JP4156915B2 - 電場発光蛍光体およびそれを用いた有機分散型電場発光素子 - Google Patents

電場発光蛍光体およびそれを用いた有機分散型電場発光素子 Download PDF

Info

Publication number
JP4156915B2
JP4156915B2 JP2002359572A JP2002359572A JP4156915B2 JP 4156915 B2 JP4156915 B2 JP 4156915B2 JP 2002359572 A JP2002359572 A JP 2002359572A JP 2002359572 A JP2002359572 A JP 2002359572A JP 4156915 B2 JP4156915 B2 JP 4156915B2
Authority
JP
Japan
Prior art keywords
phosphor
electroluminescent
electroluminescent phosphor
weight
zinc sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002359572A
Other languages
English (en)
Other versions
JP2003201474A (ja
Inventor
博文 竹村
洋平 清水
武 高原
充広 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002359572A priority Critical patent/JP4156915B2/ja
Publication of JP2003201474A publication Critical patent/JP2003201474A/ja
Application granted granted Critical
Publication of JP4156915B2 publication Critical patent/JP4156915B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電場発光蛍光体とそれを用いた有機分散型電場発光素子に関する。
【0002】
【従来の技術】
有機分散型電場発光素子は、電場発光蛍光体を誘電体中に分散させた発光体層の両側に電極を配置し、その少なくとも一方を透明電極とした構造を有する。そして、これら電極間に交流電圧を印加することにより発光させる素子である。このような有機分散型電場発光素子の主な用途としては、ディスプレイデバイスやディスプレイデバイスのバックライトなどが挙げられる。
【0003】
有機分散型電場発光素子に用いられる電場発光蛍光体としては、硫化亜鉛を母体とし、これに付活剤として銅およびマンガンから選ばれる少なくとも1種と、共付活剤として塩素、臭素、ヨウ素およびアルミニウムから選ばれる少なくとも1種とを含有させたものが一般的である。
【0004】
上述したような硫化亜鉛系の電場発光蛍光体は、例えば以下のようにして作製されている。まず、母材料となる硫化亜鉛に付活剤原料および共付活剤原料を添加して混合する。さらに、塩化マグネシウム、塩化バリウム、塩化ナトリウムなどの結晶成長剤を添加して十分に混合する。この混合物を1000〜1300℃の温度で焼成して中間体を生成し、この中間体を粉砕した後、600〜1000℃の温度で熱処理することによって、付活剤および共付活剤を含む硫化亜鉛系電場発光蛍光体を得ている(USP2,957,830号公報など参照)。添加した結晶成長剤は焼成物を水洗することにより除去している(USP4,859,361号公報など参照)。
【0005】
従来の硫化亜鉛系の電場発光蛍光体は、輝度や寿命といった特性がディスプレイデバイスに求められる要求特性を必ずしも満足しておらず、まだかなり改善すべき点がある。このようなことから、硫化亜鉛系の電場発光蛍光体に対して従来から種々の改良がなされてきた。例えば、硫化亜鉛は1020℃以上では六方晶系の結晶構造となり、それ以下では立方晶系の結晶構造をとることが知られている。電場発光による発光効率は立方晶系の方が高い。ただし、はじめから立方晶系とするよりは、まず六方晶系を作製し、その後に立方晶系に変換する方が発光効率は高くなる。
【0006】
そこで、特開昭61-296085号公報には、硫化亜鉛系電場発光蛍光体の結晶変換方法として、付活剤を混合した硫化亜鉛にアルカリ金属元素の化合物およびアルカリ土類金属元素の化合物を添加して、六方晶系の中間体を作製し、その後高圧を加えて立方晶系の硫化亜鉛系電場発光蛍光体を得る方法が記載されている。また、特開昭57-145174号公報には、上述したような付活剤および共付活剤の添加量を最適化することによって、硫化亜鉛系電場発光蛍光体の効率や寿命を向上させる方法が記載されている。
【0007】
【発明が解決しようとする課題】
上述したように、従来から硫化亜鉛系電場発光蛍光体の発光効率や寿命などの特性を向上させるための手法が種々提案されているが、従来の手法では現状の輝度や寿命に対する要求レベルを満足させることができなくなりつつある。特に、最近のディスプレイデバイスには、明るさや寿命特性をさらに向上させることが求められていることから、それに用いられる電場発光蛍光体の輝度や寿命などの特性をより一層高めることが課題とされている。
【0008】
なお、USP2,952,642号公報には、付活剤として鉛と銅を含み、かつ0.001%のマグネシウムを含む硫化亜鉛蛍光体が記載されている。しかし、鉛を含有する硫化亜鉛蛍光体は発光効率や寿命特性が劣り、ディスプレイデバイスに求められる要求特性を満足するレベルには達していない。
【0009】
本発明はこのような課題に対処するためになされたもので、高輝度を有しかつそのような輝度を長期間にわたって維持することを可能にした電場発光蛍光体を提供することを目的としており、さらにそのような電場発光蛍光体を用いることによって、高輝度化と長寿命化を両立させた有機分散型電場発光素子を提供することを目的としている。
【0010】
【課題を解決するための手段】
本発明の電場発光蛍光体は、請求項1に記載したように、硫化亜鉛を蛍光体母体とし、これに付活剤として銅およびマンガンから選ばれる少なくとも1種と、共付活剤として塩素、臭素、ヨウ素およびアルミニウムから選ばれる少なくとも1種とを含有させた電場発光蛍光体において、前記電場発光蛍光体は、結晶成長剤として添加されたアルカリ土類金属元素を含有し、かつその含有量が0.05重量%以下であるとともに、化合物として添加されたセシウム元素を0.0001重量%以上0.01重量%以下の範囲で含有することを特徴としている。
【0012】
本発明の電場発光蛍光体において、電場発光蛍光体中に含まれるマグネシウム元素量は請求項に記載したように0.03重量%以下であることが好ましい。また、カルシウム元素量は請求項に記載したように0.01重量%以下であることが好ましい。ストロンチウム元素量は請求項に記載したように0.01重量%以下であることが、バリウム元素量は請求項に記載したように0.01重量%以下であることが好ましい。
【0013】
本発明の有機分散型電場発光素子は、請求項に記載したように、上記した本発明の電場発光蛍光体を含む発光体層を具備することを特徴としている。本発明の有機分散型電場発光素子の具体的な構成としては、請求項10に記載したように、本発明の電場発光蛍光体を含む発光体層と、発光体層の一方の主面に沿って反射絶縁層を介して一体的に配置された背面電極層と、発光体層の他方の主面に沿って一体的に対向配置された透明電極層とを具備する構成が挙げられる。
【0014】
本発明者等は、電場発光蛍光体の高輝度化および長寿命化について、種々の実験、検討、考察を行ってきた結果として、硫化亜鉛系電場発光蛍光体を合成する際に、原材料に添加する結晶成長剤(融剤)の蛍光体残留量に着目した。従来から、特性のよい硫化亜鉛系の電場発光蛍光体を作製するために、アルカリ金属元素の化合物およびアルカリ土類金属元素の化合物(特にハロゲン化物)が結晶成長剤として使用されている。これらは粒径1〜3μm程度の硫化亜鉛原料を粒径10〜30μm程度の蛍光体にまで結晶成長させるのに好適である。
【0015】
しかしながら、結晶成長剤が蛍光体中に残留していると発光効率および寿命を低下させることが、本発明者等の実験により明らかとなった。より詳細に調査した結果、輝度および寿命に対しては、特にアルカリ土類金属元素(マグネシウム、カルシウム、ストロンチウムおよびバリウム)が影響を及ぼしていることが分かった。
【0016】
そこで、蛍光体製造工程において、蛍光体に残留するアルカリ土類金属元素を除去する工程を実施した結果、従来の硫化亜鉛系電場発光蛍光体に比べて、非常に高効率で長寿命の電場発光蛍光体が得られることが判明した。また、蛍光体原料に添加するアルカリ土類金属元素の化合物の量を減らすことによっても、硫化亜鉛系電場発光蛍光体の発光効率や寿命を向上させることができる。
【0017】
上述したような知見に基づいて、本発明では電場発光蛍光体中のアルカリ土類金属元素量(マグネシウム、カルシウム、ストロンチウムおよびバリウムの総含有量)を0.05重量%以下としている。このようなアルカリ土類金属元素の含有量は、例えば温酸洗浄を施すことにより再現性よく達成することが可能となる。通常の水洗のみでは、アルカリ土類金属元素の含有量を0.05重量%以下とすることは極めて困難である。
【0018】
さらに、アルカリ土類金属元素の含有量を0.05重量%以下とした電場発光蛍光体に対して、セシウム元素を0.0001重量%以上0.01重量%以下の範囲で含有させることによって、より一層硫化亜鉛系電場発光蛍光体の輝度および寿命を向上させることができる。アルカリ土類金属元素量の低減による効果とセシウムの添加効果とが相乗的に作用して、より一層良好な輝度が得られると共に、長寿命化を達成することが可能となる。
【0019】
【発明の実施の形態】
以下、本発明を実施するための形態について説明する。
本発明の電場発光蛍光体は、硫化亜鉛を蛍光体母体とし、これに付活剤として銅およびマンガンから選ばれる少なくとも1種の元素と、共付活剤として塩素、臭素、ヨウ素およびアルミニウムから選ばれる少なくとも1種の元素とを含有させたものである。
【0020】
銅およびマンガンから選ばれる付活剤は、硫化亜鉛からなる蛍光体母体に対して0.001〜0.1重量%の範囲で含有させることが好ましい。塩素、臭素、ヨウ素およびアルミニウムから選ばれる共付活剤は、硫化亜鉛からなる蛍光体母体に対して0.001〜0.1重量%の範囲で含有させることが好ましい。このような量の付活剤および共付活剤を硫化亜鉛に含有させることによって、発光効率や発光輝度に優れた電場発光蛍光体が得られる。
【0021】
本発明の電場発光蛍光体は、第1に硫化亜鉛系蛍光体中に残留するアルカリ土類金属元素量を低減することによって、輝度および寿命を向上させている。具体的には、硫化亜鉛系蛍光体中に含まれるアルカリ土類金属元素量、すなわちマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)の総含有量を0.05重量%以下としている。これによって、電場発光蛍光体の高輝度化および長寿命化を達成することができる。
【0022】
高輝度かつ長寿命の電場発光蛍光体を調製する上で、アルカリ土類金属元素の化合物は結晶成長剤として必要とされる。しかし、蛍光体結晶の成長後には、逆にアルカリ土類金属元素は高輝度化および長寿命化の妨げとなる。そこで、本発明では蛍光体中のアルカリ土類金属元素の残留量と輝度および寿命の関係を調査した結果に基づいて、アルカリ土類金属元素の含有量を0.05重量%以下としている。これによって、硫化亜鉛系電場発光蛍光体の高輝度化および長寿命化を達成することができる。
【0023】
上述したアルカリ土類金属元素のうち、Mg元素の含有量は0.03重量%以下とすることが好ましい。Ca元素の含有量は0.01重量%以下とすることが好ましい。Sr元素の含有量は0.01重量%以下とすることが好ましい。また、Ba元素の含有量は0.01重量%以下とすることが好ましい。Mg、Ca、Sr、Baの各元素の含有量を上記した範囲とすることによって、硫化亜鉛系電場発光蛍光体の輝度や寿命を向上させることができる。
【0024】
さらに、本発明の硫化亜鉛系電場発光蛍光体は、微量のセシウムを含有することが好ましい。具体的には、硫化亜鉛系電場発光蛍光体に0.0001重量%以上0.01重量%以下の範囲でセシウム(Cs)を含有させることが好ましい。アルカリ土類金属元素の含有量を低減した硫化亜鉛系電場発光蛍光体に微量のCsを含有させることによって、より一層輝度や寿命を向上させることができる。Csの含有量が0.0001重量%未満では、そのような効果を十分に得ることができない。一方、Csの含有量が0.01重量%を超えると硫化亜鉛蛍光体の結晶性が低下し、逆に輝度の低下などを招くおそれがある。
【0025】
Csは蛍光体母体である硫化亜鉛の結晶中に付活剤や共付活剤が取り込まれることを助ける。これによって、硫化亜鉛系電場発光蛍光体の輝度や寿命をより一層向上させることができる。特に、アルカリ土類金属元素の含有量を低減した硫化亜鉛系電場発光蛍光体では、Csの添加に基づく作用がより効果的に発揮されることから、より一層電場発光蛍光体の輝度や寿命を向上させることができる。
【0026】
本発明の電場発光蛍光体は、例えば以下に示すような方法により作製される。すなわち、まず粒径が1〜3μm程度の硫化亜鉛粉末に所定量の純水を加えてスラリー状とし、これに所定量の硫酸銅や炭酸マンガンなどの付活剤原料を添加して混合する。このようなスラリーを乾燥した後、塩化マグネシウム、塩化バリウム、塩化ナトリウムなどの結晶成長剤を添加し、さらに十分に混合する。
【0027】
上記した塩化物は共付活剤としての塩素の出発原料を兼ねている。共付活剤として塩素以外の臭素、ヨウ素、アルミニウムを使用する場合には、臭化マグネシウム、ヨウ化バリウム、フッ化アルミニウムなどを添加する。さらに、蛍光体中にCsを含有させる場合には、例えば結晶成長剤としてCsの化合物(例えば塩化物)を使用すればよい。
【0028】
次に、上記した混合物を石英るつぼに充填し、空気中にて1100〜1200℃の温度で3〜8時間焼成する。この焼成物を純水中に分散させ、撹拌、沈降、上澄み排水を数回繰り返して焼成物を洗浄する。このような洗浄工程によって、残留する結晶成長剤の大半は除去することができるが、アルカリ土類金属元素の含有量を上記した本発明の範囲内とするためには、さらにアルカリ土類金属元素の除去工程を実施することが好ましい。
【0029】
すなわち、例えば塩酸でpHを1〜3に調整した純水中に焼成物を分散させ、撹拌しつつ50〜80℃に加温する。この後、焼成物を沈降させて上澄みを除去する。これら撹拌、沈降、上澄み排水を数回繰り返す。このような温酸洗浄によって、蛍光体中に残留するアルカリ土類金属元素量を再現性よく0.05重量%以下とすることができる。なお、蛍光体原料に添加するアルカリ土類金属元素の化合物の量を減らすことによっても、電場発光蛍光体中のアルカリ土類金属元素量を低減することができる。
【0030】
その後、純水で数回洗浄してpHを6〜7に調整し、ろ過、乾燥を行う。こうして得られた中間体(六方晶系)を、例えばラバープレス装置で0.5〜2.0ton/cm2の静水圧で数分間加圧する。この加圧処理によって、蛍光体の結晶の一部が立方晶系に変換される。さらに、酸化亜鉛を数%混合した後、石英るつぼを用いて例えば600〜800℃、1〜2時間の条件にて空気中で焼成する。この焼成物を純水中に分散し、数回洗浄する。さらに、塩酸洗浄および純水による中和洗浄を数回行うことによって、本発明の電場発光蛍光体が得られる。
【0031】
なお、本発明の硫化亜鉛系電場発光蛍光体に0.0001重量%以上0.01重量%以下のCsを含有させる場合には、上述したように結晶成長剤として塩化セシウムなどを使用する。電場発光蛍光体のCs含有量は、上述した温酸洗浄を適度に制御することにより調整することができる。
【0032】
本発明の電場発光蛍光体は、例えば図1に示すような有機分散型電場発光素子1の発光体層2に用いられる。図1に示す有機分散型電場発光素子1は、上述した本発明の電場発光蛍光体粒子を例えばシアノエチルセルロースのような高誘電率を有する有機高分子バインダ(有機誘電体)中に分散含有させた発光体層2を有している。発光体層2の一方の主面上には、例えばTiO2やBaTiO3などの高反射性無機酸化物粉末をシアノエチルセルロースなどの高誘電率を有する有機高分子バインダ中に分散含有させた反射絶縁層3が積層形成されている。Al箔のような金属箔あるいは金属膜からなる背面電極層4は、反射絶縁層3を介して、発光体層2の一方の主面上に一体的に配置されている。
【0033】
発光体層2の他方の主面上には、ポリエステル(PET)フィルムのような透明絶縁フィルム上にITO膜などを被着形成した透明電極層(透明電極シート)5が一体的に配置されている。透明電極シート5は、電極膜(ITO膜)が発光体層2と対向するように配置されている。これら透明電極層5、発光体層2、反射絶縁層3および背面電極層4を例えば熱圧着することによって、有機分散型電場発光素子1が構成されている。なお、図示を省略したが、背面電極層4および透明電極層5からはそれぞれ電極が引き出されており、これら電極から発光体層2に交流電圧が印加される。
【0034】
上述した積層体(熱圧着体)からなる有機分散型電場発光素子1は、透明なパッケージングフィルム6で覆われている。パッケージングフィルム6には、例えば水湿透過率が小さいポリクロロトリフルオロエチレン(PCTFE)フィルムのような防湿フィルムが用いられる。透明電極層3側には必要に応じて、6-ナイロンフィルムなどの吸湿性フィルム7が配置される。そして、これらパッケージングフィルム6のはみだし部を熱圧着し、有機分散型電場発光素子1を封止することによって、電場発光パネル(ELパネル)が構成される。
【0035】
このような有機分散型電場発光素子1およびそれを用いたELパネルによれば、発光体層2中の電場発光蛍光体粒子の高輝度化および長寿命化に基づいて、高輝度を達成することができると共に、そのような輝度を長期間にわたって維持することが可能となる。
【0036】
さらに、有機分散型電場発光素子およびそれを用いたELパネルを作製するにあたって、PCTFEフィルムのような防湿フィルムを使用せずに、電場発光蛍光体粒子の個々の表面に対して防湿処理加工を行うことがある。本発明は金属酸化物や樹脂などによる防湿処理を施した電場発光蛍光体に対しても適用可能である。すなわち、本発明の電場発光蛍光体は、アルミナ、シリカおよびチタニアから選ばれる少なくとも 1種からなる保護膜(防湿膜)を有していてもよい。このような構成においても、高輝度化および長寿命化を達成することができる。
【0037】
図2は、蛍光体粒子表面に上記したような保護膜を形成した電場発光蛍光体を用いた有機分散型電場発光素子11を示している。図2に示す有機分散型電場発光素子11は、個々の粒子が保護膜で覆われた本発明の電場発光蛍光体粒子を有機高分子バインダ中に分散含有させた発光体層12を有している。保護膜で覆われた電場発光蛍光体粒子は、それ自体で防湿性を有しているため、吸湿フィルムや防湿フィルムを用いることなく、電場発光蛍光体の水分による発光特性の低下を防ぐことができる。
【0038】
図1に示した有機分散型電場発光素子1と同様に、発光体層12の一方の主面上には、反射絶縁層13を介して背面電極層14が一体的に積層されている。発光体層12の他方の主面上には、透明電極層(透明電極シート)15が一体的に積層されている。背面電極層14は金属粉末やカーボン粉末などをバインダと共に混合してスラリー状とし、このスラリーを例えばスクリーン印刷することによって形成してもよい。背面電極層14のさらに裏面側には、必要に応じて、発光素子の背面側の絶縁性を確保する背面絶縁層(図示せず)が積層形成される。
【0039】
【実施例】
次に、本発明の具体的な実施例およびその評価結果について述べる。
【0040】
実施例1
まず、粒径が約2μmの硫化亜鉛粉末500gに500mlの純水を加えて、スラリー状とした。そこに硫酸銅1.5gを添加して、30分間撹拌混合した。このスラリーを150℃で12時間乾燥させた後、塩化マグネシウム40g、塩化バリウム40g、塩化ナトリウム20gを添加し、十分に混合した。この混合物を石英るつぼに充墳し、空気中にて1150℃で4時間焼成した。
【0041】
この焼成物を2000mlの純水中に分散し、撹拌、沈降、上澄み排水を3回繰り返した。次いで、塩酸でpH=2.0に調整した純水中で撹拌しつつ70℃に加温した後、沈降および上澄みの除去を行った。同様に撹拌、沈降、上澄み排水を3回繰り返した。その後、純水で5回洗浄してpHを6〜7に調整し、ろ過、乾燥を行った。
【0042】
得られた中間体(六方晶系)を、ラバープレス装置を用いて1.0ton/cm2の静水圧で5分間加圧した。加圧処理した中間体を粉砕し、この中間体300gに対して酸化亜鉛15gを混合し、石英るつぼを用いて750℃で1.5時間空気中で焼成した。この焼成物を純水中に分散して3回洗浄し、さらにpH=1.5の条件で塩酸洗浄した。純水による洗浄を5回行った後、ろ過、乾燥、篩別して、本発明の電場発光蛍光体(ZnS:Cu,Cl)を得た。
【0043】
このようにして得た硫化亜鉛系電場発光蛍光体の化学分析を行った結果、アルカリ土類金属元素の残留量(Mg、Ca、Sr、Baの総含有量)は0.05重量%であった。得られた硫化亜鉛系電場発光蛍光体を用いて、図1に示した有機分散型電場発光素子を作製し、輝度および寿命を測定した。これらの測定結果を表1に示す。なお、輝度の測定条件は、印加電圧:100V/400Hz(交流電圧)、発光体層にかかる電界:4000V/cm、発光環境:20℃−60%RTとした。寿命は上記輝度測定条件にて発光を継続し、輝度が初期輝度の1/2になったときの点灯時間で評価した。測定は20℃−60%RTの恒温恒湿槽中で実施した。
【0044】
実施例2〜5、比較例1
実施例1と同様にして、本発明の電場発光蛍光体を調製した。その際に、洗浄条件を変えることによって、硫化亜鉛系電場発光蛍光体(ZnS:Cu,Cl)中のアルカリ土類金属元素の残留量を変化させた。なお、比較例1としての電場発光蛍光体は、洗浄工程で塩酸を使用せずに、純水による洗浄のみとしたものである。これら硫化亜鉛系電場発光蛍光体を用いて、実施例1と同様に有機分散型電場発光素子を作製し、輝度および寿命を測定した。これらの測定結果を表1に併せて示す。
【0045】
【表1】
Figure 0004156915
【0046】
表1から明らかなように、硫化亜鉛系電場発光蛍光体中に含まれるアルカリ土類金属元素の残留量を0.05重量%とした実施例1では、輝度が比較例1(従来品)の約1.4倍となり、また寿命は1.2倍となった。さらに、アルカリ土類金属元素の残留量を0.03重量%以下とした場合には、輝度は約1.7倍以上となり、また寿命は1.5倍以上となった。
【0047】
実施例6
まず、粒径が約2μmの硫化亜鉛粉末500gに500mlの純水を加えて、スラリー状とした。そこに硫酸銅1.5gを添加して、30分間撹拌混合した。このスラリーを150℃で12時間乾燥させた後、塩化マグネシウム10g、塩化バリウム40g、塩化ナトリウム50gを添加し、十分に混合した。この混合物を石英るつぼに充墳し、空気中にて1150℃で4時間焼成した。
【0048】
この焼成物を2000mlの純水中に分散し、撹拌、沈降、上澄み排水を3回繰り返した。次いで、塩酸でpH=2.0に調整した純水中で撹拌しつつ70℃に加温した後、沈降、上澄みの除去を行った。同様に撹拌、沈降、上澄み排水を3回繰り返した。その後、純水で5回洗浄してpHを6〜7に調整し、ろ過、乾燥を行った。
【0049】
得られた中間体(六方晶系)を、ラバープレス装置を用いて1.0ton/cm2の静水圧で5分間加圧した。加圧処理した中間体を粉砕し、この中間体300gに対して酸化亜鉛を15g混合し、石英るつぼを用いて750℃で1.5時間空気中で焼成した。この焼成物を純水中に分散して3回洗浄し、さらにpH=1.5の条件で塩酸洗浄した。純水による洗浄を5回行った後、ろ過、乾燥、篩別して、本発明の電場発光蛍光体(ZnS:Cu,Cl)を得た。
【0050】
このようにして得た硫化亜鉛系電場発光蛍光体の化学分析を行った結果、Mg元素の残留量は0.03重量%であった。得られた硫化亜鉛系電場発光蛍光体を用いて、実施例1と同様に有機分散型電場発光素子を作製し、輝度および寿命を測定した。これらの測定結果を表2に示す。
【0051】
実施例7〜18、比較例2〜5
原料に添加する結晶成長剤の量を変える以外は、実施例6と同様にして、それぞれ本発明の電場発光蛍光体を調製した。これら各硫化亜鉛系電場発光蛍光体を用いて、実施例1と同様に有機分散型電場発光素子を作製し、輝度および寿命をそれぞれ測定した。これらの測定結果を表2〜表5に示す。
【0052】
表2に示す実施例6〜9では、Mg元素の残留量と輝度および寿命との関係を評価した。表3に示す実施例10〜12では、Ca元素の残留量と輝度および寿命との関係を評価した。表4に示す実施例13〜15では、Sr元素の残留量と輝度および寿命との関係を評価した。表5に示す実施例16〜18では、Ba元素の残留量と輝度および寿命との関係を評価した。
【0053】
【表2】
Figure 0004156915
【0054】
【表3】
Figure 0004156915
【0055】
【表4】
Figure 0004156915
【0056】
【表5】
Figure 0004156915
【0057】
上記した表2、表3、表4および表5から明らかなように、アルカリ土類金属元素のうち、Mgについては残留量が0.03重量%以下で輝度が約1.4倍以上となり、Ca、Sr、Baについては残留量が0.01重量%以下で輝度が約1.4倍以上となることが分かる。
【0058】
実施例19
まず、粒径が約2μmの硫化亜鉛粉末500gに500mlの純水を加えて、スラリー状とした。そこに硫酸銅1.5gを添加して、30分間撹拌混合した。このスラリーを150℃で12時間乾燥させた後、塩化マグネシウム40g、塩化ナトリウム20g、塩化セシウム40gを添加し、十分に混合した。この混合物を石英るつぼに充墳し、空気中にて1150℃で4時間焼成した。
【0059】
この焼成物を2000mlの純水中に分散し、撹拌、沈降、上澄み排水を3回繰り返した。次いで、塩酸でpH=2.0に調整した純水中で撹拌しつつ70℃に加温した後、沈降、上澄みの除去を行った。同様に撹拌、沈降、上澄み排水を3回繰り返した。その後、純水で5回洗浄してpHを6〜7に調整し、ろ過、乾燥を行った。
【0060】
得られた中間体(六方晶系)を、ラバープレス装置を用いて1.0ton/cm2の静水圧で5分間加圧した。そして、加圧処理した中間体を粉砕し、この中間体300gに対して酸化亜鉛15gを混合し、石英るつぼを用いて750℃で1.5時間空気中で焼成した。この焼成物を純水中に分散して3回洗浄し、さらにpH=1.5で塩酸洗浄した。純水による洗浄を5回行った後、ろ過、乾燥、篩別して、本発明の電場発光蛍光体(ZnS:Cu,Cl)を得た。
【0061】
このようにして得た硫化亜鉛系電場発光蛍光体の化学分析を行った結果、アルカリ土類金属元素の残留量は0.05重量%、セシウム元素の残留量は0.005重量%であった。得られた硫化亜鉛系電場発光蛍光体を用いて、実施例1と同様に有機分散型電場発光素子を作製し、輝度および寿命を測定した。これらの測定結果を表6に示す。
【0062】
実施例20〜22、比較例6
塩化セシウムの添加量を変える以外は、実施例19と同様にして、それぞれ本発明の電場発光蛍光体を調製した。これら各硫化亜鉛系電場発光蛍光体を用いて、実施例1と同様に有機分散型電場発光素子を作製し、輝度および寿命をそれぞれ測定した。これらの測定結果を表6に示す。
【0063】
【表6】
Figure 0004156915
【0064】
表6から明らかなように、Csを0.0001重量%以上0.01重量%以下の範囲で含む硫化亜鉛系電場発光蛍光体は、Csを実質的に含有しない蛍光体に比べて高輝度化および長寿命化が達成できることが分かる。
【0065】
実施例23
実施例1と同一条件で作製したZnS:Cu,Cl蛍光体粒子の表面に、保護膜(防湿膜)としてアルミナ膜(アルミナ量=1.0重量%)を形成した。このアルミナ膜で被覆された電場発光蛍光体(ZnS:Cu,Cl)を用いて、図2に示したストリップタイプの有機分散型電場発光素子11を作製し、輝度および寿命を測定した。これらの測定結果を表7に示す。なお、輝度の測定条件は実施例1と同様とした。
【0066】
実施例24〜27、比較例7
実施例2〜実施例5とそれぞれ同一条件で作製したZnS:Cu,Cl蛍光体粒子の表面に、表7に示す保護膜をそれぞれ形成した。これら保護膜を有する電場発光蛍光体(ZnS:Cu,Cl)を用いて、図2に示したストリップタイプの電場発光素子11を作製し、輝度および寿命を測定した。これらの測定結果を表7に示す。
【0067】
【表7】
Figure 0004156915
【0068】
実施例28〜30、比較例8〜10
硫化亜鉛粉末を含むスラリーに添加する結晶成長剤を臭化物もしくはヨウ化物とする以外は、実施例19と同様にして、ZnS:Cu,Br蛍光体およびZnS:Cu,I蛍光体を作製した。なお、Cs元素の含有量は臭化セシウムもしくはヨウ化セシウムの添加量により調整した。これら各硫化亜鉛系電場発光蛍光体を用いて、実施例1と同様に有機分散型電場発光素子を作製し、輝度および寿命をそれぞれ測定した。これらの測定結果を表8に示す。
【0069】
【表8】
Figure 0004156915
【0070】
表8から明らかなように、ZnS:Cu,Br蛍光体やZnS:Cu,I蛍光体においても、ZnS:Cu,Cl蛍光体と同様に、アルカリ土類元素の含有量を低減すると共に、適量のCs元素を含有させることによって、高輝度化および長寿命化を達成することができる。
【0071】
【発明の効果】
以上説明したように、本発明によれば、蛍光体中のアルカリ土類金属元素の残留量を低減し、さらに微量のセシウムを含有させているため、高輝度を有すると共にそのような輝度を長期間にわたって維持することが可能な電場発光蛍光体を提供することができる。このような電場発光蛍光体を用いた本発明の有機分散型電場発光素子によれば、ディスプレイデバイスなどに求められる特性を再現性よく満足させることが可能となる。
【図面の簡単な説明】
【図1】 本発明の一実施形態による有機分散型電場発光素子の要部構造を示す断面図である。
【図2】 本発明の他の実施形態による有機分散型電場発光素子の要部構造を示す断面図である。
【符号の説明】
1、11……有機分散型電場発光素子,2、12……発光体層,3、13……反射絶縁層,4、14……背面電極層,5、15……透明電極層

Claims (10)

  1. 硫化亜鉛を蛍光体母体とし、これに付活剤として銅およびマンガンから選ばれる少なくとも1種と、共付活剤として塩素、臭素、ヨウ素およびアルミニウムから選ばれる少なくとも1種とを含有させた電場発光蛍光体において、
    前記電場発光蛍光体は、結晶成長剤として添加されたアルカリ土類金属元素を含有し、かつその含有量が0.05重量%以下であるとともに、化合物として添加されたセシウム元素を0.0001重量%以上0.01重量%以下の範囲で含有することを特徴とする電場発光蛍光体。
  2. 請求項1記載の電場発光蛍光体において、前記電場発光蛍光体中に含まれるマグネシウム元素量は0.03重量%以下であることを特徴とする電場発光蛍光体。
  3. 請求項1記載の電場発光蛍光体において、前記電場発光蛍光体中に含まれるカルシウム元素量は0.01重量%以下であることを特徴とする電場発光蛍光体。
  4. 請求項1記載の電場発光蛍光体において、前記電場発光蛍光体中に含まれるストロンチウム元素量は0.01重量%以下であることを特徴とする電場発光蛍光体。
  5. 請求項1記載の電場発光蛍光体において、前記電場発光蛍光体中に含まれるバリウム元素量は0.01重量%以下であることを特徴とする電場発光蛍光体。
  6. 請求項1ないし請求項のいずれか1項記載の電場発光蛍光体において、前記付活剤は、前記蛍光体母体に対して0.001〜0.1重量%の範囲で含まれることを特徴とする電場発光蛍光体。
  7. 請求項1ないし請求項のいずれか1項記載の電場発光蛍光体において、前記共付活剤は、前記蛍光体母体に対して0.001〜0.1重量%の範囲で含まれることを特徴とする電場発光蛍光体。
  8. 請求項1ないし請求項のいずれか1項記載の電場発光蛍光体において、さらに、前記電場発光蛍光体の粒子表面に形成され、アルミナ、シリカおよびチタニアから選ばれる少なくとも1種からなる保護膜を具備することを特徴とする電場発光蛍光体。
  9. 請求項1ないし請求項のいずれか1項記載の電場発光蛍光体を含む発光体層を具備することを特徴とする有機分散型電場発光素子。
  10. 請求項記載の有機分散型電場発光素子において、さらに、前記発光体層の一方の主面に沿って反射絶縁層を介して一体的に配置された背面電極層と、前記発光体層の他方の主面に沿って一体的に対向配置された透明電極層とを具備することを特徴とする有機分散型電場発光素子。
JP2002359572A 1998-08-26 2002-12-11 電場発光蛍光体およびそれを用いた有機分散型電場発光素子 Expired - Lifetime JP4156915B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002359572A JP4156915B2 (ja) 1998-08-26 2002-12-11 電場発光蛍光体およびそれを用いた有機分散型電場発光素子

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24073098 1998-08-26
JP10-240730 1998-08-26
JP2002359572A JP4156915B2 (ja) 1998-08-26 2002-12-11 電場発光蛍光体およびそれを用いた有機分散型電場発光素子

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20625299A Division JP3673120B2 (ja) 1998-08-26 1999-07-21 電場発光蛍光体およびそれを用いた有機分散型電場発光素子

Publications (2)

Publication Number Publication Date
JP2003201474A JP2003201474A (ja) 2003-07-18
JP4156915B2 true JP4156915B2 (ja) 2008-09-24

Family

ID=27666080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002359572A Expired - Lifetime JP4156915B2 (ja) 1998-08-26 2002-12-11 電場発光蛍光体およびそれを用いた有機分散型電場発光素子

Country Status (1)

Country Link
JP (1) JP4156915B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4719202B2 (ja) * 2004-02-26 2011-07-06 東芝マテリアル株式会社 照光式スイッチとその製造方法
CN100477867C (zh) * 2004-02-26 2009-04-08 东芝高新材料公司 开关照明用el片材和使用了该片材的照明式开关及电子设备

Also Published As

Publication number Publication date
JP2003201474A (ja) 2003-07-18

Similar Documents

Publication Publication Date Title
US6248261B1 (en) Electroluminescent phosphor and electroluminescent element using the same
US5702643A (en) ZnS:Cu electroluminescent phosphor and method of making same
US20050189518A1 (en) Method of producing a fluorescent particle
KR20060051687A (ko) 연색평가수가 높은 전계발광 램프
JPWO2005087892A1 (ja) 電界発光蛍光体とその製造方法および電界発光素子
JP4194079B2 (ja) 電場発光蛍光体およびその製造方法
US6702958B2 (en) Electroluminescent phosphor and electroluminescent element therewith
JP2994058B2 (ja) 電場発光蛍光体および表示素子
JP3673120B2 (ja) 電場発光蛍光体およびそれを用いた有機分散型電場発光素子
JPH08183954A (ja) El蛍光体粉末
JP4156915B2 (ja) 電場発光蛍光体およびそれを用いた有機分散型電場発光素子
JPH11256150A (ja) 電場発光蛍光体,その製造方法およびelパネル
JPH07216351A (ja) 分散型el素子
US5711898A (en) Improved blue-green emitting ZnS:Cu,Cl electroluminescent phosphor and method of making same
JP3904897B2 (ja) 高輝度電場発光蛍光体およびそれを用いた電場発光素子
JP4786026B2 (ja) 高寿命電場発光蛍光体およびそれを用いた電場発光素子
JPH11172245A (ja) 電場発光蛍光体および電場発光パネル
JP4159716B2 (ja) 電場発光蛍光体、その製造方法および有機分散型電場発光素子
KR20060076223A (ko) 전자발광성 인광물질
JP2593522B2 (ja) 電場発光蛍光体および電場発光素子
EP1645611A1 (en) Single-component yellow-emitting electroluminescent phosphor
JP4409066B2 (ja) 青色発光電場発光蛍光体およびそれを用いた有機分散型電場発光素子
JPH02173086A (ja) 電場発光蛍光体及び電場発光素子
JP2005272798A (ja) 蛍光体粒子の製造方法
US3389089A (en) Blue electroluminescent phosphor and method for its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4156915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

EXPY Cancellation because of completion of term