JP4150401B2 - Double-sided wiring board - Google Patents

Double-sided wiring board Download PDF

Info

Publication number
JP4150401B2
JP4150401B2 JP2006053409A JP2006053409A JP4150401B2 JP 4150401 B2 JP4150401 B2 JP 4150401B2 JP 2006053409 A JP2006053409 A JP 2006053409A JP 2006053409 A JP2006053409 A JP 2006053409A JP 4150401 B2 JP4150401 B2 JP 4150401B2
Authority
JP
Japan
Prior art keywords
insulating layer
layer
conductor
wiring
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006053409A
Other languages
Japanese (ja)
Other versions
JP2006148172A (en
Inventor
俊樹 内藤
佳史 篠木
大介 宇圓田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2006053409A priority Critical patent/JP4150401B2/en
Publication of JP2006148172A publication Critical patent/JP2006148172A/en
Application granted granted Critical
Publication of JP4150401B2 publication Critical patent/JP4150401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

本発明は、絶縁層の両面に導体配線が形成された両面配線基板であって、特に、フレキシブル配線基板として好適な両面配線基板に関する。   The present invention relates to a double-sided wiring board in which conductor wiring is formed on both sides of an insulating layer, and more particularly to a double-sided wiring board suitable as a flexible wiring board.

従来の両面配線基板は、一般的には、図6に示すような方法によって製造されている。すなわち、図6(a)に示すように、ポリイミド等の絶縁層61の両面に銅箔等の導体層62が形成されたプリント基板材料6を用い、図6(b)に示すように、当該材料6に対して、レーザや金型等を用いた穿孔、化学的な溶解、或いはこれらを併用する方法等によって、貫通孔63を形成する。次に、図6(c)に示すように、貫通孔63の壁面に、薬液処理や、蒸着、スパッタ等の方法によって導電性の薄膜層64を形成する。次に、図6(d)に示すように、薄膜層64上を含む基板材料6の表裏面全体に、電解めっきによって銅等からなる導体層65を形成する。さらに、図6(e)に示すように、導体層65を感光性の皮膜66で被覆した後、図6(f)に示すように、所定の導体配線パターンに対応する箇所を露光・解像して、耐薬液性を有する皮膜67にした後、当該皮膜67で被覆されていない導体層65及び導体層62を薬液により化学的に溶解する。最後に、図6(g)に示すように、皮膜67を除去することにより、両面配線基板60が製造される。   Conventional double-sided wiring boards are generally manufactured by a method as shown in FIG. That is, as shown in FIG. 6A, using a printed circuit board material 6 in which a conductor layer 62 such as copper foil is formed on both surfaces of an insulating layer 61 such as polyimide, as shown in FIG. The through-hole 63 is formed in the material 6 by drilling using a laser, a mold, or the like, chemical dissolution, or a method using these in combination. Next, as shown in FIG. 6C, a conductive thin film layer 64 is formed on the wall surface of the through-hole 63 by a chemical treatment, vapor deposition, sputtering, or the like. Next, as shown in FIG. 6D, a conductor layer 65 made of copper or the like is formed on the entire front and back surfaces of the substrate material 6 including the thin film layer 64 by electrolytic plating. Further, as shown in FIG. 6 (e), after the conductor layer 65 is covered with a photosensitive film 66, a portion corresponding to a predetermined conductor wiring pattern is exposed and resolved as shown in FIG. 6 (f). Then, after forming the film 67 having chemical resistance, the conductor layer 65 and the conductor layer 62 that are not covered with the film 67 are chemically dissolved by the chemical solution. Finally, as shown in FIG. 6G, the double-sided wiring board 60 is manufactured by removing the film 67.

つまり、上述した従来の両面配線基板60の製造方法は、絶縁層61の両面に形成された導体層62の内、導体配線パターンとして不要な部分を取り除く、所謂サブトラクティブ工法が用いられている。   That is, the above-described conventional method for manufacturing the double-sided wiring board 60 uses a so-called subtractive method of removing unnecessary portions as a conductor wiring pattern from the conductor layer 62 formed on both surfaces of the insulating layer 61.

しかしながら、近年の両面配線基板においては、配線の高密度化や微細化の要求が高まり、これまで行われていたサブトラクティブ工法による配線形成では、前記要求への対応が困難な状況になりつつある。より具体的には、サブトラクティブ工法の場合、前述のように、所定の導体配線パターンに対応する箇所を露光・解像して得られた耐薬液性を有する皮膜67をマスクとし、薬液を用いて導体層65及び導体層62を溶解することにより、導体配線が形成される。この方法では、微細配線や高密度配線の場合に、溶解用薬液の液回りが悪く、溶解速度が配線幅や間隙幅によって大きく異なることになるため、均一な配線が形成され難いという問題を有する。また、導体層65及び導体層62の表層の配線幅と底面の配線幅との差異が大きくなり易いという問題を有する。   However, in recent double-sided wiring boards, there is an increasing demand for higher density and miniaturization of wiring, and it is becoming difficult to meet the above demands by wiring formation by the subtractive method that has been performed so far. . More specifically, in the case of the subtractive method, as described above, a chemical solution is used with the film 67 having a chemical resistance obtained by exposing and resolving a portion corresponding to a predetermined conductor wiring pattern as a mask. Then, the conductor wiring 65 is formed by dissolving the conductor layer 65 and the conductor layer 62. In this method, in the case of fine wiring or high-density wiring, there is a problem that it is difficult to form a uniform wiring because the dissolution of the chemical solution for dissolution is poor and the dissolution rate varies greatly depending on the wiring width and gap width. . Further, there is a problem that the difference between the wiring width of the surface layer of the conductor layer 65 and the conductor layer 62 and the wiring width of the bottom surface tends to be large.

一方、前述したサブトラクティブ工法とは異なり、絶縁基板材料上に電解めっき等により導体配線を形成するアディティブ工法も知られている。しかしながら、特にフレキシブル配線基板の場合、前記絶縁基板材料が可撓性を有するフィルム状になることから、長尺搬送の場合、搬送張力によって前記絶縁基板材料に必然的に生じる応力が無視できない程に大きくなり、その結果、寸法安定性が低下したり、カールが生じ易いという問題がある。また、電解めっきにより導体配線を形成する場合、導体配線が電解析出金属となるため、折り曲げ特性等の屈曲特性が劣化し、十分な屈曲特性を必要とする両面配線基板の製造方法には適さないという問題もある。   On the other hand, unlike the subtractive method described above, an additive method is also known in which conductor wiring is formed on an insulating substrate material by electrolytic plating or the like. However, especially in the case of a flexible wiring board, the insulating substrate material is in the form of a flexible film. Therefore, in the case of long conveyance, the stress that is inevitably generated in the insulating substrate material due to conveyance tension cannot be ignored. As a result, there is a problem that dimensional stability is lowered and curling is likely to occur. In addition, when conductor wiring is formed by electrolytic plating, since the conductor wiring becomes an electrodeposited metal, the bending characteristics such as the bending characteristics deteriorate, and it is suitable for the manufacturing method of a double-sided wiring board that requires sufficient bending characteristics. There is also a problem of not.

本発明は、斯かる従来技術の問題点を解決するべくなされたもので、高密度・微細配線に対応できる一方、フレキシブル配線基板に適用した場合には、寸法安定性を具備し、カールが生じ難く、且つ屈曲用途にも使用可能な両面配線基板を提供することを課題とする。   The present invention has been made to solve such problems of the prior art, and can deal with high density and fine wiring. On the other hand, when applied to a flexible wiring board, it has dimensional stability and curls. It is an object to provide a double-sided wiring board that is difficult and can be used for bending.

前記課題を解決すべく本発明は、第1導体層の一方の面に第1絶縁層が形成された基板材料に対して、前記第1絶縁層の所定部位から、前記第1絶縁層のみを貫通する又は前記第1絶縁層及び前記第1導体層の両方を貫通する導通孔を形成する第1ステップと、前記第1絶縁層の表面及び前記導通孔の壁面に導電性薄膜層を形成する第2ステップと、前記導電性薄膜層上の所定部位に第2絶縁層を形成すると共に前記第1導体層の他方の面上の所定部位又は全面に絶縁層を形成する第3ステップと、前記導電性薄膜層上の前記第2絶縁層が形成されていない部位に、めっきによって第1導体配線を形成する第4ステップと、前記第1導体配線を耐薬液性を有する皮膜で被覆する第5ステップと、前記第2絶縁層と絶縁層とが対向する部位が、前記第1導体層と第1絶縁層のみで構成されるように、前記第1導体層の他方の面を化学的に溶解させることにより、第2導体配線を形成する第6ステップと、前記第2絶縁層及び前記皮膜を除去する第7ステップとにより製造されることを特徴とする両面配線基板を提供するものである。
In order to solve the above problems, the present invention provides a substrate material having a first insulating layer formed on one surface of a first conductor layer, and only the first insulating layer is formed from a predetermined portion of the first insulating layer. A first step of forming a conduction hole penetrating or penetrating both the first insulating layer and the first conductor layer; and forming a conductive thin film layer on a surface of the first insulating layer and a wall surface of the conduction hole. A second step, a third step of forming a second insulating layer at a predetermined portion on the conductive thin film layer and forming an insulating layer on the predetermined portion or the entire surface of the other surface of the first conductor layer ; A fourth step of forming a first conductor wiring by plating on a portion of the conductive thin film layer where the second insulating layer is not formed, and a fifth step of covering the first conductor wiring with a film having chemical resistance and step portion and the second insulating layer and the insulating layer are opposite, Serial to consist only of the first conductive layer and the first insulating layer, by chemically dissolving the other surface of the first conductor layer, and a sixth step of forming a second conductor wiring, the second The invention provides a double-sided wiring board manufactured by two insulating layers and a seventh step of removing the film.

斯かる発明によれば、めっきによって第1導体配線が形成されるため、当該第1導体配線は、高密度・微細配線の要求に対応することが可能である。つまり、配線幅や間隙幅の影響を受けることなく均一な第1導体配線を形成することができ、且つ、表層の配線幅と底面の配線幅の差異を極めて小さくすることが可能である。なお、第2導体配線自体は、第1導体層の他方の面の所定部位を薬液によって化学的に溶解し取り除く所謂サブトラクティブ工法によって形成されるため、高密度・微細配線に対応し難いことになるが、第2導体配線から、導通孔を介して、第1導体配線に配線の引き回しをなし得るため、製造される両面配線基板全体としては、高密度・微細配線の要求に対応することが可能である。   According to such an invention, since the first conductor wiring is formed by plating, the first conductor wiring can meet the demand for high density and fine wiring. That is, a uniform first conductor wiring can be formed without being affected by the wiring width and the gap width, and the difference between the wiring width on the surface layer and the wiring width on the bottom surface can be made extremely small. Note that the second conductor wiring itself is formed by a so-called subtractive method in which a predetermined portion of the other surface of the first conductor layer is chemically dissolved and removed by a chemical solution, so that it is difficult to cope with high density and fine wiring. However, since the wiring can be routed from the second conductor wiring to the first conductor wiring through the conduction hole, the entire double-sided wiring board to be manufactured can meet the demand for high density and fine wiring. Is possible.

また、本発明に係る両面配線基板をフレキシブル配線基板に適用した場合であっても、めっきによって第1導体配線を形成する第4ステップの段階で、既に第1絶縁層(この場合には可撓性を有するフィルム状の絶縁層となる)に第1導体層が形成されているため、長尺搬送の場合における搬送張力の影響を大きく低減することができ、その結果、寸法安定性を具備し、カールの生じ難い両面配線基板を得ることが可能である。つまり、一般的に、絶縁層に比べて導体層は高弾性であるため、前記第1の導体層の存在により、基板材料に生じる応力を分散乃至緩和させることができ、搬送張力の影響を大きく低減することが可能である。   Further, even when the double-sided wiring board according to the present invention is applied to a flexible wiring board, the first insulating layer (in this case flexible) is already formed in the fourth step of forming the first conductor wiring by plating. Since the first conductor layer is formed on the insulating layer in the form of a film having the property, the influence of the conveyance tension in the case of long conveyance can be greatly reduced, and as a result, dimensional stability is achieved. Thus, it is possible to obtain a double-sided wiring board that hardly causes curling. In other words, since the conductor layer is generally more elastic than the insulating layer, the presence of the first conductor layer can disperse or relieve the stress generated in the substrate material, and greatly affects the transport tension. It is possible to reduce.

さらに、折り曲げ特性等の屈曲特性を必要とする部位には、第2絶縁層を形成し、めっきによる第1導体配線が形成されないようにすることにより、十分な屈曲特性を得ることが可能である。
Furthermore, it is possible to obtain sufficient bending characteristics by forming a second insulating layer in a portion that requires bending characteristics such as bending characteristics so that the first conductor wiring by plating is not formed. The

以上に説明した本発明に係る両面配線基板によれば、電解めっきによって第1導体配線が形成されるため、当該第1導体配線側に半導体素子等を搭載することにより、高密度・微細配線の要求に対応することが可能である。つまり、配線幅や間隙幅の影響を受けることなく均一な第1導体配線を形成することができ、且つ、表層の配線幅と底面の配線幅の差異を極めて小さくすることが可能である。また、本発明に係る両面配線基板をフレキシブル配線基板に適用した場合であっても、電解めっきによって第1導体配線を形成する段階で、既に第1絶縁層に第1導体層が形成されているため、長尺工程における搬送張力の影響を大きく低減することができ、その結果、寸法安定性を具備し、カールの生じ難い両面配線基板を得ることが可能である。   According to the double-sided wiring board according to the present invention described above, since the first conductor wiring is formed by electrolytic plating, by mounting a semiconductor element or the like on the first conductor wiring side, high-density / fine wiring It is possible to respond to requests. That is, a uniform first conductor wiring can be formed without being affected by the wiring width and the gap width, and the difference between the wiring width on the surface layer and the wiring width on the bottom surface can be made extremely small. Further, even when the double-sided wiring board according to the present invention is applied to a flexible wiring board, the first conductor layer is already formed on the first insulating layer at the stage of forming the first conductor wiring by electrolytic plating. Therefore, it is possible to greatly reduce the influence of the conveyance tension in the long process, and as a result, it is possible to obtain a double-sided wiring board that has dimensional stability and hardly causes curling.

さらに、折り曲げ特性等の屈曲特性を必要とする部位には、第2絶縁層を形成し、めっきによる第1導体配線が形成されないようにすることにより、十分な屈曲特性を得ることが可能である。
Furthermore, it is possible to obtain sufficient bending characteristics by forming a second insulating layer in a portion that requires bending characteristics such as bending characteristics so that the first conductor wiring by plating is not formed. The

以下、添付図面を参照しつつ、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

(参考形態)
図1は、本発明の参考形態に係る両面配線基板の製造方法を示す説明図である。図1(a)に示すように、本参考形態に係る両面配線基板の製造方法では、第1導体層11の一方の面に第1絶縁層12が形成された基板材料1が用いられる。ここで、第1導体層11としては、銅箔、銅合金、ステンレス、ニッケル等の薬液により加工が可能な金属又は金属箔を使用するのが好ましく、その厚みは、通常1〜100μm、好ましくは3〜30μmとされる。また、第1絶縁層12としては、ポリイミド系樹脂等の耐薬品性、耐熱性、高寸法安定性に優れた樹脂を使用するのが好ましく、その厚みは、通常3〜200μm、好ましくは5〜100μmとされる。
(Reference form)
FIG. 1 is an explanatory view showing a method for manufacturing a double-sided wiring board according to a reference embodiment of the present invention. As shown in FIG. 1A, in the method for manufacturing a double-sided wiring board according to the present embodiment, a substrate material 1 in which a first insulating layer 12 is formed on one surface of a first conductor layer 11 is used. Here, as the first conductor layer 11, it is preferable to use a metal or metal foil that can be processed by a chemical solution such as copper foil, copper alloy, stainless steel, nickel, and the thickness is usually 1 to 100 μm, preferably 3 to 30 μm. Further, as the first insulating layer 12, it is preferable to use a resin excellent in chemical resistance, heat resistance and high dimensional stability such as polyimide resin, and the thickness thereof is usually 3 to 200 μm, preferably 5 to 5 μm. 100 μm.

次に、図1(b)に示すように、基板材料1に対して、第1絶縁層12の所定部位から、第1絶縁層12及び第1導体層11の両方を貫通する導通孔13が形成される。なお、導通孔13の形成方法としては、レーザや金型等を用いた穿孔、薬液による溶解、感光性樹脂の使用等、公知の方法を使用することができ、導通孔13の孔径は、通常10〜500μm、好ましくは30〜300μmとされる。   Next, as shown in FIG. 1B, a conductive hole 13 penetrating both the first insulating layer 12 and the first conductor layer 11 from a predetermined portion of the first insulating layer 12 with respect to the substrate material 1 is formed. It is formed. In addition, as a method for forming the conduction hole 13, a known method such as drilling using a laser or a mold, dissolution with a chemical solution, use of a photosensitive resin, or the like can be used. The thickness is 10 to 500 μm, preferably 30 to 300 μm.

次に、図1(c)に示すように、第1絶縁層12の表面及び導通孔13の壁面に導電性薄膜層14が形成される。なお、導電性薄膜層14としては、Ni、Cr、Cu、Ni/Cr合金、Cu/Ni合金、Ti、又はこれらの合金を使用するのが好ましく、より好ましくはCr、Ni/Cr合金などのCr系金属が使用され、その厚みは、通常3〜3000Å、好ましくは5〜2000Åとされる。また、導電性薄膜層14は、単層に限らず、必要に応じて複数層を積層することも可能である。   Next, as shown in FIG. 1C, the conductive thin film layer 14 is formed on the surface of the first insulating layer 12 and the wall surface of the conduction hole 13. As the conductive thin film layer 14, it is preferable to use Ni, Cr, Cu, Ni / Cr alloy, Cu / Ni alloy, Ti, or an alloy thereof, more preferably Cr, Ni / Cr alloy or the like. A Cr-based metal is used, and its thickness is usually 3 to 3000 mm, preferably 5 to 2000 mm. Further, the conductive thin film layer 14 is not limited to a single layer, and a plurality of layers can be laminated as necessary.

次に、図1(d)に示すように、導電性薄膜層14上の所定部位に第2絶縁層15が形成される。なお、第2絶縁層15としては、耐電解めっき液性を有するものが使用され、その厚みは、後述する第1導体配線16のめっき厚より大きくするのが好ましい。例えば、第1導体配線16のめっき厚を10μmとする場合には、厚み15μmの第2絶縁層15が形成される。また、第2絶縁層15を後述する第1導体配線16のパターンに相当する形状に加工するには、例えば、第2絶縁層15として感光性の絶縁材料を使用し、当該絶縁材料の前記導体配線パターンに対応する部位を露光・解像した後、解像されなかった部位の絶縁材料を溶解すればよい。   Next, as shown in FIG. 1 (d), the second insulating layer 15 is formed at a predetermined position on the conductive thin film layer 14. In addition, as the 2nd insulating layer 15, what has electrolysis-plating-solution property is used, and it is preferable to make the thickness larger than the plating thickness of the 1st conductor wiring 16 mentioned later. For example, when the plating thickness of the first conductor wiring 16 is 10 μm, the second insulating layer 15 having a thickness of 15 μm is formed. In order to process the second insulating layer 15 into a shape corresponding to the pattern of the first conductor wiring 16 to be described later, for example, a photosensitive insulating material is used as the second insulating layer 15 and the conductor of the insulating material is used. After exposing and resolving the part corresponding to the wiring pattern, the insulating material of the part not resolved may be dissolved.

次に、図1(e)に示すように、導電性薄膜層14上の第2絶縁層15が形成されていない部位に、電解めっきによって第1導体配線16が形成される。ここで、本参考形態においては、導電性薄膜層14が形成されていない第1導体層11の他方の面にも、前記電解めっきによって導体層16'が形成されることになる。なお、前記電解めっきは、例えば、電解硫酸銅めっき液中に基板材料1を浸漬し、印加することにより実施される。   Next, as shown in FIG.1 (e), the 1st conductor wiring 16 is formed by electrolytic plating in the site | part in which the 2nd insulating layer 15 on the electroconductive thin film layer 14 is not formed. Here, in the present embodiment, the conductor layer 16 ′ is also formed by the electrolytic plating on the other surface of the first conductor layer 11 where the conductive thin film layer 14 is not formed. The electrolytic plating is performed, for example, by immersing and applying the substrate material 1 in an electrolytic copper sulfate plating solution.

次に、図1(f)に示すように、第1導体配線16が、例えば、塩化第二鉄や塩化第二銅の酸に対する耐薬液性を有する皮膜17で被覆される。ここで、皮膜17としては、例えば感光性の絶縁材料が使用され、当該絶縁材料の全面を露光・解像することにより、耐薬液性を有する皮膜17が形成される。なお、本参考形態では、導体層16'上にも同様の皮膜17'が形成されるが、皮膜17'は、全面が露光・解像される皮膜17と異なり、後述する第2導体配線18パターンに対応する部位のみが露光・解像され、当該部位のみが耐薬液性を有することになる。また、皮膜17'は、第2絶縁層15と異なり、後述する第2導体配線18をサブトラクティブ工法で形成する際の保護膜としての機能を奏するものであるため、表層の配線幅と底面の配線幅の差異を小さくする等の観点から、その厚みは薄いほど(例えば15μm以下)好ましく、例えば液状のレジストを使用することにより形成される。   Next, as shown in FIG.1 (f), the 1st conductor wiring 16 is coat | covered with the membrane | film | coat 17 which has chemical resistance with respect to the acid of a ferric chloride or a cupric chloride, for example. Here, for example, a photosensitive insulating material is used as the film 17, and the film 17 having chemical resistance is formed by exposing and resolving the entire surface of the insulating material. In the present embodiment, the same film 17 ′ is formed on the conductor layer 16 ′. However, the film 17 ′ is different from the film 17 whose entire surface is exposed and resolved, and the second conductor wiring 18 described later. Only the part corresponding to the pattern is exposed and resolved, and only the part has chemical resistance. Further, unlike the second insulating layer 15, the film 17 ′ functions as a protective film when the second conductor wiring 18 described later is formed by the subtractive construction method. From the standpoint of reducing the difference in wiring width, etc., the thickness is preferably as thin as possible (for example, 15 μm or less). For example, it is formed by using a liquid resist.

次に、図1(g)に示すように、第1導体層11の他方の面の所定部位(本参考形態では皮膜17'及び導体層16'の所定部位も含む)を薬液によって化学的に溶解させ、第2導体配線18が形成される。つまり、サブラクティブ工法によって第2導体配線18が形成される。なお、本参考形態における導体層の溶解には、酸(例えば、塩化第二鉄や塩化第二銅)が使用される。   Next, as shown in FIG. 1 (g), a predetermined portion of the other surface of the first conductor layer 11 (including the predetermined portion of the film 17 ′ and the conductor layer 16 ′ in this embodiment) is chemically treated with a chemical solution. The second conductor wiring 18 is formed by melting. That is, the second conductor wiring 18 is formed by a subtractive method. An acid (for example, ferric chloride or cupric chloride) is used for dissolution of the conductor layer in the present embodiment.

次に、図1(h)に示すように、皮膜17、17'及び第2絶縁層15が除去される。なお、皮膜17、17'及び第2絶縁層15は、例えば、アルカリ性の薬液によって剥離除去することができる。   Next, as shown in FIG. 1 (h), the films 17, 17 ′ and the second insulating layer 15 are removed. The films 17, 17 ′ and the second insulating layer 15 can be peeled and removed with an alkaline chemical solution, for example.

最後に、図1(i)に示すように、第1絶縁層12上に残存する導電性薄膜層14が除去され、第1導体配線16及び第2導体配線18を有する両面配線基板10が完成する。なお、導電性薄膜層14は、例えば、酸性の薬液によって剥離除去することができる。   Finally, as shown in FIG. 1I, the conductive thin film layer 14 remaining on the first insulating layer 12 is removed, and the double-sided wiring board 10 having the first conductor wiring 16 and the second conductor wiring 18 is completed. To do. In addition, the electroconductive thin film layer 14 can be peeled and removed by an acidic chemical solution, for example.

なお、本参考形態に係る両面配線基板10の所定部位19には、電解めっきによる第1導体配線16及び第2導体配線18が形成されず、第1絶縁層12のみによって構成されるため、第1絶縁層12を例えば可撓性を有するフィルム状の材料から形成することにより、当該部位19において、十分な屈曲特性を得ることが可能である。   In addition, since the first conductor wiring 16 and the second conductor wiring 18 by electrolytic plating are not formed in the predetermined portion 19 of the double-sided wiring board 10 according to the present embodiment, and only the first insulating layer 12 is formed. By forming the insulating layer 12 from, for example, a flexible film-like material, it is possible to obtain sufficient bending characteristics at the portion 19.

(第1の実施形態)
図2は、本発明の第1の実施形態に係る両面配線基板の製造方法を示す説明図である。図2(a)に示すように、本実施形態に係る両面配線基板の製造方法でも、参考形態と同様に、第1導体層21の一方の面に第1絶縁層22が形成された基板材料2が用いられる。第1導体層21及び第1絶縁層22を形成する好ましい材料や厚みについては、参考形態と同様である。
(First embodiment)
FIG. 2 is an explanatory view showing a method for manufacturing a double-sided wiring board according to the first embodiment of the present invention. As shown in FIG. 2A, in the method for manufacturing a double-sided wiring board according to the present embodiment, the substrate material in which the first insulating layer 22 is formed on one surface of the first conductor layer 21 as in the reference embodiment. 2 is used. A preferable material and thickness for forming the first conductor layer 21 and the first insulating layer 22 are the same as those in the reference embodiment.

次に、図2(b)に示すように、基板材料2に対して、第1絶縁層22の所定部位から、第1絶縁層22及び第1導体層21の両方を貫通する導通孔23が形成される。なお、導通孔13の好ましい形成方法や孔径については、参考形態と同様である。   Next, as shown in FIG. 2B, a conductive hole 23 penetrating both the first insulating layer 22 and the first conductor layer 21 from a predetermined portion of the first insulating layer 22 with respect to the substrate material 2 is formed. It is formed. In addition, about the preferable formation method and hole diameter of the conduction | electrical_connection hole 13, it is the same as that of a reference form.

次に、図2(c)に示すように、第1絶縁層22の表面及び導通孔23の壁面に導電性薄膜層24が形成される。なお、導電性薄膜層24の好ましい材料や厚みについては、参考形態と同様である。   Next, as shown in FIG. 2C, the conductive thin film layer 24 is formed on the surface of the first insulating layer 22 and the wall surface of the conduction hole 23. In addition, about the preferable material and thickness of the electroconductive thin film layer 24, it is the same as that of a reference form.

次に、図2(d)に示すように、導電性薄膜層24上の所定部位に第2絶縁層25が形成される。なお、本実施形態では、第1導体層21の他方の面上の所定部位にも絶縁層25'が形成される。なお、第2絶縁層25及び絶縁層25'の好ましい材料や厚みについては、参考形態における第2絶縁層15と同様である。   Next, as shown in FIG. 2D, a second insulating layer 25 is formed at a predetermined position on the conductive thin film layer 24. In the present embodiment, the insulating layer 25 ′ is also formed at a predetermined portion on the other surface of the first conductor layer 21. In addition, about the preferable material and thickness of 2nd insulating layer 25 and insulating layer 25 ', it is the same as that of the 2nd insulating layer 15 in a reference form.

次に、図2(e)に示すように、導電性薄膜層24上の第2絶縁層25が形成されていない部位に、電解めっきによって第1導体配線26が形成される。ここで、本実施形態においては、導電性薄膜層24が形成されていない第1導体層21の他方の面上であって、絶縁層25'が形成されていない部位にも、前記電解めっきによって導体層26'が形成されることになる。なお、前記電解めっきは、参考形態と同様に、例えば、電解硫酸銅めっき液中に基板材料2を浸漬し、印加することにより実施される。   Next, as shown in FIG. 2 (e), the first conductor wiring 26 is formed by electrolytic plating at a portion on the conductive thin film layer 24 where the second insulating layer 25 is not formed. Here, in the present embodiment, a portion on the other surface of the first conductor layer 21 where the conductive thin film layer 24 is not formed and where the insulating layer 25 ′ is not formed is also formed by the electrolytic plating. A conductor layer 26 'is formed. In addition, the said electrolytic plating is implemented by immersing and applying the board | substrate material 2 in an electrolytic copper sulfate plating solution similarly to the reference form, for example.

次に、図2(f)に示すように、第1導体配線26が、例えば、塩化第二鉄や塩化第二銅の酸に対する耐薬液性を有する皮膜27で被覆される。なお、本実施形態においても、参考形態と同様に、導体層26'上にも同様の皮膜27'が形成される。皮膜27、27'の好ましい材料や厚みについては、それぞれ参考形態における皮膜17、17'と同様である。   Next, as shown in FIG.2 (f), the 1st conductor wiring 26 is coat | covered with the membrane | film | coat 27 which has chemical resistance with respect to the acid of ferric chloride or a cupric chloride, for example. In the present embodiment, similar to the reference embodiment, a similar film 27 ′ is also formed on the conductor layer 26 ′. The preferable materials and thicknesses of the films 27 and 27 ′ are the same as those of the films 17 and 17 ′ in the reference form, respectively.

次に、図2(g)に示すように、第1導体層21の他方の面の所定部位(本実施形態では皮膜27'及び導体層26'の所定部位も含む)を薬液によって化学的に溶解させ、第2導体配線28が形成される。なお、溶解方法は、参考形態と同様である。   Next, as shown in FIG. 2 (g), a predetermined portion of the other surface of the first conductor layer 21 (including the predetermined portion of the film 27 'and the conductor layer 26' in this embodiment) is chemically treated with a chemical solution. The second conductor wiring 28 is formed by melting. The dissolution method is the same as in the reference form.

次に、図2(h)に示すように、皮膜27、27'、第2絶縁層25及び絶縁層25'が除去される。なお、これらの除去方法は、参考形態と同様である。   Next, as shown in FIG. 2 (h), the films 27 and 27 ′, the second insulating layer 25, and the insulating layer 25 ′ are removed. These removal methods are the same as in the reference embodiment.

最後に、図2(i)に示すように、第1絶縁層22上に残存する導電性薄膜層24が除去され、第1導体配線26及び第2導体配線28を有する両面配線基板20が完成する。なお、導電性薄膜層24の除去方法は、参考形態と同様である。   Finally, as shown in FIG. 2I, the conductive thin film layer 24 remaining on the first insulating layer 22 is removed, and the double-sided wiring board 20 having the first conductor wiring 26 and the second conductor wiring 28 is completed. To do. The method for removing the conductive thin film layer 24 is the same as in the reference embodiment.

なお、本実施形態に係る両面配線基板20の所定部位29には、電解めっきによる第1導体配線26が形成されず、第1絶縁層22と第1導体層21のみによって構成されるため、第1絶縁層12を例えば可撓性を有するフィルム状の材料から形成し、第1導体層21を圧延銅箔等から形成することにより、当該部位29において、十分な屈曲特性を得ることが可能である。 In addition, since the first conductor wiring 26 by electrolytic plating is not formed in the predetermined portion 29 of the double-sided wiring board 20 according to the present embodiment, and is configured only by the first insulating layer 22 and the first conductor layer 21, By forming the insulating layer 12 from, for example, a flexible film-like material and forming the first conductor layer 21 from rolled copper foil or the like, sufficient bending characteristics can be obtained at the portion 29. Oh Ru.

(第2の実施形態)
図3は、本発明の第2の実施形態に係る両面配線基板の製造方法を示す説明図である。図3(a)に示すように、本実施形態に係る両面配線基板の製造方法でも、参考形態と同様に、第1導体層31の一方の面に第1絶縁層32が形成された基板材料3が用いられる。第1導体層31及び第1絶縁層32を形成する好ましい材料や厚みについては、参考形態と同様である。
(Second Embodiment)
FIG. 3 is an explanatory view showing a method for manufacturing a double-sided wiring board according to the second embodiment of the present invention. As shown in FIG. 3A, in the method for manufacturing a double-sided wiring board according to this embodiment, as in the reference embodiment, the substrate material in which the first insulating layer 32 is formed on one surface of the first conductor layer 31. 3 is used. A preferable material and thickness for forming the first conductor layer 31 and the first insulating layer 32 are the same as those in the reference embodiment.

次に、図3(b)に示すように、基板材料3に対して、第1絶縁層32の所定部位から、第1絶縁層32及び第1導体層31の両方を貫通する導通孔33が形成される。なお、導通孔33の好ましい形成方法や孔径については、参考形態と同様である。   Next, as shown in FIG. 3B, a conductive hole 33 penetrating both the first insulating layer 32 and the first conductor layer 31 from a predetermined portion of the first insulating layer 32 with respect to the substrate material 3 is formed. It is formed. In addition, about the preferable formation method and hole diameter of the conduction | electrical_connection hole 33, it is the same as that of a reference form.

次に、図3(c)に示すように、第1絶縁層32の表面及び導通孔33の壁面に導電性薄膜層34が形成される。なお、導電性薄膜層34の好ましい材料や厚みについては、参考形態と同様である。   Next, as shown in FIG. 3C, the conductive thin film layer 34 is formed on the surface of the first insulating layer 32 and the wall surface of the conduction hole 33. In addition, about the preferable material and thickness of the electroconductive thin film layer 34, it is the same as that of a reference form.

次に、図3(d)に示すように、導電性薄膜層34上の所定部位に第2絶縁層35が形成される。なお、本実施形態では、第1導体層31の他方の面の全面にも絶縁層35'が形成される。なお、第2絶縁層35及び絶縁層35'の好ましい材料や厚みについては、参考形態における第2絶縁層15と同様である。   Next, as shown in FIG. 3D, a second insulating layer 35 is formed at a predetermined position on the conductive thin film layer 34. In the present embodiment, the insulating layer 35 ′ is also formed on the entire other surface of the first conductor layer 31. In addition, about the preferable material and thickness of 2nd insulating layer 35 and insulating layer 35 ', it is the same as that of the 2nd insulating layer 15 in a reference form.

次に、図3(e)に示すように、導電性薄膜層34上の第2絶縁層35が形成されていない部位に、電解めっきによって第1導体配線36が形成される。ここで、本実施形態においては、第1導体層31の他方の面の全面に絶縁層35'が形成されているため、第1導体層31の他方の面には、前記電解めっきによる導体層は形成されない。なお、前記電解めっきは、参考形態と同様に、例えば、電解硫酸銅めっき液中に基板材料3を浸漬することにより実施される。   Next, as shown in FIG. 3E, a first conductor wiring 36 is formed by electrolytic plating at a portion on the conductive thin film layer 34 where the second insulating layer 35 is not formed. Here, in this embodiment, since the insulating layer 35 ′ is formed on the entire other surface of the first conductor layer 31, the conductor layer formed by the electrolytic plating is formed on the other surface of the first conductor layer 31. Is not formed. In addition, the said electrolytic plating is implemented by immersing the board | substrate material 3 in an electrolytic copper sulfate plating solution similarly to the reference form, for example.

次に、図3(f)に示すように、第1導体配線36が、例えば、塩化第二鉄や塩化第二銅の酸に対する耐薬液性を有する皮膜37で被覆される。なお、本実施形態においても、参考形態と同様に、絶縁層35'上にも同様の皮膜37'が形成される。皮膜37、37'の好ましい材料や厚みについては、それぞれ参考形態における皮膜17、17'と同様である。   Next, as shown in FIG.3 (f), the 1st conductor wiring 36 is coat | covered with the membrane | film | coat 37 which has the chemical solution resistance with respect to the acid of a ferric chloride or a cupric chloride, for example. In the present embodiment, the same film 37 ′ is formed on the insulating layer 35 ′ as in the reference embodiment. The preferable materials and thicknesses of the films 37 and 37 ′ are the same as those of the films 17 and 17 ′ in the reference form, respectively.

次に、図3(g)に示すように、第1導体層31の他方の面の所定部位(本実施形態では皮膜37'及び絶縁層35'の所定部位も含む)を薬液によって化学的に溶解させ、第2導体配線38が形成される。なお、溶解方法は、参考形態と同様である。   Next, as shown in FIG. 3G, a predetermined portion of the other surface of the first conductor layer 31 (including a predetermined portion of the film 37 ′ and the insulating layer 35 ′ in this embodiment) is chemically treated with a chemical solution. The second conductor wiring 38 is formed by melting. The dissolution method is the same as in the reference form.

次に、図3(h)に示すように、皮膜37、37'、第2絶縁層35及び絶縁層35'が除去される。なお、これらの除去方法は、参考形態と同様である。   Next, as shown in FIG. 3H, the coatings 37 and 37 ′, the second insulating layer 35, and the insulating layer 35 ′ are removed. These removal methods are the same as in the reference embodiment.

最後に、図3(i)に示すように、第1絶縁層32上に残存する導電性薄膜層34が除去され、第1導体配線36及び第2導体配線38を有する両面配線基板30が完成する。なお、導電性薄膜層34の除去方法は、参考形態と同様である。   Finally, as shown in FIG. 3I, the conductive thin film layer 34 remaining on the first insulating layer 32 is removed, and the double-sided wiring board 30 having the first conductor wiring 36 and the second conductor wiring 38 is completed. To do. The method for removing the conductive thin film layer 34 is the same as in the reference embodiment.

(第3の実施形態)
図4は、本発明の第3の実施形態に係る両面配線基板の製造方法を示す説明図である。図4(a)に示すように、本実施形態に係る両面配線基板の製造方法でも、参考形態と同様に、第1導体層41の一方の面に第1絶縁層42が形成された基板材料4が用いられる。第1導体層41及び第1絶縁層42を形成する好ましい材料や厚みについては、参考形態と同様である。
(Third embodiment)
FIG. 4 is an explanatory view showing a method for manufacturing a double-sided wiring board according to the third embodiment of the present invention. As shown in FIG. 4A, the substrate material in which the first insulating layer 42 is formed on one surface of the first conductor layer 41 also in the method for manufacturing the double-sided wiring board according to the present embodiment, as in the reference embodiment. 4 is used. A preferable material and thickness for forming the first conductor layer 41 and the first insulating layer 42 are the same as those in the reference embodiment.

次に、図4(b)に示すように、基板材料4に対して、第1絶縁層42の所定部位から、第1絶縁層42のみを貫通する導通孔43が形成される。なお、導通孔43の好ましい形成方法や孔径については、参考形態と同様である。   Next, as shown in FIG. 4B, a conduction hole 43 that penetrates only the first insulating layer 42 from a predetermined portion of the first insulating layer 42 is formed in the substrate material 4. In addition, about the preferable formation method and hole diameter of the conduction | electrical_connection hole 43, it is the same as that of a reference form.

次に、図4(c)に示すように、第1絶縁層42の表面及び導通孔43の壁面に、さらに本実施形態では、これらに加え、導通孔43の底面、つまり第1導体層41の露呈した面に導電性薄膜層44が形成される。なお、導電性薄膜層44の好ましい材料や厚みについては、参考形態と同様である。   Next, as shown in FIG. 4C, on the surface of the first insulating layer 42 and the wall surface of the conduction hole 43, in this embodiment, in addition to these, the bottom surface of the conduction hole 43, that is, the first conductor layer 41. A conductive thin film layer 44 is formed on the exposed surface. In addition, about the preferable material and thickness of the electroconductive thin film layer 44, it is the same as that of a reference form.

次に、図4(d)に示すように、導電性薄膜層44上の所定部位に第2絶縁層45が形成される。なお、本実施形態では、第1導体層41の他方の面の全面にも絶縁層45'が形成される。なお、第2絶縁層45及び絶縁層45'の好ましい材料や厚みについては、参考形態における第2絶縁層15と同様である。   Next, as shown in FIG. 4D, a second insulating layer 45 is formed at a predetermined position on the conductive thin film layer 44. In the present embodiment, the insulating layer 45 ′ is also formed on the entire other surface of the first conductor layer 41. In addition, about the preferable material and thickness of 2nd insulating layer 45 and insulating layer 45 ', it is the same as that of the 2nd insulating layer 15 in a reference form.

次に、図4(e)に示すように、導電性薄膜層44上の第2絶縁層45が形成されていない部位に、電解めっきによって第1導体配線46が形成される。ここで、本実施形態においては、第1導体層41の他方の面の全面に絶縁層45'が形成されているため、第1導体層41の他方の面には、前記電解めっきによる導体層は形成されない。なお、前記電解めっきは、参考形態と同様に、例えば、電解硫酸銅めっき液中に基板材料4を浸漬することにより実施される。   Next, as shown in FIG. 4E, a first conductor wiring 46 is formed by electrolytic plating at a site on the conductive thin film layer 44 where the second insulating layer 45 is not formed. Here, in this embodiment, since the insulating layer 45 ′ is formed on the entire other surface of the first conductor layer 41, the conductor layer formed by the electrolytic plating is formed on the other surface of the first conductor layer 41. Is not formed. In addition, the said electrolytic plating is implemented by immersing the board | substrate material 4 in an electrolytic copper sulfate plating solution similarly to the reference form, for example.

次に、図4(f)に示すように、第1導体配線46が、例えば、塩化第二鉄や塩化第二銅の酸に対する耐薬液性を有する皮膜47で被覆される。なお、本実施形態においても、参考形態と同様に、絶縁層45'上にも同様の皮膜47'が形成される。皮膜47、47'の好ましい材料や厚みについては、それぞれ参考形態における皮膜17、17'と同様である。   Next, as shown in FIG.4 (f), the 1st conductor wiring 46 is coat | covered with the membrane | film | coat 47 which has the chemical solution resistance with respect to the acid of a ferric chloride or a cupric chloride, for example. In the present embodiment, the same film 47 ′ is formed on the insulating layer 45 ′ as in the reference embodiment. The preferable materials and thicknesses of the films 47 and 47 ′ are the same as those of the films 17 and 17 ′ in the reference form, respectively.

次に、図4(g)に示すように、第1導体層41の他方の面の所定部位(本実施形態では皮膜47'及び絶縁層45'の所定部位も含む)を薬液によって化学的に溶解させ、第2導体配線48が形成される。なお、溶解方法は、参考形態と同様である。   Next, as shown in FIG. 4G, the predetermined portion (including the predetermined portion of the film 47 ′ and the insulating layer 45 ′ in this embodiment) on the other surface of the first conductor layer 41 is chemically treated with a chemical solution. The second conductor wiring 48 is formed by melting. The dissolution method is the same as in the reference form.

次に、図4(h)に示すように、皮膜47、47'、第2絶縁層45及び絶縁層45'が除去される。なお、これらの除去方法は、参考形態と同様である。   Next, as shown in FIG. 4H, the films 47 and 47 ′, the second insulating layer 45, and the insulating layer 45 ′ are removed. These removal methods are the same as in the reference embodiment.

最後に、図4(i)に示すように、第1絶縁層42上に残存する導電性薄膜層44が除去され、第1導体配線46及び第2導体配線48を有する両面配線基板40が完成する。なお、導電性薄膜層44の除去方法は、参考形態と同様である。   Finally, as shown in FIG. 4I, the conductive thin film layer 44 remaining on the first insulating layer 42 is removed, and the double-sided wiring board 40 having the first conductor wiring 46 and the second conductor wiring 48 is completed. To do. The method for removing the conductive thin film layer 44 is the same as in the reference embodiment.

(第4の実施形態)
図5は、本発明の第4の実施形態に係る両面配線基板の製造方法を示す説明図である。図5(a)に示すように、本実施形態に係る両面配線基板の製造方法でも、参考形態と同様に、第1導体層51の一方の面に第1絶縁層52が形成された基板材料5が用いられる。第1導体層51及び第1絶縁層52を形成する好ましい材料や厚みについては、参考形態と同様である。
(Fourth embodiment)
FIG. 5 is an explanatory view showing a method for manufacturing a double-sided wiring board according to the fourth embodiment of the present invention. As shown in FIG. 5A, in the method for manufacturing a double-sided wiring board according to the present embodiment, the substrate material in which the first insulating layer 52 is formed on one surface of the first conductor layer 51 as in the reference embodiment. 5 is used. A preferable material and thickness for forming the first conductor layer 51 and the first insulating layer 52 are the same as those in the reference embodiment.

次に、図5(b)に示すように、基板材料5に対して、第1絶縁層52の所定部位から、第1絶縁層52のみを貫通する導通孔53が形成される。なお、導通孔53の好ましい形成方法や孔径については、参考形態と同様である。   Next, as shown in FIG. 5B, a conduction hole 53 that penetrates only the first insulating layer 52 from a predetermined portion of the first insulating layer 52 is formed in the substrate material 5. In addition, about the preferable formation method and hole diameter of the conduction | electrical_connection hole 53, it is the same as that of a reference form.

次に、図5(c)に示すように、第1絶縁層52の表面、導通孔53の壁面、導通孔53の底面に導電性薄膜層54が形成される。なお、導電性薄膜層54の好ましい材料や厚みについては、参考形態と同様である。   Next, as shown in FIG. 5C, the conductive thin film layer 54 is formed on the surface of the first insulating layer 52, the wall surface of the conduction hole 53, and the bottom surface of the conduction hole 53. In addition, about the preferable material and thickness of the electroconductive thin film layer 54, it is the same as that of a reference form.

次に、図5(d)に示すように、導電性薄膜層54上の所定部位に第2絶縁層55が形成される。なお、本実施形態では、第1導体層51の他方の面の全面にも絶縁層55'が形成される。なお、第2絶縁層55及び絶縁層55'の好ましい材料や厚みについては、参考形態における第2絶縁層15と同様である。   Next, as shown in FIG. 5D, a second insulating layer 55 is formed at a predetermined position on the conductive thin film layer 54. In the present embodiment, the insulating layer 55 ′ is also formed on the entire other surface of the first conductor layer 51. In addition, about the preferable material and thickness of 2nd insulating layer 55 and insulating layer 55 ', it is the same as that of the 2nd insulating layer 15 in a reference form.

次に、図5(e)に示すように、導電性薄膜層54上の第2絶縁層55が形成されていない部位に、電解めっきによって第1導体配線56が形成される。ここで、本実施形態においては、第1導体層51の他方の面の全面に絶縁層55'が形成されているため、第1導体層51の他方の面には、前記電解めっきによる導体層は形成されない。なお、前記電解めっきは、参考形態と同様に、例えば、電解硫酸銅めっき液中に基板材料5を浸漬し、印加することにより実施される。   Next, as shown in FIG. 5E, a first conductor wiring 56 is formed by electrolytic plating in a portion where the second insulating layer 55 on the conductive thin film layer 54 is not formed. Here, in this embodiment, since the insulating layer 55 ′ is formed on the entire other surface of the first conductor layer 51, the conductor layer formed by the electrolytic plating is formed on the other surface of the first conductor layer 51. Is not formed. In addition, the said electrolytic plating is implemented by immersing and applying the board | substrate material 5 in an electrolytic copper sulfate plating solution similarly to the reference form, for example.

次に、図5(f)に示すように、第1導体配線56が、例えば、塩化第二鉄や塩化第二銅の酸に対する耐薬液性を有する皮膜57で被覆される。なお、本実施形態においても、参考形態と同様に、絶縁層55'上にも同様の皮膜57'が形成される。皮膜57、57'の好ましい材料や厚みについては、それぞれ参考形態における皮膜17、17'と同様である。   Next, as shown in FIG.5 (f), the 1st conductor wiring 56 is coat | covered with the membrane | film | coat 57 which has chemical resistance with respect to the acid of a ferric chloride or a cupric chloride, for example. In the present embodiment, similar to the reference embodiment, a similar film 57 ′ is formed on the insulating layer 55 ′. The preferable materials and thicknesses of the films 57 and 57 ′ are the same as those of the films 17 and 17 ′ in the reference form, respectively.

次に、図5(g)に示すように、第1導体層51の他方の面の所定部位(本実施形態では皮膜57'及び絶縁層55'の所定部位も含む)を薬液によって化学的に溶解させ、第2導体配線58が形成される。なお、溶解方法は、参考形態と同様である。   Next, as shown in FIG. 5G, a predetermined portion of the other surface of the first conductor layer 51 (including a predetermined portion of the film 57 ′ and the insulating layer 55 ′ in this embodiment) is chemically treated with a chemical solution. The second conductor wiring 58 is formed by melting. The dissolution method is the same as in the reference form.

次に、図5(h)に示すように、皮膜57、57'、第2絶縁層55及び絶縁層55'が除去される。なお、これらの除去方法は、参考形態と同様である。   Next, as shown in FIG. 5H, the films 57 and 57 ′, the second insulating layer 55, and the insulating layer 55 ′ are removed. These removal methods are the same as in the reference embodiment.

最後に、図5(i)に示すように、第1絶縁層52上に残存する導電性薄膜層54が除去され、第1導体配線56及び第2導体配線58を有する両面配線基板50が完成する。なお、導電性薄膜層54の除去方法は、参考形態と同様である。   Finally, as shown in FIG. 5I, the conductive thin film layer 54 remaining on the first insulating layer 52 is removed, and the double-sided wiring board 50 having the first conductor wiring 56 and the second conductor wiring 58 is completed. To do. The method for removing the conductive thin film layer 54 is the same as in the reference embodiment.

なお、以上に説明した参考形態及び第1〜第4の実施形態に係る両面配線基板は、必要に応じて、第1導体配線及び第2導体配線上に絶縁層(カバーレイ)が形成され、さらに、必要に応じて、当該絶縁層上に金めっき等の表面処理が施される場合がある。   In the double-sided wiring board according to the reference embodiment and the first to fourth embodiments described above, an insulating layer (cover lay) is formed on the first conductor wiring and the second conductor wiring, if necessary. Furthermore, surface treatment such as gold plating may be performed on the insulating layer as necessary.

以下に実施例を示し、本発明の特徴をより一層明らかにする。   The following examples illustrate the features of the present invention more clearly.

(参考例)
本参考例では、図1に示す参考形態に係る両面配線基板の製造方法に従って、両面配線基板を製造した。まず、基板材料1として、厚み12μmの銅箔からなる第1導体層11上に、第1絶縁層12としての厚み25μmのポリイミド樹脂が直接形成された銅張積層板(例えば、新日鐵化学製エスパネックス、三井化学製ネオフレックス等)を用いた。次に、YAGレーザによって、孔径75μmの導通孔13を形成した。次に、スパッタにより、厚み500ÅのNi/Cr合金からなる導電性薄膜層14を形成した。次に、第2絶縁層15として、厚み15μmの感光性の絶縁フィルム(例えば旭化成製SPG152)をラミネートにより積層し、所定位置を遮光することのできるガラスマスクを介して、第2絶縁層15に紫外線を照射した後、アルカリ溶液中で解像を行った。次に、基板材料1を電解硫酸銅めっき液中に浸漬し、2.5A/dm2で約18分間めっきすることにより、厚み8μmの銅めっき配線からなる第1導体配線16を形成した。また、第1導体層11の他方の面の全面にも厚み8μmの銅めっきからなる導体層16'を形成し、第1導体層11と合わせて合計の厚みが20μmである銅層を形成した。次に、皮膜17、17'として、厚み10μmの感光性の絶縁フィルム(例えば旭化成製SFG102)をラミネートにより積層し、皮膜17'を所望する配線パターンに応じて露光・解像した後、塩化第二鉄を用いて前記20μm厚の銅層を溶解し、第2導体配線18を形成した。さらに、皮膜17、17'、第2絶縁層15及び導電性薄膜層14を除去し、両面配線基板10を得た。本参考例に係る両面配線基板10は、第1導体配線16が均一に形成され、表層の配線幅と底面の配線幅の差異が極めて小さくなることが確認された。また、寸法安定性を具備し、カールが生じ難いと共に、十分な屈曲特性を得ることができた。
(Reference example)
In this reference example, a double-sided wiring board was manufactured according to the double-sided wiring board manufacturing method according to the reference embodiment shown in FIG. First, a copper-clad laminate (for example, Nippon Steel Chemical Co., Ltd.) in which a polyimide resin having a thickness of 25 μm as the first insulating layer 12 is directly formed on the first conductor layer 11 made of a copper foil having a thickness of 12 μm as the substrate material 1. Espanex made by Mitsui Chemicals, etc.). Next, a conduction hole 13 having a hole diameter of 75 μm was formed by a YAG laser. Next, the conductive thin film layer 14 made of a Ni / Cr alloy having a thickness of 500 mm was formed by sputtering. Next, as the second insulating layer 15, a photosensitive insulating film having a thickness of 15 μm (for example, SPG152 manufactured by Asahi Kasei) is laminated and laminated on the second insulating layer 15 through a glass mask that can shield light at a predetermined position. After irradiation with ultraviolet rays, resolution was performed in an alkaline solution. Next, the substrate material 1 was immersed in an electrolytic copper sulfate plating solution and plated at 2.5 A / dm 2 for about 18 minutes to form a first conductor wiring 16 made of a copper-plated wiring having a thickness of 8 μm. Also, a conductor layer 16 ′ made of copper plating having a thickness of 8 μm was formed on the entire other surface of the first conductor layer 11, and a copper layer having a total thickness of 20 μm was formed together with the first conductor layer 11. . Next, as the films 17 and 17 ′, a 10 μm-thick photosensitive insulating film (for example, SFG102 manufactured by Asahi Kasei) is laminated, and the film 17 ′ is exposed and resolved in accordance with a desired wiring pattern. The 20 μm thick copper layer was dissolved using ferrous iron to form the second conductor wiring 18. Further, the films 17 and 17 ′, the second insulating layer 15 and the conductive thin film layer 14 were removed to obtain the double-sided wiring board 10. In the double-sided wiring board 10 according to this reference example, it was confirmed that the first conductor wiring 16 was uniformly formed, and the difference between the wiring width of the surface layer and the wiring width of the bottom surface was extremely small. In addition, it has dimensional stability, hardly curls, and has sufficient bending characteristics.

(実施例1)
本実施例では、図2に示す第1の実施形態に係る両面配線基板の製造方法に従って、両面配線基板を製造した。まず、基板材料2として、厚み12μmの銅箔からなる第1導体層21上に、第1絶縁層22としての厚み12μmのポリイミド樹脂が直接形成された銅張積層板(例えば、新日鐵化学製エスパネックス、三井化学製ネオフレックス等)を用いた。次に、YAGレーザによって、孔径100μmの導通孔23を形成した。次に、スパッタにより、厚み300ÅのNi/Cu合金からなる導電性薄膜層24を形成した。次に、第2絶縁層25及び絶縁層25'として、厚み15μmの感光性の絶縁フィルム(例えば旭化成製SPG152)をラミネートにより積層し、所定位置を遮光することのできるガラスマスクを介して、第2絶縁層25及び絶縁層25'に紫外線を照射した後、アルカリ溶液中で解像を行った。次に、基板材料2を電解硫酸銅めっき液中に浸漬し、2.5A/dm2で約20分間めっきすることにより、厚み10μmの銅めっき配線からなる第1導体配線26を形成した。また、第1導体層21の他方の面上であって、絶縁層25'が形成されていない部位にも厚み10μmの銅めっきからなる導体層26'を形成し、第1導体層21と合わせて合計の厚みが22μmである銅層を形成した。次に、皮膜27、27'として、厚み6μmの感光性の絶縁フィルム(日立化成製RY3206)をラミネートにより積層し、皮膜27'を所望する配線パターンに応じて露光・解像した後、塩化第二鉄を用いて前記22μm厚の銅層を溶解し、第2導体配線28を形成した。さらに、皮膜27、27'、第2絶縁層25、絶縁層25'及び導電性薄膜層24を除去し、両面配線基板20を得た。本実施例に係る両面配線基板20は、第1導体配線26が均一に形成され、表層の配線幅と底面の配線幅の差異が極めて小さくなることが確認された。また、寸法安定性を具備し、カールが生じ難いと共に、十分な屈曲特性を得ることができた。
(Example 1)
In this example, a double-sided wiring board was manufactured according to the double-sided wiring board manufacturing method according to the first embodiment shown in FIG. First, a copper-clad laminate (for example, Nippon Steel Chemical Co., Ltd.) in which a polyimide resin having a thickness of 12 μm as a first insulating layer 22 is directly formed on a first conductor layer 21 made of a copper foil having a thickness of 12 μm as the substrate material 2. Espanex made by Mitsui Chemicals, etc.). Next, a conduction hole 23 having a hole diameter of 100 μm was formed by a YAG laser. Next, a conductive thin film layer 24 made of a Ni / Cu alloy having a thickness of 300 mm was formed by sputtering. Next, as the second insulating layer 25 and the insulating layer 25 ′, a photosensitive insulating film having a thickness of 15 μm (for example, SPG152 manufactured by Asahi Kasei Co., Ltd.) is laminated and laminated through a glass mask capable of shielding light at a predetermined position. 2 After irradiating the insulating layer 25 and the insulating layer 25 ′ with ultraviolet rays, resolution was performed in an alkaline solution. Next, the substrate material 2 was immersed in an electrolytic copper sulfate plating solution and plated at 2.5 A / dm 2 for about 20 minutes to form a first conductor wiring 26 made of a copper-plated wiring having a thickness of 10 μm. Further, a conductor layer 26 ′ made of copper plating having a thickness of 10 μm is formed on the other surface of the first conductor layer 21 where the insulating layer 25 ′ is not formed, and is combined with the first conductor layer 21. A copper layer having a total thickness of 22 μm was formed. Next, as the coatings 27 and 27 ′, a 6 μm-thick photosensitive insulating film (RY3206 manufactured by Hitachi Chemical Co., Ltd.) is laminated, and the coating 27 ′ is exposed and resolved in accordance with a desired wiring pattern. The 22 μm-thick copper layer was dissolved using ferrous iron to form the second conductor wiring 28. Further, the coatings 27 and 27 ′, the second insulating layer 25, the insulating layer 25 ′, and the conductive thin film layer 24 were removed to obtain the double-sided wiring board 20. In the double-sided wiring board 20 according to the present example, it was confirmed that the first conductor wiring 26 was uniformly formed, and the difference between the wiring width of the surface layer and the wiring width of the bottom surface was extremely small. In addition, it has dimensional stability, hardly curls, and has sufficient bending characteristics.

(実施例2)
本実施例では、図3に示す第2の実施形態に係る両面配線基板の製造方法に従って、両面配線基板を製造した。まず、基板材料3として、厚み18μmの銅箔からなる第1導体層31上に、第1絶縁層32としての厚み12μmのポリイミド樹脂が直接形成された銅張積層板(例えば、新日鐵化学製エスパネックス、三井化学製ネオフレックス等)を用いた。次に、パンチング加工によって、孔径150μmの導通孔33を形成した。次に、スパッタにより、厚み400ÅのCrからなる導電性薄膜層34を形成した。次に、第2絶縁層35及び絶縁層35'として、厚み25μmの感光性の絶縁フィルム(例えば旭化成製SPG252)をラミネートにより積層し、所定位置を遮光することのできるガラスマスクを介して、第2絶縁層35及び絶縁層35'に紫外線を照射した後、アルカリ溶液中で解像を行った。次に、基板材料3を電解硫酸銅めっき液中に浸漬し、2.5A/dm2で約36分間めっきすることにより、厚み18μmの銅めっき配線からなる第1導体配線36を形成した。次に、皮膜37、37'として、厚み6μmの感光性の絶縁フィルム(日立化成製RY3206)をラミネートにより積層し、皮膜37'を所望する配線パターンに応じて露光・解像した後、塩化第二鉄を用いて前記18μm厚の第1導体層31を溶解し、第2導体配線38を形成した。さらに、皮膜37、37'、第2絶縁層35、絶縁層35'及び導電性薄膜層34を除去し、両面配線基板30を得た。本実施例に係る両面配線基板30は、第1導体配線36が均一に形成され、表層の配線幅と底面の配線幅の差異が極めて小さくなることが確認された。また、寸法安定性を具備し、カールが生じ難いと共に、十分な屈曲特性を得ることができた。
(Example 2)
In this example, a double-sided wiring board was manufactured according to the double-sided wiring board manufacturing method according to the second embodiment shown in FIG. First, a copper-clad laminate (for example, Nippon Steel Chemical Co., Ltd.) in which a polyimide resin with a thickness of 12 μm as a first insulating layer 32 is directly formed on a first conductor layer 31 made of a copper foil with a thickness of 18 μm as the substrate material 3. Espanex made by Mitsui Chemicals, etc.). Next, a conduction hole 33 having a hole diameter of 150 μm was formed by punching. Next, a conductive thin film layer 34 made of Cr having a thickness of 400 mm was formed by sputtering. Next, as the second insulating layer 35 and the insulating layer 35 ′, a photosensitive insulating film (for example, SPG252 manufactured by Asahi Kasei Co., Ltd.) having a thickness of 25 μm is laminated by lamination, and the first position is passed through a glass mask that can shield light at a predetermined position. 2 After irradiating the insulating layer 35 and the insulating layer 35 ′ with ultraviolet rays, resolution was performed in an alkaline solution. Next, the substrate material 3 was immersed in an electrolytic copper sulfate plating solution and plated at 2.5 A / dm 2 for about 36 minutes to form a first conductor wiring 36 made of a copper-plated wiring having a thickness of 18 μm. Next, as the coatings 37 and 37 ′, a photosensitive insulating film (RY3206 manufactured by Hitachi Chemical Co., Ltd.) having a thickness of 6 μm is laminated by laminating, and the coating 37 ′ is exposed and resolved in accordance with a desired wiring pattern. The first conductor layer 31 having a thickness of 18 μm was dissolved using ferrous iron to form a second conductor wiring 38. Further, the coatings 37 and 37 ′, the second insulating layer 35, the insulating layer 35 ′, and the conductive thin film layer 34 were removed to obtain a double-sided wiring board 30. In the double-sided wiring board 30 according to the present example, it was confirmed that the first conductor wiring 36 was uniformly formed, and the difference between the wiring width of the surface layer and the wiring width of the bottom surface was extremely small. In addition, it has dimensional stability, hardly curls, and has sufficient bending characteristics.

(実施例3)
本実施例では、図4に示す第3の実施形態に係る両面配線基板の製造方法に従って、両面配線基板を製造した。まず、基板材料4として、厚み18μmの銅箔からなる第1導体層41上に、第1絶縁層42としての厚み12μmのポリイミド樹脂が直接形成された銅張積層板(例えば、新日鐵化学製エスパネックス、三井化学製ネオフレックス等)を用いた。次に、薬液によって、孔径80μmの導通孔43を形成した。次に、スパッタにより、厚み400ÅのNi/Cr合金からなる導電性薄膜層44を形成した。さらに、スパッタにより、Cuからなる導電性薄膜層を導電性薄膜層44の上に形成した。次に、第2絶縁層45及び絶縁層45'として、厚み25μmの感光性の絶縁フィルム(例えば旭化成製SPG252)をラミネートにより積層し、所定位置を遮光することのできるガラスマスクを介して、第2絶縁層45及び絶縁層45'に紫外線を照射した後、アルカリ溶液中で解像を行った。次に、基板材料4を電解硫酸銅めっき液中に浸漬し、2.5A/dm2で約18分間めっきすることにより、厚み8μmの銅めっき配線からなる第1導体配線46を形成した。次に、皮膜47、47'として、厚み6μmの感光性の絶縁フィルム(日立化成製RY3206)をラミネートにより積層し、皮膜47'を所望する配線パターンに応じて露光・解像した後、塩化第二鉄を用いて前記18μm厚の第1導体層41を溶解し、第2導体配線48を形成した。さらに、皮膜47、47'、第2絶縁層45、絶縁層45'及び導電性薄膜層44を除去し、両面配線基板40を得た。本実施例に係る両面配線基板40は、第1導体配線46が均一に形成され、表層の配線幅と底面の配線幅の差異が極めて小さくなることが確認された。また、寸法安定性を具備し、カールが生じ難いと共に、十分な屈曲特性を得ることができた。
(Example 3)
In this example, a double-sided wiring board was manufactured according to the double-sided wiring board manufacturing method according to the third embodiment shown in FIG. First, a copper-clad laminate (for example, Nippon Steel Chemical Co., Ltd.) in which a polyimide resin with a thickness of 12 μm as a first insulating layer 42 is directly formed on a first conductor layer 41 made of a copper foil with a thickness of 18 μm as the substrate material 4. Espanex made by Mitsui Chemicals, etc.). Next, a conduction hole 43 having a hole diameter of 80 μm was formed with a chemical solution. Next, a conductive thin film layer 44 made of a Ni / Cr alloy having a thickness of 400 mm was formed by sputtering. Further, a conductive thin film layer made of Cu was formed on the conductive thin film layer 44 by sputtering. Next, as the second insulating layer 45 and the insulating layer 45 ′, a photosensitive insulating film (for example, SPG252 manufactured by Asahi Kasei Co., Ltd.) having a thickness of 25 μm is laminated by lamination, and the first position is passed through a glass mask that can shield light at a predetermined position. The two insulating layers 45 and 45 ′ were irradiated with ultraviolet rays, and then resolved in an alkaline solution. Next, the substrate material 4 was immersed in an electrolytic copper sulfate plating solution and plated at 2.5 A / dm 2 for about 18 minutes to form a first conductor wiring 46 made of a copper-plated wiring having a thickness of 8 μm. Next, as the films 47 and 47 ′, a 6 μm thick photosensitive insulating film (RY3206 manufactured by Hitachi Chemical Co., Ltd.) is laminated, and the film 47 ′ is exposed and resolved in accordance with a desired wiring pattern. The first conductor layer 41 having a thickness of 18 μm was dissolved using ferrous iron to form a second conductor wiring 48. Further, the films 47 and 47 ′, the second insulating layer 45, the insulating layer 45 ′, and the conductive thin film layer 44 were removed to obtain a double-sided wiring board 40. In the double-sided wiring board 40 according to this example, it was confirmed that the first conductor wiring 46 was formed uniformly, and the difference between the wiring width of the surface layer and the wiring width of the bottom surface was extremely small. In addition, it has dimensional stability, hardly curls, and has sufficient bending characteristics.

(実施例4)
本実施例では、図5に示す第4の実施形態に係る両面配線基板の製造方法に従って、両面配線基板を製造した。まず、基板材料5として、厚み18μmの銅箔からなる第1導体層51上に、第1絶縁層52としての厚み12μmの感光性ポリイミド樹脂が直接形成された銅張積層板を用いた。次に、薬液によって、孔径80μmの導通孔53を形成した。次に、スパッタにより、厚み400ÅのNi/Cr合金からなる導電性薄膜層54を形成した。次に、第2絶縁層55及び絶縁層55'として、厚み25μmの感光性の絶縁フィルム(例えば旭化成製SPG252)をラミネートにより積層し、所定位置を遮光することのできるガラスマスクを介して、第2絶縁層55及び絶縁層55'に紫外線を照射した後、アルカリ溶液中で解像を行った。次に、基板材料5を電解硫酸銅めっき液中に浸漬し、2.5A/dm2で約36分間めっきすることにより、厚み18μmの銅めっき配線からなる第1導体配線56を形成した。次に、皮膜57、57'として、厚み6μmの感光性の絶縁フィルム(日立化成製RY3206)をラミネートにより積層し、皮膜57'を所望する配線パターンに応じて露光・解像した後、塩化第二鉄を用いて前記18μm厚の第1導体層51を溶解し、第2導体配線58を形成した。さらに、皮膜57、57'、第2絶縁層55、絶縁層55'及び導電性薄膜層54を除去し、両面配線基板50を得た。本実施例に係る両面配線基板50は、第1導体配線56が均一に形成され、表層の配線幅と底面の配線幅の差異が極めて小さくなることが確認された。また、寸法安定性を具備し、カールが生じ難いと共に、十分な屈曲特性を得ることができた。
Example 4
In this example, a double-sided wiring board was manufactured according to the double-sided wiring board manufacturing method according to the fourth embodiment shown in FIG. First, as the substrate material 5, a copper-clad laminate in which a photosensitive polyimide resin having a thickness of 12 μm as a first insulating layer 52 was directly formed on a first conductor layer 51 made of a copper foil having a thickness of 18 μm was used. Next, a conduction hole 53 having a hole diameter of 80 μm was formed with a chemical solution. Next, the conductive thin film layer 54 made of a Ni / Cr alloy having a thickness of 400 mm was formed by sputtering. Next, as the second insulating layer 55 and the insulating layer 55 ′, a photosensitive insulating film having a thickness of 25 μm (for example, SPG 252 manufactured by Asahi Kasei) is laminated by lamination, and a glass mask that can shield light at a predetermined position is used. 2 The insulating layer 55 and the insulating layer 55 ′ were irradiated with ultraviolet rays, and then resolved in an alkaline solution. Next, the substrate material 5 was immersed in an electrolytic copper sulfate plating solution and plated at 2.5 A / dm 2 for about 36 minutes to form a first conductor wiring 56 made of a copper-plated wiring having a thickness of 18 μm. Next, as the films 57 and 57 ′, a 6 μm-thick photosensitive insulating film (RY3206 manufactured by Hitachi Chemical Co., Ltd.) is laminated, and the film 57 ′ is exposed and resolved in accordance with a desired wiring pattern. The first conductor layer 51 having a thickness of 18 μm was dissolved using ferrous iron to form the second conductor wiring 58. Further, the films 57 and 57 ′, the second insulating layer 55, the insulating layer 55 ′, and the conductive thin film layer 54 were removed to obtain the double-sided wiring board 50. In the double-sided wiring board 50 according to the present example, it was confirmed that the first conductor wiring 56 was uniformly formed, and the difference between the wiring width of the surface layer and the wiring width of the bottom surface was extremely small. In addition, it has dimensional stability, hardly curls, and has sufficient bending characteristics.

図1は、参考形態に係る両面配線基板の製造方法を示す説明図である。FIG. 1 is an explanatory view showing a method for manufacturing a double-sided wiring board according to a reference embodiment. 図2は、本発明の第1の実施形態に係る両面配線基板の製造方法を示す説明図である。FIG. 2 is an explanatory view showing a method for manufacturing a double-sided wiring board according to the first embodiment of the present invention. 図3は、本発明の第2の実施形態に係る両面配線基板の製造方法を示す説明図である。FIG. 3 is an explanatory view showing a method for manufacturing a double-sided wiring board according to the second embodiment of the present invention. 図4は、本発明の第3の実施形態に係る両面配線基板の製造方法を示す説明図である。FIG. 4 is an explanatory view showing a method for manufacturing a double-sided wiring board according to the third embodiment of the present invention. 図5は、本発明の第4の実施形態に係る両面配線基板の製造方法を示す説明図である。FIG. 5 is an explanatory view showing a method for manufacturing a double-sided wiring board according to the fourth embodiment of the present invention. 図6は、従来の両面配線基板の製造方法を示す説明図である。FIG. 6 is an explanatory view showing a conventional method for manufacturing a double-sided wiring board.

符号の説明Explanation of symbols

1,2,3,4,5…基板材料、11,21,31,41,51…第1導体層、12,22,32,42,52…第1絶縁層、13,23,33,43,53…導通孔、14,24,34,44,54…導電性薄膜層、15,25,35,45,55…第2絶縁層、16,26,36,46,56…第1導体配線、17,27,37,47,57…皮膜、18,28,38,48,58・・・第2導体配線   1, 2, 3, 4, 5 ... substrate material, 11, 21, 31, 41, 51 ... first conductor layer, 12, 22, 32, 42, 52 ... first insulating layer, 13, 23, 33, 43 , 53 ... conduction hole, 14, 24, 34, 44, 54 ... conductive thin film layer, 15, 25, 35, 45, 55 ... second insulating layer, 16, 26, 36, 46, 56 ... first conductor wiring , 17, 27, 37, 47, 57 ... coating, 18, 28, 38, 48, 58 ... second conductor wiring

Claims (1)

第1導体層の一方の面に第1絶縁層が形成された基板材料に対して、
前記第1絶縁層の所定部位から、前記第1絶縁層のみを貫通する又は前記第1絶縁層及び前記第1導体層の両方を貫通する導通孔を形成する第1ステップと、
前記第1絶縁層の表面及び前記導通孔の壁面に導電性薄膜層を形成する第2ステップと、
前記導電性薄膜層上の所定部位に第2絶縁層を形成すると共に前記第1導体層の他方の面上の所定部位又は全面に絶縁層を形成する第3ステップと、
前記導電性薄膜層上の前記第2絶縁層が形成されていない部位に、めっきによって第1導体配線を形成する第4ステップと、
前記第1導体配線を耐薬液性を有する皮膜で被覆する第5ステップと、
前記第2絶縁層と絶縁層とが対向する部位が、前記第1導体層と第1絶縁層のみで構成されるように、前記第1導体層の他方の面を化学的に溶解させることにより、第2導体配線を形成する第6ステップと、
前記第2絶縁層及び前記皮膜を除去する第7ステップとにより製造されることを特徴とする両面配線基板。
For the substrate material in which the first insulating layer is formed on one surface of the first conductor layer,
A first step of forming a conduction hole penetrating only the first insulating layer or penetrating both the first insulating layer and the first conductor layer from a predetermined portion of the first insulating layer;
A second step of forming a conductive thin film layer on the surface of the first insulating layer and the wall surface of the conduction hole;
A third step of forming a second insulating layer at a predetermined portion on the conductive thin film layer and forming an insulating layer on the predetermined portion or the entire surface of the other surface of the first conductor layer ;
A fourth step of forming a first conductor wiring by plating on a portion of the conductive thin film layer where the second insulating layer is not formed;
A fifth step of coating the first conductor wiring with a film having chemical resistance;
By chemically dissolving the other surface of the first conductor layer so that the portion where the second insulating layer and the insulating layer face each other is constituted only by the first conductor layer and the first insulating layer. A sixth step of forming a second conductor wiring;
A double-sided wiring board manufactured by the seventh step of removing the second insulating layer and the film.
JP2006053409A 2006-02-28 2006-02-28 Double-sided wiring board Expired - Fee Related JP4150401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006053409A JP4150401B2 (en) 2006-02-28 2006-02-28 Double-sided wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006053409A JP4150401B2 (en) 2006-02-28 2006-02-28 Double-sided wiring board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002029643A Division JP2003234572A (en) 2002-02-06 2002-02-06 Method of manufacturing double-sided wiring board

Publications (2)

Publication Number Publication Date
JP2006148172A JP2006148172A (en) 2006-06-08
JP4150401B2 true JP4150401B2 (en) 2008-09-17

Family

ID=36627396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006053409A Expired - Fee Related JP4150401B2 (en) 2006-02-28 2006-02-28 Double-sided wiring board

Country Status (1)

Country Link
JP (1) JP4150401B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218598A (en) * 1992-01-31 1993-08-27 Showa Electric Wire & Cable Co Ltd Printed-wiring board
JPH0645364U (en) * 1992-11-26 1994-06-14 古河電気工業株式会社 Flexible printed circuit board
JP3278302B2 (en) * 1994-09-28 2002-04-30 新光電気工業株式会社 Method for manufacturing double-sided wiring type film carrier
JP2003234572A (en) * 2002-02-06 2003-08-22 Nitto Denko Corp Method of manufacturing double-sided wiring board

Also Published As

Publication number Publication date
JP2006148172A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
US7378227B2 (en) Method of making a printed wiring board with conformally plated circuit traces
US20090260868A1 (en) Printed circuit board and method of manufacturing the same
US6117300A (en) Method for forming conductive traces and printed circuits made thereby
JP2007194265A (en) Flexible printed wiring board, and its manufacturing method
JP2009231770A (en) Multilayer flexible printed wiring board and its manufacturing method
JP5248684B2 (en) Electronic circuit, method for forming the same, and copper-clad laminate for forming electronic circuit
KR100590369B1 (en) Method for manufacturing double-sided circuit board
JP5738964B2 (en) Electronic circuit, method for forming the same, and copper-clad laminate for forming electronic circuit
JP2011003246A (en) Suspension substrate
KR20080087622A (en) Double sided flexible copper clad laminate without a adhesive layer, flexible printed circuit board using the flexible copper clad laminate, and fabrication methods of the flexible copper clad laminate and the flexible printed circuit board
JP4150401B2 (en) Double-sided wiring board
US6763575B2 (en) Printed circuit boards having integrated inductor cores
JP2006148173A (en) Double sided wiring board and manufacturing method thereof
KR101555014B1 (en) Printed circuit board for forming fine wiring and method for manufacturing the same
JP2000307245A (en) Print wiring board, manufacture thereof and metallic laminated plate
KR101231273B1 (en) The printed circuit board and the method for manufacturing the same
JP2012028517A (en) Resist formation wiring substrate and method of manufacturing electronic circuit
JP2005005453A (en) Printed wiring board and its manufacturing method
JPH036880A (en) Printed wiring board and manufacture thereof
KR20140039921A (en) Method of manufacturing printed circuit board
JP3747897B2 (en) Manufacturing method of tape carrier for semiconductor device and semiconductor device using the same
JP2006269638A (en) Method for manufacturing circuit board, circuit board and printed circuit board
JP2005251926A (en) Circuit board and method for manufacturing the same
KR20120026848A (en) The flexible printed circuit board and the method for manufacturing the same
JP2003304066A (en) Multilayer printed wiring board and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080620

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4150401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees