JP4146140B2 - Camera temperature control device for image recognition - Google Patents

Camera temperature control device for image recognition Download PDF

Info

Publication number
JP4146140B2
JP4146140B2 JP2002065637A JP2002065637A JP4146140B2 JP 4146140 B2 JP4146140 B2 JP 4146140B2 JP 2002065637 A JP2002065637 A JP 2002065637A JP 2002065637 A JP2002065637 A JP 2002065637A JP 4146140 B2 JP4146140 B2 JP 4146140B2
Authority
JP
Japan
Prior art keywords
temperature
camera
circuit board
air
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002065637A
Other languages
Japanese (ja)
Other versions
JP2003264358A (en
Inventor
康晴 上野
智 仕田
昌三 南谷
貴晴 前
輝雄 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002065637A priority Critical patent/JP4146140B2/en
Publication of JP2003264358A publication Critical patent/JP2003264358A/en
Application granted granted Critical
Publication of JP4146140B2 publication Critical patent/JP4146140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、画像認識に用いるカメラの温度管理装置に関し、詳しくは、生産設備の加熱を伴う生産環境でカメラを画像認識に用いるカメラの温度管理装置に関するものである。
【0002】
【従来の技術】
従来、図11、図12に示すように回路基板aと半導体チップbとの金属接合部d、eどうしを摩擦接合して半導体チップbを回路基板aに実装する部品実装装置が知られている。このような部品実装装置では、回路基板aを支持して前記接合に供する接合ステージcにヒータを設けて回路基板aを加熱することにより、摩擦接合時の昇温を補助することが行なわれている。例えば、回路基板aの摩擦接合部dは導体ランドであり、半導体チップbの金属接合部eはバンプである。
【0003】
これに併せ、図11に示す部品実装装置では、接合ステージcに支持されている回路基板aの上にカメラfが進出して前記接合のための画像認識を行ない、図12に示す部品実装装置では、接合ステージcに支持されている回路基板aとその上に持ち運ばれてきた半導体チップbとの間にカメラgが進出して回路基板aおよび半導体チップbを同時に前記接合のための画像認識を行なうようにしている。
【0004】
なお、図11に示す部品実装装置では接合ステージcの上で半導体チップbの画像認識を行なっていない。そこで、反転機構jが部品供給部hにおける部品供給源iの半導体チップbを破線で示す下向きでピックアップしてから図11に実線で示すように上向きに反転させて所定位置に供給し、半導体チップbを前記接合に供する部品取り扱い機構kが前記供給された半導体チップbをピックアップして回路基板a上へ持ち運ぶ過程にて、別のカメラlによる画像認識を行なうようにしている。図12に示す部品実装装置も共通する部材に同一符号を付して示すように半導体チップbを図11に示す部品実装装置と同様に取り扱って前記接合に供しているが、当然のことながら図11に示す部品実装装置のような別のカメラは不要である。
【0005】
これら、カメラf、g、lによる回路基板a、半導体チップbの画像認識は、それらの種類、欠けなどの欠陥、向きを含む位置などを検出することができ、検出された位置ずれなどの問題の解消を図って接合を無駄や失敗なく達成することができる。
【0006】
【発明が解決しようとする課題】
しかし、電子部品の微小化、配線や実装の高密度化によって位置決めの必要精度が勢い高まっているなか、接合位置のずれがときとして問題になってきている。これにつき、本発明者等が種々に実験をし検討を重ねたところ、前記カメラf、g、lのうち、特に、カメラf、gによる回路基板aや半導体チップbの位置にずれが生じていることが判明した。これは、カメラf、gによる画像認識を加熱する接合ステージcの上で行っていることにより、カメラf、gが熱によって膨張したり収縮したりする熱変形が影響していると思われる。特に、カメラf、gは接合位置に位置決めされた接合ステージcの上に進出して用いられるものであることにより、カメラf、gを進退させる支持機構mはカメラf、gを進出させたときその進出側への片持ち支持状態となるので、支持機構mの熱変形も大きく影響するものと見られる。
【0007】
本発明者等の実験によると、図11に示す部品実装装置において、途中にカメラfのメンテナンスによる中断時間15分を含んだ回路基板の生産における設備内の温度は図9に破線で示すように、カメラfの温度は図9に斑点線で示すようにそれぞれ推移し、その時々の認識位置のずれは▲線で示し、実相位置のずれは◆線で示す通りであった。安定した生産中では認識位置のずれがほぼ10μm程度であるのに対し、実相位置のずれはほぼそれに倣うものの、認識位置よりも少し大きくなっている。これは、実相位置のずれの原因の大半が常温時の認識位置を基準に設定したカメラf、gの位置認識原点に熱変形によるずれが生じていることを意味し、加熱環境での温度に対応して認識位置ないしは実装位置をマイナス側に補正すれば対応できることをも意味している。
【0008】
また、生産の中断後、従って、生産の立ち上げの過渡期では認識位置のずれは1μm程度から約6分ほどで通常の10μm程度近くになって後、変動を繰り返しながら増大し、生産の安定時期の状態に至る。この過渡期における認識位置のずれの増大はカメラfの温度上昇が影響していることを示している。また、実相位置のずれは生産の開始初期から生産の安定期程度にまで一挙に増大してしまう。これは、生産の立ち上げ過渡期での認識位置のずれの変動が実装位置の決定に大きな混乱を与えたことによるもので、上記のように加熱環境での温度に対応して認識位置ないしは実装位置をマイナス側に補正しても対応できないことを意味する。
【0009】
また、温度の変動による支持機構を含んだカメラの熱変形は様々な要因が複合していて、経験的にも温度変化に対し一定の相関性を持って捉えるのが困難である。このため、その時々の温度に対応して認識位置ないしは実装位置を補正し難い。
【0010】
本発明の目的は、このような新たな知見に基づき、生産設備の加熱を伴う生産環境でも精度よい認識がなされるようにする画像認識に用いるカメラの温度管理装置を提供することにある。
【0011】
【課題を解決するための手段】
上記のような目的を達成するため、本発明の画像認識に用いるカメラの温度管理装置は、加熱状態の接合ステージ上で部品を回路基板に実装する部品実装装置の生産設備において、回路基板、あるいは部品および回路基板に対する位置認識を含む画像認識の都度、接合ステージの上に保持された回路基板上、またはこの回路基板とこれに実装するために持ち運ばれてきた部品との間に進入可能なカメラと、このカメラを覆うカバーと、このカバー内に空気を吹き込んでカメラの温度を調節する送風手段と、カメラ近傍の温度を検出するセンサと、このセンサによる温度の検出ないしは取り込みを行い、所定の温度範囲を下回っていると空冷は停止し、所定の温度範囲を越えていると空冷を行いカメラを所定の温度範囲に保つように送風手段による送風状態を制御する制御手段とを備えたことを特徴とするものである。
【0012】
このような構成では、加熱状態の接合ステージ上で部品を回路基板に実装する部品実装装置の生産設備において、カメラを生産上の取り扱い対象物の画像認識に用いて生産をするのに、回路基板、あるいは部品および回路基板に対する位置認識を含む画像認識の都度、接合ステージの上に保持された回路基板上、またはこの回路基板とこれに実装するために持ち運ばれてきた部品との間に進入可能なカメラを用いると、進退機構を含む分だけ熱変形が大きく、また複雑になりやすいものの、カメラをカバーで覆って冷却空気を吹き込み冷却すると熱交換がより促進されて、カメラの温度をより早期により変動なく所定の温度範囲に保ちやすく、特に、送風手段を制御手段によりセンサが検出るカメラ近傍の温度が定の温度範囲を下回っていると空冷は停止し、所定の温度範囲を越えていると空冷を行いカメラを所定の温度範囲に保つようにすると、過不足なく冷却を行ない所定の温度範囲にまで無駄なく早期に冷却することができ、メンテナンスなどによる生産中断時を含む非生産時に前記加熱が停止されて、生産中の加熱環境部位に生産時と非生産時とで生じる温度の大きな変化に伴いカメラまわりの環境温度が変動しても、カメラを生産中も常温付近の所定範囲内の温度に保つことができ、カメラに設定した常温時の位置認識位置原点のままで、取り扱い対象物の位置をずれなく高精度に認識することができる。
【0019】
温度調節は、冷風、温風の少なくとも1つによって行ない、空気の流量、圧力、空気温度の少なくとも1つを制御して行なうことができる。また、ラバーヒーターによっても行える。
【0020】
温度調節は、所定の温度範囲を越えているとその時の温度変化率を見て、この温度変化率に見合うレベルでの空冷を行うことによって、過不足なく冷却を行い目標の温度範囲にまで冷却することによっても行なえる。
【0022】
本発明のそれ以上の目的および特徴は、以下の詳細な説明および図面の記載によって明らかになる。また、本発明の各特徴は、可能な限りそれ単独で、あるいは種々な組み合わせで複合して採用することができる。
【0023】
【発明の実施の形態】
以下、本発明に係る画像認識に用いるカメラの温度管理方法と装置の実施の形態について、図1〜図10を参照しながら説明し、本発明の理解に供する。以下の説明は本発明の具体例であって、特許請求の範囲を限定するものではない。
【0024】
本実施の形態は図1に示すように半導体チップ1と回路基板2との金属接合部3、4どうしの摩擦接合に適用する生産設備、いわゆる図3に示すような部品実装装置5に適用した場合の一例であり、これに限られることはない。
【0025】
図1〜図3を参照して部品実装装置5は、図示しないヒーターを有した接合ステージ6上に支持した回路基板2を加熱しながら、半導体チップ1との金属接合部3、4同どうしの摩擦接合に供することにより摩擦接合のための昇温を補助するので、この接合ステージ6が加熱を伴う生産環境をなし、図1に示すように接合ステージ6上に支持された回路基板2上、あるいは図2に示すように接合ステージ6上に支持された回路基板2およびこれの上に部品実装のために持ち運ばれてきた半導体チップ1の間に進出してそれらの位置を画像認識する図1に示すカメラ7、および図2に示すカメラ8は、前記加熱環境からの熱影響によって熱変形し、これが生産開始時、生産中断後の生産再開時はもとより、生産安定期でも記述したように変動し、常温状態など一定の温度条件に対応して設定するカメラ7、8の認識原点位置のままでは認識位置にずれが生じ、認識位置を基に半導体チップ1および回路基板2どうしを位置決めして行う部品実装の位置にずれが生じる。これには、温度と位置ずれの相関牲が一定しないためにその時々の温度によって認識位置ないしは実装位置を補正しても対応し切れない。このような問題は、例えば、半導体チップ1の電極に金属接合部3であるバンプをワイヤの摩擦ボンディング手法によって形成するのに半導体チップ1を加熱ステージ上で加熱しながら行うが、このボンディング時の半導体チップ1などの位置決めを加熱ステージ上でのカメラを用いた画像認識による位置認識に基づき行うような場合も、同様の問題が生じる。
【0026】
このように、部品実装装置5以外にも加熱を伴う環境にてカメラを用いた画像認識を行うのにカメラの熱変形が認識精度上問題になる生産設備があり、それら全てに本発明を適用して有効であり、いずれの場合も本発明の範疇に属する。
【0027】
図3に示す部品実装装置5につきさらに説明すると、半導体チップ1などの部品を所定位置に供給する部品供給部31、前記金属接合によって部品を実装する回路基板2などの実装対象物を支持し加熱しながら部品実装位置に持ち運んで前記接合による部品実装に供する前記接合ステージ6を含み、部品実装後の回路基板2を他へ移す実装対象物取り扱い手段32、所定位置に供給される半導体チップ1をボイスコイルモータ10に連結した部品保持ツールの1例としての吸着ノズル21にてピックアップして取り扱い部品実装位置に位置決めされている回路基板2に双方の金属接合部3、4どうしが対向するように位置合わせして実装に供する部品取り扱い手段33、吸着ノズル21を通じてこれが保持している部品に前記金属接合のための超音波振動を与えるホーンを利用した超音波振動手段34、部品実装装置5の動作制御において、特に、部品実装位置にて、接合ステージ6上に支持した回路基板2の導体ランドなどの金属接合部4に、部品取り扱い手段33が取り扱う半導体チップ1の金属接合部3を対向させるとともに、部品取り扱い手段33が持つ例えば2つの実装ヘッド51、52における吸着ノズル21をボイスコイルモータ10により駆動制御し金属接合部3、4どうしに加重しながら超音波振動手段34を働かせて、接合ステージ6からの加熱を伴い前記金属接合部3、4どうしを接合させ、半導体チップ1を回路基板2に実装する制御手段35を備えている。
【0028】
これにより、部品供給部31が所定位置に供給する半導体チップ1を、部品取り扱い手段33がそれの実装ヘッド51、52に有した吸着ノズル21によってボイスコイルモータ10の制御手段35による駆動制御を伴いピックアップして持ち運び、実装対象物取り扱い手段32の接合ステージ6によって加熱状態で支持して実装位置に供給し位置決めしている回路基板2との金属接合部3、4どうしを対向させ、制御手段35により超音波振動手段34およびボイスコイルモータ10による吸着ノズル21の駆動制御によって金属接合部3、4どうしを摩擦接合させて半導体チップ1を回路基板2に自動的に実装することを高速に繰り返し行なうことができる。
【0029】
制御手段35はマイクロコンピュータの制御機能を利用したものでよいが、これに限られることはない。部品供給部31はダイシングシート36上で個々の半導体チップ1にダイシングされた部品を多段に収容したストッカ37を載置して昇降させるリフタ38を部品供給源とし、このリフタ38によって所定高さに位置決めされた収納段につき、Y方向に移動する出し入れ手段39によってダイシングシート36を引出しエキスパンド台41でのエキスパンドに供して部品のピックアップに備えたり、エキスパンド台41上の部品ピックアップ後のダイシングシート36をストッカ37に収納する。エキスパンド台41は例えばY方向に移動することと、ピックアップ手段42がX方向に移動することとによって、ダイシングシート36上の所定の半導体チップ1がピックアップ手段42の吸着ノズル42aにより吸着してピックアップされるようにする。
【0030】
ピックアップ手段42は下向きの吸着ノズル42aによりピックアップした半導体チップ1を上向きに反転させて半導体チップ1の金属接合部3を有した接合面が下向きとなるようにして所定の部品供給位置までX方向に移動し、部品実装のためのピックアップに供する。
【0031】
部品実装のためのピックアップは、例えばX方向に移動する2つの部品実装ヘッド51、52によって種類別に行ない、半導体チップ1の種類にあった摩擦接合による部品実装を行なう。この摩擦接合のために部品実装ヘッド51、52は、上記した吸着ノズル21を支持したボイスコイルモータ10を備えているが、それぞれが取り扱う種類の半導体チップ1に対応した加重条件に設定される。もっとも吸着ノズル21の駆動手段としてはボイスコイルモータ10以外のものを採用することもできる。
【0032】
実装対象物取り扱い手段32は、回路基板2のローディング部53とアンローディング部54との間に前記接合ステージ6を有している。この接合ステージ6はY方向に移動でき、ローディング部53から搬入した回路基板2を実装位置まで持ち運んで前記部品実装ヘッド51または52による加熱を伴う部品実装に供し、半導体チップ1の所定の実装を終えた時点で基の位置に復帰し、部品実装後の回路基板2をアンローディング部54に搬出し先へ搬送されるようにする。
【0033】
なお、ローディング部53には回路基板2を予備加熱する予備加熱ステージ56が設けられ、アンローディング部54には部品実装後の回路基板2が急に冷えて割れなどが発生しないように温度保証を行なう保温加熱ステージ57が設けられている。また、部品実装位置の近傍には部品実装位置へ進出したり後退したりする前記図1に示すカメラ7が設けられ、部品実装位置に位置決めされた回路基板2上に進入して金属接合部4などを撮像ないしは撮影して画像による位置や欠陥の認識に供するようにしてある。また、半導体チップ1の位置を含む画像認識は部品取り扱い手段33が部品供給部31におけるピックアップ手段42から上下を反転した半導体チップ1を保持して実装位置へ持ち運ぶ途中に設けたカメラ61によって撮影ないしは撮像して行うようにしてある。
【0034】
もっとも、カメラ7、8の進退機構11は図1、図2に示すように、各種回路基板2の各種マーク、あるいは1枚の回路基板2における実装位置にも対応した画像認識ができるように、Y方向に移動するテーブル11a、12a、X方向に移動するテーブル11b、12bによって直交するXY2方向に移動されるようにしている。なお、回路基板2の位置が認識できれば部品の各実装位置は回路基板2上の座標位置によって特定することができ、個々の実装位置を画像認識することを省略することができる。また、実装位置のカメラ7に代えて図2に示すカメラ8を設ければ、半導体チップ1を単独で画像認識するカメラ61は不要になる。しかも、1つのカメラ8による回路基板2および半導体チップ1の同時認識は、双方に対する認識位置の原点が共通することになり、相互の位置関係を精度よく認識して高精度に位置決めすることができる。これによって、微小部品、高密度な回路パターンや実装に対応することができる。
【0035】
また、欠陥の認識は回路基板2および半導体チップ1ともにそれ以前の段階で検査し、不良品は部品実装に供さないようにするのが好適である。1つのカメラ8による回路基板2および半導体チップ1の同時認識は、双方に対する認識の原点位置が共通することになり、相互の位置関係を精度よく認識して高精度に位置決めすることができる。これによって、微小部品、高密度な回路パターンや実装に対応することができる。
【0036】
本実施の形態は、以上のようなカメラ7または8につき、接合ステージ6、あるいはこれに予備加熱ステージ56、保温加熱ステージ57などをも含む加熱を伴う生産環境での熱変形による認識位置のずれの問題を解消するため、カメラの温度管理の1つの方法として、加熱を伴う生産環境にある前記カメラ7、8を生産上の取り扱い対象物の一例である回路基板2、あるいは半導体チップ1および回路基板2に対する位置認識を含む画像認識に用いるのに、このカメラ7、8につき生産時の温度が非生産時のほぼ常温範囲にまで冷却するよう温度管理する。
【0037】
このように、部品実装装置5における加熱を伴う生産環境でカメラ7、8を生産上の取り扱い対象物である半導体チップ1の画像認識に用いて生産をすると、カメラ7、8が部品実装装置5の加熱を伴う生産環境に置かれるために、メンテナンスなどによる生産中断時を含む非生産時に前記加熱が停止されて、生産中の加熱環境部位に生産時と生産中断で代表する非生産時とで、温度に図9の破線および斑点線で示すような大きな変化が生じ、これに伴いカメラ7、8まわりの環境温度が変動するが、上記のようにカメラ7、8につき生産時の温度が非生産時のほぼ常温範囲にまで冷却するよう例えば図9に実線で示す実験例のように温度管理することによって、カメラ7、8を生産中も常温付近の所定範囲内の温度に保つことができ、カメラ7、8に設定した常温時の位置認識位置原点のままで、回路基板2、ないしは回路基板2および半導体チップ1の位置をずれなく高精度に認識することができる。
【0038】
特に、部品実装装置5が上記のように、加熱状態の接合ステージ6上での金属接合部3、4どうしの摩擦接合を伴って半導体チップ1などを回路基板2に実装するもので、カメラ7、8は画像認識の都度、接合ステージ6の上に保持された回路基板2上に進入するものである構成を有し、回路基板2と半導体チップ1との高精度な位置決めが要求されるにもかかわらず、カメラ7、8が回路基板2上ないしは回路基板2および半導体チップ1間に進出してそれらの位置を画像認識するものであることにより、カメラ7、8の前記進退機構11、12を含む分だけ熱変形が大きく、また複雑になりやすいものの、上記のようにカメラ7、8の温度を常温付近の所定の範囲内に保つことができることにより、高精度な位置認識に基づき高精度な部品実装が実現し、さらなる部品の微小化、高密度な回路パターンおよび部品実装に対応することができる。
【0039】
このようにカメラ7、8を常温程度に温度管理をする冷却方法としては基本的にどのような方法を採用してもよい。また、常温とは恒温室での生産であれば恒温室の温度が常温となるなど生産設備の環境温度である。原理的にはカメラ7、8を常温付近に保つように温度管理しなくても、温度の変動を防止できれば温度に対応した認識位置のずれ量が経験的に相関性を持って想定できるので、その分認識位置を補正することができる。従って、温度管理は冷却によって行うのに限られることはなく、例えば、生産開始時の生産安定期の温度に向けた立ち上げを加熱により補助したり、生産中断中にも生産安定期の温度を保つように加熱することによっても対応できる。
【0040】
そこで、本実施の形態は、別の温度管理例として、上記の例をも含んで部品実装装置5の加熱を伴う生産環境にあるカメラ7、8を生産上の取り扱い対象物としての回路基板2、ないしは回路基板2および半導体チップ1の画像認識に用いるのに、生産時と生産中断時とでカメラを所定の温度範囲に保つように温度管理することも有効なものとして提供する。これにより、メンテナンスなどによる生産中断時を含む非生産時に前記生産上の加熱が停止されて、生産中の加熱環境部位、つまりケーシングやカバーで覆われた装置内、より正確にはカメラ7、8を画像認識に用いる位置に、生産時と非生産時とで生じる温度の大きな変化に伴って、カメラ7、8まわりの環境温度が変動しても、カメラ7、8の温度が生産時、非生産時の別なく所定の範囲に保たれるので、常温範囲を外れてはその温度状態に対応した認識位置ないしは実装位置の補正を伴って、あるいは常温範囲では上記のように補正を伴わないで、常温範囲で設定した認識位置原点のままで取り扱い対象物である回路基板2や半導体チップ1などの位置を高精度に認識することができる。
【0041】
ここに、カメラ7、8に対する加熱を伴う温度管理には、生産開始時および生産中断時に、カメラ7、8を生産中のほぼ温度範囲にまで加温することによって行うことが含まれる。これによりカメラ7、8の温度が生産開始の早期から、また生産中断時も、生産安定期の温度範囲にほぼ保たれるので、カメラ7、8の温度は常温よりも高いが生産開始時に早期に立ち上がって以降、生産中断後の生産再開時にも温度が変動せず、温度が常温より高い分だけ認識位置ないしはそれに対する実装位置を補正することにより、回路基板2や半導体チップ1などの取り扱い対象物の位置を高精度に認識することができる。
【0042】
以上のような加熱を伴う生産環境での画像認識に用いるカメラの温度管理は、必要なら図3に示す前記したカメラ61にも適用して有効である。
【0043】
カメラ7、8の冷却や加熱を伴う温度管理のための温度調節は、冷風、温風の少なくとも1つによって行ない、空気の流量、圧力、空気温度の少なくとも1つを制御して行なうことができ、また、既に知られるラバーヒーターやペルチェ素子などによっても行える。
【0044】
本実施の形態における図1に示す例および図2に示す例のいずれも、カメラ7、8を空冷する冷却手段62を採用したカメラの温度管理装置である。冷却手段62はコンプレッサ63などの圧縮エア源から供給される圧縮エアを電空レギュレータ64を介し温度コントローラ65に供給して冷却に必要な温度に見合う基準温度に調整した後、エアクーラー66を経て所定温度の冷却空気68としてエア供給路67を通じカメラ7、8に送風するようにしてある。温度コントローラ65の採用によってエアクーラー66は一定の冷却能力を持つだけのものでよくなるが、冷却空気の温度調節はどのようにしてもよい。
【0045】
図1、図2に示す温度管理装置はさらに、カメラ7、8を覆うカバー81を有し、このカバー81内に空気を吹き込んでカメラ7、8の温度を調節する送風手段の1例としての前記冷却手段62と、カメラ7、8の温度を検出するセンサ69と、カメラ7、8を所定の温度範囲に保つように冷却手段62による送風状態を制御する前記制御手段35などとを備えている。
【0046】
このようにカメラ7、8はカバー81によって覆われていると、このカバー81がカメラ7、8に対し加熱環境からの遮熱部材となるので、生産中の加熱環境によるカメラ7、8の昇温を低く抑えられ、これによって、生産と非生産との間のカメラ7、8の温度変化幅を小さくでき、その分だけカメラ7、8の認識位置のずれ幅を小さくできる。従って、カバー81やカメラ7、8の接合ステージ6側にある支持部材などは特に断熱部材で構成するのが好適である。
【0047】
また、カメラ7、8まわりのカバー81に覆われた限られた空間内に冷却手段62により冷却空気68を吹き込むので、吹き込んだ冷却空気68がカメラ7、8と効率よく熱交換でき、制御手段35による目標温度範囲に向け冷却手段62を制御することにより、生産開始時や生産再開時の過渡期でもカメラ7、8の温度を早期に常温の温度範囲にし、かつ生産中はその常温の温度範囲に保つことが自動的に達成され、常温範囲で設定した認識位置原点のままで回路基板2や半導体チップ1などの取り扱い対象物の位置を高精度に認識することができる。
【0048】
しかも、カバー81は周壁の一部に開口81aを有し、冷却手段62がカバー81の開口81aと反対の側に送風口62aを有している。これにより、カバー81内に吹き込まれる冷却空気68は、カメラ7、8のカバー81の開口81aと反対側の端から開口81a側の端へと流れてカバー81の開口81aから外部に出るので、吹き込んだ冷却空気68がカメラ7、8のどの部分にも滞留するようなことなくスムーズに流れてカメラ7、8との熱交換がより促進されてカメラ7、8の温度をより早期により変動なく所定範囲に保つことができ、その分だけ取り扱い対象物の位置をさらに高精度に認識することができる。
【0049】
本発明者等の実験によれば、図1、図2に示す冷却手段62の構成要素を図4に示すように制御手段35の出力側に接続し、入力側に接続した操作パネル71からの入力や初期設定、制御プログラムに従って制御し、冷却空気68の流量や圧力を調整したところ、カメラ7、8の近傍に置いた熱電対よりなるセンサ72により検出されるカメラ7、8の温度変化の加速度との間に、図5(a)(b)に示すような直線的な相関関係、図6(a)(b)に示すような2次曲線的な相関関係、図7(a)(b)に示すような図6とは逆向きな2次曲線的な相関関係が得られた。
【0050】
そこで、半導体チップ1がベア半導体チップであってクリーンルームで取り扱われ、25℃程度の恒温室とされてこれが常温と見なせるところから、冷却空気68の流量または圧力の設定によって、図9に示すように生産中に30℃を越えるカメラ7、8の温度を30℃を下回って常温にほぼ近い28、9℃程度に保つように冷却したところ、認識位置の変化は△線に示す通りであり、プラス側およびマイナス側の両方に若干のずれが生じているものの、生産安定期はもちろん、生産中断後の生産再開時においてもほぼ0に近い高精度な位置認識ができ、◇線で示す実装位置もほぼそれに見合った高精度な部品実装が達成され、実装位置のマイナス側への最大ずれ量は2μm程度、プラス側への最大ずれ量は4μm程度となった。
【0051】
図8のフローチャートで示す具体的な温度管理の制御例につき説明すると、生産中でなければ空冷を停止し、生産中であるとセンサ69による温度の検出ないしは取り込みを行い、所定の温度範囲を下回っていると空冷は停止する。所定の温度範囲を越えているとその時の温度変化率を見て、変化率が小であるとそれに見合う弱レベルでの空冷を行い、変化率が中であるとそれに見合う中レベルでの空冷を行い、変化率が大であるとそれに見合う強レベルの空冷を行うことによって、過不足なく冷却を行い目標の温度範囲にまで無駄なく早期に冷却する。
【0052】
図10に示す他の例は、カメラ8を内蔵したカバー81の上下両面にラバーヒーター85を貼り付けてある。ラバーヒーター85は熱電対とヒータコントローラよりなり、電気的な制御によってカメラ8の温度調節を自由に効率よく簡単に行える。
【0053】
【発明の効果】
本発明によれば、生産設備でカメラを生産上の取り扱い対象物の画像認識に用いて生産をするのに、カメラが生産設備の加熱を伴う生産環境に置かれる場合、メンテナンスなどによる生産中断時を含む非生産時に前記加熱が停止されて、生産中の加熱環境部位に生産時と非生産時とで生じる温度の大きな変化に伴いカメラまわりの環境温度が変動しても、前記カメラにつき生産時の温度が非生産時のほぼ常温範囲にまで冷却するよう温度管理するので、カメラを生産中も常温付近の所定範囲内の温度に保つことができ、カメラに設定した常温時の位置認識位置原点のままで、取り扱い対象物の位置をずれなく高精度に認識することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る部品実装装置での加熱を伴う生産環境にて画像認識に用いるカメラの温度管理方法と装置の例を示す斜視図である。
【図2】本発明の実施の形態に係る部品実装装置での加熱を伴う生産環境にて画像認識に用いるカメラの温度管理方法と装置の別の例を示す斜視図である。
【図3】図1の装置を装備した部品実装装置を示す斜視図である。
【図4】図3の装置の制御装置を示すブロック図である。
【図5】図1、図2の装置での冷却空気の送風調節によって得られるカメラの温度変化加速度との1つの相関例を示すグラフであり、その(a)は流量調節時、その(b)は圧力調節時である。
【図6】図1、図2の装置での冷却空気の送風調節によって得られるカメラの温度変化加速度との別の相関例を示すグラフであり、その(a)は流量調節時、その(b)は圧力調節時である。
【図7】図1、図2の装置での冷却空気の送風調節によって得られるカメラの温度変化加速度との他の相関例を示すグラフであり、その(a)は流量調節時、その(b)は圧力調節時である。
【図8】図3の装置での温度管理の制御例を示すフローチャートである。
【図9】カメラの温度変化と認識位置および実装位置との関係を、本実施の形態の場合と従来の場合と比較して示すグラフである。
【図10】図1、図2の装置とは異なった温度調節方法を示す斜視図である。
【図11】従来の部品実装装置の1つの例を示す斜視図である。
【図12】従来の部品実装装置の今1つの例を示す斜視図である。
【符号の説明】
1 半導体チップ
2 回路基板
3、4 金属接合部
5 部品実装装置
6 接合ステージ
7、8 カメラ
11、12 進退機構
21 吸着ノズル
35 制御手段
51、52 実装ヘッド
62 冷却手段
62a 送風口
68 冷却空気
72 センサ
81 カバー
81a 開口
85 ラバーヒーター
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a camera temperature tube used for image recognition.ScienceSpecifically, the temperature tube of the camera that uses the camera for image recognition in a production environment involving heating of the production equipmentScienceIs related to the position.
[0002]
[Prior art]
Conventionally, as shown in FIGS. 11 and 12, there is known a component mounting apparatus for mounting a semiconductor chip b on a circuit board a by friction-joining metal joints d and e between the circuit board a and the semiconductor chip b. . In such a component mounting apparatus, a heater is provided in the joining stage c that supports the circuit board a and is used for the joining, and the circuit board a is heated to assist the temperature increase during the friction joining. Yes. For example, the friction joint d of the circuit board a is a conductor land, and the metal joint e of the semiconductor chip b is a bump.
[0003]
In addition to this, in the component mounting apparatus shown in FIG. 11, the camera f advances on the circuit board a supported by the bonding stage c to perform image recognition for the bonding, and the component mounting apparatus shown in FIG. Then, the camera g advances between the circuit board a supported by the bonding stage c and the semiconductor chip b carried on the circuit board a, and the image for bonding the circuit board a and the semiconductor chip b simultaneously. I try to recognize it.
[0004]
In the component mounting apparatus shown in FIG. 11, the image recognition of the semiconductor chip b is not performed on the bonding stage c. Therefore, the reversing mechanism j picks up the semiconductor chip b of the component supply source i in the component supply unit h downward as shown by a broken line, and then reverses it upward as shown by a solid line in FIG. In the process of picking up the supplied semiconductor chip b and carrying it onto the circuit board a by the component handling mechanism k that provides b for the joining, image recognition by another camera l is performed. In the component mounting apparatus shown in FIG. 12, the semiconductor chip b is handled in the same manner as the component mounting apparatus shown in FIG. A separate camera such as the component mounting apparatus shown in FIG. 11 is not necessary.
[0005]
These image recognition of the circuit board a and the semiconductor chip b by the cameras f, g, and l can detect the type, the defect such as a chip, the position including the orientation, and the like, and the problem such as the detected misalignment. Can be achieved without waste or failure.
[0006]
[Problems to be solved by the invention]
However, as the required accuracy of positioning is increasing due to the miniaturization of electronic components and the high density of wiring and mounting, the displacement of the joining position has become a problem sometimes. As a result of various experiments and studies conducted by the present inventors, the positions of the circuit board a and the semiconductor chip b among the cameras f, g, and l are particularly shifted due to the cameras f and g. Turned out to be. This is considered to be due to the fact that the cameras f and g are performing image recognition on the joining stage c that heats them, so that the camera f and g expands or contracts due to heat. In particular, since the cameras f and g are used by being advanced on the joining stage c positioned at the joining position, the support mechanism m that advances and retracts the cameras f and g advances the cameras f and g. Since it is in a cantilever support state toward the advance side, it is considered that the thermal deformation of the support mechanism m is also greatly affected.
[0007]
According to the experiments by the present inventors, in the component mounting apparatus shown in FIG. 11, the temperature in the facility in the production of the circuit board including the interruption time 15 minutes due to the maintenance of the camera f is shown by the broken line in FIG. The temperature of the camera f changed as indicated by a dotted line in FIG. 9, and the deviation of the recognition position at that time was indicated by the ▲ line, and the deviation of the actual phase position was as indicated by the ◆ line. During stable production, the displacement of the recognition position is about 10 μm, whereas the displacement of the actual phase position is almost the same, but slightly larger than the recognition position. This means that most of the causes of the deviation of the actual phase position are caused by thermal deformation at the position recognition origin of the cameras f and g set with the recognition position at normal temperature as a reference. Correspondingly, it also means that it can be handled by correcting the recognition position or mounting position to the minus side.
[0008]
In addition, after the interruption of production, therefore, in the transition period of production start-up, the deviation of the recognition position becomes about 10 μm from about 1 μm to about 10 minutes, and then increases with repeated fluctuations to stabilize the production. It reaches the state of the time. The increase in the recognition position shift during the transition period indicates that the temperature rise of the camera f has an influence. In addition, the deviation of the actual phase position increases at a stroke from the initial stage of production to the stable period of production. This is due to the fact that fluctuations in the recognition position during the start-up transition period of the production gave great confusion in the determination of the mounting position. As described above, the recognition position or the mounting corresponding to the temperature in the heating environment. This means that even if the position is corrected to the minus side, it cannot be handled.
[0009]
In addition, the thermal deformation of a camera including a support mechanism due to temperature fluctuations is a combination of various factors, and it is difficult to detect with a certain correlation with temperature changes from experience. For this reason, it is difficult to correct the recognition position or the mounting position corresponding to the temperature at that time.
[0010]
  An object of the present invention is to provide a temperature tube for a camera used for image recognition that enables accurate recognition even in a production environment involving heating of production equipment based on such new knowledge.ScienceIs to provide a place.
[0011]
[Means for Solving the Problems]
  In order to achieve the above object, the temperature management of the camera used for the image recognition of the present invention.apparatusIsIn a production facility of a component mounting apparatus that mounts components on a circuit board on a heated bonding stage, the circuit board held on the bonding stage every time image recognition including position recognition on the circuit board or the component and the circuit board is performed. A camera that can enter above or between this circuit board and the parts carried for mounting on it, a cover that covers this camera, and blows air into this cover to regulate the temperature of the camera Air blowing means, a sensor for detecting the temperature in the vicinity of the camera, and detection or capturing of the temperature by this sensor, the air cooling is stopped when the temperature falls below a predetermined temperature range, and the air cooling is stopped when the temperature exceeds the predetermined temperature range. And a control means for controlling the air blowing state by the air blowing means so as to keep the camera in a predetermined temperature range.It is a feature.
[0012]
  In such a configuration,Component mounting equipment that mounts components on a circuit board on a heated joining stageProduction equipmentInIn order to produce using the camera for image recognition of handling objects in production,Every time image recognition, including position recognition on a circuit board or components and circuit board, on a circuit board held on a bonding stage or between this circuit board and a component carried for mounting on it If a camera that can enter the camera is used, the thermal deformation is large and complicated, including the advancing and retracting mechanism. However, if the camera is covered with a cover and cooled by blowing cooling air, heat exchange is further promoted and the camera temperature is increased. It is easy to keep the air temperature within a predetermined temperature range without fluctuations earlier.In particular, if the temperature in the vicinity of the camera detected by the sensor by the control means is below the predetermined temperature range, the air cooling stops, and the predetermined temperature range is maintained. If the temperature is exceeded, air cooling is performed and the camera is kept within a predetermined temperature range. Come,Even if the environmental temperature around the camera fluctuates due to a large change in temperature at the time of production and non-production at the heating environment part during production when the heating is stopped during non-production including production interruption due to maintenance etc., MosquitoDuring production, the temperature can be kept within a specified range near room temperature, and the position recognition position origin at room temperature set in the camera can be used to accurately recognize the position of the object being handled. .
[0019]
The temperature adjustment is performed by at least one of cold air and hot air, and can be performed by controlling at least one of air flow rate, pressure, and air temperature. It can also be done with a rubber heater.
[0020]
  For temperature adjustment, if the temperature exceeds the specified temperature range, the temperature change rate at that time is observed, and air cooling is performed at a level commensurate with this temperature change rate, thereby cooling to the target temperature range without excess or deficiency. You can also do it.
[0022]
Further objects and features of the present invention will become apparent from the following detailed description and drawings. In addition, each feature of the present invention can be used alone or in combination in various combinations as much as possible.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a camera temperature management method and apparatus used for image recognition according to the present invention will be described with reference to FIGS. 1 to 10 for the understanding of the present invention. The following description is a specific example of the present invention and does not limit the scope of the claims.
[0024]
As shown in FIG. 1, the present embodiment is applied to production equipment applied to the frictional joining between the metal joints 3 and 4 between the semiconductor chip 1 and the circuit board 2, so-called component mounting apparatus 5 as shown in FIG. It is an example of a case, and is not limited to this.
[0025]
1 to 3, the component mounting apparatus 5 heats the circuit board 2 supported on a bonding stage 6 having a heater (not shown), while the metal bonding portions 3 and 4 between the semiconductor chip 1 are connected to each other. Since the temperature increase for the friction bonding is assisted by using the friction bonding, the bonding stage 6 forms a production environment with heating, and on the circuit board 2 supported on the bonding stage 6 as shown in FIG. Alternatively, as shown in FIG. 2, the circuit board 2 supported on the joining stage 6 and the semiconductor chip 1 carried for mounting components on the circuit board 2 are advanced to recognize their positions. The camera 7 shown in FIG. 1 and the camera 8 shown in FIG. 2 are thermally deformed due to the thermal influence from the heating environment, as described in the stable production period as well as at the start of production and when production resumes after production interruption. Fluctuate If the recognition origin position of the cameras 7 and 8 set corresponding to a certain temperature condition such as a normal temperature state remains unchanged, the recognition position will be displaced, and the parts that are formed by positioning the semiconductor chip 1 and the circuit board 2 based on the recognition position Deviation occurs in mounting position. Since the correlation between the temperature and the positional deviation is not constant, even if the recognition position or the mounting position is corrected by the temperature at that time, it cannot be dealt with. Such a problem occurs, for example, while the semiconductor chip 1 is heated on a heating stage to form bumps as the metal joints 3 on the electrodes of the semiconductor chip 1 by a wire friction bonding technique. The same problem occurs when positioning of the semiconductor chip 1 or the like is performed based on position recognition by image recognition using a camera on the heating stage.
[0026]
As described above, in addition to the component mounting apparatus 5, there is a production facility in which thermal deformation of the camera causes a problem in recognition accuracy in performing image recognition using the camera in an environment with heating, and the present invention is applied to all of them. In any case, it belongs to the category of the present invention.
[0027]
The component mounting apparatus 5 shown in FIG. 3 will be further described. A component supply unit 31 that supplies components such as the semiconductor chip 1 to a predetermined position, and a mounting object such as a circuit board 2 that mounts components by the metal bonding are supported and heated. While including the joining stage 6 that is carried to the component mounting position and used for component mounting by the joining, the mounting object handling means 32 that moves the circuit board 2 after the component mounting to the other, and the semiconductor chip 1 supplied to the predetermined position The metal joints 3 and 4 are opposed to the circuit board 2 picked up by the suction nozzle 21 as an example of the component holding tool connected to the voice coil motor 10 and positioned at the handling component mounting position. In order to join the metal to the components held by the component handling means 33 and the suction nozzle 21 which are aligned and provided for mounting. In the operation control of the ultrasonic vibration means 34 and the component mounting apparatus 5 using a horn for applying ultrasonic vibration, a metal joint portion such as a conductor land of the circuit board 2 supported on the joining stage 6 particularly at the component mounting position. 4, the metal joint portion 3 of the semiconductor chip 1 handled by the component handling means 33 is made to face, and the suction nozzle 21 in, for example, the two mounting heads 51 and 52 of the component handling means 33 is driven and controlled by the voice coil motor 10. Control of mounting the semiconductor chip 1 on the circuit board 2 by applying the ultrasonic vibration means 34 while applying weight to the joints 3 and 4 to join the metal joints 3 and 4 with heating from the joining stage 6. Means 35 are provided.
[0028]
As a result, the semiconductor chip 1 supplied by the component supply unit 31 to the predetermined position is accompanied by drive control by the control unit 35 of the voice coil motor 10 by the suction nozzle 21 which the component handling unit 33 has in the mounting heads 51 and 52 thereof. Control means 35 picks up and carries the metal joints 3 and 4 with the circuit board 2 which is supported by the joining stage 6 of the mounting object handling means 32 in a heated state and is supplied to the mounting position and positioned. Thus, the semiconductor chip 1 is automatically mounted on the circuit board 2 by friction-bonding the metal joints 3 and 4 by the drive control of the suction nozzle 21 by the ultrasonic vibration means 34 and the voice coil motor 10 at high speed. be able to.
[0029]
The control means 35 may use a control function of a microcomputer, but is not limited to this. The component supply unit 31 uses a lifter 38 that places and moves up and down a stocker 37 that accommodates components diced on each semiconductor chip 1 on a dicing sheet 36 as a component supply source. With respect to the positioned storage stage, the dicing sheet 36 is pulled out by the loading / unloading means 39 moving in the Y direction to be used for the expansion in the expansion table 41 to prepare for picking up the components, or the dicing sheet 36 after picking up the components on the expansion table 41 is prepared. It is stored in the stocker 37. For example, when the expansion base 41 moves in the Y direction and the pickup means 42 moves in the X direction, the predetermined semiconductor chip 1 on the dicing sheet 36 is attracted and picked up by the suction nozzle 42a of the pickup means 42. So that
[0030]
The pickup means 42 inverts the semiconductor chip 1 picked up by the downward suction nozzle 42a upward so that the bonding surface having the metal bonding portion 3 of the semiconductor chip 1 faces downward in the X direction to a predetermined component supply position. Move and use for pick-up for component mounting.
[0031]
Pickup for component mounting is performed for each type by, for example, two component mounting heads 51 and 52 that move in the X direction, and component mounting is performed by friction bonding suitable for the type of semiconductor chip 1. For this friction bonding, the component mounting heads 51 and 52 include the voice coil motor 10 that supports the suction nozzle 21 described above, and the weighting conditions corresponding to the type of semiconductor chip 1 handled by each component are set. Of course, a means other than the voice coil motor 10 may be employed as the driving means for the suction nozzle 21.
[0032]
The mounting object handling means 32 has the joining stage 6 between the loading part 53 and the unloading part 54 of the circuit board 2. The joining stage 6 can move in the Y direction, carry the circuit board 2 carried in from the loading unit 53 to the mounting position, and use it for component mounting with heating by the component mounting head 51 or 52 to perform predetermined mounting of the semiconductor chip 1. When finished, the circuit board 2 is returned to the original position, and the circuit board 2 after mounting the components is transferred to the unloading portion 54 to the carry-out destination.
[0033]
The loading unit 53 is provided with a preheating stage 56 that preheats the circuit board 2, and the unloading unit 54 is provided with a temperature guarantee so that the circuit board 2 after component mounting does not suddenly cool and cracks occur. A heat insulation heating stage 57 is provided. Further, the camera 7 shown in FIG. 1 that moves forward and backward to the component mounting position is provided in the vicinity of the component mounting position, and enters the circuit board 2 positioned at the component mounting position to enter the metal joint 4. Are taken or taken for use in recognizing positions and defects by the images. The image recognition including the position of the semiconductor chip 1 is taken or taken by the camera 61 provided in the middle of the component handling means 33 holding the semiconductor chip 1 upside down from the pickup means 42 in the component supply unit 31 and carrying it to the mounting position. This is done by imaging.
[0034]
However, as shown in FIGS. 1 and 2, the advance / retreat mechanism 11 of the cameras 7 and 8 can recognize images corresponding to various marks on various circuit boards 2 or mounting positions on one circuit board 2. The table 11a, 12a moving in the Y direction and the table 11b, 12b moving in the X direction are moved in the orthogonal XY2 direction. If the position of the circuit board 2 can be recognized, each mounting position of the component can be specified by the coordinate position on the circuit board 2, and the image recognition of each mounting position can be omitted. If the camera 8 shown in FIG. 2 is provided in place of the camera 7 at the mounting position, the camera 61 that recognizes the image of the semiconductor chip 1 alone becomes unnecessary. In addition, the simultaneous recognition of the circuit board 2 and the semiconductor chip 1 by one camera 8 has the same origin of the recognition position for both, so that the mutual positional relationship can be accurately recognized and positioned with high accuracy. . As a result, it is possible to cope with minute parts, high-density circuit patterns and mounting.
[0035]
In addition, it is preferable that the recognition of the defect is inspected at an earlier stage for both the circuit board 2 and the semiconductor chip 1 and the defective product is not used for component mounting. In the simultaneous recognition of the circuit board 2 and the semiconductor chip 1 by one camera 8, the origin positions of the recognition for both are common, and the mutual positional relationship can be accurately recognized and positioned with high accuracy. As a result, it is possible to cope with minute parts, high-density circuit patterns and mounting.
[0036]
In the present embodiment, the camera 7 or 8 as described above is shifted in recognition position due to thermal deformation in a production environment involving heating including the joining stage 6 or the preheating stage 56, the heat retaining heating stage 57, and the like. In order to solve this problem, as one method of temperature management of the camera, the circuit board 2 or the semiconductor chip 1 and the circuit which are examples of objects to be handled in the production of the cameras 7 and 8 in the production environment with heating. For use in image recognition including position recognition with respect to the substrate 2, the cameras 7 and 8 are temperature-controlled so that the temperature at the time of production is cooled to substantially the normal temperature range at the time of non-production.
[0037]
As described above, when the cameras 7 and 8 are used for image recognition of the semiconductor chip 1 which is an object to be handled in production in a production environment involving heating in the component mounting apparatus 5, the cameras 7 and 8 are used for the component mounting apparatus 5. In order to be placed in a production environment that involves heating, the heating is stopped during non-production, including during production interruptions due to maintenance, etc. 9, a large change as shown by the broken line and the dotted line in FIG. 9 occurs. As a result, the ambient temperature around the cameras 7 and 8 fluctuates. For example, by controlling the temperature as in the experimental example shown by the solid line in FIG. 9 so that the temperature is cooled down to approximately the normal temperature range during production, the cameras 7 and 8 can be kept at a temperature within a predetermined range near the normal temperature even during production. ,turtle Remain in position recognition position origin at the normal temperature set at 7,8, it can be recognized with high accuracy without displacement circuit board 2, or the position of the circuit board 2 and the semiconductor chip 1.
[0038]
In particular, the component mounting apparatus 5 mounts the semiconductor chip 1 and the like on the circuit board 2 with the friction bonding between the metal bonding portions 3 and 4 on the heated bonding stage 6 as described above. , 8 has a configuration that enters the circuit board 2 held on the bonding stage 6 every time image recognition is performed, and high-precision positioning between the circuit board 2 and the semiconductor chip 1 is required. Regardless, the cameras 7 and 8 advance on the circuit board 2 or between the circuit board 2 and the semiconductor chip 1 to recognize the positions thereof. However, as described above, the temperature of the cameras 7 and 8 can be kept within a predetermined range near room temperature, so that high accuracy can be achieved based on highly accurate position recognition. Nabe Implementation is achieved, miniaturization of additional components, can correspond to high-density circuit pattern and component mounting.
[0039]
As described above, basically any method may be adopted as a cooling method for controlling the cameras 7 and 8 to about room temperature. Moreover, normal temperature is the environmental temperature of a production facility, such as the temperature of a constant temperature room will be normal temperature in the case of production in a constant temperature room. In principle, even if the temperature is not controlled so that the cameras 7 and 8 are kept near room temperature, if the fluctuation of the temperature can be prevented, the deviation amount of the recognition position corresponding to the temperature can be assumed empirically with correlation. The recognition position can be corrected accordingly. Therefore, temperature control is not limited to cooling.For example, the start-up to the stable production temperature at the start of production is assisted by heating, or the stable production temperature is maintained even during production interruption. It can also be handled by heating to maintain.
[0040]
Therefore, in the present embodiment, as another temperature management example, the circuit board 2 as an object to be handled in production includes the cameras 7 and 8 in the production environment involving heating of the component mounting apparatus 5 including the above example. In addition, for use in image recognition of the circuit board 2 and the semiconductor chip 1, it is also provided that it is effective to control the temperature so that the camera is kept in a predetermined temperature range during production and during production interruption. As a result, the heating in production is stopped during non-production including when production is interrupted due to maintenance or the like, and the heating environment part during production, that is, in the apparatus covered with the casing or the cover, more precisely, the cameras 7 and 8 are used. Even if the environmental temperature around the cameras 7 and 8 fluctuates due to a large change in temperature between production and non-production at the position used for image recognition, the temperature of the cameras 7 and 8 is not during production. Because it is kept within the specified range regardless of the production time, if it is out of the normal temperature range, the recognition position or mounting position corresponding to the temperature state is corrected, or in the normal temperature range, the above correction is not performed. The position of the circuit board 2 or the semiconductor chip 1 that is the object to be handled can be recognized with high accuracy while the recognition position origin set in the normal temperature range is maintained.
[0041]
Here, the temperature management accompanied by the heating of the cameras 7 and 8 includes performing the heating by heating the cameras 7 and 8 to almost the temperature range during production at the start of production and at the time of production interruption. As a result, the temperature of the cameras 7 and 8 is kept within the temperature range of the stable production period from the beginning of production and also at the time of production interruption, so the temperature of the cameras 7 and 8 is higher than the normal temperature but early at the start of production. After starting up, the temperature does not fluctuate even when the production is resumed after the production interruption, and the circuit board 2 and the semiconductor chip 1 are handled by correcting the recognition position or the mounting position corresponding to the temperature higher than the normal temperature. The position of an object can be recognized with high accuracy.
[0042]
The temperature management of the camera used for image recognition in the production environment with heating as described above is effective when applied to the camera 61 shown in FIG. 3 if necessary.
[0043]
Temperature control for temperature control involving cooling and heating of the cameras 7 and 8 is performed by at least one of cold air and hot air, and can be performed by controlling at least one of air flow rate, pressure, and air temperature. Moreover, it can also be performed by a known rubber heater or Peltier element.
[0044]
Each of the example shown in FIG. 1 and the example shown in FIG. 2 in the present embodiment is a camera temperature management apparatus that employs cooling means 62 that cools the cameras 7 and 8 by air. The cooling means 62 supplies compressed air supplied from a compressed air source such as the compressor 63 to the temperature controller 65 via the electropneumatic regulator 64 and adjusts it to a reference temperature suitable for the temperature required for cooling, and then passes through the air cooler 66. The cooling air 68 having a predetermined temperature is blown to the cameras 7 and 8 through the air supply path 67. By adopting the temperature controller 65, the air cooler 66 need only have a certain cooling capacity, but the temperature of the cooling air may be adjusted in any way.
[0045]
The temperature management apparatus shown in FIGS. 1 and 2 further includes a cover 81 that covers the cameras 7 and 8. As an example of a blowing unit that blows air into the cover 81 to adjust the temperature of the cameras 7 and 8. The cooling means 62, a sensor 69 for detecting the temperature of the cameras 7 and 8, and the control means 35 for controlling the air blowing state by the cooling means 62 so as to keep the cameras 7 and 8 in a predetermined temperature range. Yes.
[0046]
Thus, when the cameras 7 and 8 are covered with the cover 81, the cover 81 serves as a heat shielding member from the heating environment to the cameras 7 and 8, and therefore the cameras 7 and 8 are raised by the heating environment during production. The temperature can be kept low, whereby the temperature change width of the cameras 7 and 8 between production and non-production can be reduced, and the deviation width of the recognition position of the cameras 7 and 8 can be reduced accordingly. Therefore, it is particularly preferable that the cover 81 and the support members on the joining stage 6 side of the cameras 7 and 8 are made of heat insulating members.
[0047]
Further, since the cooling air 68 is blown by the cooling means 62 into the limited space covered by the cover 81 around the cameras 7 and 8, the blown cooling air 68 can efficiently exchange heat with the cameras 7 and 8, and the control means. By controlling the cooling means 62 toward the target temperature range of 35, the temperature of the cameras 7 and 8 is quickly brought to the normal temperature range even during the transition period at the start of production or when the production is resumed. The range is automatically achieved, and the position of the object to be handled such as the circuit board 2 and the semiconductor chip 1 can be recognized with high accuracy while maintaining the recognition position origin set in the normal temperature range.
[0048]
In addition, the cover 81 has an opening 81a in a part of the peripheral wall, and the cooling means 62 has a blower port 62a on the side of the cover 81 opposite to the opening 81a. Thereby, the cooling air 68 blown into the cover 81 flows from the end on the opposite side to the opening 81a of the cover 81 of the cameras 7 and 8 to the end on the opening 81a side and exits from the opening 81a of the cover 81 to the outside. The blown cooling air 68 flows smoothly without staying in any part of the cameras 7 and 8, and heat exchange with the cameras 7 and 8 is further promoted, so that the temperature of the cameras 7 and 8 is not changed earlier. It can be kept within a predetermined range, and the position of the object to be handled can be recognized with higher accuracy accordingly.
[0049]
According to the experiments by the present inventors, the components of the cooling means 62 shown in FIGS. 1 and 2 are connected to the output side of the control means 35 as shown in FIG. 4, and from the operation panel 71 connected to the input side. When the flow rate and pressure of the cooling air 68 are adjusted in accordance with the input, initial setting, and control program, the temperature change of the cameras 7 and 8 detected by the sensor 72 composed of a thermocouple placed in the vicinity of the cameras 7 and 8 is detected. Between the acceleration and the linear correlation as shown in FIGS. 5A and 5B, the quadratic correlation as shown in FIGS. 6A and 6B, FIG. A quadratic curve-like correlation opposite to that in FIG. 6 as shown in b) was obtained.
[0050]
Therefore, since the semiconductor chip 1 is a bare semiconductor chip and is handled in a clean room, and is regarded as a constant temperature room of about 25 ° C., which can be regarded as normal temperature, the flow rate or pressure of the cooling air 68 is set as shown in FIG. During the production, the temperature of the cameras 7 and 8 exceeding 30 ° C. was cooled below 30 ° C. so as to be kept at about 28 and 9 ° C., and the change in the recognition position was as shown by the △ line. Although there is a slight deviation on both the negative and negative sides, high-accuracy position recognition can be achieved close to zero not only during the production stabilization period but also when production resumes after production interruption. Highly accurate component mounting corresponding to that was achieved, and the maximum shift amount to the minus side of the mounting position was about 2 μm, and the maximum shift amount to the plus side was about 4 μm.
[0051]
A specific temperature management control example shown in the flowchart of FIG. 8 will be described. Air cooling is stopped unless production is in progress, and when production is in progress, the temperature is detected or captured by the sensor 69 and falls below a predetermined temperature range. If it is, air cooling stops. When the temperature range exceeds the specified temperature range, the rate of temperature change at that time is observed. If the rate of change is small, air cooling is performed at a moderate level, and if the rate of change is medium, air cooling at an intermediate level is performed. When the rate of change is large, the air cooling is performed at a strong level commensurate with it, thereby cooling without excess or deficiency and quickly to the target temperature range without waste.
[0052]
In another example shown in FIG. 10, rubber heaters 85 are pasted on both upper and lower surfaces of a cover 81 in which the camera 8 is built. The rubber heater 85 includes a thermocouple and a heater controller, and the temperature of the camera 8 can be adjusted freely and efficiently by electric control.
[0053]
【The invention's effect】
According to the present invention, when production is performed using a camera for image recognition of an object to be handled in a production facility, when the camera is placed in a production environment involving heating of the production facility, production is interrupted due to maintenance or the like. Even when the environmental temperature around the camera fluctuates due to a large change in temperature at the time of production and non-production at the heating environment part during production when the heating is stopped during non-production including Because the temperature is controlled so that the temperature of the camera cools to approximately the normal temperature range during non-production, the camera can maintain the temperature within the specified range near normal temperature even during production. The position of the object to be handled can be recognized with high accuracy without deviation.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of a camera temperature management method and apparatus used for image recognition in a production environment involving heating in a component mounting apparatus according to an embodiment of the present invention.
FIG. 2 is a perspective view showing another example of a camera temperature management method and apparatus used for image recognition in a production environment involving heating in the component mounting apparatus according to the embodiment of the present invention.
FIG. 3 is a perspective view showing a component mounting apparatus equipped with the apparatus of FIG. 1;
4 is a block diagram showing a control device of the device of FIG. 3. FIG.
FIG. 5 is a graph showing an example of a correlation with a temperature change acceleration of a camera obtained by adjusting the air flow of cooling air in the apparatus of FIGS. 1 and 2; FIG. ) When adjusting pressure.
6 is a graph showing another example of the correlation with the temperature change acceleration of the camera obtained by adjusting the cooling air flow in the apparatus of FIGS. 1 and 2; FIG. ) When adjusting pressure.
FIG. 7 is a graph showing another example of correlation with the temperature change acceleration of the camera obtained by adjusting the cooling air flow in the apparatus of FIGS. 1 and 2; FIG. ) When adjusting pressure.
FIG. 8 is a flowchart showing an example of temperature management control in the apparatus of FIG. 3;
FIG. 9 is a graph showing the relationship between the temperature change of the camera, the recognition position, and the mounting position in comparison with the case of the present embodiment and the conventional case.
10 is a perspective view showing a temperature adjustment method different from the apparatus of FIGS. 1 and 2. FIG.
FIG. 11 is a perspective view showing an example of a conventional component mounting apparatus.
FIG. 12 is a perspective view showing another example of a conventional component mounting apparatus.
[Explanation of symbols]
1 Semiconductor chip
2 Circuit board
3, 4 Metal joint
5 Component mounting equipment
6 Joining stage
7, 8 camera
11, 12 Advance / Retreat Mechanism
21 Suction nozzle
35 Control means
51, 52 Mounting head
62 Cooling means
62a Blower
68 Cooling air
72 sensors
81 cover
81a opening
85 Rubber heater

Claims (3)

加熱状態の接合ステージ上で部品を回路基板に実装する部品実装装置の生産設備において、回路基板、あるいは部品および回路基板に対する位置認識を含む画像認識の都度、接合ステージの上に保持された回路基板上、またはこの回路基板とこれに実装するために持ち運ばれてきた部品との間に進入可能なカメラと、このカメラを覆うカバーと、このカバー内に空気を吹き込んでカメラの温度を調節する送風手段と、カメラ近傍の温度を検出するセンサと、このセンサによる温度の検出ないしは取り込みを行い、所定の温度範囲を下回っていると空冷は停止し、所定の温度範囲を越えていると空冷を行いカメラを所定の温度範囲に保つように送風手段による送風状態を制御する制御手段とを備えたことを特徴とする画像認識に用いるカメラの温度管理装置。In a production facility of a component mounting apparatus for mounting components on a circuit board on a heated joining stage, the circuit board held on the joining stage each time image recognition including position recognition on the circuit board or the component and circuit board is performed. A camera that can enter above or between this circuit board and the components carried to mount it, a cover that covers the camera, and blows air into the cover to adjust the temperature of the camera Air blowing means, a sensor for detecting the temperature in the vicinity of the camera, and detection or capture of the temperature by this sensor, the air cooling is stopped when the temperature falls below a predetermined temperature range, and the air cooling is stopped when the temperature exceeds the predetermined temperature range. And a control means for controlling the air blowing state by the air blowing means so as to keep the camera in a predetermined temperature range. Time management device. 温度調節は、冷風、温風の少なくとも1つによって行ない、空気の流量、圧力、空気温度の少なくとも1つを制御して行なう請求項に記載の画像認識に用いるカメラの温度管理装置。2. The temperature management device for a camera used for image recognition according to claim 1 , wherein the temperature adjustment is performed by at least one of cold air and hot air, and at least one of air flow rate, pressure, and air temperature is controlled. 所定の温度範囲を越えているとその時の温度変化率を見て、この温度変化率に見合うレベルでの空冷を行うことによって、過不足なく冷却を行い目標の温度範囲にまで冷却する請求項1あるいは2に記載の画像認識に用いるカメラの温度管理装置。 The temperature change rate at that time is observed when the temperature exceeds a predetermined temperature range, and air cooling is performed at a level commensurate with the temperature change rate, thereby cooling without excess or deficiency to a target temperature range. Alternatively, a camera temperature management device used for image recognition according to 2.
JP2002065637A 2002-03-11 2002-03-11 Camera temperature control device for image recognition Expired - Lifetime JP4146140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002065637A JP4146140B2 (en) 2002-03-11 2002-03-11 Camera temperature control device for image recognition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002065637A JP4146140B2 (en) 2002-03-11 2002-03-11 Camera temperature control device for image recognition

Publications (2)

Publication Number Publication Date
JP2003264358A JP2003264358A (en) 2003-09-19
JP4146140B2 true JP4146140B2 (en) 2008-09-03

Family

ID=29197853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002065637A Expired - Lifetime JP4146140B2 (en) 2002-03-11 2002-03-11 Camera temperature control device for image recognition

Country Status (1)

Country Link
JP (1) JP4146140B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4790246B2 (en) * 2004-10-29 2011-10-12 富士通株式会社 Image pickup apparatus and electronic component board mounting apparatus
KR101986341B1 (en) * 2012-03-30 2019-06-07 삼성전자주식회사 bi-directional camera module for flip chip bonder used the same
JP7178543B2 (en) * 2018-02-16 2022-11-28 パナソニックIpマネジメント株式会社 Component mounter

Also Published As

Publication number Publication date
JP2003264358A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
JP6823103B2 (en) Mounting method and mounting device
JP5732631B2 (en) Joining apparatus and joining method
JP6991614B2 (en) Component mounting system and component mounting method
KR100370521B1 (en) An apparatus and a method for removing solder from an object
US20220199448A1 (en) Bonding apparatus and method for correcting movement amount of bonding head
JP4650216B2 (en) Component mounting apparatus and component mounting method
JP4146140B2 (en) Camera temperature control device for image recognition
JP4715557B2 (en) Mounting head position correction method and electronic component mounting apparatus
US20200338678A1 (en) Machining system and machining method
JP5042146B2 (en) Flip chip bonder
JP5437221B2 (en) Bonding equipment
JP3992094B2 (en) Component mounting method and component mounting machine
JP2014007329A (en) Bonding device
US5900106A (en) Bonding apparatus
JP2017195264A (en) Component mounting device, component mounting method, component mounting device control program and storage medium
JP4715558B2 (en) Electronic component position recognition method and electronic component mounting apparatus
WO2021240979A1 (en) Mounting board manufacturing device and mounting board manufacturing method
JP2002217216A (en) Part bonding method and device thereof
JP2003115503A (en) Adjusting/assembling unit for high-temperature treated part
JPH05235536A (en) Electronic parts correction equipment
JP2005235917A (en) Method and equipment for semiconductor packaging
JP3359246B2 (en) Component mounting device
JP2004087705A (en) Die bonding equipment and method
TWI841852B (en) Mounting device and mounting method
JP2004303950A (en) Electronic component mounting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4146140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

EXPY Cancellation because of completion of term