becomes a high temperature of 300 ° C. or higher, and therefore the conditions of the catalyst durability are more severe.

【0005】このような水蒸気改質反応における公知の
触媒としては、銅、クロムおよびマンガンの酸化物を含
有する触媒(特公昭54−11274号公報参照)、
銅、亜鉛およびアルミニウムを含有する触媒(特開昭4
9−47281号公報参照)、銅、亜鉛、アルミニウム
およびトリウムの各酸化物を含有する触媒(米国特許
4,091,086号公報参照)、銅、亜鉛、アルミニ
ウムおよびクロムの各酸化物を含有する触媒(特開昭5
7−56302号公報参照)などの銅系触媒が知られて
いる。
Known catalysts in such steam reforming reaction include catalysts containing oxides of copper, chromium and manganese (see Japanese Patent Publication No. 54-11274).
A catalyst containing copper, zinc and aluminum
9-47281), a catalyst containing oxides of copper, zinc, aluminum and thorium (see US Pat. No. 4,091,086), and oxides of copper, zinc, aluminum and chromium. Catalyst (JP-A-5
7-56302) and other copper-based catalysts are known.

【0006】[0006]

【発明が解決しようとする課題】上記の如くメタノール
の水蒸気改質およびオートサーマル改質による水素製造
法において用いられる触媒は、CO生成量を少なくする
ため、低温で高活性を有し、且つ高温に曝されても高い
耐久性を示し、工業的に長時間使用できることが必要で
ある。即ちメタノールの水蒸気改質およびオートサーマ
ル改質による水素製造法における実用触媒としては、低
温度でも反応する充分な活性を有し、高温や長時間の反
応でも活性が低下しない、などの特性が要求される。前
述のメタノール水蒸気改質触媒の中で銅、クロムおよび
マンガンの酸化物を含有する触媒(特公昭54−112
74号)は、高SV時における活性が十分でない。酸化
銅および酸化亜鉛を含有する特開昭49−47281
号、米国特許4,091,086号および特開昭57−
56302号の触媒は、低温で高活性を有するが強度が
十分でなく、工業的に長時間使用することができないこ
とが課題として挙げられる。本発明の目的は、メタノー
ルの水蒸気改質による水素製造法において、高活性であ
り、水素を長期間安定して工業的に有利に製造できる触
媒、および水素製造法を提供することである。
As described above, the catalyst used in the hydrogen production method by steam reforming and autothermal reforming of methanol has high activity at low temperature and high temperature in order to reduce CO production. It must have high durability even when exposed to, and be industrially usable for a long time. That is, as a practical catalyst in a hydrogen production method by steam reforming and autothermal reforming of methanol, it is required to have characteristics such as having sufficient activity to react even at low temperature and not deteriorating activity even at high temperature or long time reaction. To be done. Among the above-mentioned methanol steam reforming catalysts, catalysts containing oxides of copper, chromium and manganese (Japanese Patent Publication No. 54-112).
No. 74) does not have sufficient activity at high SV. JP-A-49-47281 containing copper oxide and zinc oxide
No. 4,091,086 and JP-A-57-
The catalyst of No. 56302 has high activity at low temperatures, but its strength is not sufficient and it cannot be industrially used for a long time. An object of the present invention is to provide a catalyst which is highly active in a hydrogen production method by steam reforming of methanol and is capable of producing hydrogen stably for a long period of time and industrially advantageous, and a hydrogen production method.

【0007】[0007]

【課題を解決するための手段】発明者らは上記の如き課
題を有するメタノールの水蒸気改質による水素製造法に
ついて鋭意検討した結果、銀および酸化亜鉛を含有する
触媒が高活性であり、水素を長期間安定して工業的に有
利に製造できること、また該触媒に更にガリウムやアル
ミニウムを含有させることで触媒の耐久性がより向上す
ることを見出し本発明に到達した。
Means for Solving the Problems As a result of intensive studies on the hydrogen production method by steam reforming of methanol having the above-mentioned problems, the inventors have found that a catalyst containing silver and zinc oxide has high activity and produces hydrogen. The inventors have found that the catalyst can be produced industrially advantageously for a long period of time, and that the durability of the catalyst is further improved by further adding gallium or aluminum to the catalyst, and thus the present invention has been accomplished.

【0008】すなわち本発明は、主成分として銀および
酸化亜鉛を含有することを特徴とする水素製造用触媒、
該触媒に更にガリウムおよび/またはアルミニウムを加
えた触媒、およびこれらの触媒の存在下で行うメタノー
ルの水蒸気改質による水素製造法である。
That is, the present invention is a catalyst for hydrogen production characterized by containing silver and zinc oxide as main components,
A catalyst in which gallium and / or aluminum is further added to the catalyst, and a hydrogen production method by steam reforming of methanol performed in the presence of these catalysts.

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

【0009】本発明において用いられる触媒の主成分を
構成する元素(銀、亜鉛、ガリウムおよびアルミニウ
ム)の供給源は、触媒調製終了時に銀または銀の酸化
物、亜鉛の酸化物、ガリウムの酸化物およびアルミニウ
ムの酸化物となるものであれば特に制限はない。例えば
当該元素の酸化物、水酸化物、ハロゲン化物、炭酸塩、
塩基性炭酸塩、硝酸塩、酢酸塩、ギ酸塩、ピロ酸塩、錯
体化合物等を用いることができる。
The sources of the elements (silver, zinc, gallium and aluminum) constituting the main components of the catalyst used in the present invention are silver or silver oxide, zinc oxide and gallium oxide at the end of catalyst preparation. There is no particular limitation as long as it becomes an oxide of aluminum. For example, oxides, hydroxides, halides, carbonates of the elements concerned,
Basic carbonates, nitrates, acetates, formates, pyroates, complex compounds and the like can be used.

【0010】また、銀または銀の酸化物、および亜鉛の
酸化物、更に必要に応じてガリウムの酸化物およびアル
ミニウムの酸化物が触媒中に存在するものであれば、調
製法に特に制限はない。例えば、(1)予め調製された
酸化銀、酸化亜鉛、および必要に応じて酸化ガリウムお
よび/または酸化アルミニウムの各粉末を均一に混合す
る方法、(2)銀、亜鉛、および必要に応じてガリウム
および/またはアルミニウムの各水溶性塩の混合水溶液
にアルカリ、炭酸アルカリまたは重炭酸アルカリなどを
加えて共沈殿せしめた後、この共沈殿物を空気中焼成し
て酸化物の混合物を得る方法、(3)銀、亜鉛、および
必要に応じてガリウムおよび/またはアルミニウムの各
水溶性塩の混合水溶液を酸化亜鉛、酸化アルミニウム、
酸化ケイ素などの担体に含浸せしめた後、空気中焼成し
て酸化物の混合物を得る方法、(4)銀、亜鉛、および
必要に応じてガリウムおよび/またはアルミニウムの各
水溶性塩の混合水溶液を酸化亜鉛、酸化アルミニウム、
酸化ケイ素などの担体にアルカリ、炭酸アルカリまたは
重炭酸アルカリなどを加えて析出沈殿せしめた後、この
共沈殿物を空気中焼成して酸化物の混合物を得る方法、
などが採用される。
The preparation method is not particularly limited as long as silver or a silver oxide, a zinc oxide, and optionally a gallium oxide and an aluminum oxide are present in the catalyst. . For example, (1) a method of uniformly mixing silver oxide, zinc oxide, and optionally gallium oxide and / or aluminum oxide powders prepared in advance, (2) silver, zinc, and optionally gallium And / or a method of obtaining a mixture of oxides by adding an alkali, an alkali carbonate, an alkali bicarbonate or the like to a mixed aqueous solution of each water-soluble salt of aluminum to co-precipitate and then calcining the co-precipitate in air. 3) Add a mixed aqueous solution of silver, zinc, and optionally water-soluble salts of gallium and / or aluminum to zinc oxide, aluminum oxide,
A method of obtaining a mixture of oxides by impregnating a carrier such as silicon oxide and then calcining in air, (4) adding a mixed aqueous solution of silver, zinc, and optionally water-soluble salts of gallium and / or aluminum. Zinc oxide, aluminum oxide,
A method of obtaining a mixture of oxides by adding alkali to a carrier such as silicon oxide, alkali carbonate or alkali bicarbonate to precipitate and precipitate, and then calcining this coprecipitate in air.
Are adopted.

【0011】本発明で用いる触媒の各有効成分含有モル
比は、原子比で銀/亜鉛は1/99〜99/1、好まし
くは5/95〜50/50である。また、ガリウムやア
ルミニウムを含有する場合には、原子比で銀/ガリウム
は99/1〜10/90、好ましくは95/5〜50/
50であり、銀/アルミニウムは99/1〜10/9
0、好ましくは95/5〜50/50である。
The molar ratio of each active ingredient contained in the catalyst used in the present invention is 1/99 to 99/1, preferably 5/95 to 50/50 in terms of silver / zinc in terms of atomic ratio. When gallium or aluminum is contained, the atomic ratio of silver / gallium is 99/1 to 10/90, preferably 95/5 to 50 /.
50, and silver / aluminum 99/1 to 10/9
0, preferably 95/5 to 50/50.

【0012】本発明で用いられる触媒は銀や亜鉛以外に
反応に不活性な成分を含有していても良い。不活性な成
分とは触媒成分等を分散させるための分散剤、触媒成型
助剤、触媒担体や支持構造物等であって、例えばシリ
カ、アルミナ、活性炭、タルク、グラファイト、金属
板、金属フィン等である。これらを前述の触媒調製工程
中に添加したり、これらの上で触媒を調製することによ
って触媒を調製することができる。
The catalyst used in the present invention may contain a component inert to the reaction in addition to silver and zinc. The inert component is a dispersant for dispersing the catalyst component, a catalyst molding aid, a catalyst carrier or a supporting structure, and is, for example, silica, alumina, activated carbon, talc, graphite, a metal plate, a metal fin, or the like. Is. The catalyst can be prepared by adding these during the above-mentioned catalyst preparation step or by preparing the catalyst on them.

【0013】本発明で用いられる触媒の形状に特に制限
はない。即ち粉末状、粒状、打錠成型ペレット、押出成
型ペレット等の形状で使用することができる。本発明の
触媒は反応に用いる前に必要に応じて焼成、還元等の処
理を行うことが望ましい。焼成処理は、その方法に特に
制限はなく一般に焼成炉内に静置または流動させ、空気
または不活性ガス雰囲気下に200〜600℃の温度範
囲で処理することが好ましい。還元処理は常法を採用す
ることができ、100〜500℃の温度範囲で水素ガ
ス、一酸化炭素ガス、メタノールによる還元等が有効で
ある。本発明の方法では未還元触媒を用いて反応を行っ
てもよい。
The shape of the catalyst used in the present invention is not particularly limited. That is, it can be used in the form of powder, granules, tableting pellets, extrusion pellets, and the like. It is desirable that the catalyst of the present invention be subjected to treatment such as calcination and reduction, if necessary, before it is used in the reaction. The calcination treatment is not particularly limited in its method, and it is generally preferable that the calcination treatment is allowed to stand or flow in a calcination furnace and the treatment is carried out in a temperature range of 200 to 600 ° C. in an air or inert gas atmosphere. A conventional method can be adopted for the reduction treatment, and reduction with hydrogen gas, carbon monoxide gas, methanol, etc. is effective in the temperature range of 100 to 500 ° C. In the method of the present invention, the reaction may be carried out using an unreduced catalyst.

【0014】本発明に用いられるメタノールは、その製
造方法に特に制限はなく如何なる製法によって製造され
たものも使用することができる。その純度はできる限り
高純度である方が望ましいが、最も入手し易く廉価な工
業的蒸留グレード品を用いても何等差し支えなく、従来
の気相接触改質法に用いられている程度の純度で充分に
使用可能である。本発明に用いられる水についても、そ
の製造方法に特に制限はなく、またその純度はできる限
り高純度である方が望ましいが、最も入手し易いイオン
交換水や蒸留水であっても何等差し支えなく、従来のメ
タノールの水蒸気改質法に用いられている程度の純度で
充分に使用可能である。本発明のオートサーマル改質反
応に用いられる酸素源は空気で十分であり、経済的にも
空気を使用することが好適であるが、反応条件や製造す
るガスの用途に合わせて、酸素を含有する原料ガスを調
製することができる。
The methanol used in the present invention is not particularly limited in its production method, and any one produced by any production method can be used. It is desirable that its purity is as high as possible, but it is possible to use the most easily available and inexpensive industrial distillation grade products, and the purity is the level used in the conventional vapor phase catalytic reforming method. It is fully usable. The water used in the present invention is also not particularly limited in its production method, and its purity is preferably as high as possible, but there is no problem even if it is the most easily available ion-exchanged water or distilled water. However, it can be sufficiently used with a degree of purity used in the conventional steam reforming method of methanol. Air is sufficient as the oxygen source used in the autothermal reforming reaction of the present invention, and it is preferable to use air economically, but oxygen is contained depending on the reaction conditions and the use of the gas to be produced. It is possible to prepare a raw material gas to be used.

【0015】本発明において触媒と接触するメタノール
と水の比率に特に制限はないが、水/メタノールモル比
で0.01〜100、好ましくは0.05〜10の範囲
が選ばれる。供給物中の比率、反応条件、反応器の運転
状態等で触媒と接触するメタノールと水の比率は可変で
あり、前述の範囲から好適値が選ばれる。また、空気/
メタノール比は、0.3〜5.0、好ましくは0.5〜
3.0の範囲で選ばれる。
In the present invention, the ratio of methanol to water which comes into contact with the catalyst is not particularly limited, but a water / methanol molar ratio of 0.01 to 100, preferably 0.05 to 10 is selected. The ratio of methanol to water that contacts the catalyst is variable depending on the ratio in the feed, the reaction conditions, the operating state of the reactor, etc., and a suitable value is selected from the above range. Also, air /
The methanol ratio is 0.3 to 5.0, preferably 0.5 to
It is selected in the range of 3.0.

【0016】本発明における反応温度は100℃〜80
0℃の範囲、好ましくは300〜600℃の範囲が用い
られる。反応圧力は常圧〜150気圧の範囲であって、
反応雰囲気下に窒素、アルゴン、ヘリウム等の不活性ガ
ス等を共存させて用いることができる。
The reaction temperature in the present invention is 100 ° C to 80 ° C.
A range of 0 ° C, preferably a range of 300 to 600 ° C is used. The reaction pressure is in the range of atmospheric pressure to 150 atm,
An inert gas such as nitrogen, argon or helium can be used together in a reaction atmosphere.

【0017】本発明における触媒の利用方法は、反応器
内でメタノールと水蒸気、および必要に応じて酸素が触
媒と接触して生成ガスが得られるものであれば特に制限
はない。例えば反応器内の一部に固定して固定床として
用いる方法、反応雰囲気中に分散させて流動床として用
いる方法等を前述のいずれの反応形式においても用いる
ことができる。本発明で得られる水素を主成分とする生
成ガスから純度の高い水素ガスを得る方法に特に制限は
なく、従来のメタノールの水蒸気改質法に用いられてい
るような水素ガス精製プロセスを利用することができ
る。
The method of using the catalyst in the present invention is not particularly limited as long as methanol and water vapor, and optionally oxygen in the reactor can be brought into contact with the catalyst to obtain a produced gas. For example, a method of fixing it in a part of the reactor to use it as a fixed bed, a method of dispersing it in a reaction atmosphere to use it as a fluidized bed, etc. can be used in any of the above-mentioned reaction modes. The method for obtaining high-purity hydrogen gas from the product gas containing hydrogen as the main component obtained in the present invention is not particularly limited, and a hydrogen gas refining process as used in the conventional methanol steam reforming method is used. be able to.

【0018】[0018]

【実施例】本発明について以下に実施例により具体的に
説明するが、本発明はこれらの実施例に制限されるもの
ではない。なお各実施例においてメタノール転化率の算
出には下式を用いた。 メタノール転化率(%) =[生成炭化水素(mol) +生成一
酸化炭素(mol) +生成二酸化炭素(mol)]/[生成炭化
水素(mol) +生成一酸化炭素(mol) +生成二酸化炭素(m
ol) +未反応メタノール(mol)]×100
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In each example, the following formula was used to calculate the methanol conversion rate. Methanol conversion rate (%) = [produced hydrocarbon (mol) + produced carbon monoxide (mol) + produced carbon dioxide (mol)] / [produced hydrocarbon (mol) + produced carbon monoxide (mol) + produced carbon dioxide (m
ol) + unreacted methanol (mol)] x 100

【0019】実施例1 炭酸ナトリウム(無水)9gを500mlのイオン交換水とと
もに1リットル のビーカーに入れ溶解し、60℃とした。
ここに硝酸亜鉛(6水塩)21gと硝酸銀6gをイオン交換
水300ml に溶解し、60℃とした溶液を注下し、30分間攪
拌した。このように調製したスラリーを濾過し、得られ
た沈殿をイオン交換水4 リットルで洗浄した。続いて80
℃で乾燥し、その後380℃にて2 時間焼成することによ
り、亜鉛と銀が原子比で7対3となる組成の触媒を得
た。この触媒をボールミルで湿式粉砕した後、バインダ
としてアルミナゾルを4 重量%加え、直径25mm、長さ
20mm、400セル毎平方インチのコージェライトハニ
カムに2g担持した。このハニカムを流通式反応器に設
置し、メタノール30g毎時、イオン交換水25g毎時、空
気410 mL毎分を供給して連続反応させ、生成ガスはガス
クロマトグラフ装置で分析した。結果を表1に示す。
Example 1 9 g of sodium carbonate (anhydrous) was placed in a 1-liter beaker together with 500 ml of ion-exchanged water and dissolved, and the temperature was adjusted to 60 ° C.
21 g of zinc nitrate (hexahydrate) and 6 g of silver nitrate were dissolved in 300 ml of ion-exchanged water, and a solution at 60 ° C. was poured into the solution, followed by stirring for 30 minutes. The slurry thus prepared was filtered, and the obtained precipitate was washed with 4 liters of deionized water. Then 80
The catalyst was dried at ℃ and then calcined at 380 ℃ for 2 hours to obtain a catalyst having a composition of zinc and silver in an atomic ratio of 7/3. This catalyst was wet pulverized with a ball mill, 4% by weight of alumina sol was added as a binder, and 2 g of the catalyst was loaded on a cordierite honeycomb having a diameter of 25 mm, a length of 20 mm, and 400 cells per square inch. This honeycomb was installed in a flow reactor, methanol 30 g / h, ion-exchanged water 25 g / h, and air 410 mL / min were supplied for continuous reaction, and the produced gas was analyzed by a gas chromatograph. The results are shown in Table 1.

【0020】実施例2 炭酸ナトリウム(無水)を10.4g、および硝酸亜鉛(6
水塩)14.9g、硝酸銀8.5 gから実施例1の方法で亜鉛
と銀が原子比で5対5となる組成の触媒を得た。ハニカ
ムへの担持と反応は、実施例1の方法で行った。結果を
表1に示す。
Example 2 10.4 g of sodium carbonate (anhydrous) and zinc nitrate (6
A catalyst having a composition of zinc and silver in an atomic ratio of 5: 5 was obtained by the method of Example 1 from 14.9 g of aqueous salt) and 8.5 g of silver nitrate. The supporting on the honeycomb and the reaction were carried out by the method of Example 1. The results are shown in Table 1.

【0021】 表1 実施例1 実施例2 原料供給量(g毎時) メタノール 30 30 水 25 25 空気供給量(mL毎分) 410 410 反応温度(℃) 484 488 反応開始時 生成一酸化炭素(mol%) 0.3 0.4 メタノール転化率(%) 82 77 反応終了時 反応時間(hr) 61 61 生成一酸化炭素(mol%) 0.2 0.4 メタノール転化率(%) 76 72[0021] Table 1                               Example 1 Example 2 Raw material supply (g / h)         Methanol 30 30             Water 25 25 Air supply rate (mL per minute) 410 410 Reaction temperature (℃) 484 488 At the start of reaction     Carbon monoxide produced (mol%) 0.3 0.4     Methanol conversion rate (%) 82 77 At the end of reaction     Reaction time (hr) 61 61     Carbon monoxide produced (mol%) 0.2 0.4     Methanol conversion rate (%) 76 72

【0022】実施例3 炭酸ナトリウム(無水)12.1gを500mlのイオン交換水と
ともに1リットル のビーカーに入れ溶解し、60℃とし
た。ここに硝酸亜鉛(6水塩)12gと硝酸銀6.8g、更に
硝酸ガリウム(9水塩)8.8 gをイオン交換水300ml に
溶解し、60℃とした溶液を注下し、30分間攪拌した。こ
のように調製したスラリーを濾過し、得られた沈殿をイ
オン交換水4 リットルで洗浄した。続いて80℃で乾燥
し、その後380℃にて2 時間焼成することにより、亜鉛
と銀とガリウムが原子比で4対4対2となる組成の触媒
を得た。ハニカムへの担持と反応は、実施例1の方法で
行った。結果を表2に示す。
Example 3 12.1 g of sodium carbonate (anhydrous) was placed in a 1 liter beaker together with 500 ml of ion-exchanged water and dissolved to 60 ° C. 12 g of zinc nitrate (hexahydrate), 6.8 g of silver nitrate, and 8.8 g of gallium nitrate (decahydrate) were dissolved in 300 ml of ion-exchanged water, and the solution at 60 ° C. was poured into the solution and stirred for 30 minutes. The slurry thus prepared was filtered, and the obtained precipitate was washed with 4 liters of deionized water. Then, it was dried at 80 ° C. and then calcined at 380 ° C. for 2 hours to obtain a catalyst having a composition in which zinc, silver, and gallium had an atomic ratio of 4: 4: 2. The supporting on the honeycomb and the reaction were carried out by the method of Example 1. The results are shown in Table 2.

【0023】実施例4 炭酸ナトリウム(無水)を19.9g、および硝酸亜鉛(6
水塩)24g、硝酸銀13.6g、更に硝酸アルミニウム(9
水塩)15.2gから実施例3の方法で亜鉛と銀とアルミニ
ウムが原子比で4対4対2となる組成の触媒を得た。ハ
ニカムへの担持と反応は、実施例1の方法で行った。結
果を表2に示す。
Example 4 19.9 g of sodium carbonate (anhydrous) and zinc nitrate (6
24 g of water salt), 13.6 g of silver nitrate, and further aluminum nitrate (9
From 15.2 g of aqueous salt), a catalyst having a composition in which the atomic ratio of zinc, silver, and aluminum was 4: 4: 2 was obtained by the method of Example 3. The supporting on the honeycomb and the reaction were carried out by the method of Example 1. The results are shown in Table 2.

【0024】 表2 実施例3 実施例4 原料供給量(g毎時) メタノール 30 30 水 25 25 空気供給量(mL毎分) 410 410 反応温度(℃) 493 491 反応開始時 生成一酸化炭素(mol%) 0.5 0.4 メタノール転化率(%) 77 79 反応終了時 反応時間(hr) 60 60 生成一酸化炭素(mol%) 0.5 0.4 メタノール転化率(%) 78 78[0024] Table 2                               Example 3 Example 4 Raw material supply (g / h)         Methanol 30 30             Water 25 25 Air supply rate (mL per minute) 410 410 Reaction temperature (℃) 493 491 At the start of reaction     Carbon monoxide generated (mol%) 0.5 0.4     Methanol conversion rate (%) 77 79 At the end of reaction     Reaction time (hr) 60 60     Carbon monoxide generated (mol%) 0.5 0.4     Methanol conversion rate (%) 78 78

【0025】比較例1 炭酸ナトリウム(無水)を22.1g、および硝酸銀1.72
g、更に硝酸アルミニウム(9水塩)33.7gから実施例
3の方法で銀とアルミニウムが原子比で1対9となる組
成の触媒を得た。ハニカムへの担持と反応は、実施例1
の方法で行った。結果を表3に示す。
Comparative Example 1 22.1 g of sodium carbonate (anhydrous) and 1.72 of silver nitrate
g, and 33.7 g of aluminum nitrate (9-hydrate), a catalyst having a composition of silver and aluminum in an atomic ratio of 1: 9 was obtained by the method of Example 3. The loading and reaction on the honeycomb was performed in Example 1
I went the same way. The results are shown in Table 3.

【0026】比較例2 硝酸銀1.9gと市販のシリカゾル(コロイダルシリカ、
スノーテックスN)30.0gを200mlのイオン交換水に加え
て撹拌し、調製したスラリーを80℃で乾燥し、その後38
0℃にて2 時間焼成することにより、銀とケイ素が原子
比で1対9となる組成の触媒を得た。ハニカムへの担持
と反応は、実施例1の方法で行った。結果を表3に示
す。
Comparative Example 2 1.9 g of silver nitrate and a commercially available silica sol (colloidal silica,
Snowtex N) 30.0 g is added to 200 ml of ion-exchanged water and stirred, and the prepared slurry is dried at 80 ° C., then 38
By calcining at 0 ° C. for 2 hours, a catalyst having a composition of silver and silicon in an atomic ratio of 1: 9 was obtained. The supporting on the honeycomb and the reaction were carried out by the method of Example 1. The results are shown in Table 3.

【0027】 表3 比較例1 比較例2 原料供給量 (g毎時) メタノール 30 30 水 25 25 空気供給量(mL毎分) 410 410 反応温度(℃) 543 522 反応開始時 生成一酸化炭素(mol%) 5.1 1.0 メタノール転化率(%) 59 29 反応終了時 反応時間(hr) 23 29 生成一酸化炭素(mol%) 5.0 1.0 メタノール転化率(%) 57 32[0027] Table 3                               Comparative Example 1 Comparative Example 2 Raw material supply (g / h)           Methanol 30 30               Water 25 25 Air supply rate (mL per minute) 410 410 Reaction temperature (℃) 543 522 At the start of reaction     Carbon monoxide produced (mol%) 5.1 1.0     Methanol conversion rate (%) 59 29 At the end of reaction     Reaction time (hr) 23 29     Carbon monoxide generated (mol%) 5.0 1.0     Methanol conversion rate (%) 57 32

【0028】比較例1および2では、反応開始時よりメ
タノール転化率が低く、一酸化炭素濃度も高めに推移し
た(改善の兆しがないので反応中止した)のに対し、銀
および酸化亜鉛を含有する触媒を使用する(実施例1〜
4)ことにより、高転化率、低一酸化炭素濃度で長時
間、安定して反応を行うことができた。実施例3および
4では、触媒にガリウムやアルミニウムを加えることに
より、更に耐久性が向上した。
In Comparative Examples 1 and 2, the conversion rate of methanol was lower than that at the start of the reaction, and the carbon monoxide concentration remained high (the reaction was stopped because there was no sign of improvement), whereas silver and zinc oxide were contained. Is used (Examples 1 to
As a result, the reaction could be stably performed for a long time at a high conversion rate and a low carbon monoxide concentration. In Examples 3 and 4, the durability was further improved by adding gallium or aluminum to the catalyst.

【0029】[0029]

【発明の効果】以上の実施例からも明らかなように、銀
および酸化亜鉛を含有する触媒の存在下にメタノールを
水蒸気および酸素と反応させることにより、副生一酸化
炭素が少ない生成ガスを、長時間安定して製造すること
ができる。これにより、メタノール改質装置全体の簡略
化と小型化を進めることができ、小型定置式や可搬式、
あるいは車載型などの特に小型化が求められる条件で、
有利に水素ガスを製造することができる。
As is clear from the above examples, by reacting methanol with water vapor and oxygen in the presence of a catalyst containing silver and zinc oxide, a product gas containing less carbon monoxide as a by-product is produced. It can be manufactured stably for a long time. With this, simplification and downsizing of the entire methanol reforming device can be promoted, and small stationary type and portable type,
Or under the condition that especially miniaturization is required such as in-vehicle type,
Hydrogen gas can be produced advantageously.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平松 靖史 新潟県新潟市太夫浜字新割182番地 三菱 瓦斯化学株式会社新潟研究所内 Fターム(参考) 4G040 EA02 EA06 EA07 EC01 4G069 AA03 AA08 BB04A BB04B BC16A BC16B BC17A BC17B BC32A BC32B BC35A BC35B CC25 DA06 EA19 FA01 FA03 FB09    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yasushi Hiramatsu             Niigata City Niigata City Tayuhama Niiwari 182 Mitsubishi Mitsubishi             Gas Chemical Co., Ltd. Niigata Research Center F-term (reference) 4G040 EA02 EA06 EA07 EC01                 4G069 AA03 AA08 BB04A BB04B                       BC16A BC16B BC17A BC17B                       BC32A BC32B BC35A BC35B                       CC25 DA06 EA19 FA01 FA03                       FB09

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】主成分として銀および酸化亜鉛を含有する
ことを特徴とする水素製造用触媒。
1. A catalyst for hydrogen production, which contains silver and zinc oxide as main components.
【請求項2】更にガリウムおよび/またはアルミニウム
を含有する請求項1に記載の水素製造用触媒。
2. The catalyst for hydrogen production according to claim 1, which further contains gallium and / or aluminum.
【請求項3】メタノールの水蒸気改質による水素製造法
において、請求項1または2に記載の触媒を用いること
を特徴とする水素製造法。
3. A hydrogen production method by steam reforming of methanol, wherein the catalyst according to claim 1 or 2 is used.
【請求項4】酸素の共存下で水蒸気改質を行う請求項3
に記載の水素製造法。
4. The steam reforming is carried out in the coexistence of oxygen.
The method for producing hydrogen according to 1.
JP2001357305A 2001-11-22 2001-11-22 Hydrogen production catalyst and method for producing hydrogen using the same Pending JP2003154270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001357305A JP2003154270A (en) 2001-11-22 2001-11-22 Hydrogen production catalyst and method for producing hydrogen using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001357305A JP2003154270A (en) 2001-11-22 2001-11-22 Hydrogen production catalyst and method for producing hydrogen using the same

Publications (1)

Publication Number Publication Date
JP2003154270A true JP2003154270A (en) 2003-05-27

Family

ID=19168668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001357305A Pending JP2003154270A (en) 2001-11-22 2001-11-22 Hydrogen production catalyst and method for producing hydrogen using the same

Country Status (1)

Country Link
JP (1) JP2003154270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9174199B2 (en) 2009-05-26 2015-11-03 Basf Corporation Methanol steam reforming catalysts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9174199B2 (en) 2009-05-26 2015-11-03 Basf Corporation Methanol steam reforming catalysts

Similar Documents

Publication Publication Date Title
KR101529906B1 (en) Process for operating hts reactor
JP5285776B2 (en) Catalyst for producing synthesis gas from natural gas and carbon dioxide and method for producing the same
EP2371799B1 (en) Method for methanol synthesis using synthesis gas generated by combined reforming of natural gas with carbon dioxide
JP3345782B2 (en) Catalyst for syngas production and method for producing carbon monoxide
EP3967395A2 (en) Perovskite metal oxide catalyst, in which metal ion is substituted, for reducing carbon deposition, preparation method therefor, and methane reforming reaction method using same
WO1999017875A1 (en) Catalyst for producing hydrogen or synthesis gas and method of producing hydrogen or synthesis gas
JP3118565B2 (en) Catalyst for synthesizing methanol and method for synthesizing methanol
KR100612956B1 (en) High Performance Water Gas Shift Catalysts and A Method of Preparing The Same
US6238640B1 (en) Conversion method of carbon monoxide and catalyst
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
KR101245484B1 (en) Water gas shift catalysts and method for producing syngas by Water gas shift reaction using the same
JP2535760B2 (en) Method for producing catalyst for steam reforming of methanol
JP4163292B2 (en) Hydrocarbon reforming catalyst and reforming method
JP2003154270A (en) Hydrogen production catalyst and method for producing hydrogen using the same
JP6089894B2 (en) Catalyst for producing synthesis gas and method for producing synthesis gas
JP4163302B2 (en) Method for preparing hydrocarbon reforming catalyst and magnesium oxide molded body for forming catalyst carrier
JP4189068B2 (en) Method for producing dimethyl ether from lower hydrocarbon gas
JP4168230B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JPH0371174B2 (en)
JP2014217793A (en) Catalyst for synthesis gas production, regeneration process of the catalyst, and process for producing synthesis gas
JPS6246482B2 (en)
JP2003160304A (en) Method for producing hydrogen-containing gas
JP2004000848A (en) Catalyst and method for removing carbon monoxide contained in hydrogen gas as carbon dioxide
AU2009266113B2 (en) Process for operating HTS reactor
JP2003093879A (en) Methanol decomposition catalyst, manufacturing method for hydrogen and carbon monoxide, methanol decomposing device and reformer for fuel battery